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Acoustic-Mode Mobilities for “Split p-Silicon”

It has recently been demonstrated® by cyclotron reso-
nance that, as predicted,? 3. ¢ the degenerate valence-band
edge of a silicon crystal is split by shear strains into two
nondegenerate band edges at different energies, with
ellipsoidal energy surfacess in the neighborhood of each.
For temperatures with AT small compared to the splitting,
there is thus made available, for each type of strain, a
“new half-semiconductor” of almost the simplest type
(but with tetragonal, rather than cubic, symmetry) with
corresponding new acceptor ionization energy (when the
latter is small compared to the splitting) and transport
constants. The mobilities, so far as they are determined
by acoustic-mode phonon scattering, will be governed by
a new set of deformation potentials, distinct for each type
of strain.

In this note, the deformation potentials of the thermal
(upper) band of the split band edge are obtained in terms
of the fundamental elements, for the valence-band sys-
tem, of the deformation potential operators.® The princi-
pal values 7; of the relaxation-time tensor’:® may be
calculated, for the approximation that they depend on
the energy ¢ only,®?® as in Herring and Vogt’s paper
(Reference 8, to be denoted hereafter by “HV”) by mak-
ing certain approximations. In this note, HV’s mathe-
matical results are used to obtain (by substituting the
new effective mass constants, given by experiment!) the
coefficients of the expressions for the 1/r; as bilinear
functions of the fundamental elements of the deforma-
tion potential operators. The various linear transport
constants are all given, within the approximations in-
volved, by well known formulas® in terms of the ;. (The
actual mobility, for example, is determined by optical-
mode and impurity scattering as well as acoustic-mode
scattering. For impurity scattering to be negligible one
may expect to need higher temperatures than that at
which cyclotron resonance was observed, and therefore
larger strains for the splitting to remain large compared
to thermal energies.)

The fundamental elements of the deformation poten-
tial operators are

(v:|D**|vu) =Dt

Ty

where® $*! (Pikus and Bir’s D) js the tensor component
for unit axes in crystal [1, 0, 0] directions and the v, are
the basis functions, of the valence-band center, trans-

forming like x, y, and z. For convenience we give in Table
1 the correspondence of the various notations. In the

Table 1

Matrix
Pikus and Bir’® | Adams2 | Tiersten!! | elements

a+2b l En F D}
a— b ‘ m E12 G D;é
V3d | n Eu 21 D124-D2

notation of Pikus and Bir,* 1° the energy of the upper
band edge is'?

Eo—const.+aA+/E, . (1)

Differentiation of this homogeneous linear function of
the strains gives the Zi,..... Eq defined by HV and
hence (see their Table IT) the constants 2,4, E, defined by
Herring,’® for the types of “valley” which we consider
here. These results are tabulated in Table 2 below, for a
uniaxial stress along the 1, 0, 0 axis (“1, 0, 0 case”) and
for a uniaxial stress along the 1, 1, 1 axis (““1, 1, 1 case”).
For both cases the energy surfaces are ellipsoids of rota-
tion and so the valleys have two distinct mass constants,
m*, and m*,, and similarly two HV relaxation times,
7pand 7.

Table 2
1,0, 0 case 1,1, 1 case
Ea | a+p-%|b| atp-ldl/V3
Eu —p- $|b]| —p-V/3|d|
For a compression, p = --1; for a tension, p = —1.

HV’s results for 7, and 7;, (HV49) and (HV50), may
be expressed

1/7=(6kT:Y%/ hcy) (m,/21i2)3/2 D2,

Here m, is the density-of-states mass, ¢; is given by
(HV51), 7 stands for = or 7, D for D or D,, and D?is
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the final factor [ ]in (HV49) or (HV50).1* From the
results of Table 2 here, we have

D?=fa*— (39—2§)ag+(§—39+90) g, (2)
where
g=p- %|bl; 1,0, 0 case

_ (3)
g=p-ldl/V/3; 1,1,1case

Here £, 5, { stand for £, or £, et cetera, and the latter are
given by HV in their Table VI. The coefficients in (2)
have been computed for the 1, 0, 0 and 1, 1, 1 cases, using
the published! cyclotron-resonance masses (that is, for
the compression situations), from HV’s Tables VI and
VII and their Figures 2 and 3 and from the elastic con-
stants quoted by them for silicon.’® The results are col-
lected in Table 3 below.

Table 3
m*,
Case . £ 3p—2¢& | £-39+9¢
m*,
| 1.32 1.83 9.18
1,0,0 0.742 |—
1| 1.34 —1.37 4.36
Iy 1.32 0.564 | 7.90
L1,1 0.319
1| 136 | —1.92 2.71

The evaluation of the scattering times 7, 7;, and hence
the transport constants, of course requires knowledge of
the values of the deformation potential elements in Table
1. It seems possible that order-of-magnitude values may
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be obtained from the dependence of mobilities on strain
as the latter increases from zero to the magnitudes at
which the limiting “split p” state is reached.

We are indebted to S. H. Koenig and M. Tiersten for
discussions.
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