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S. C. Titcomb

Analysis of a Constant-Input-Flow Hydraulic System

Abstract: An analysis of the system is discussed and its application to a paper form feeder carriage in a

printer is described. A nonlinear differential equation is derived based on stated assumptions and lumped

oil parameters. The equation is linearized and solutions for motor velocity and peak pressure, both versus

time, are determined. The analytical results show the effect of system parameters on system acceleration,

steady state volumetric efficiency, and peak pressure. A limited amount of experimental data has been

collected and good correlation between theoretical prediction and experimental results for acceleration

time and peak pressure has been achieved.

Introduction

Reliable design criteria for predicting the response of a
hydraulic pump and motor system are necessary ad-
juncts to the development of hydraulic equipment. In
the system described below, the dependence of system
response on the relative magnitude of various system
parameters will be shown. In several cases, these param-
eters depend upon performance characteristics of the
components employed in the system. Therefore, specific
components have been selected and these performance
characteristics will be determined so that a complete
analysis may be presented specifically for the accelera-
tion condition.

A distributed parameter analysis, leading to partial
differential equations with complex boundary condi-
tions, is not necessarily required for application of the
systems studied which are of practical importance. In-
stead, a lumped parameter analysis, based on the
conclusions for the distributed parameter analysis, is
developed. This analysis results in a nonlinear second
order ordinary differential equation. The nonlinearity is
the result of nonlinear pressure losses generated by the
valve, and channeling. For many applications this equa-
tion may be linearized by assuming a straight line ap-
proximation for the valve and channeling pressure losses.
Correlation between the linear analysis and the experi-
mental results for several systems has been found to be
exceedingly good.

The constant-input-flow system shown in Fig. 1 em-
ploys a constant-displacement pump and a constant-
displacement motor. The pump and motor are of spur
gear design. The analysis, however, is applicable to
pumps and motors of different design if the performance
and empirical data for the other components is substi-
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tuted for the values obtained for spur gear components.
The pump and motor used are 12-pitch, 12-tooth, 0.400-
inch face-width gears, enclosed in a housing with 0.0005-
to 0.0012-inch axial clearance and 0.0016- to 0.0026-
inch diametral clearance.

The basic constant-input-flow system is composed of
a constant-volumetric-displacement pump and motor
and a three-way spool valve, interconnected as shown in
Fig. 1. The pump is driven at a constant rotary speed by
an electric motor and delivers a constant oil flow into
channel 2. The valve is externally held in either an ex-
treme left or an extreme right position. The extreme
left position represents a by-pass position where the
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Figure 1 Constant input-flow hydraulic system uses
a constant-displacement pump and a con-
stant-displacement motor.




pump flow is directed to the reservoir through channels
3 and 6. At the same time, oil flow through the motor
via channel 5 is blocked by the valve. The restriction to
flow produced by the channeling and valves can be low
with proper design. Therefore, the by-pass power loss
of the system can be small.

A load motion cycle is started by transferring the
valve to the extreme right position which simultaneously
blocks the by-pass through channel 3 and opens the
motor return path through channel 5. The combined
effect of the motor inertia and the oil compliance gen-
erates a rapid pressure rise in the volume contained be-
tween pump outlet and the motor inlet. This pressure
generates a large acceleration torque on the load. As the
motor approaches the final motor velocity the pressure
decays to a level sufficient to maintain the final motor
velocity. Therefore the system has inherently provided a
large acceleration pressure and a low steady state pres-
sure. The motor will continue to turn at the final motor
velocity until the valve is returned to the left position.
The effect of this valve transfer is to open the by-pass
and block the motor return path. The combined effect of
the load inertia and the compliance of the oil generates
a rapid pressure rise in the oil volume between the motor
outlet and the valve. This pressure produces a large de-
celeration torque on the motor which rapidly brings the
motor to rest.

Such a constant-input-flow hydraulic drive has been
successfully applied as a drive for a paper form feed
carriage, part of a printer. The hydraulic carriage drive
operates as an on-off asynchronous clutch. The system is
started by an electrical impulse to an electromagnetic
valve drive from the printer. The paper is displaced the
required number of line spaces at an output speed de-
termined by the final motor speed. The stop signal comes
from a commutator on the load shaft which is adjusted
to a position which insures that the load will be in the
correct location when finally at rest. A mechanical de-
tent on the output shaft is used to prevent drift during
printing.

The forms feed carriage and the apparatus used for
the experimental portion of this paper employ an oil-
filled reservoir in which the high-pressure components
are completely submerged. This prevents any variation
in performance that might result from air entrainment.
Further, no high-pressure shaft seals are required on the
pump or motor shafts. Low pressure seals are provided
where the pump and motor shafts pass through the
reservoir wall.

One useful application of the basic constant-input-flow
system is for an on-off asynchronous clutch to displace a
load a given number of discrete increments.

One advantage of the system is the inherent damping
which produces smooth response and reduces stress in
the related mechanical parts. This damping will be shown
to result from component leakage and channeling losses.

Analysis

The following assumptions were made in the analysis of

the constant-input-flow hydraulic system shown in Fig. 1
and are based on experience with the design of such
systems.

1. Oil temperature, viscosity, density and bulk modu-
lus are constant.

2. The channel losses are negligible in comparison to
the valve losses.

3. Pressure rise in the return line is independent of
time.

4. The pump is driven at a constant input velocity.

5. Valve transfer is fast enough to have no effect on
system response.

6. The volume of oil between the pump outlet and
motor inlet is contained in a single line between
the elements.

The volumetric displacement of a spur gear pump and
motor is a function of the design parameters of the in-
ternal gears. An empirical value of the displacement for
the components under consideration may be found in
Appendix 1. The following fundamental relationships
result from the volumetric displacement!

q=od, (1)
T=Pd. (2)

Therefore, flow from the pump is a constant de-
termined by the product of the constant drive velocity
and the volumetric displacement; or

qo=oyd,. 3)

The relationship between the pressure and flow in the
single line between the pump outlet and the motor inlet
may be developed as follows based on the previous as-
sumptions and based on the assumption that the particle
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Figure 2 Forces acting on an element of hydraulic
fluid between the pump outlet and motor
inlet.
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velocity and the pressure change are small enough to
allow the product of these quantities and their deriva-
tives to be negligible in comparison to first order terms.
The sum of the forces acting on an element dx (as shown
in Fig. 2) are

oP ov

oP ov
A[P— (P+—dx)]=p2" 4 _or_
[P— (Pt o dx)]=p - Adx, and ———=p-—

Applying the equation of continuity g=A4wv, and dif-

. L. .. oq ov
fi tiating, bt — =4 —.
erentiating, we obtain ot A »
Therefore
oP oq
——=P/A—,
ox /4 ot 4

The equation relating the pressure change and the
volume change for liquids neglecting thermal effect is

B
Vi
where the respective subscripts i and f are the initial and
final conditions.

Differentiating this expression with respect to time
we have
ov, V, P

P—P=——-(V,—V),),

ot 7B
The net flow into the element dx is shown in Fig. 3
and results in the relationship

P B dq

BT Ade T

or

oP B oq

BT A (5)

Successive differentiation and substitution of Egs. (4)
and (5) leads to the well known partial differential
equations?

02P 1 92P

T CE (6)
and

0% 1 9%

o CE o’ 7

where C2=B/p.

a
9+ 52 dx————>

dx

Figure 3 Net flow into element of hydravlic fluid.
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The solution of these equations for the actual bound-
ary conditions of the system being considered results in
an expression which would be difficult to transform into
the time domain. However, this complexity is unnec-
essary if one examines a few simplified cases. The first
case of note is a closed channel with the valve by-pass
line entering the main channel at the pump outlet. In
this case, an instantaneous valve transfer may be repre-
sented as a step function of flow at the beginning of the
channel. The solutions for pressure and flow as a func-
tion of displacement along the channel, and time, for this
case are®

q(x,t) =qy[N;—Nl,
and P(x,0) =28 (v, 1 N1
’ Ac e

where N, is such that

N,=0 ift<%,

T D et

and N, is such that

N,=0 if t<2LgX»,

(Nz-l)% <t— 2LC_X <(N2)%—ift> 2LCTX.

The second case involves a closed channel with the valve
close to the motor. In this case, an instantaneous valve
transfer may be represented as a step function of flow at
the end of the channel.

The solutions for pressure and flow as a function of
displacement along the channel, and time, for this case
ared

q(t,x) =qy+qoIN,;—N>],

and

B
P(tx) =5 N1+ N2

where N is such that

. L+X
N =0if 1<—5—,

L+X 2L L+X
- <N1C1ft> c

2L
(N,—1) C <t

and N, is such that

L—-X
c
L-X 2L L-X

N,=0if 1<

2L
LR Wl
(Ny—1) c <t

The third case is a closed channel with the valve located
at X=L/2. If the system is divided at X=L/2 into two




systems, the left-hand system will be the same as the
second case and the right-hand system will be the same
as the first case, with L/2 replacing L and the ampli-
tudes equal to one-half of the values shown in cases 1
and 2.

Pressure is shown as a function time for the respective
three cases of valve position at x equal to 0, L/2, and L
in Figs. 4, 5 and 6.

Examination of these three cases indicates that an
average value of pressure rise as a function of time, but
independent of valve position and independent of the
displacement along the channel, may be expressed as

dpP _ g,B _ q,B _ q,B _qoB
dt — CAt ~— CAL~ 4AC T VvV, '

Neglecting the influence of the position along the line
on the pressure at any point where the pressure is ob-
served results in an error in time. The maximum time
error possible is equal to 7z, which is the length of the
channel divided by the velocity of sound in the liquid.
For a realistic channel length of four inches, and a
velocity of sound of 50,000 in./sec., the value of r is
0.08 milliseconds. It will be shown that the acceleration
time for the practical system experimentally tested is
from 2 to 50 milliseconds. Therefore, the maximum time
variation from the average value resulting from the de-
pendence of pressure upon the position along the line is
25 to 625 times less than the acceleration time.

It will be assumed then, that the effects of oil compli-
ance are lumped rather than distributed. This means
that the pressure rise in the channel is assumed to be
independent of the position along the channel. Further,
it will be assumed that the relationship between the
pressure rise and input flow for the channel will equal
the average value for the three cases studied, namely

vV, adr
=3 " (8)

In equation (8), g is assumed to be the net sum of the
flow into, and out of, the system. This assumption is
based on the independence of pressure on location in the
channel and the gradual change of the outflows on a
time base equal to L/C or L/2C in the more practical
case of a valve half way between the pump and the
motor.

The two outflows from the system are the motor flow
and the leakage flow. The motor flow is found from
equation (1) to be

g =o1d;.

The leakage flow of the pump and motor units under
consideration is found empirically (Appendix III) to be

qo=M,Py+Liw+Y,
and

q3=Mo(P;—P,) +Looy +Z.

oY

5Y -
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Figures 4, 5 and 6
Pressure versus time for the three cases (see text).

Neglecting valve leakage, the net sum of the inflow
and the outflow is

a=q,—(q1+42+4g3). (9)
Substituting Eq. (9) into Eq. (8) we obtain

V, dP,
B dt’

90— (q1+q21q3)=

or
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qGo=o1d; +(M;+M,) P+ Liog+Low;

V, aP,
B dt’

—MPy+Y+Z + (10)

Equation (10) contains two dependent variables; the
pressure in the input channel and the motor velocity.
Input channel pressure is equal to the sum of the ac-
celeration pressure and the pressure losses which have
been assumed to be after the motor. The pressure losses
may be divided into two parts; the motor friction loss,
found to be a function of the motor velocity (Appendix
II), and the valve losses which are a function of the
square of the motor velocity. The acceleration pressure
is found by Newton’s Law and Eq. (2) to be a function
of the first time derivative of the motor velocity. Hence,
the pressure in the input channel is

J du)
P.— 1 P
Vd, dr »

where

P2:PMF+P;YL:K10)1+K1(U%,

and
Pur=K, 0, a1
PVL:KI"O?’
Thus,
J  doy o
P, = a4 7+K1m+K2wi' (11)

The first time derivative of Py is

dP J d2 d
1 0’1+K1 ;

1 ]
& T d, de +2Kz01

t

doy
. (12)

d

The substitution of Eq. (11) and (12) into Eq. (10)
results in a nonlinear ordinary differential equation of
the second order (where motor velocity is a function of
time)

_VIJ d2(1)1
Qo= (Lnoot Y H+2) =55~
i (M{+M5)J 4 VK, 2K,V 0y | doy
d, B B dt
H(KMytdy+LoMoy) 0. (13)

The motor velocity and its first time derivative equal
zero at the instant of valve transfer, thus

_ doy o _
01(0)=0, and £21-(0) =0. (14)

Therefore, an ordinary differential equation describ-
ing the motor velocity as a function of time has been de-
rived. The nonlinear coefficients in the motor velocity
and the first time derivative terms in the expression for
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Figure 7 Effect of linearizing Equation 13 (see text).

motor velocity require a numerical solution. At the time
when volume restrictions must be established, the ad-
vantages of a closed form solution for design criteria is
apparent. If these nonlinear terms are small in compar-
ison with the linear term to which they are added, K,
may be assumed zero. However, for many systems the
nonlinear terms are small but not negligible. Therefore
it is now proposed that equation (13) be linearized by
assuming that

PVL:sz{'mlzKéml (15)

where of is the final motor velocity. The significance
of this assumption is shown in Fig. 7. The effect of the
nonlinear terms is overestimated when the motor ve-
locity is below its final value and underestimated when
it is above its final value. This assumption leads to the
linear second order ordinary differential equation

a— (Lot Y +2)= g2 2t
4+ [ (M +MJ.)J  V(K{+K} )] do,
d, B dt
+I(K{+K, )My +dy+ Lo, (16)
where
0,(0) =0, and
d;tl (0)=0. (17)




The solution of this equation is simplified by using the
following notation:

Wl
~Bd,’
po (MM V(K +2K)
= + ,
d B

e=[(Ky+K,)My+dy+Ly,
f=q—(Lioy+ Y +2),

0.=\ (c/a)—(b/2a)*
o=\ (b/2a)? = (c]a)’

o)d:b/Za,
and
of =f/c.

The solution of Eqgs. (16) and (17) takes two basic
forms depending upon whether o, or o, is real. If o, is
real, the solution represents underdamped oscillations
about the final motor velocity as shown in Figure 8a.
The solution is

o=0![1—e=*!{(cosine o) +3‘1 sine (w,f) }]. (18)
W¢
For this case, we may define the acceleration time as
the first time the motor velocity passes through its final
velocity. This is found by equating the motor velocity
to the final motor velocity in Eq. (18). The result for the
first passage through the final motor velocity is

=/2+tangent—1 (ﬂ>
@

(19)

1=
wL‘

The relationship between the pressure and time is
found by making the appropriate substitution of Eq.
(18) into Eq. (11), after Eq. (11) has been linearized
by the substitution of Eq. (15). The resulting equation
for the case in question is

J F
Po=| =21 || c/a || e sin wyt
o,

+ (K1+K’2)mlF[ 1—e—9¢ cos mct+ﬂsin w,l) ] (20)
,

(4

The value of the peak pressure is important as a design
parameter to insure the mechanical strength of the com-
ponent parts. The time when the peak pressure occurs
may be determined by differentiating Eq. (20), setting
the result equal to zero and solving for the time. The
result is

1 Ro,
ty=—tan—! 1%

o, 2
¢ Rgl: ©d +mc:\—R1wd

@¢

; (21)

where

P
R1:|: 2"”1 ]c/a, and R2:(K]+K,2)‘“F'

19¢
General solutions similar to these given in Egs. (18)
and (20) may be found for the case when o, is real;
these solutions represent an exponential rise to the final
motor velocity (Fig. 8b). These are

m:u)f'[l—e_“’dt (cosh w,)t—i—ﬂsinh wyt) ], (22)
wp
and

Jof .
PI:IV dlmlb][c/a ][e—“’dt sinh mbt]

+ (K +K') 0T | 1—e=94 (cosh opt+—L sinh wy) |.
1 o

(23)

A solution for the acceleration time similar to Eq.
(19) is impractical in this case since the motor never
reaches final velocity. A solution whose application is
similar to equation (21) is found using

1 R
ty——tanh—1 - 19
(l)b 2
R2[“’d -m,,]—led

wp

Figure 8 Underdamped oscillations about final mo-
tor velocity (a) and exponential rise to
final motor velocity (b).

MOTOR VELOCITY —

(b)

TIME —»
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7
where Rlz[ ;wl ], and R,=(K;+K’s)of.

1@y
The steady state volumetric efficiency of the system
may be found by the equation

@ d
1
y= 1 —

go— (Liwg+Y +2Z)
g6 (qo/d)[(Ky+K'9)M;+d;+Ly]

Summarizing, a nonlinear differential equation has
been derived based on the original assumptions and
lumped oil parameters in the pump outlet to motor inlet
channel. This equation has been linearized and solutions
for motor velocity and peak pressure versus time have
been determined. The response of the system depends
on the load inertia (J), the system volume (V), the oil
bulk modulus (B), the leakage coefficients (M, L, Y,
Z), the friction coefficients (K;+K}) and the volumet-
ric displacement of the pump and motor (dy, d;). The
final motor velocity does not affect the system accelera-
tion time as defined by equation (19); however, it will
affect the peak system pressure.

In this article, no mention of deceleration character-
istics has been made. It can be shown that linearized
differential equation (16) also defines the deceleration
from a constant motor velocity ol to zero velocity if
appropriate changes in the system constants are made.
For the deceleration case ¥, in Eq. (16) is the volume
enclosed between the motor outlet and the valve, and
M,, Ly, Y and K, in Eq. (16) are zero. The initial
conditions for the deceleration case become w;(0)=ul

d
andz?[wl(O)]ZO. These changes allow the develop-

ment of solutions similar to the solutions for the ac-
celeration case.

Experimental data

A limited amount of experimental data has been col-
lected to verify the theoretical results derived. The ex-
periments were limited to a spur gear pump and a spur
gear motor of 12-teeth, 12-pitch and 0.400-in. face
width; the pump and motor displacements were not
varied. The leakage coefficient of the pump and motor
were varied by changing the axial and radial clearance
between the gears and the housing in two steps, repre-
senting the maximum and minimum clearance for the
production pump and motor units used. For design pur-
poses the acceleration time for the maximum leakage or
clearance conditions, and the peak pressure value for
the minimum clearance condition must be used. The
minimum clearance condition represents an axial gear
clearance of 0.0005 in. and a radial gear clearance of
0.0008 in.; the maximum clearance condition: an axial
gear clearance of 0.012 in. and a radial gear clearance
of 0.0013 in.

The load inertia was varied from 1.69x10—* to 5.0
10—3 in-lb-sec® in four steps. This range was dictated by
the motor size (i.e., loads smaller than 1.69x 10— in-1b-
sec2, of which 0.84x10—¢ in-lb-sec? is the motor itself,
are impractical for the motor size; loads larger than
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5.0x10—3 in-lb-sec would require a larger volumetric
displacement motor for efficient application). The vol-
ume contained between the pump outlet and the motor
inlet was varied between 1.0 cubic inch and 2.5 cubic
inches in three steps. This range was chosen as a practi-
cal one for the motor size. The final motor velocity was
varied in two steps of 1,000 and 2,000 revolutions per
minute. The oil bulk modulus was not varied because the
use of petroleum base fluids is generally accepted and
such fluids have a constant bulk modulus. The bulk
modulus was determined experimentally (Appendix 4).

The selection of the range and increments for varia-
tion of the parameters was based on practical considera-
tion of the possible applications of such systems as shown
in Fig. 1 to limit the number of tests and still provide
adequate demonstration of the analytical results. The
load was varied by adding disks to the motor shaft and
the volume was varied by adding additional chambers of
oil to the volume enclosed between the pump outlet and
the motor inlet. The pump drive system contained a large
inertia hydraulic motor driven from a test stand power
supply to allow variable velocity input with constant
velocity regulation within 1 percent. For each test point,
the final motor velocity was established for the type sys-
tem desired.

The motor velocity was measured with a Kearfott
tachometer generator, type 700-1A, using a 3,000 cycle-
per-second input from an audio oscillator. The linearity
of the tachometer generator used to measure the velocity
was found to be unaffected at this frequency. The sys-
tem pressure was measured with pressure pickup of the
unbonded strain gage type. Signals from the two trans-
ducers were displayed on an oscilloscope, and the traces

Figure 9 Configuration of equipment used to test
system characteristics.
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Figure 10 Motor velocity versus time for various parameters shown and with final motor velocity of 1,000
revolutions per minute.

were triggered from the start of valve motion. However, Discussion of results

the acceleration time was measured from the beginning The motor velocity-vesus-time curves for the various

of motor rotation. This was done because the usual cyclic parameters under consideration and 1,000 revolutions
application for this type of clutch allows the magnet per minute final motor velocity are shown in Fig. 10.

delay to be present into the previous cycle. The time and Each graph represents the motor velocity-versus-time

transducer amplitude scales were varied for each experi- curve for each inertia and volume condition with the

ment to allow for the greatest reading accuracy of the effect of internal clearance change shown. Each row

desired result. The test configuration is shown sche- represents a given load with volume changing, and each

matically in Fig. 9. column represents a given volume with load changing. 51
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The results with 2,000 revolutions per minute final motor
velocity are not shown because the values of acceleration
time are defined by Eq. (19) and the shape of the curves
are within 5 percent of the results shown for 1,000 revo-
lutions per minute. The correlation between the actual
acceleration time and the acccleration time predicted
by Eq. (19) is shown in Fig. 11; here, actual and
theoretical acceleration time for the 1,000 revolutions
per minute cases are plotted against the underdamped
frequency o,. The range results from the effect of in-
creasing damping for a given o, The comparison of
actual and theoretical peak pressure is shown in Fig. 12.

The correlation between experimental and theoretical
results is rather good for the limited amount of testing
done. This in itself is verification of the assumptions
made for the systems tested. However, the amount of
nonlinear valve and channeling pressure losses present
in the system tested was small. The total full speed pres-
sure loss for this system was 100 pounds per square inch.
Valve and channeling pressurc losses must be limited to
this value or less if the linearized differential equation
solutions are to be used. It is apparent from the results
that sufficient damping can be employed as the result of
leakage so that channel and valve losses may be
minimized.

Conclusions

The basic constant-input-flow hydraulic system described
may be represented by a nonlinear ordinary differential
equation of second order for those systems where
response is slow enough to warrant the assumption that
oil capacitance and inertia are Iumped constants. Fur-
ther, the equation may be linearized for systems where
the velocity-squared pressure losses have been minimized.
The resulting linearized differential equation has the
form of a simple spring-mass system with viscous
damping.

The motor velocity and pressure response resuiting
from a rapid valve transfer has been predicted with rea-
sonable accuracy by the solution to the linearized differ-
ential equation for a limited amount of experimental
data. The experimental set up was limited to a spur gear
type of pump and motor of one size; thus, it is limited
to the practical range of application of the other param-
eters in a system using this pump and motor size.

The analytical results indicate that future demands
for faster response will require understanding of the ef-
fect of distributed parameters on the acceleration time.
It is hoped then, that fundamental investigations of pres-
sure wave propagation in hydraulic transmission lines
will be the next step toward the advancement of con-
stant-input-flow systems. The inherent advantage of a
constant-input-flow system (varying power with load
requirements, simple construction and inherent damp-
ing) promise faster and smooth responding clutches or
positioning devices. Space considerations and valve trans-
fer speed are presently the limiting factors in attaining
faster response.
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Figure 11 Theoretical and actual underdamped fre-
quency versus acceleration time.

Appendix 1: Determination of
volumetric displacement

The volumetric displacement of the pump and motor
used for the experimental tests was determined by hand
cranking the pump and motor against no restriction or
pressure loss at very low velocity for a great number of
revolutions. The result obtained for the pump was
within 2 percent of that obtained for the motor; the
average value obtained was

dy=d,=0.0366 in?/RAD.

Appendix II: Determination of the
motor friction coefficient

This coeflicient was determined by operating the motor
against no external restriction or pressure and measuring
the speed resulting from an incremental increase in inlet
pressure. The results were plotted with pressure as the
ordinate and motor velocity as the abscissa. Therefore
the slope of the resulting linear curve is the desired motor
friction coefficient. The value obtained is

Ib-sec
in2 °

K,=0.227

Appendix III: Determination of the pump and
motor leakage coefficients

The pump leakage relationship was determined by op-
erating the pump against the restriction of a variable
orifice. Measurements of the actual pump output flow
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Figure 12 Theoretical and experimental compari-
son of peak pressure.

were taken for various pumps speeds and restriction
pressures. The leakage flow was determined for each
test point by subtracting the actual pump outlet flow
from the theoretical output flow for the pump speed
maintained during the test point.

The results indicate that the pump leakage flow is
dependent upon the pump outlet pressure and the pump
speed. The relationship, empirically determined was

go=M ,Pi+L,wy+7Y.

The motor leakage relationship was determined by
operating the motor with an external source of pressure
against an adjustable external source of load torque and
speed. Measurements of the actual motor input flows
were taken for various motor velocities and outlet
torques. The leakage flow was determined for each test
point by subtracting the theoretical motor inlet flow
from the actual motor inlet flow for the motor velocity
maintained during the test point. The results indicate
that the motor leakage flow is dependent upon the motor

inlet pressure and the motor velocity. The relationship,
empirically determined, was

g3 =MyP1+Lyo,+Z.

A graph of the results of the pump leakage for mini-
mum internal clearance is shown in Fig. A-1 as an
example of the results obtained. A complete set of the
results obtained is shown in reference one. A similar
result is reported in the works cited in the bibliography.

The leakage parameters associated with the minimum
clearance conditions are

M,;=5.18 X 10—* in?/Ib-sec
M,=1.63x10—*in?%/lb-sec
L,=—-3.18x10—*in?
L,=3.18%10—* in?
Y=0.05
Z=0.05

The leakage parameters associated with the maximum
clearance conditions are

M,;=2.11x10~3 in®/Ib-sec
M,=3.11x10-3 in5/Ib-sec
L,=1.191x10~3 in3
L,=—1.59%x10-3 in3
Y=0.14
Z=0.28

Figure A-1 Pump leakage curves.
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where L is the distance between the stations and ¢ is the
time for the impulse to pass from one station to the other.
The result of 2.0x 105 psi was found for each length
tested within 3 percent.

Appendix IV: Determination of the oil properties

The hydraulic fluid used throughout the experimental
portion of this paper was Socony-Mobil Velocite “S”
oil at 110°F. The value of the viscosity and the density
may be obtained from the manufacturer. The value of
the bulk modulus was determined experimentally by
measuring the time required for a hammer blow-pro-
duced pressure impulse to pass from one dynamic pres-
sure transducer section to a second one separated by a
straight column of oil of several lengths. The bulk modu-
lus was determined by the equation
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The following notation has been used throughout this paper:
Symbol Description Units
a a constant equal to V,J/Bd, in3-sec?
A Area in?
(A, Ay, A3, & A,)  arbitrary constant None
b a constant equal to (Ml-;Mz)J V(KlB+ 2K’3) in3-sec
B bulk modulus of the oil Ib/in2
4 a constant equal to (K, +K})M,+d,+L, ind
c velocity of sound in the oil in/sec
d volumetric displacement in3/Rad
dy volumetric displacement of the pump in3/Rad
dy volumetric displacement of the motor in3/Rad
e universal constant (equal to 2.718) None
f a constant equal to go— (LW +-Y+Z) in3/sec
J load inertia in-1b-sec?
K, motor friction coefficient Ib-sec/in?
K, hydraulic friction coefficient Ib-sec2/in2
K linearized hydraulic friction coefficient Ib-sec/in2
L length in
L, pump velocity leakage coefficient in®
L, motor velocity leakage coefficient in3
M, pump pressure leakage coefficient in%/Ib-sec
M, motor pressure leakage coefficient in%/1b-sec
P pressure Ib/in?
Py pressure in volume V, 1b/in?
P, pressure in volume V, Ib/in?
Pyr motor friction pressure loss psi
Py valve pressure losses psi
q flow in%/sec
do pump flow in3/sec
T motor flow in3/sec
s pump leakage flow in3/sec
qs motor leakage flow in3/sec
t time sec
T torque in-lb
v velocity in/sec
[4 volume in®
v, volume enclosed between the pump outlet and motor inlet  in3

54 Vs volume enclosed between the motor outlet and the valve in3
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Symbol Description Units
X displacement or length in
Y constant in3/sec
zZ constant in3/sec

. . Ib-sec?
p mass density of the oil nt
T time constant sec
oo pump angular velocity Rad/sec
o1 motor angular velocity Rad/sec
of final motor angular velocity Rad/sec
@, underdamped frequency sec—1
wg damping coefficient sec—1
wp overdamped frequency sec—1
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