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Abstract: This paper surveys some numerical methods applicable in obtaining the distribution of performance 

parameters associated with the transient behavior of switching circuits. The methods considered are: 

(1) Monte Carlo, in which sample circuits are simulated on the IBM 704 and their performance computed and 
tabulated. (2) Parameter sensitivity methods, including  propagation  of error, in which the first and second 

moments of the output  distribution are estimated from parameter sensitivities; and a  method using the total 

differential  of the performance parameter to estimate the deviation  of circuit behavior  from its component 

deviations. (3) A surface fifting method, in which there i s  developed  a  formula  for  delay time in terms of circuit 

component values. Each method is used to determine the delay time of a simple system.  Their merits and 

drawbacks  are compared and discussed, and estimates are  given of the IBM 704 machine time necessary for 

implementation on a ten-transistor switching circuit. 

1. Introduction 

When  the reliability of an electronic  circuit design is 
evaluated, component  parameters  are considered  as ran- 
dom variables rather  than fixed quantities. No matter how 
tight manufacturing  control  may be, there  are initial varia- 
tions from  one  component  to  another,  and these together 
with  subsequent component  drift give rise, in  circuits 
built from these  components, to variations in  performance 
from  one circuit to another. Variables which characterize 
circuit performance,  such as voltage at a  node, or rise 
time, are called performance parametevs.l The reliable 
design problem we are concerned  with here is simply this: 
Given  the  component  parameter statistical  distributions, 
find the  performance  parameter distributions. 

In engineering  practice, the limits of a performance 
parameter distribution (beyond which cases exist with 
zero  probability)  may  often be found by evaluating per- 
formance with  various  combinations of extreme  adverse 
values of the circuit parameters. We may  require  that in 
a well-designed circuit  these limits be  within the region 
of satisfactory  circuit performance.  This is the “worst 
case” design philosophy.  As  noted in Ref. 2, this design 
method  may be  unduly costly and pessimistic. (The sub- 
stantial discrepancy  between worst case and  actual  per- 
formance is one  attraction of asynchronous systems.) A 
design philosophy  exploiting more of the  output  perform- 

ance  parameter distribution than its  limits,  would be 
more realistic. 

Computationally, the problem of estimating a per- 
formance distribution may be of two  distinct  types,  aris- 
ing from  the  nature of the  performance  parameter being 
investigated. It may  be a steady state level which can be 
found  from  the solution of a system of algebraic  equa- 
tions. In this  case there  are well-known techniques for 
finding the  required distribution.2 In  particular,  the  Monte 
Carlo  method  has proved quite satisfactory in practice. 
But there  are also performance  parameters associated 
with the  transient behavior of the circuit - for example, 
delay  time - which are  found  from  the solution of differ- 
ential  (rather  than algebraic)  equations. These  perform- 
ance  parameters  are  important in the design of  computer 
switching circuits. For a given circuit, therefore,  the  ma- 
chine designer is interested not so much in the ideal 
circuit  behavior, but in the distribution of  performance 
for  actual circuits  with  components  deviating, within 
specifications, from  their design values. 

In this paper we are concerned  with  estimating tran- 
sient  distributions, that is, distributions of performance 
parameters associated with the  transient behavior of a 
circuit.  Analytically, we may  suppose  that  the following 
system of differential equations is given: 33 
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R i = f i (  t ;  .x1, . . . , x,; nl, . . . , a,,,) i =  I ,  . . . , n (1) 

and a function of the solution 

v ( t )  =g(x1(t), . . . , xn(t)). ( 2 )  

We  assume  solution existence and uniqueness for given 
initial conditions. The system ( 1) may  be network equa- 
tions, where the xi are  unknown voltages or currents.  The 
a’s are  random variables  with  known  distributions corre- 
sponding to those of the  component parameters. The 
function v =g( t )  defines the  performance  parameter.  The 
problem is to estimate the distribution of v. 

Note  that v in (2) is a  time-parameterized  family of 
random variables - that is, a  stochastic process. Although 
much is known about  many  important stochastic  proc- 
esses,3 those  generated by differential equations as indi- 
cated  above appear  to  have been little investigated. Some 
recent work by F. S. ScaloraI7  contributes in this  area. 

Note  further  that  although we arrived at  the above 
analytic formulation of the transient  distribution  problem 
in  connection  with the design of digital computers, the 
problem is an old one  for analog computers. According 
to  DOW*  and  others, when a differential analyzer is set up 
to solve a given equation, certain errors  are introduced 
into  the solution because the components of the  computer 
are in error, or imperfect. In using analog computers we 
have the problem of estimating  solution errors  from 
component errors. The  same problem is placed in the 
context of the reliability of switching  circuits  in  a digital 
computer by a change in terminology;  replace “error” 
by “deviation from  the nominal.” It is important  to rec- 
ognize this equivalence, for  there is considerable  work 
(especially  analytic  work,  as in Ref. 4) on this problem in 
its  analog computer context,  which ought not  be  ignored 
by those  primarily  interested  in the reliability of switch- 
ing circuits. In  particular,  the works of Miller and 
Murray: and  Dostupov  and Pugache@  encompass  both 
the digital and analog computer problems, and  can be 
studied from either point  of view. For example, Dostupov 
and Pugachev  show that  under  certain conditions on  the 
partial  derivatives of the f i ,  the time-parameterized  family 
of distributions p ( t ;  xl, . . . , x,; a l ,  . . . , arrl) satisfies the 
partial differential equation 

In this paper we outline  some numeric  approaches  to 
the transient distribution  problem. Beyond simply noting 
that  the results are plausible, we make  no  attempt  at 
hardware verification, nor  at  error bounds  estimation. 
Our purpose is experimental:  to try a few techniques, and 
so highlight some of their relative  merits and weaknesses. 
We  are concerned  with  those  methods of transient distri- 
bution  estimation that  are especially suitable for use with 
a large digital computer,  and which lend themselves to 
mechanization and  incorporation in an  automatic design 
procedure. 

The  remainder of this paper describes three transient- 
distribution  estimation  methods.  with  reference to an 

example  circuit. The next section describes this  circuit in 
detail, and  the following  sections  describe  estimation by 
the following methods. 

Monte Carlo: In this we simulate and sample  a  large 
number of circuits by computing their  behavior from 
network  equations. This  approach is used successfully on 
steady-state performance  parameters, but because of the 
time  required for numerical  integration it is hardly prac- 
tical for  transient  performance  parameters at  present. 

Parameter  sensitivities: Here we estimate  response vari- 
ance  from  component variances.  This too is easily done 
for steady-state performance, but  with  transients the 
method  entails  deprecated  numerical  techniques. 

Surjace fitting: In this method we construct  an expression 
for  the  performance  parameter in terms of component 
values,  recasting the problem  as  a  steady-state  one. The 
expression can  be found  from measured data by multiple 
regression, though our data  are  computed  from circuit 
equations. 

In  the descriptions of these methods we will state cer- 
tain assumptions  regarding  statistical  independence of 
variables, and linearity of functions. To the extent that 
the assumptions for a  method are invalid when applied to 
some  circuit, the  method is inapplicable to  that circuit. 
However, the purpose of this paper is not a reliability 
analysis of the example  circuit, but a discussion of meth- 
ods of analysis on  arbitrary circuits. For this reason we 
state, but do  not justify, our assumptions  before  apply- 
ing each method  to  the  same example. 

2. Example circuit 

A .  Circuit topology 

The numerical  methods we have  studied  have been ap- 
plied to a  comparatively  simple  circuit, the transistor 
equivalent  circuit  with  minimal  external  circuitry  shown 
in Fig. 1 (Ref. 10). The differential equations for this 
circuit are: 

CcV61 =-V21(G,+G,,)+v,1G,,+alh+G,,(V,--V,) 

CIVkl=-VzlG,-vVelGhb-(l-a)Z/rtG ,,b(Ve-Vb) -ccv 
where 

VZ1 = V z  - VI, voltage difference from node 2 to node 1 

Ve1=V,-V1, voltage difference from  node E to  node 1 

and  G’s  are reciprocals of corresponding R’s. 

I ) ,  =ZFs  (&Vel -  1 ) (4) 
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Figure I Transistor equivalent circuit with  minimal 
external circuitry. 

B.  Ptrrarneter di.stribution.7 

The distributions on the  circuit  parameters are assumed 
to be uniform with the mininlum  and  maximum  values, 
as in the following tabulation. The uniformity  assumption 
is incidental and does  not  restrict the applicability of the 
methods  described. We also  assume statistical independ- 
ence of these  variables. Where several parameters are 
associated  with  the same physical unit, such as a transis- 
tor, this  assumption  may  not be justified, i n  which case 
the methods would have  to be modified. In the Monte 
Carlo  method we would need a more sophisticated  and 
elaborate sampling  scheme;  in parameter sensitivity and 
surface fitting methods our  formulas would have to in- 
clude  cross influence terms. 

Parameter  Units  Minimrrm M t ~ v i m ~ r ~ ~ ~  

R I , ~  ohms 25 75 

R, ohms 105 10': 

C C  PPfd 3 7 

I,, I*amp 0.0367 1.2s 

C,, pp,fd (volts)N 12.5 1 S.36 

N 

F c b  mc/sec 70 200 

A 0.5 45 

" " _ "  0.4 0.5 

" " " _  
The following constants were not distrihutcd: 

X = (0.026)" " " _  
R,, = 20 ohms 

v,, = 0.5 volts 

V b  = 0 (grounded  base) volts 

V c  = -4.5 volts 

R,, = 10,000  ohms 

I 50 
t for 0 S t S  15  mpsec v - IS x 1 0 ~ 3  a - l  50 for  15  mpsec St 

e. z / l / m /  

The input 10 the  circuit is the  current entering at node 
E,  which is supplied by a 50-volt ramp acting through  the 
10K resistance R,,. 

Note that everything  in the differential equations, ex- 
cept  the variables V,~l and VZ1, is now in  terms of distrib- 
uted  parameters,  constants, and  the  input Va. Equation 
(7)  gives the parameter a' in  terms of I?, and a distributed 
parametcr A .  A choice of A fixes the a' vs. I!, character- 
istic. 

D .  Z'erjormcrr~x  parameter 

The pcrlorn1ance parameter  which we investigate will be 
ddqv  lime. This is defined, in  this  case, as the time it 
takes, after  start of the  input  ramp of V,, for  the collector 
current I , .  to reach 1.5 ma. 

Since 21 transient performance  parameter w is associated 
with  the  transient  behavior of the system, it seemed 
natural to express v as a function of the solution of the 
differential equations  governing the system, as  in Eq. ( 2 ) .  
A simple performance parameter  to deal  with would be 
the solution itself - for example, the collector current 
I ,  ( t ) .  Then ~ ( 1 )  =I,( t ) ,  and  the statistical  distribution of 
v at time t , ,  is the distribution of I ,  at this time. But delay 
time :IS defined above is not the value of the solution at 
some t ;  it  is Ihe time t for some  value (1.5  ma) of the 
solution.  We are interested in the t distribution for a fixed 
I(,, rather than  the I ,  distribution for a fixed t .  Under 
appropriate assumptions  these  distributions are related, 
and can I ~ c  fountl, one  from  the  other. 

Figwe 2 Time distribution of I,. 

1, 

1.5 ma 

I -  
ll 

t o  

'I ME 35 
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Suppose Z e = I c ( t )  is monotone  for a sufficient interval 
of t ,  and suppose the distribution of I ,  at time to is known. 
Then  the  fraction p of differential equation solutions such 
that I ,  5 1.5 ma  at time to is also  known. The  remaining 
fraction of differential equation solutions, 1-p, are all 
greater than 1.5 ma  at time to, as  shown in Fig. 2. Since 
Z,(t) is monotone, 1-p must also be  the  fraction of all 
solutions  which  have  attained 1.5 ma before time to. Thus 
the distribution of I ,  at to gives one  point  on  the delay 
time distribution, for I ,  = 1.5 ma. 

3. Monte Carlo 

In this method  the circuit parameters  are  random vari- 
ables  with given distributions, and we solve the system of 
differential  equations  once  for  each  set of randomly 
chosen  parameters. In this way we simulate the existence 
and behavior of as  many transistors as we wish. It is 
a simple matter  to  tabulate  the delay  times of the different 
samples, and this gives the desired  distribution. An exten- 
sive discussion of many facets of this technique is con- 
tained in Ref. 11. The application of Monte  Carlo  to 
reliability  problems is discussed in Ref. 2, while Ref. 12 
describes some IBM  704 programs  which  have been used 
on steady state reliability problems. In  order  to apply the 
methods to  the evaluation of a transient  parameter we 
need to solve differential equations. If these equations  can 
be solved analytically the problem  reduces to a  steady- 
state  one, as in Ref. 16. Most often, however, it is neces- 
sary  to  apply  numeric methods. There  are  many  IBM  704 
programs  for this purpose,  available through  SHARE. 
We used PK NIDE.7 

Since we wish to solve and resolve differential equa- 
tions over  and over  again  in  this  sampling procedure, 
the feasibility of this  scheme  depends on  the speed at 
which  integration  proceeds. This is limited by the inte- 
gration interval,  which  controls error  and stability. We 

Figure 3 Distribution of I, at 7.45 mpsecs by  Monte 
Carlo Method,  nominal IC= 1.5 ma. 

36 
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found  that even the simple test circuit  shown  in  Fig. 1 
required  about  one  and one-half hours  for 1000 samples. 

For  more complicated  circuits  involving  several tran- 
sistors, not only would the  rate of solution be slower, but 
the transient  would  last  longer,  requiring that  the solution 
be carried  out  further  and taking  a still longer  time. 

An  advantage of this method over the next  two to be 
described is that  the delay  time  distribution  may be 
obtained directly. In  order  to  do this, however, frequent 
testing to  determine when  a  solution has reached 1.5 ma 
would be  necessary, and this would slow down  the  pro- 
gram.  For this reason we chose  instead to find the distri- 
bution of collector currents  at a fixed time  (print  inter- 
val),  and  to  obtain a rough estimate of our delay time 
distribution from this. The means of obtaining  this 
estimate is described  in connection with Fig. 2, using the 
I ,  distribution data  found  at  the 8th print. Of course,  this 
gives just one  point  of  the delay  time  distribution. Other 
points  may  be found in the  same way. But  Fig. 4 illus- 
trates  another way of getting the delay time distribution 
- by projecting  population contours parallel to  the nom- 
inal  solution.  Intuitively the assumption that population 
contours  are approximately  parallel is not as  severe  as 
the assumption that all individual  solutions are parallel 
to each  other. Solutions may cross each  other  without 
changing  a population  contour. 

The distribution of 1000 cases of collector current  at 
time  7.45 mpsec  after  start  of  the  input  ramp, as found 
by Monte  Carlo, is shown  in  Fig. 3. Collector current  is 
nominally 1.5 ma  at this time. To obtain these  results a 
random  number generator14 was used to pick  random 
values for  the distributed parameters, within the  ranges 
specified in  Section 2B. These  random values, together 
with the fixed parameter values,  were  inserted  in differ- 
ential equation (3),  which was then solved on  the  IBM 
704  for I ,  at  time 7.45  mpsec. The I ,  found was then 
tabulated with  respect to 20 boundary values, spaced 
0.15 ma  apart,  ten above the nominal  value, and  ten 
below. The  entire process was then repeated  again and 
again for a  total of 1000 times, starting  with newly 
generated random values each time. The resulting num- 
ber of cases in each interval is shown at  the  bottom of the 
appropriate  column in  Fig. 3. These  numbers  are  propor- 
tional to  the height of histogram  bars for  the I ,  distribu- 
tion. The  smooth  curve shown was obtained from  the 
cumulative  totals. Figure 4 shows the  start of a nominal 
solution.  Assuming the  shape of the I ,  distribution is 
fairly constant  in  the time range  from  the 7th to  the loth 
print intervals, we may  project the I ,  distribution  as 
shown,  obtaining the delay  time  distribution  shown in 
Fig. 5 ,  as described previously. 

4. Parameter sensitivity 

We now  describe  two  methods based on estimates of  the 
sensitivity av/aai of the  performance  parameter v to the 
component  parameter ai. Implicit for  the validity of these 
methods is the assumption that v=g(t;  al, . . . , a,) is 
approximately linear over the  range  of variation of  the ai. 
If the ranges of variation are sufficiently restricted the 
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Figure 4 Estimation of time distribution from I, distrfbution. 

assumption can be justified, of course, but serious errors 
may  be introduced if we have  no  control over the vari- 
ations. The  surface fitting method discussed later partially 
obviates  this difficulty. 

Sensitivity  estimation 

The  computational  heart of these methods is determina- 
tion of the  partial derivatives av/aai .  If the solution of 
(1) is 

xi=xi( t ;  a1, . . . ,a,) 

we have 

v = g ( t ;  a1, . . . , a , ) .  

The analytic  expression for v in terms of the  parameter 
and  time is generally not known, but  the value of v as a 
function of t can be found using a numerical  integration 
routine. This makes possible the estimate of the partials 
by 

aai A u ~  A u ~  
" av - g(ai+Aai) -g(a i )  - " AV 
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Figure5 Distribution of delay time, Monte Carlo 
method. 

This  formula must be used with  caution. HildebrandS 
says “. . . numerical  differentiation  should be avoided 
whenever possible, . . .” Aai must be  small  in order  that 
Av/Aai be the slope of a tangent to  the  curve v=g(ai) 
rather  than  the slope of a line passing through  the 
two  distinct  points (ai, v(ui)  ) and (ai+Aai, v(ai+Aai) ). 
On  the  other  hand,  the smaller Aai the  more significant 
the round-off error in Aai and  the  more significant the 
truncation  and round-off errors in v (ai + h i )  - v (a i ) .  To 
find the slope of the tangent  with  a relatively large Aai 
second and higher forward differences may be used to 
estimate the derivative: 

where Aw=v(a+Aa)  -v(a). This  and  other  formulas 
for numeric  differentiation of polynomials  may  be found 
in  Ref. 8. 

Choosing the size of the  parameter  perturbations  (the 
Aai’s) is a difficult feature of this method.  As  noted  above 
the  perturbations must be neither too large nor  too small. 
The  optimum  perturbation, moreover, will differ from 
parameter  to  parameter,  from circuit to circuit, and even 
in  the  same circuit from  one  part of a solution to  another 
part of the same  solution.  Although it may be possible to 
determine a good perturbation size from  an  error analysis 
of the differential equations, this is usually quite difficult, 
and in practice we can only  experiment  with  various 
values. 

Another way to estimate these partials is by means of 
sensitivity equations.5 From  Eq. ( 1 )  we have by differ- 

38 entiation  with  respect to ai 

j = 1 , .  . . , m 

For  each j Eq. (10) is a system of linear differential 
equations  in axi/aaj, from which,  with ( 2 ) ,  we may find 

In this method of sensitivity computation we bypass 
the  problem of perturbation size, and  the problem of 
difference order. If the partial derivatives are estimated 
by k differences, a  circuit  with n parameters requires 
kn+ 1 solutions, while the sensitivity equations method 
requires m + l  solutions. But in  the  latter case we must 
set up  and solve a new system of differential equations, 
like ( lo ) ,  for  each  parameter sensitivity. 

The sensitivity method has  parameter  contribution 
factors as a  by-product. The  contribution  factor of the 
component ai is defined as 

av/aaj. 

(E ui) 

5 (EUi) 
C . f . ( U i )  = 

aai 

j = 1  aaj 

where ai is the  standard deviation of ai. Its significance 
is that  it gives the relative  contribution of the  spread of 
ai to the  spread of the  output.  It tells how  critical or how 
important  each  parameter is to  the  output.  This may be 
useful information  for design purposes. 

Figure 6 shows the transistor  response  in  relation to 
parameter  contribution  factors. Specifically, the contri- 
bution factor of Rbb was found  from 

The  partial derivatives  were found  from  third differences; 
that is, to find aZe/aRbb we used 

f l 8 I , ( R b b f A R b b ) ~ l l I e ( R b b ) l ,  

where  the  terms Ie(Rbb+nARbh), n=O, 1,2,3 were found 
by solving the differential equation system ( 3 )  first with 
Rbb and all other  parameters  at their nominal value, 
then again  with Rbb replaced by Rbb+ARbb, then with 

According to these  results the most important  param- 
eters affecting collector current  at  the  start of the 
transient (up  to  the 4th print  interval)  are Rbb and C,. 

Rbb+2ARbb, and finally with Rbb+3ARbb. 
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From  the 4th to  the gth print interval the collector current 
response is most sensitive to Ceo; from  the gtl’ to steady 
state  (the 20th print  interval) Feb is most important,  and 
finally in steady state N is most important. 

We  now  describe methods  of distribution  estimation 
using parameter sensitivities. 

Propagation of error 

In this method we assume  a  normal output distribution 
with mean equal to the output nominal  value,  and  stand- 
ard deviation 

where g (  t ;  a l ,  . . . , a?,) is the  performance  parameter as 
a function of the  circuit parameters ai, and time t, and 
where u ( a i )  is the standard deviation of ai. 

A difficulty with the propagation-of-error  method is 
that  the  normal distribution  curve has  no  sharp  cut-off 
beyond which cases appear with  zero  probability. On  the 
contrary, since the  normal  function is positive for any 
finite value of its argument,  the probability of outputs in 
any region from - r) to + cc is positive. 

Suppose  the output of a  circuit is the  current in  some 
branch  and,  from physical  considerations, that this cur- 
rent must  have  a certain direction which corresponds to 
positive values of  the  current. Nevertheless,  normality 
of the distribution of outputs implies a positive probabil- 
ity of negative  outputs. This probability may be negligibly 
small, but  there is a  world of difference between “small” 
and “nonexistent,” and  there  may be cases where  the 
physics of a  problem is embarrassing to  the  propagation 
of error technique. 

Knowing the nominal i, and its standard deviation 
u(Ze)  as  a  function of time, the cumulative  distribution 
of I ,  is 

The six  points  shown  in  Fig. 7 were found  from  the six 
I ,  distributions at  the times shown, by the conversion 
method described in connection  with Fig. 2. 

0 Total  differential  method 

This  method is a  combination of  the  Monte  Carlo  and 
propagation of error methods. The theory  behind it is 

F i g w e  6 Sensitivity of collector current to parameters  during  transient response. 

I TIME IN mjtrec 

1 P R I N T  NUMBER 39 

IBM JOURNAL JANUARY 1961 



this: If v=g(al ,  . . . , aVr; t )  is the  output as a function of 
parameters  and time, then  the deviation of v at  time 
t+dt  from its  nominal  value  at  time t is 

where the partials are evaluated at time t and  nominal 
component values, and where the differential dai=ai--di 
is the deviation of the  parameter  from its  nominal value. 
For  the deviation at time t the ( & / a t ) &  term is zero and 
omitted. 

After  the sensitivities in (1  1) are established, the dis- 
tribution of dv is determined, using Monte  Carlo,  from 
the distributions of the  dai.  The distribution of v is the 
distribution of dv displaced by the  nominal value fl, since 
v=@+dv. 

This  method has one obvious  superiority over  the  pre- 
vious method: nothing need be assumed about  the  shape 
of the  output distribution.  We need not assume  a normal 
distribution, nor  admit  the possibility of outputs ranging 
from - 00 to + co. Indeed, with the  total differential 
method 

are  the extreme possible outputs. 
Monte  Carlo was applied to ( 11) to obtain  estimates 

of the collector current distribution at five points in 
time. These gave, using the  method of Fig. 2,  five points 
of the statistical  distribution of delay time  curve shown 
in Fig. 8. 

Figure 7 Distribution of delay time, propagation- 
of-error method. 
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5. Surface fitting 

In this  method we seek the function t = g - l ( a l ,  . . . , a*,*) 
which is satisfied, or is a close fit to,  a  set of data 

{(tk, alk ,  . . . , % k )  I k =  1 ,  . . . , S} . 
That is, we seek the  equation  for a  multiple regression 
s ~ r f a c e . ~  It is necessary to assume or determine  the de- 
pendence or independence of variables, and  the  nature 
(linear,  exponential, . . . ) of  the dependence of t on  the 
ai. 

Here we assume  the  deviation of a  solution from its 
nominal is related to the  deviations of the  parameters by 
an expression of the  form 

v-B= & ( a i )  -&(&), 
m 

i=1 

where each gi is a function of ai and  no  other distributed 
parameter.  Clearly, when each  parameter  has its mean 
value, the right member is zero and  the solution is also 
nominal, v = B. 

To  determine gi, we set ai=di for j#i and find by 
experiment - solving the system with  various values of 
ai - the  graph of v vs. ai. This is the same  as the  graph of 
gi displaced by the  constant v-gi(ai) .  If this happens to 
be the graph of a  straight  line,  then 

gi(ai) -gi(-di) =rnai+b- (mdi+b)  =m ( a i - d i ) ,  

and agi/aai=rn and this method is equivalent to the  total 
differential method. But we have  the  advantage now that 
the gi need not be assumed constant. It should be noted, 

Figure8  Distribution of delay time, total differen- 
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however, that ingenuity may be required in  picking the 
analytic form of gi and fitting it  to  the  data. 

Another  advantage of this  method is that we can use 
it  to  obtain delay  time  distributions  directly, rather  than 
indirectly from  output distributions. The  functions gi may 
characterize  the relation of any  performance  parameter 
to ai, provided  this parameter be physically determined 
by ai, so that we may obtain a graph of the relationship. 
This is an advantage over  the propagation-of-error and 
total-differential methods, for in  those we can find directly 
only the distribution of those performance  parameters 
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for which we can write an analytic  expression  in terms of 
the  dependent variables of the differential equations. In 
our case we could find the distribution of collector  cur- 
rent because I ,  can be expressed in  terms of Vel and VZ1, 
formula (8).  But any  such  formula  for delay time is 
difficult to find, though  it  has been done  in special 
cases.lG 

The dependence of delay  time on  each of the statisti- 
cally  distributed parameters is shown  in the Figs. 9a  to  9d. 
From this data we obtain  the following  expression for 
delay time. 41 
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DT-DT = 0.435 X l O - ’ ( R b b - i ? b b )  

+ 0 . 2 0 4 ~  10-7(R,--R,) 

+ 0.01447(C,-~c) 

+ O.1176(Ce,-~,,) 

+ 1.6(N-p) 

+ 0.234 X 10-’(A -A) 

+ 0.464 ( 1 - - 
Ie.q+0.408 Ie,+0.408 

+ 195 ( 1 
- - 

Fcbi24.6  Fcb+24.6 

Delay  time DT is in  mpsec if the  parameter units are as 
indicated  in  Section 2B. 

Note  that  the first six parameters  are linearly  related to 
delay  time, but  the relations of time  with I , ,  and Fcb are 
hyperbolic. The distribution of delay  time  obtained using 
Monte  Carlo  on this formula is shown  in Fig. 10. The 
histogram bar heights are indicated  in the  appropriate 
regions along  the base of the Figure. Two  thousand 
samples  were  taken. 

6. Comparison of results and methods 

A  comparison of the delay  time  distributions found by 
various  methods is shown  in the following table: 

Actual 

Monte  Carlo 

Propagation of 
Error 

Total Differential 

Surface  Fitting 

Best  case Worst  case 95% Circuits 
delay delay faster  than 

(mpsec) (mpsec) (mpsec) 

6.15 9.35 - 

6.5 9.4 8.7 

6.43 1 8.66 1 8.16 

6.71 1 9.03 I 8.40 

The actual best  case and worst case  delays  were ob- 
tained by solving the differential equations with best and 
worst  extreme parameter values. The results  by Monte 
Carlo,  propagation of error  and total  differential are off 
by the  approximations necessary to convert the I ,  distri- 
bution to a  time  distribution. In  addition, confidence in 
Monte  Carlo is limited by the sample size, 1000. The 
parameter sensitivity methods are off by the linearity 
assumption, and  the regression method by the assumed 
form of the expression for delay  time. In all methods we 
assumed  stochastic  independence of the  component pa- 

42 rameters. Except  for  Monte  Carlo,  the  apparent best and 
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Figure 10 Distribution of delay time, curve fitting 
method. 

worst cases by the different methods are not as extreme 
as the  actual best or worst cases using extreme param- 
eters. This is true also of the  Monte  Carlo  method if 
we compare IC’s rather  than delay  time. (The existence of 
a Monte  Carlo extreme  greater than  the  actual worst 
case arises in the conversion  shown  in Fig. 4.) The  im- 
probability of extremes was one  of  our reasons for 
getting away from “worst case” design. 

The  parameter sensitivity method  required the least 
amount  of  IBM 704 machine time when applied to  the 
simple  transistor  equivalent  circuit. On  larger circuits, 
however,  this method is no longer too attractive timewise. 

In our transistor  equivalent  circuit we have  eight  pa- 
rameters.  Using  second differences to estimate the partials 
with  respect to  each  parameter requires 2 X S +  1 = 17 
solutions of the differential equations. In a  ten-transistor 
network, 2 x SO+ 1 = 161 solutions  would  be  required. 
Using Monte  Carlo, this number of solutions  could give 
a  workable  estimate of the delay  time  distribution, with- 
out  the necessity of computing partials, standard devia- 
tions, and conversion from collector current  to delay 
time  distribution. 

The  surface fitting method is worse, timewise, since 
three points are hardly enough  to estimate the relation 
of parameter  to delay  time. More likely, five points would 
be the minimum, and  for  an SO-parameter network  this 
would require 4 x 80 + 1 = 32 1 solutions. 

At present it takes about a half-hour of machine time 
to  obtain  the complete  solution of a  ten-transistor switch- 
ing  block, using PE TAP.15 If we could be satisfied with 
100 samples the  Monte  Carlo  method would require  the 
least amount of machine time, 50 hours. 
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Neglecting  time  considerations, Monte  Carlo is still 
the best method we have  studied. The  program  for this 
method is the simplest to write and debug. It is easier to 
apply  than  the  other methods  and can give the desired 
result  without  intermediate data processing. 

Summary 

Several  numerical  techniques for estimation of transient 
distributions have been described and illustrated on a 
simple  transistor  circuit. Monte  Carlo is simplest,  but 
uses too  much  machine time on small circuits, compared 
to other methods. Parameter sensitivity methods  may be 
faster  in circuits  with  few parameters, but require  more 
complicated data processing and considerable operator 
judgment  to  determine  perturbations. Successful use of 
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