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Methods of Analysis
of Circuit Transient Performance

Abstract: This paper surveys some numerical methods applicable in obtaining the distribution of performance
parameters associated with the transient behavior of switching circuits. The methods considered are:
{1} Monte Carlo, in which sample circuits are simulated on the IBM 704 and their performance computed and
tabulated. (2} Parameter sensitivity methods, including propagation of error, in which the first and second
moments of the output distribution are estimated from parameter sensitivities; and a method using the total
differential of the performance parameter to estimate the deviation of circuit behavior from its component
deviations, (3) A surface fitting method, in which there is developed a formula for delay time in terms of circuit
component values. Each method is used to determine the delay time of a simple system. Their merits and
drawbacks are compared and discussed, and estimates are given of the IBM 704 machine time necessary for

implementation on a ten-transistor switching circuit.

1. Introduction

When the reliability of an electronic circuit design is
evaluated, component parameters are considered as ran-
dom variables rather than fixed quantities. No matter how
tight manufacturing control may be, there are initial varia-
tions from one component to another, and these together
with subsequent component drift give rise, in circuits
built from these components, to variations in performance
from one circuit to another. Variables which characterize
circuit performance, such as voltage at a node, or rise
time, are called performance parameters.! The reliable
design problem we are concerned with here is simply this:
Given the component parameter statistical distributions,
find the performance parameter distributions.

In engineering practice, the limits of a performance
parameter distribution (beyond which cases exist with
zero probability) may often be found by evaluating per-
formance with various combinations of extreme adverse
values of the circuit parameters. We may require that in
a well-designed circuit these limits be within the region
of satisfactory circuit performance. This is the “worst
case” design philosophy. As noted in Ref. 2, this design
method may be unduly costly and pessimistic. (The sub-
stantial discrepancy between worst case and actual per-
formance is one attraction of asynchronous systems.) A
design philosophy exploiting more of the output perform-

ance parameter distribution than its limits, would be
more realistic.

Computationally, the problem of estimating a per-
formance distribution may be of two distinct types, aris-
ing from the nature of the performance parameter being
investigated. It may be a steady state level which can be
found from the solution of a system of algebraic equa-
tions. In this case there are well-known techniques for
finding the required distribution.2 In particular, the Monte
Carlo method has proved quite satisfactory in practice.
But there are also performance parameters associated
with the transient behavior of the circuit — for example,
delay time — which are found from the solution of differ-
ential (rather than algebraic) equations. These perform-
ance parameters are important in the design of computer
switching circuits. For a given circuit, therefore, the ma-
chine designer is interested not so much in the ideal
circuit behavior, but in the distribution of performance
for actual circuits with components deviating, within
specifications, from their design values.

In this paper we are concerned with estimating tran-
sient distributions, that is, distributions of performance
parameters associated with the transient behavior of a
circuit. Analytically, we may suppose that the following
system of differential equations is given:
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Xi=fi(t; X1, ..., Xn3 @1, ..., an)i=1,...,n (1)
and a function of the solution
() =g(x1(1), ..., xa(1)) . (2)

We assume solution existence and uniqueness for given
initial conditions. The system (1) may be network equa-
tions, where the x; are unknown voltages or currents. The
a’s are random variables with known distributions corre-
sponding to those of the component parameters. The
function v=g(t) defines the performance parameter. The
problem is to estimate the distribution of v.

Note that » in (2) is a time-parameterized family of
random variables — that is, a stochastic process. Although
much is known about many important stochastic proc-
esses,” those generated by differential equations as indi-
cated above appear to have been little investigated. Some
recent work by F. S. Scalora!? contributes in this area.

Note further that although we arrived at the above
analytic formulation of the transient distribution problem
in connection with the design of digital computers, the
problem is an old one for analog computers. According
to Dow* and others, when a differential analyzer is set up
to solve a given equation, certain errors are introduced
into the solution because the components of the computer
are in error, or imperfect. In using analog computers we
have the problem of estimating solution errors from
component errors. The same problem is placed in the
context of the reliability of switching circuits in a digital
computer by a change in terminology; replace “error”
by “deviation from the nominal.” It is important to rec-
ognize this equivalence, for there is considerable work
(especially analytic work, as in Ref. 4) on this problem in
its analog computer context, which ought not be ignored
by those primarily interested in the reliability of switch-
ing circuits. In particular, the works of Miller and
Murray® and Dostupov and Pugachev® encompass both
the digital and analog computer problems, and can be
studied from either point of view. For example, Dostupov
and Pugachev show that under certain conditions on the
partial derivatives of the f;, the time-parameterized family
of distributions p(#; x1, ..., Xx; a1, ..., am) satisfies the
partial differential equation

a n
2+ 3 w1-o0.
ot i=1 0 i

In this paper we outline some numeric approaches to
the transient distribution problem. Beyond simply noting
that the results are plausible, we make no attempt at
hardware verification, nor at error bounds estimation.
Our purpose is experimental: to try a few techniques, and
so highlight some of their relative merits and weaknesses.
We are concerned with those methods of transient distri-
bution estimation that are especially suitable for use with
a large digital computer, and which lend themselves to
mechanization and incorporation in an automatic design
procedure.

The remainder of this paper describes three transient-
distribution estimation methods, with reference to an
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example circuit. The next section describes this circuit in
detail, and the following sections describe estimation by
the following methods.

Monte Carlo: In this we simulate and sample a large
number of circuits by computing their behavior from
network equations. This approach is used successfully on
steady-state performance parameters, but because of the
time required for numerical integration it is hardly prac-
tical for transient performance parameters at present.

Parameter sensitivities: Here we estimate response vari-
ance from component variances. This too is easily done
for steady-state performance, but with transients the
method entails deprecated numerical techniques.

Surface fitting: In this method we construct an expression
for the performance parameter in terms of component
values, recasting the problem as a steady-state one. The
expression can be found from measured data by multiple
regression, though our data are computed from circuit
equations.

In the descriptions of these methods we will state cer-
tain assumptions regarding statistical independence of
variables, and linearity of functions. To the extent that
the assumptions for a method are invalid when applied to
some circuit, the method is inapplicable to that circuit.
However, the purpose of this paper is not a reliability
analysis of the example circuit, but a discussion of meth-
ods of analysis on arbitrary circuits. For this reason we
state, but do not justify, our assumptions before apply-
ing each method to the same example.

2. Example circuit
o A. Circuit topology

The numerical methods we have studied have been ap-
plied to a comparatively simple circuit, the transistor
equivalent circuit with minimal external circuitry shown
in Fig. 1 (Ref. 10). The differential equations for this
circuit are:

CcVél = V21(G0+Gcc) +Ve1Gcc+UlIh+Gcc(Vc_ Ve)

CVi=—VaGe—VeuGu— (1—a)L,+G (V. — V) —C.V5

where
Vo1=Vs—V;, voltage difference from node 2 to node 1
Va=V.—Vi, voltage difference from node E to node 1

and G’s are reciprocals of corresponding R’s.

Ih:Iﬂs(eAVﬂ‘l) (4)
Ceo Ih)\
= (5)
(Vo_ Vel)N 277F¢-b
1

[Va(GeetGu) —Vai1Geoet+ V.G

e

T Gut Gt Ge
+VGu+ VoG] (6)
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Figure I Transistor equivalent circuit with minimal
external circuitry.
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® B. Parameter distributions

The distributions on the circuit parameters are assumed
to be uniform with the minimum and maximum values,
as in the following tabulation. The uniformity assumption
is incidental and does not restrict the applicability of the
methods described. We also assume statistical independ-
ence of these variables. Where several parameters are
associated with the same physical unit, such as a transis-
tor, this assumption may not be justified, in which case
the methods would have to be modified. In the Monte
Carlo method we would need a more sophisticated and
elaborate sampling scheme; in parameter sensitivity and
surface fitting methods our formulas would have to in-
clude cross influence terms.

Parameter Units Minimum Maximum
Ry ohms 25 75
R. ohms 107 10¢
C. pufd 3 7
I, pamp 0.0367 1.28
Ceo ppfd (volts)¥ 125 18.36
N  aeeaaas 0.4 0.5
Fep mc/sec 70 200
A e 0.5 45

The following constants were not distributed:
A = (00261 -----
Rcc =20 ohms

Vo, =05 volts

Vy = 0 (grounded base) volts

V. = —45 volts
R, = 10,000 ohms

s——so— t for 0=r= 15 mpusec
Ve=12 15%x10? -

1 50 for 15 musec =¢

o C.Input

The input to the circuit is the current entering at node
E, which is supplied by a 50-volt ramp acting through the
10K resistance R.,.

Note that everything in the differential equations, ex-
cept the variables V.3 and Vy;, is now in terms of distrib-
uted parameters, constants, and the input V,. Equation
(7) gives the parameter o’ in terms of I, and a distributed
parameter 4. A choice of A4 fixes the «' vs. I;, character-
istic.

® D. Performance parameter

The performance parameter which we investigate will be
delay time. This is defined, in this case, as the time it
takes, after start of the input ramp of V,, for the collector
current I, to reach 1.5 ma.

Since a transient performance parameter v is associated
with the transient behavior of the system, it seemed
natural to express v as a function of the solution of the
differential equations governing the system, as in Eq. (2).
A simple performance parameter to deal with would be
the solution itself — for example, the collector current
I.($). Then v(1) —1.(1), and the statistical distribution of
v at time £, is the distribution of I, at this time. But delay
time as defined above is not the value of the solution at
some f; it is the time ¢ for some value (1.5 ma) of the
solution. We are interested in the ¢ distribution for a fixed
I., rather than the I, distribution for a fixed ¢. Under
appropriate assumptions these distributions are related,
and can be found, one from the other.

Figure 2 Time distribution of I..

1.

1.5 ma

TIME
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Suppose I.=1.(t) is monotone for a sufficient interval
of ¢, and suppose the distribution of I, at time ¢, is known.
Then the fraction p of differential equation solutions such
that 7, < 1.5 ma at time ¢, is also known. The remaining
fraction of differential equation solutions, 1—p, are all
greater than 1.5 ma at time ¢,, as shown in Fig. 2. Since
I.(t) is monotone, 1—p must also be the fraction of all
solutions which have attained 1.5 ma before time #,. Thus
the distribution of I, at #, gives one point on the delay
time distribution, for I, = 1.5 ma.

3. Monte Carlo

In this method the circuit parameters are random vari-
ables with given distributions, and we solve the system of
differential equations once for each set of randomly
chosen parameters. In this way we simulate the existence
and behavior of as many transistors as we wish. It is
a simple matter to tabulate the delay times of the different
samples, and this gives the desired distribution. An exten-
sive discussion of many facets of this technique is con-
tained in Ref. 11. The application of Monte Carlo to
reliability problems is discussed in Ref. 2, while Ref. 12
describes some IBM 704 programs which have been used
on steady state reliability problems. In order to apply the
methods to the evaluation of a transient parameter we
need to solve differential equations. If these equations can
be solved analytically the problem reduces to a steady-
state one, as in Ref. 16. Most often, however, it is neces-
sary to apply numeric methods. There are many IBM 704
programs for this purpose, available through SHARE.
We used PK NIDE.”

Since we wish to solve and resolve differential equa-
tions over and over again in this sampling procedure,
the feasibility of this scheme depends on the speed at
which integration proceeds. This is limited by the inte-
gration interval, which controls error and stability. We

Figure 3 Distribution of I. at 7.45 musecs by Monte
Carlo Method, nominal I.=1.5 ma.

100 L

- /

Z

w

o

o

D

[9]

.

=

4

wwm

w W

W

<(340

UH!

w <

)

2z

-< 20 "4

zZ

“w

Uwn

=9 45

a- | 2 1 2 19 103 | 203 247 | 201 147 | 30 ©
0.3 0.6 0.9 1.2 1.5 1.8 2.1
COLLECTOR CURRENT IN ma

IBM JOURNAL ¢ JANUARY 1961

found that even the simple test circuit shown in Fig. 1
required about one and one-half hours for 1000 samples.

For more complicated circuits involving several tran-
sistors, not only would the rate of solution be slower, but
the transient would last longer, requiring that the solution
be carried out further and taking a still longer time.

An advantage of this method over the next two to be
described is that the delay time distribution may be
obtained directly. In order to do this, however, frequent
testing to determine when a solution has reached 1.5 ma
would be necessary, and this would slow down the pro-
gram. For this reason we chose instead to find the distri-
bution of collector currents at a fixed time (print inter-
val), and to obtain a rough estimate of our delay time
distribution from this. The means of obtaining this
estimate is described in connection with Fig. 2, using the
I, distribution data found at the 8t* print. Of course, this
gives just one point of the delay time distribution. Other
points may be found in the same way. But Fig. 4 illus-
trates another way of getting the delay time distribution
— by projecting population contours paraliel to the nom-
inal solution. Intuitively the assumption that population
contours are approximately parallel is not as severe as
the assumption that all individual solutions are parallel
to each other. Solutions may cross each other without
changing a population contour.

The distribution of 1000 cases of collector current at
time 7.45 mysec after start of the input ramp, as found
by Monte Carlo, is shown in Fig. 3. Collector current is
nominally 1.5 ma at this time. To obtain these results a
random number generator'* was used to pick random
values for the distributed parameters, within the ranges
specified in Section 2B. These random values, together
with the fixed parameter values, were inserted in differ-
ential equation (3), which was then solved on the IBM
704 for I, at time 7.45 musec. The I, found was then
tabulated with respect to 20 boundary values, spaced
0.15 ma apart, ten above the nominal value, and ten
below. The entire process was then repeated again and
again for a total of 1000 times, starting with newly
generated random values each time. The resulting num-
ber of cases in each interval is shown at the bottom of the
appropriate column in Fig. 3. These numbers are propor-
tional to the height of histogram bars for the I. distribu-
tion. The smooth curve shown was obtained from the
cumulative totals. Figure 4 shows the start of a nominal
solution. Assuming the shape of the I. distribution is
fairly constant in the time range from the 7t® to the 10**
print intervals, we may project the I, distribution as
shown, obtaining the delay time distribution shown in
Fig. 5, as described previously.

4. Parameter sensitivity

We now describe two methods based on estimates of the
sensitivity 9v/0a; of the performance parameter v to the
component parameter a;. Implicit for the validity of these
methods is the assumption that v=g(t; a1,...,an,) is
approximately linear over the range of variation of the a;.
If the ranges of variation are sufficiently restricted the
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Figure 4 Estimation of time distribution from I, distribution.
assumption can be justified, of course, but serious errors we have
may be introduced if we have no control over the vari-
v=g(t; Ay e v vy am) .

ations. The surface fitting method discussed later partially
obviates this difficulty.

e Sensitivity estimation

The computational heart of these methods is determina-
tion of the partial derivatives ov/0a;. If the solution of
(1) is

xi=xi(t;ay, ..., am)

The analytic expression for v in terms of the parameter
and time is generally not known, but the value of v as a
function of t can be found using a numerical integration
routine. This makes possible the estimate of the partials

by
ov ~ g(a;i+Aa) —gla;) Av

— T

oa; Aa; Aa; )
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TIME IN musec
5.58 6.52 7.45 8.38 2.3

IS
(=4

PERCENTAGE CASES WITH DELAY TIME
LESS THAN ABSCISSA

3

S

o
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[ PRINT NUMBER

Figure 5 Distribution of delay time, Monte Carlo
method.

This formula must be used with caution. Hildebrands
says “...numerical differentiation should be avoided
whenever possible, . ..” Aq; must be small in order that
Av/Aa; be the slope of a tangent to the curve v=g(a;)
rather than the slope of a line passing through the
two distinct points (a;, v(a;)) and (a;+Aa;, v(ai+Aa;)).
On the other hand, the smaller Ag; the more significant
the round-off error in Ag; and the more significant the
truncation and round-off errors in v(a;+Aa;) —v(a;). To
find the slope of the tangent with a relatively large Aa;
second and higher forward differences may be used to
estimate the derivative:

where Av=wv(a+Aa)—v(a). This and other formulas
for numeric differentiation of polynomials may be found
in Ref. 8.

Choosing the size of the parameter perturbations (the
Aay’s) is a difficult feature of this method. As noted above
the perturbations must be neither too large nor too small.
The optimum perturbation, moreover, will differ from
parameter to parameter, from circuit to circuit, and even
in the same circuit from one part of a solution to another
part of the same solution. Although it may be possible to
determine a good perturbation size from an error analysis
of the differential equations, this is usually quite difficuit,
and in practice we can only experiment with various
values.

Another way to estimate these partials is by means of
sensitivity equations.® From Eq. (1) we have by differ-
entiation with respect to a;

IBM JOURNAL *» JANUARY 1961

5 6 7 8 9 10

0% ofi i n ofi Oxg

aaj aa,-

k=1 axk a(l]‘ l.:l,...,l’l

(10)

j=1,...,m

For each j Eq. (10) is a system of linear differential
equations in 9x;/8a;, from which, with (2), we may find
o / aaj.

In this method of sensitivity computation we bypass
the problem of perturbation size, and the problem of
difference order. If the partial derivatives are estimated
by k differences, a circuit with n parameters requires
kn+1 solutions, while the sensitivity equations method
requires m+1 solutions. But in the latter case we must
set up and solve a new system of differential equations,
like (10), for each parameter sensitivity.

The sensitivity method has parameter contribution
factors as a by-product. The contribution factor of the
component a; is defined as

ov 2
—_—
aai

m atv 2’
2= 07‘)

j=1 \0a;

cfla;) =

where o; is the standard deviation of a;. Its significance
is that it gives the relative contribution of the spread of
a; to the spread of the output. It tells how critical or how
important each parameter is to the output. This may be
useful information for design purposes.

Figure 6 shows the transistor response in relation to
parameter contribution factors. Specifically, the contri-
bution factor of R,; was found from

C'f' (Rbb) -

21, 2
[aRbb U(Rbb):l
[ ol a(Rbb)TJr [i’io(ct)]ir RS [ ol a(A):l ’
Ry aC., oA

The partial derivatives were found from third differences;
that is, to find 91./8Rs, we used

el 1 1 1
=~ Al, —— A2, + — A3,
oRy ARy 2 3

1
= [21.(Rp,+3ARy) — 91 (Rpp+2ARw)

bb

+181.(Rpp+ARp) — 111, (Rpp) ],

where the terms I.(Ry+nARy,), =0, 1,2, 3 were found
by solving the differential equation system (3) first with
Ry, and all other parameters at their nominal value,
then again with Ry, replaced by Ry»+ ARy, then with
Ry +2ARy, and finally with Ryp+3ARys.

According to these results the most important param-
eters affecting collector current at the start of the
transient (up to the 4t print interval) are Ry, and C..




From the 4t to the 92 print interval the collector current
response is most sensitive to C.,; from the 9" to steady
state (the 20t® print interval) F,, is most important, and
finally in steady state « is most important.

We now describe methods of distribution estimation
using parameter sensitivities.

® Propagation of error

In this method we assume a normal output distribution
with mean equal to the output nominal value, and stand-
ard deviation

2 ] °g ik
a(v) 1 ™ (a1) {+...+ . (am) f’

where g(t; a1, . .., an) is the performance parameter as
a function of the circuit parameters a;, and time ¢, and
where o(a;) is the standard deviation of a;.

A difficulty with the propagation-of-error method is
that the normal distribution curve has no sharp cut-off
beyond which cases appear with zero probability. On the
contrary, since the normal function is positive for any
finite value of its argument, the probability of outputs in
any region from — oo to +- oo is positive.

Suppose the output of a circuit is the current in some
branch and, from physical considerations, that this cur-
rent must have a certain direction which corresponds to
positive values of the current. Nevertheless, normality
of the distribution of outputs implies a positive probabil-
ity of negative outputs. This probability may be negligibly
small, but there is a world of difference between “small”
and “nonexistent,” and there may be cases where the
physics of a problem is embarrassing to the propagation
of error technique.

Knowing the nominal I, and its standard deviation
o(l,) as a function of time, the cumulative distribution
of I, is

1 /Ic (x—1.)* Il
—_— X S —
eV o T 200U

The six points shown in Fig. 7 were found from the six
I. distributions at the times shown, by the conversion
method described in connection with Fig. 2.

dx .

e Total differential method

This method is a combination of the Monte Carlo and
propagation of error methods. The theory behind it is

Figuie 6 Sensitivity of collector current to parameters during transient response.
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this: If v=g(ay, . .., am; 1} is the output as a function of
parameters and time, then the deviation of v at time
t+4dt from its nominal value at time ¢ is

dv=a—gda1+...+ % +~a£dt, (11)
oa, 0a,, ot

where the partials are evaluated at time ¢ and nominal

component values, and where the differential da;=a;—a;

is the deviation of the parameter from its nominal value.

For the deviation at time ¢ the (2g/0t)dt term is zero and

omitted.

After the sensitivities in (11) are established, the dis-
tribution of dv is determined, using Monte Carlo, from
the distributions of the da;. The distribution of » is the
distribution of dv displaced by the nominal value 7, since
v=0+dv.

This method has one obvious superiority over the pre-
vious method: nothing need be assumed about the shape
of the output distribution. We need not assume a normal
distribution, nor admit the possibility of outputs ranging
from —oo to +oo. Indeed, with the total differential
method

m1o
T il (max|da;])
i=1 8a,~

are the extreme possible outputs.

Monte Carlo was applied to (11) to obtain estimates
of the collector current distribution at five points in
time. These gave, using the method of Fig. 2, five points
of the statistical distribution of delay time curve shown
in Fig. 8.

Figure 7 Distribution of delay time, propagation-
of-error method.
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5. Surface fitting

In this method we seek the function t=g (a1, ..., an)
which is satisfied, or is a close fit to, a set of data

{(tksalka--~,amk)lk=],...,s}.

That is, we seek the equation for a multiple regression
surface.? It is necessary to assume or determine the de-
pendence or independence of variables, and the nature
(linear, exponential, . ..) of the dependence of ¢ on the
a;.

Here we assume the deviation of a solution from its
nominal is related to the deviations of the parameters by
an expression of the form

m
v—0= 3 gi(a;) —gi(a),
i=1

where each g; is a function of a; and no other distributed
parameter. Clearly, when each parameter has its mean
value, the right member is zero and the solution is also
nominal, v=7.

To determine g;, we set a;=d; for j7i and find by
experiment — solving the system with various values of
a; — the graph of v vs. a;. This is the same as the graph of
g: displaced by the constant v—g;(a;). If this happens to
be the graph of a straight line, then

gi(a;) —gi(@) =mai+b— (ma,+b)=m (a;—a;) ,

and 9g;/0a;=m and this method is equivalent to the total
differential method. But we have the advantage now that
the g; need not be assumed constant. It should be noted,

Figure 8 Distribution of delay time, total differen-
tial method.
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however, that ingenuity may be required in picking the
analytic form of g; and fitting it to the data.

Another advantage of this method is that we can use
it to obtain delay time distributions directly, rather than
indirectly from output distributions. The functions g; may
characterize the relation of any performance parameter
to g;, provided this parameter be physically determined
by a;, so that we may obtain a graph of the relationship.
This is an advantage over the propagation-of-error and
total-differential methods, for in those we can find directly
only the distribution of those performance parameters
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Figure 9d Delay time vs F.; and A.

for which we can write an analytic expression in terms of
the dependent variables of the differential equations. In
our case we could find the distribution of collector cur-
rent because I, can be expressed in terms of V., and Vo,
formula (8). But any such formula for delay time is
difficult to find, though it has been done in special
cases.!®

The dependence of delay time on each of the statisti-
cally distributed parameters is shown in the Figs. 9a to 9d.
From this data we obtain the following expression for

delay time.

11
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DT —DT = 0.435x 10-2(Ry,—Rys)
+ 0.204x 10" (R.—R,)
+ 0.01447(C.—C.)
+ 0.1176(Ceo— Cos)
+ 1.6(N—N)
+0.234 % 10-2(A4 —~4)

1
+ 0.464 — =
1,,+0.408 1.,+0.408

1 1
+ 195 — = .
Fup+246  Fu+24.6

Delay time DT is in musec if the parameter units are as
indicated in Section 2B.

Note that the first six parameters are linearly related to
delay time, but the relations of time with I,, and F,;, are
hyperbolic. The distribution of delay time obtained using
Monte Carlo on this formula is shown in Fig. 10. The
histogram bar heights are indicated in the appropriate
regions along the base of the Figure. Two thousand
samples were taken.

6. Comparison of results and methods

A comparison of the delay time distributions found by
various methods is shown in the following table:

Best case | Worst case | 95% Circuits
delay delay faster than
(mpsec) | (mpusec) (mpusec)
Actual 6.15 9.35 -
Monte Carlo 6.5 9.4 8.7
Propagation of
Error (—) (+c0) 8.16
Total Differential 6.43 8.66 8.16
Surface Fitting 6.71 9.03 8.40

The actual best case and worst case delays were ob-
tained by solving the differential equations with best and
worst extreme parameter values. The results by Monte
Carlo, propagation of error and total differential are off
by the approximations necessary to convert the /. distri-
bution to a time distribution. In addition, confidence in
Monte Carlo is limited by the sample size, 1000. The
parameter sensitivity methods are off by the linearity
assumption, and the regression method by the assumed
form of the expression for delay time. In all methods we
assumed stochastic independence of the component pa-
rameters. Except for Monte Carlo, the apparent best and

IBM JOURNAL s~ JANUARY 1961

TIME IN musec
5.58 6.52 7.45 8.38 9.31
100 /
80 /

w
=z
-
2
3
-
[a)
pu
-
z
T2
w v
20
<
va
w<
22 20
o
z= 3
[8X%)
o =9/ X333 3R 83BN
a.- Q — ————

5 é 7 8 9? 10

"PRINT NUMBER

Figure 10 Distribution of delay time, curve fitting
method.

worst cases by the different methods are not as extreme
as the actual best or worst cases using extreme param-
eters. This is true also of the Monte Carlo method if
we compare I.’s rather than delay time. (The existence of
a Monte Carlo extreme greater than the actual worst
case arises in the conversion shown in Fig. 4.) The im-
probability of extremes was one of our reasons for
getting away from “worst case” design.

The parameter sensitivity method required the least
amount of IBM 704 machine time when applied to the
simple transistor equivalent circuit. On larger circuits,
however, this method is no longer too attractive timewise.

In our transistor equivalent circuit we have eight pa-
rameters. Using second differences to estimate the partials
with respect to each parameter requires 2x8+1=17
solutions of the differential equations. In a ten-transistor
network, 2x80+1=161 solutions would be required.
Using Monte Carlo, this number of solutions could give
a workable estimate of the delay time distribution, with-
out the necessity of computing partials, standard devia-
tions, and conversion from collector current to delay
time distribution.

The surface fitting method is worse, timewise, since
three points are hardly enough to estimate the relation
of parameter to delay time. More likely, five points would
be the minimum, and for an 80-parameter network this
would require 4 X 804+ 1=321 solutions.

At present it takes about a half-hour of machine time
to obtain the complete solution of a ten-transistor switch-
ing block, using PE TAP.15 If we could be satisfied with
100 samples the Monte Carlo method would require the
least amount of machine time, 50 hours.




Neglecting time considerations, Monte Carlo is still
the best method we have studied. The program for this
method is the simplest to write and debug. It is easier to
apply than the other methods and can give the desired
result without intermediate data processing.

Summary

Several numerical techniques for estimation of transient
distributions have been described and illustrated on a
simple transistor circuit. Monte Carlo is simplest, but
uses too much machine time on small circuits, compared
to other methods. Parameter sensitivity methods may be
faster in circuits with few parameters, but require more
complicated data processing and considerable operator
judgment to determine perturbations. Successful use of
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