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Acoustic-Mode Mobilities for “Split p-Silicon” 

It  has recently  been demonstratedl by  cyclotron reso- 
nance  that,  as  predicted,2, 334 the degenerate  valence-band 
edge of a  silicon  crystal is split by shear strains into  two 
nondegenerate  band  edges at different energies, with 
ellipsoidal energy surfaces5 in  the neighborhood of each. 
For  temperatures with kT small compared  to  the splitting, 
there is thus  made available, for  each type of strain, a 
“new  half-semiconductor” of almost the simplest  type 
(but with  tetragonal, rather  than cubic, symmetry) with 
corresponding new acceptor ionization  energy (when  the 
latter is small compared  to  the splitting) and  transport 
constants. The mobilities, so far as they are determined 
by acoustic-mode phonon scattering, will be  governed by 
a new set of deformation potentials,  distinct for  each type 
of strain. 

In this  note, the  deformation potentials of the  thermal 
(upper)  band of the split  band edge are obtained in terms 
of the  fundamental elements, for  the valence-band sys- 
tem, of the  deformation potential  operators.6 The princi- 
pal values ~i of the relaxation-time tensor71s may be 
calculated, for  the  approximation  that they  depend on 
the energy E only,s,g as in  Herring  and Vogt’s paper 
(Reference 8, to be  denoted hereafter by “HV”) by mak- 
ing certain approximations. In this note, HV’s mathe- 
matical  results are used to  obtain  (by substituting the 
new effective mass  constants, given by experiment1) the 
coefficients of the expressions for  the 1 / ~ i  as  bilinear 
functions of the  fundamental elements of the  deforma- 
tion  potential operators.  The various linear  transport 
constants  are all given, within the approximations in- 
volved, by well known formulass in terms of the T ~ .  (The 
actual  mobility, for example, is determined by optical- 
mode and  impurity scattering as well as  acoustic-mode 
scattering. For  impurity scattering to be negligible one 
may expect to need higher temperatures  than  that  at 
which  cyclotron  resonance was observed, and  therefore 
larger  strains  for  the splitting to  remain  large  compared 
to  thermal energies.) 

The  fundamental elements of the  deformation poten- 
tial operators  are 

( ~ ~ I a ~ ~ l w ~ ) = D : : ,  

where6 ast (Pikus  and Bir’s D s t )  is the tensor component 
for unit  axes in crystal [l, 0, 01 directions and  the w, are 
the basis functions, of the valence-band  center,  trans- 
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forming  like x, y ,  and z .  For convenience we give in Table 
1 the correspondence of the various  notations. In  the 

Table I 

Pikus  and BirlO I A d a m 2  1 Tierstenll 

notation of Pikus  and Bir,33 10 the energy of the  upper 
band edge is12 

Eo=const.+aA+vx,.  (1) 

Differentiation of this  homogeneous linear  function of 
the strains gives the E , ,  . . . . , E6 defined by HV and 
hence (see  their  Table 11) the constants E d ,  Eu defined by 
Herring,l3  for  the types of ‘‘valley” which we consider 
here. These results are tabulated  in Table 2 below, for a 
uniaxial  stress  along the  1, 0, 0 axis (“1, 0, 0 case”)  and 
for a uniaxial stress along  the 1, 1, 1 axis (“1, 1, 1 case”). 
For  both cases the energy surfaces  are ellipsoids of rota- 
tion  and so the valleys have  two distinct  mass  constants, 
m*ll and m*l, and similarly  two HV relaxation times, 
T ~ ,  and T ~ .  

Table 2 

For a compression, p = +I ; for a tension, p = -1. 
~ ~~ 

HV’s results for T~~ and T ~ ,  (HV49)  and (HV50), may 
be expressed 

l/s=(6kT,1/2/h~l)  (ms/2fi2)3/2 D2.  

Here m, is the density-of-states mass, CI is given by 
(HV51), T stands  for T , ~  or T ~ ,  D for Dll or  Dl,  and D2  is 63 
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the final factor [ ] in (HV49) or (HV50).14 From  the 
results of Table 2 here, we have 

DZ=~~'-(311-24)~g+(4-311+9g)g2, (2) 

where 

g = p .  31bl; 1,0,0 case 

g = p  - 1  d l / d T ;  1, 1, 1 case t -  
Here (, 7, stand  for tI1 or &, et cetera, and  the  latter  are 
given by HV in  their  Table VI. The coefficients in (2) 
have been computed for the 1,0,0 and 1,1, 1 cases, using 
the published1 cyclotron-resonance masses (that is, for 
the compression situations),  from  HV's Tables VI and 
VI1 and  their  Figures 2 and 3 and  from  the elastic  con- 
stants  quoted by them for silicon.15 The results are col- 
lected  in Table 3 below. 

Table 3 
I 

1, 0, 0 0.742 

-I 
I, 1, 1 0.319 

I I 1 4 1 37-25 

" 

II 1.83 1.32 
" 

I -1.37 1.34 

L I 1.36 1 -1.92 

5-311+95 

9.18 

4.36 

7.90 

2.71 

The evaluation of the scattering times T~,, T ~ ,  and  hence 
the  transport constants, of course requires knowledge of 
the values of the  deformation potential  elements  in Table 
1. It seems possible that order-of-magnitude  values  may 

be obtained  from  the dependence of mobilities on strain 
as  the  latter increases from zero to the magnitudes at 
which the limiting "split p" state  is reached. 

We  are indebted to S. H. Koenig and M. Tiersten for 
discussions. 

References  and  footnotes 
1. J.  C. Hensel and G.  Feher, Phys.  Rev.  Letters 5, 307 

2. E. N. Adams,  Chicago  Midway Laboratories Report 

3. G .  E.  Pikus and G. L.  Bir, Soviet Physics-Solid State 1, 
136 (1959), and 1, 1502 (1960). 

4.  See also W. H. Kleiner and L.  M. Roth, Phys.  Rev. Letters 
2, 334 (1959). 

5. The effective  mass  constants are calculated by Pikus and 
Bir (Reference 3) ,  who were  evidently the first to sug- 
gest  the  use of cyclotron  resonance to investigate the 

6. G. D.  Whitfield, Phys. Rev.  Letters 2, 204 (1959). The 
phenomenon. 

term in k ,  of ( 5 )  is to be dropped  in  the  present  applica- 
tion. 

(1960). 

CML-TN-PI ( 1954). 

7. W. P. Dumke, Phys.  Rev. 101,531  (1956). 
8.  C. Herring and E. Vogt, Phys.  Rev. 101, 944 (1956). 
9. P. J. Price, IBMJournal 1,239 (1957). 

10. The a here  is that defined in the first  of References 3. It 
is thus the negative of the constant denoted by the same 
letter in the second of References 3. Correspondingly, Eq. 
( 1) of the former gives electron energy  while Eq. (18) of 
the latter gives hole energy. 

11.  M. Tiersten, to be  published. 
12. Eq. (1) gives electron (rather than hole) energy, and the 

resulting deformation potentials given  in Table 2 are 
derivatives of electron  energy. 

13. C. Herring, Bell System Tech. J .  34, 237 (1955). 
14. The scattering frequency for spherical  energy  surfaces at 

the zone center of a cubic crystal is  given  by substituting 
4E,'/3 for D', where E,  is the  Bardeen-Shockley  deforma- 
tion  potential. 

15.  See the Erratum, Phys. Rev. 105, 1933 (1957). 

Received  October 11,1960 

64 

IBM JOURNAL * JANUARY 1961 


