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Minimization over Boolean Trees®

Abstract: An olgorithm is provided for what might be termed the general problem of logical design of

circuits with one output and no feedback. Given o set B of logical building blocks, each with a positive cost,

each with one output, and given a Boolean function f the problem is to prescribe a Boolean tree constructed

from the available set of building blocks which realizes f and which has a minimum cost. Actually a more gen-

eral problem involving don’t care conditions is treated. The cost of a Boolean tree shall be the sum of the

costs of the building blocks of which it is composed. A special case of this problem is the classical logical

problem of finding o functional expression for a given logical function which uses o minimum number of

conjunctions, disjunctions and negations. Programmed on an 1BM 704 computer, the algorithm is believed to

be efficient on problems with eight or less variables,

Introduction

The f)roblem. We proceed by way of example.
Consider the following funectional expression for a
Boolean function f of 4 variables,

[l{@[&(d, b)) cl, d, V(e7 f)})

where the symbols p, ®, &, v denote, respectively,
the MAJORITY, the EXCLUSIVE-OR, the AND,
and the 2-variable OR. This functional expression
may be represented by the ‘“‘Boolean tree’’ of Fig. 1.

e f

Figure 1 Boolean tree of
:u{®[&(a; b); C], d) v, (6. f)}

*This is Part 1V of a series of papers on a theory of logical design of auto-
mata.

The Boolean tree may be thought of as a wiring
diagram for a logical circuit realizing this function,
constructed from a set B = {u, ®, &, v} of primitive
logieal building blocks.

This paper treats the question of finding a func-
tional expression, or Boolean tree, constructed from
an arbitrary set B of primitive logical building
blocks, primitive Boolean functions; more generally,
however, this paper solves the following minimiza-
tion problem.

Let B be a set of primitive building blocks, that
is, a prescribed set of Boolean functions, with each
being associated a positive integer called its cost.
Let the cost of a functional expression be the sum
of the costs of the elements therein. Given a Boolean
function f, the problem is to devise an algorithm
which will construct a functional expression for f,
from the set B which has a minimum cost. Actually
the problem treated here is a more general one,
arising naturally in the design of automata, in-
volving so-called DON’T-CARE conditions.

A gspecial case is the classical logical problem
(cf. Hilbert-Bernays) of finding a minimum fune-
tional expression for f, construeted from the set
consisting of the following three functions: the two-
variable AND, the two-variable OR, and the NOT;
the cost of each of these expressions is usually
considered to be one.
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Previous work in the field. As stated by several
authors, the bulk of the work in the area of minimiza-
tion of Boolean functions has been devoted to the
problem of finding minimum expressions of the so-
called two-level AND-OR type. Another way to
describe the same thing: to find the minimum
normal form expression for a given Boolean function.
Still another equivalent description for the same
problem: to find a minimal cover of a cubical com-
plex. A fairly comprehensive list of references for
work done in this field is contained in the bibliog-
raphy of the first three parts of this series. Thus,
attention here will be devoted to work on the more
general problem.

Muller, Ashenhurst, and Markov have attacked
the problem of finding upper and lower bounds for
the minimum cost of a decomposition, under various
assumptions.

In a series of papers Ashenhurst has devoted
himself to finding decompositions for Boolean
functions. In his paper in the Proceedings of the
International Symposium on the Theory of Switch-
ing [2], he considers the problem of disjunctive
decompositions. A Boolean function f(x,, --- , Z.)
is said to have a disjunctive decomposition
Fly,, +-+ , Yo &2y, -+, 2] if no y equals any 2.
He describes a method for detecting such decom-
positions and gives illustrations for functions of
six variables. Ashenhurst has several interesting
results in this study.

Abhyankar [1] addresses himself to the general
problem of finding minimum ‘“‘sums of products of
sums”. Here 8B consists of ANDs and ORs. He
describes procedures for obtaining such expressions
in the case when the complex for the given function
consists of two isolated vertices; he also obtains
partial results in the case when this complex con-
sists of three isolated vertices. Another way to
describe the first problem is to say that the function
is such that its complete canonical form consists
of exactly two terms and these two terms differ
from each other in at least two variables. A similar
description is possible for the case when the cubical
complex for the function consists of three isolated
vertices.

Roth and Wagner [15] give an algorithm for the
following specialization of the general problem.
The decomposition is allowed to be a disjunction
of a set of subdecompositions to be termed Boolean
trees, such that within each subdecomposition no
input wvariable appears more than once. Each
primitive function has a positive cost and the
algorithm gives a minimum over this class of circuits.
The methods of the present paper are generalizations
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of the concepts there developed. Much insight into
the present problem was provided by Erie G.
Wagner.

In a subsequent paper the author gives an
algorithm for the multiple-output problem.

A compact notation for normal form. One of the
essential difficulties in dealing with problems in a
large number of variables is to develop a compact
notation to represent these large functions. The
truth-table type of representation of a Boolean
funetion, for example, is not very efficient even for
relatively small numbers of variables. The author’s
mode of representation of a Boolean function is
essentially a shorthand notation for a normal form
expression. This notation will become clear by
means of a simple example. Consider the function
f = abé v bede v @é. This normal form expression
may be represented by the following array of
symbols consisting of 0, 1 or z.

a b ¢ d e

110 2 z=abé
1 1 0 lebede
0 z 2z 2 O=ae.

This array has five columns, one for each variable
and three rows, one for each term. The term ab¢ is
represented by the first row of this array, namely,
110zz. The variables a and b appear in the term
and are represented by 1’s in the columns a and b;
¢ appears negated and is thus represented by a 0
in the ¢ eolumn. Variables d and e do not appear:
their absence is indicated by x’s appearing in columns
d and e. In similar fashion bede is denoted 21101 and
ae by 0xzx0.

In general, a normal form expression in » variables
will be represented by an array with n columns
and with as many rows as terms in the normal
form. If a variable occurs unnegated in this term,
a 1 appears in the column corresponding to this
variable. If a variable occurs negated, then a 0
appears in the appropriate column. If the variable
does not occur in the term, then an x appears in
the appropriate column. In particular, the function
f which is identically 1 would be represented by a
single row, each column of which is an . The
function f, identically 0, would be represented by
an empty array, to be denoted ¢.

To correlate with the author’s terminology, such
an array of 1’s, O's and 2’s is termed a cube and the
set of all possible cubes corresponding to terms
which might be used in a normal form expression
for a given Boolean function is termed the complex
of the function.




It is not sufficient merely to have a compact
notation to represent a Boolean function. One must
be able to perform all the necessary operations
on this array. In other words, for instance, tests
for implication, complementation, intersection, et
cetera, must be described in terms of a calculus based
upon this notation. Section 2 recapitulates such a
calculus, based on the “cubical” notation.

One more conception, familiar to logical designers,
involves the so-called DoN'T-CARE conditions. Let A
and f be Boolean functions such that & implies f.
We seek a functional expression @ representing a
Boolean function ¢ such that h implies ¢ and ¢
implies f. The function h-f is the DON'T-CARE
conditions. The customary problem is the case
when b = §, but in the design of machines it is
not uncommon that conditions arise to whose
“outcome” the designer is indifferent: these poN’1-
CARE conditions may be utilized to achieve a more
economical design. It may be noted that the
algorithm which the author gives here utilizes in
a conceptual sense the poN'T-CARE conditions.

Description of the algorithm. An indication of
the method will be given by consideration of a few
examples. Consider the example shown in TFig. 1.
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Figure 2 Table for injection operations of Boolean
tree of Figure 1

This Boolean tree describes a function of six vari-
ables. For descriptive purposes each branch of the
tree is labeled with a distinctive letter. The lowest
branch is labeled § and we may think of j as the
“output’” variable for the function p. This is,
i = w(d, h, 7). We shall construct a normal form
expression defined by this Boolean tree in iterative
fashion. Considered as a function of the single
variable j, this function is 1 if and only if j is 1.
Thus, referring to the table of Fig. 2, the first row,
labeled A, consists of the entry 1 in the column
labeled j. Now we do the equivalent of making the
substitution j = u(d, b, ©).

First, however, let us settle on a compact normal
form notation for the majority element: u(d, h, 7) =
hi v di v dh; this corresponds in the 0-1-z notation
to the cubes z11, 1z1, 11x. Hence, the substitution
j = u(d, h, 1) consists in replacing the row having
a single 1 in it, in the §** column, by the three
rows labeled B in Fig. 2. The exchange from the
row A to the rows B is to be thought of as a trans-
formation I%**. This is termed an injection operator.
Next the equivalent of the substitution 7 = v(e, f)
is made. Consider, for instance, the first row of
the rows B. This is transformed into the first two
rows of C according to the following reasoning.
The cubical representation used here for v{e, f) is

e f
z 1
1 =z.

Similarly, the second row of B is transformed into
the third and fourth rows of C and the last row
of B is transformed into the fifth row of C.

In similar fashion the succeeding injection
operators are defined, to yield the set of rows E
which are a normal form representation for the
function described by the Boolean tree of Fig. 1.
This normal form is expressed in terms of the
“input variables” @, b, ¢, d, e, . A precise definition
of the injection operators is given in the body of
the text. The process of applying a set of injection
operators corresponding to some functional expres-
sion is in effect a method for transforming a Boolean
function given in any functional expression into a
normal form expression. To put it another way, we
have analyzed the circuit, the Boolean tree of Fig. 1.
The problem of synthesis is, of course, more difficult:
In the synthesis problem one would be given a
normal form expression such as exhibited by the
rows E of Fig. 2, and one would be attempting to
determine whether or not a Boolean tree such as
that of Fig. 1 was an admissible functional expres-
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Figure 3 ®[:“(a; b, C), u(® (b, 6), ¢ d)]

sion, that is, constructible from a prescribed set
of logical building blocks.

Let us consider one more example, however, as
shown in Fig. 3, to illustrate a fundamental difficulty
which did not arise in the previous example.

It will be observed in this Figure that the input
variables b and b, and ¢ and ¢, appear; assume that
b = b, and ¢ = ¢,. Figure 4 exhibits the successive
injection operations defined by the Boolean tree
of Fig. 3. It will be observed that this Boolean
tree has each branch labeled by a distinet variable.
The output branch is labeled 7 and the function
attached thereto is the EXCLUSIVE-OR ®. In
similar fashion to the previous example, the first
set of rows labeled A consists of a 1, in the column
designated by the variable 7. Now the EXCLUSIVE-
OR ® will be designated by the normal form
fh v f& or in the 0-1-z notation. E
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The process of going from row A to rows B
corresponds to applying the injection operator
!’ of going from rows B to rows C, to applying
the injection operator I%**°. To describe the next
operation, a new phenomenon must be considered.
Here we must represent not only the majority
funetion but also the inverse of the majority function,
B = b& v ac v ab. Thus the inverse of the majority
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Figure 4 Table for injection operations of Boolean
tree of Figure 3 followed by consistency
546 operator C
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will be represented by the following array:
a b ¢
z 00
0 2 O
0 0 =z

The first of the rows B thus transforms into the
first three of the rows C, while the second of the
rows B transforms into the last three of the rows B.
By similar rules one transforms the rows C into
the rows D and the rows D into the rows E by the
injection operator I14™°* and II'**°.

Now, however, we impose the conditions b = b,
¢ = ¢;. Again, this must be performed in the cubical
calculus. In effect, we must perform an “‘intersection”
of the columns ¢ and ¢;, b and b,. If we examine the
fate of the first two rows of the rows E, as reproduced
below in ¥ig. 5, we will understand the general
situation. As indicated in the figure, the first term
corresponds to the expression béded,. Since b and b,
both appear negated while ¢ appears negated but
¢; does not appear, this term is equivalent to the
term béde, which in the “complex” of the variables
a b ¢ d e is represented by the “cube’” 20011.

Observe, however, the fate of the second ‘“‘cube,”
corresponding to b ¢ d & b,. Here b appears negated
whereas b, is not negated. This expression thus
corresponds to a contradiction and is hence repre-
sented by the empty ‘“‘cube” ¢. Applying similar
rules to each of the rows E, one deduces the set of
rows F described in the complex of variables a b ¢ d e.
Essentially, what we have done is to knock out the
inconsistent terms inherent in the normal form
expression represented by the rows E. The set of
rows F is a normal form representation for the
Boolean function in Fig. 3. (See Section 7 for a
more efficient method of derivation.)

This example indicates that there would be no
telling from looking at the normal form expression
described by the rows F that a Boolean tree such
as given in Fig. 3 was “admissible” for the function.
This expression must somehow have been deduced
from the larger “complex’” described by the set
of rows E. In effect, what must be done 1o realize
the existence of such a functional expression is to

a b cdebd ¢ a b ¢ d e
£ 00110 zobédeboax 00 1 1
00101 zebcdeb o ¢
Figure 5

adjoin contradictions to the normal form expression.
A calculus and algorithm for such a procedure is
one of the main results of this paper.

Section 1 states the problem. Section 2 develops
a caleulus for performing logical operations-speci-
fically, a calculus of cubical complexes. Section 3
describes the so-called singular complex, which is
essentially the author’s device for handling variables
which appear more than once in a term, and may
be thought of as a systematic procedure for identify-
ing variables and adding the contradictions induced
by these identifications. Such a procedure seems
to be necessary to recognize certain ‘“economical”’
functional expressions. Section 4 describes the
projection operator which determines for a given
primitive function and selection of variables whether
or not a factorization is permissible for these
choices. For a particular primitive function « and
selection of coordinates A, if the ‘‘projection operator
acts perfectly’” then a factorization exists. A fast
procedure for determining whether or not a projec-
tion operator acts perfectly is given in this section.
The algorithm requires frequent constructions of
the I-operation and the author is indebted to his
colleagues Drs. J. H. Griesmer and R. M. Karp
for their algorithm for this construction, given in
Section 4.4. The procedure is ‘“fast” in that it
tests each cube of a cover separately and each
individual test is rapid. Section 5 describes projective
words which are products of projection operators
and, suitably restricted, are in one-to-one cor-
respondence with Boolean trees. (More precisely,
it is a correspondence between equivalence classes).
Section 6 defines the injection operator, which is
a type of inverse of the projection operator. Its
use in this paper is mostly confined to proving that
the over-all algorithm does, in fact, produce a
minimum. This operator, however, has demonstrated
its own utility in the analysis of circuits. Section 7
describes an algorithm for computing the Boolean
function of any Boolean tree. The method deseribed
was suggested independently by Miss Ruth Norby
and Charles Stieglitz. A comparison of Fig. 8 with
Fig. 4 will give an indication of its relative efficiency.
In Section 8 the algorithm for finding a minimum
Boolean tree compatible with the design require-
ments is given. The essential trick is to note that
if the cost of a building block is one less than its
number of inputs, then the cost of the Boolean
tree is monotone with the ‘“‘degeneracy”’ necessary
in order to make the projective word corresponding
to the Boolean tree act “perfectly.” A solution having
been obtained under this assumption is then used to
set a bound on the size of the singular complex,
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through which it is necessary to search for more
economical solutions. As more economical solutions
are obtained, this bound is diminished. Appendix A
describes a procedure, adapted from R. Bellman [6],
for determining an optimum criterion for termina-~
tion. This development is due to R. M. Karp.
Appendix B contains a short discussion of the
efficiency of the algorithm and fast approximations
thereto.

1. Statement of the problem

Let B be a set of primitive building blocks, that is,
a prescribed set of Boolean functions, with each
being associated a positive integer called its cost.
Let the cost of a functional expression or Boolean
tree be the sum of the costs of the primitive blocks
or primitive functions preseribing it.

Let f and d be Boolean functions (d corresponds
to the poN’r-cARE conditions). Problem: Find a
functional expression F composed of primitives
from B such that f - F — f v d, of minimum cost.

2. The complex of a Boolean function,
o caleulus of complexes

A caleulus of cubical complexes, essential for sub-
sequent developments, is described in this section.

2.1 Let Q" denote the set of all conjunctions of
n literals a,, --- , a, or their negations, in which
each a; appears at most once, either negated or
unnegated: such a conjunction 7" is called a ferm.
Let this term be represented by an ordered set of
n symbols (¢, --- , t,), where: the 7t “coordinate”
t; = 1if a, appears in unnegated form in T; ¢; = 0
if a; appears in negated form in T'; ¢, = z if a; does
not appear at all in 7. Such a set £ = (&4, -+ , t,)
is termed a cube. If no ¢, = z, ¢ is termed a vertex,
and corresponds to a term in complete disjunctive
normal form. The function f identically 1 defines
the single cube zx - - - z, n &’s; the function ¢ identi-
cally O corresponds to the empty cube, denoted ¢.

2.2 Since there is a one-to-one correspondence
between terms T formed from = literals, and cubes
with n coordinates, the set of all such cubes may be
identified with the set ", and termed thereby the
n-cube.

Geometrical cubes have long been familiar to
switching theorists. Their representation as an
ordered set of symbols 0, 1 or & makes possible
the development of a ecalculus for performing
logical operations, suitable for a digital computer
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and entailing a certain ‘““compactness of informa-
tion.”

2.3 The complex of a Boolean function. Let f be a
Boolean funection of n variables. The set of all
terms permissible in any normal form expression
for f is termed the complex of f; equivalenfly, it is
the set of all terms which imply f. We shall deal
with the cubical representation of the complex of f.
The set K(f) of cubes determined by the terms
which imply f has the property that if it contains
a given cube (4, --- , f,) then it contains all of its
subcubes or “faces’, obtained by replacing some
coordinates f;, which are z, to a 0 or 1:* This set
K(f) is termed the cubical complex of §. This may be
made the abstract property defining a “cubical
complex.” (Indeed, it is precisely the same property
which is used to define the simplicial complex of
combinatorial topology.)

Definition. A cubical complex K of Q" is a subset
of Q" with the property that if ¢ is a cube which
belongs to K, then its faces also belong to K. A
subset L of K, L. C K, is termed a subcomplex of
K if L is itself a complex; if L is the cubical complex
of a Boolean function g, L = X(g), and K, of f,
K = K(f), then L C K is equivalent to the proposi-
tion g — f.

2.4 K-cover of L. Given complex K and subcomplex
L, a K-cover of L is a set C of cubes of K such that
each vertex of L is a face of some cube of C. This
means that for each vertex v of L there is a cube ¢
in C which can be transformed intov = (v, -+ -, v,)
by changing each of the coordinates ¢; of ¢, which
are z, to the value v;.

This definition has the following logical interpre-
tation: K, C, and L define Boolean functions f, g,
and A respectively — C is a normal form expression
for ¢ — such that h — g — .

If K = L, a K-cover is referred to simply as a
cover.

2.5 Products of cubes and complexes. The products
of cubes and of complexes introduced in this section
provide a basis for a caleulus which permits the
forming of all operations of the propositional
calculus.

Let ¢ = (¢, +++ , €) and d = (dy, -+ , dn),
coordinates ¢; and d; being 0, 1 or z, be cubes of @".

2.5a The intersection ¢ M d of ¢ and d is defined
by the following table

-
*Cube 8 = (s1, ... , ta) if, for each ¢,

ti = sioruz.

, n) is & face of cube t = (&1, ...




N[0 1 «x
00 ¢ O
11 1 1
z|(0 1 z

and the rule
cNd=¢, ifforanyi, e¢.MNd;, = ¢,
eNd=(Nd, - ,c.MNd,) otherwise.

The intersection of two cubes corresponds logically
to forming the product of the corresponding terms.
Following set-theoretic conventions, ¢ and d are
said to be disjoint if ¢ M d = ¢. The intersection
of complexes A, B is the complex determined by
all cubes a M b, a ¢ A, b € B, and shall be denoted
A N B.

2.5b The #-product c#d of cubes ¢ and d is a
particular set of cubes forming a cover of the
vertices of ¢ which are not in d. This product is
thus a species of differencing operation. Logically
speaking, if ¢ and d correspond to terms S and T
respectively, then c#d is a way of forming S- T.

It is defined explicitly by the following rules:

1) e#d =¢ifec Cd.
2) e¢#d =cifeNd = ¢;ie.,c;MNd,=¢forsomer.

3) Otherwise, let (1), --- , #(r) be the set of
coordinates %(j), for which ¢;;, = =z and
di:;; = 0 or 1. Then c#d contains r cubes, the
j* being (¢1, -+, Ciir-1y ditiny Cicirers ** 5 Cads
which has all its coordinates equal to those
of ¢, except for the #()*, which is 1 if d;;, is 0
and 0 if d;;, is 1.

Examples: x110#xx10 = ¢; zxlal#rlalr =
201zl + z2111; 21120x#12100x = 01120z +
z1110z; zxx#101 = Ozz + zlz + zx0.

Machinewise, the first two operations are per-
formed first and in parallel—that is, on all coordi-
nates simultaneously.

Given complexes A and B, we use the same
symbol, A#B, to denote the complex composed of
all cubes of A which are disjoint from cubes of B.

Likewise if C' and D are sets of cubes (they may
be thought of as covers for K and L, respectively)
then C#D is the set of all products c#d, with ¢ an
element of C and d an element of D. Machinewise,
however, C#D is more efficiently programmed on a
“subsuming-as-you-go’’ basis.

2.5¢ The *-product ¢ * d of cubes ¢ and d is defined
by the following table of the coordinate *-product

*10 1 =
00 v O
y 1 1
z|0 1 =z
and the rule: if a; * b, = y for more than one %,

then g * b = ¢; if not, then a * b = (i(a, * b,), -~ -,
i(a, * b,)), where ¢(0) = 0, Z2(1) = 1 and i(z) =
i(y) = z. For example, 210z * 101z = ¢; 22100 *
12201 = 1210z.

Logically speaking, the *-product of two terms is
the “largest” term which implies their disjunction:
it is a generalization of Quine’s consensus.

The *-product of complexes A and B is the complex
determined by the set A * B of all *-products of
cubes of A with cubes of B. In particular 4 * A is
the unique Boolean complex containing A.

2.5d Given complexes A and B, the union A \J B
shall denote the complex determined by their
set-theoretic union. In general A\UB will not be
Boolean.

The next section develops a generalization of
the cubical complex.

3. Singular cubical complexes

3.0  Motivation. As indicated by the second example
of the Introduction, shown in Fig. 3, it seems
necessary to have a systematic procedure for adding
contradictions to normal! form expressions for a
given function in order to recognize the existence
of certain “economical”’ functional expressions. The
singular cubical complex may be thought of as a
deviece for realizing such a systematic procedure.
(From another point of view, however, the singular
complex may be considered as standing in striet
analogy to the combinatorial singular complexes of
combinatorial topology, with a somewhat different
twist.)

Contradictions are here to be thought of as
coming about through the identification of certain
variables. This identification is defined by means
of the ‘“‘degeneracy map.”

3.1 The degeneracy map. Let I, = {1,2, --- , n}.
Let ¢ be a mapping of I,,, into I, such that ¢(¢) =1
for ¢ < n; ¢ is termed a degeneracy map. Its degeneracy
is 7.

3.2 Complex of inconsistency. Given a degeneracy
map ¥, let N(¥) denote the complex in Q""" deter-
mined by the following cubes and their faces: for
each pair of integers 7, j of I,,,, 7 # j, for which
¥(©) = ¥(j), N{) contains the cubes: ¢,; whose
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2t coordinate is 0 and whose jt coordinate is 1,
all other coordinates being x, and; ¢;, whose ¢t
coordinate is 1, j* coordinate 0, all others being z.
Now N{¥)—the N stands for nonsense—will be
termed the complex of tnconsistency of ¢. (Cubes of
N () are familiarly referred to as nonsense cubes.)

3.3 A sitngular complex consists of a cubical com-
plex S of @"*" plus a degeneracy map ¢:I,,, — I,.
The subcomplex 8 M N(¥) of S is termed the
subcomplex of inconsistency, while its complement
S#N () is termed the subcomplex of consistency.
The order of S is n + r; its degeneracy is r, and its
rank is n. The cubical complex without degeneracy
map, as defined in Section 2 above, may be con-
sidered as corresponding to the special case when
the degeneracy r is zero, so that ¢ is the identity
map. In this case the complex will be termed non-
singular.

3.4 Consistency operator. Associated with any
degeneracy map are three other mappings. The
first, termed the consistency operator €, is a map of
Q™" into Q": for d an element of @**", d = (d(1), - - -,

d(n + 1)),
ed=¢ ifforanys, () dO) = o,
PR
ed= () ¢k, ---, N cp) otherwise.
Y(k)=1 (p)=n

Such a map preserves face relations and thus induces
a map—this will also be denoted ¢—of X" into
K" preserving the algebra of cubical complexes.*

3.5 The second map o, depending only on the
degeneracy of ¥, maps Q" into Q""" for

Cc = (C(l), R c(n)),
let
oc = (c(1), -+ ,c(n), z, -+ , ),

the last r coordinates being x. This map commutes
with the face operators and thus induces a map
o * of K" into K**".

3.6 The third is a map s of X" into K**": for K a
complex of K, let

(K, ¥) = o*(K) Y N(¥);

s(K, ), together with the degeneracy map ¢, is a
singular complex.

3.7 The singular complex s(K, ¢) is called the
complete singular complex defined by K and ¢. The
following properties are easily verified.

550 *Kn denotes the set of all cubical complexes in Q*.
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3.8 Propositions.
es(K, ¢) = K,

A CB=c4d C eB,
C(A#B) = CA#cCB.

3.9 Ezxample. Let K C @* be given by the following
cover,

1 2 3 4

1 0 1

z xz 0 0]

1 01 =

Let ¢:I; — I, be given by ¢(5) = 1. Then
123 435

N(‘P):[l Tz z 0}

0 2 2z 2 1

and s(K, ¢) is given by the following cover

1 2 3 4 5_

1 0z 1 =

z 0 0 «
s(K,¢) =11 1 2 =z

1 2z =z 2

[0 z =z = 1]

4. Projection operator

4.0 Motivation. A basic subproblem in the general
problem of devising an efficient procedure for
designing Boolean trees of minimum cost to realize
any prescribed function is to devise a fast test
for whether or not a conjectured factorization
“works.”

To be specifie, suppose f is a Boolean function,

f = fla, ---, a, by, -+, b,). Given a primitive
a = aley, -+, ¢,), whether there exists a function ¢
such that

f = G[a(al; Tty ar); bl} Ty, bs]

is seen to be equivalent to determining whether or
not f can be rendered in the form

alay, <+, a)P(by, <o+, b)v
a(aly RN a,) Q(blx Tty ba)VR(bly Tty bs); (1)

where P, @, and R are normal form expressions in
the variables by, --- , b,.

Given poN’T-cARE conditions d, the factorization
problem then becomes: to determine whether there




exist normal form expressions P, @, R of variables
by, - -+, b, such that

f — aPvaQvR — fv d. @

The problem is not simply to determine whether
or not this single factorization exists, however, but
to determine a complete factorization (a Boolean
tree) which realizes the given function, possibly
involving utilization of the poN’T-CARE conditions.
Hence the procedure for determining whether a
single factorization works must be set up so as to
be convenient for iteration. The procedure to be
described is accomplished by means of the cubical
calculus.

Let o be a given primitive, « = afay, -+ , a,).

Let X denote (the selection of) r integers from 7,;

let « denote (the selection of) the complementary set.

Let K be a cubical complex. Let K' denote the
set of all cubical complexes in @'. Then the projection
operator II,, is a mapping of K™** into K***.

Let f and f v d correspond to complexes L, K of Q™.
If there exists an expression of type (1) such that
implications (2) hold, so that the conjectured
factorization ‘““works,” then II,, is said to be (K, L)-
perfect.

Algebraically, the projection operator or II-
operator is defined as a mapping of cubical com-
plexes into cubical complexes. Products of projection
operators, termed projective words, are thus defin-
able. Interest in this paper centers on ‘“tree-like”
projective words and these correspond to Boolean
trees and hence to multiple and complete factori-
zations.

Since a singular complex has been defined as a
pair consisting of a cubical complex S of K**" plus
a map y¥:[,.., — I, it will suffice to define the
TI-operator on a cubical complex. In Roth-Wagner
[15] it was indicated that the m-operators were inde-
pendent of the cover on which they were defined.
In the present context, however, a considerably
more general definition is required; the definition
will be intrinsic—that is, independent of the cover.

4.1 A Cartesian product. First it is necessary to
define a special product of complexes. Let M & K’
and N ¢ K’ with ¢ = r 4 s. Let X and ¢ be one-to-one
maps of I, and I,, respectively into I,, with
NI M u(I,) = ¢. The (A, u)-product of M and N
is a complex M X,, N of K: for each ¢ ¢ M and
d ¢ N, then M X,, N shall contain a cube ¢ X, d,
where for each 7 ¢ I,,

€ X @) = cA'@) if ieNI)
(€ X d)@) = d™@) if ieul).

4.2 Abstract definition of -operator. Next let A"
be the set of all pairs of disjoint complexes in @,

A" = {(aO,Oll) Iaoual Ceraomax =¢}-

The subset B” of pairs (ay, ;) of Boolean complexes
whose union contains all vertices of " is in one-to-
one correspondence with the set of all Boolean
functions of r variables Let K’ denote the set of
all cubical complexes in Q°. Let J™'° denote the set
of all pairs (A, p) of one-to-one maps of I, and I,
into I, with disjoint images.

Let o = (ag, oy) e A", K e K and (A, u) £ J}'".
Then (e, K, (A, u)) is a complex of K**', whose
cubes are defined by the following relations:

M, K, \, ) DB X1 if o X6 CK
M, K, A, 1)) D Bo X0 if ay X5, 8 CK
M, K, N\, w)) DB Xz

if oy JaX\BCK andif aeB.

Here 8, X 1 denotes an element of Q°*!, defined in
the following way:

B, X @) = B.(3) for i <s+1
B, XDE =1 for i =8+ 1.
A similar definition holds for 8, X 0 and 8 X z.

Note: It is frequently convenient, when iterating
IT-operators, to consider that the elements of the
image complex in K**' are mappings from the set
{ul,) U s + 1}, instead of from I,., into {0, 1, z}.
Since there is a natural one-to-one correspondence
between these two sets, this will cause no difficulty.

The image complex (e, K, (A, 1)) is thus defined
by prescribing the cubes which it contains. If it
contains no cubes, then it will be said to form the
empty complex of K**',

It is convenient to introduce the following notions.
Let (A, u) be an element of J;'* with { = r + s.
The pair (A, u) thus splits any cube ¢ of @’ into two
parts, its “A-part”’ and its “u-part,”’

c = (C)\, Cn);

¢n being the coordinates of its A-part, or its
A-coordinates, and ¢, the coordinates of its p-part,
or its u-coordinates.

4.3 Let o = (ay, ay) and (A, u) be fixed, so that
IT becomes a function of K alone, I = II(K). Let K
be a complex with subcomplex L. Let (e, ¢.) be a
cube of L and suppose that ¢ M a; # ¢, for i = 0
or 1. The operator II is said to be (K, L)-perfect if
for each (e, c,) of L, the image II(K) contains the
cube ¢, X 7.
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A m v A I v
M, = [a)] Xaux? 10{xxx Step 1 00 xxx Mo = [aol X ru2?
01}xxx 11[xxx
10]x1x 10fx1x
C 01|xx0 01|xx0 C
11}1x0x 11|x0x
0x|1xx O0x|1xx
My#C =N, 10[x0x Step 2 00|0xx Mo#C = N,
01|0x1 11|x1x
M#C), =P x 0 x Step 3 0 x x (Mo#0C), = Py
0x1 x1x
g X X X X XX 3
24D =@ 11x Step 4 10x 2 F Py =@
x10
QA Xl 11x 1 Step 5 10x 0 PyX,.,0
x10 1

Figure 6 Example of Griesmer-Karp construction of II-operation

4.4 Griesmer-Karp construction of M-operation. The
following efficient construction of the II-operation
is due to Griesmer and Karp [8].*

0) Let « be a Boolean function of r variables,
determining two disjoint complexes a,, a;. Let
lotg], [ea] be covers of these complexes. Let A,
r be as above. Let K be a complex and C a
cover thereof. Then perform the following steps:
fori =0orl,

1) Form M; = [a] Xy 2" (@ = 2z -~

2) Form M #C = N;

3) Let P, = (M #C), denote the set of p-parts
of N #C

4) Form Q; = z°#(P;)

5) Store @; X,, 7 in the image.

x, sx's)

The above table (Fig. 6) illustrates this procedure for
a complex K given by the cover C shown in the
second block of rows. '

This construction gives the complete answer, so
to speak, and admirably does it in terms of covers
of the complexes K, o, and o;. (Do not be misled
by the fact that in the example the covers [a,) and
[e;] were vertices—it is not necessary in general).

The following is an algorithm for determining
whether or not a projection operator is (K, L)-
perfect without actually constructing the operation.

4.5 Test for (K, L)-perfection The next construction
enjoys the advantages that are implied in Proposi-

%*Added in proof: This procedure works even better if one carries along
covers Co of Ko and C1 of K, where Ko is the ‘‘care-complex’’ in the comple-
ment of K and where the #-procedure is replaced by appropriate inter-
sections. An “‘intersection’’ procedure, due to E. G. Wagner, for forming
the projection operator seems for certain applications to be more efficient
than this construction: ef. IBM Research Report SR-103.

IBM JOURNAL s NOVEMBER 1960

tion I below and in the fact that it is defined for
covers of the complexes of a.

Proposition I: Let K and L be complexes, K
containing L. A II-operator is (K, L)-perfect if and
only if it is (K, ¢)-perfect for each element ¢ of an
L-cover of L.

The following is a restatement of the above
proposition in the form on which the construction
is based.

Proposition II: Let C be a cover of K, N a sub-
complex of K. A Il-operator is (K, K#N)-perfect
if and only if, for each ¢ of C, IT is (K, c¢#N)-perfect.

In the algorithm, N will be the subcomplex of
DON’T-CARE cubes plus nonsense cubes.

Proposition III: Let K be a complex and N a
subcomplex. Let ¢ = (¢, ¢.) be a cube of K. The
following algorithm provides an effective test for
whether or not a II-operator IT,, is (K, c¢#N)-perfect.
Here «; and «, are the complexes of « and are
represented by covers [«;] and [a,] respectively.

1° Determine whether the following relations hold

oM e =6, ¢
oM o] = ¢. (2

Both equalities cannot hold if « corresponds to a
Boolean function.

2.01° If Eq. (1) holds and not Eq. (2), then the
A-part of ¢ intersects [a,] but not [a,].* Next deter-

*The designation 2.01°, the decimal part of it .01, is to indicate that the
first formula (1) is ¢ (hence the first digit is 0) and that the second (2)
is not ¢ (hence the second digit is 1). Similarly for 2.10, 2.00, et cetera.




mine whether
] C e (2.01)

if it is, then 0, is (K, ¢)-perfect® and hence, a fortiori,
I, is (K, c¢#N)-perfect.

3.01° On the other hand, if [o;] C ¢, then the
following test determines whether or not the
remaining elements of C' can ‘“make up” for what
¢ itself cannot do:

[lan] Xou (cAN)JHC = 6. (3.01)

The factor (c#N) gives the subcomplex of ¢, not in
N, and (c#N), denotes the p-part of this set of
cubes. The (A, u)-product {[a;] X», (c#N),] represents
then the subcomplex that must be covered by C
in order that II, be (K, ¢#N)-perfect; this condition
shall hold, clearly, if and only relation (3.01) is
satisfied.

2.10° If relation (2) holds but (1) does not, then
proceed with steps 2.10° and 3.10°, which are the
same as 2.01° and 3.01°, with [e,] replaced by [«,].

2.00° If neither (1) nor (2) hold, then ¢, has cubes
in common with both «; and &, Consequently,
both sets of tests—2.01° possibly followed by 3.10°;
and 2.10° possibly followed by 3.10°—must be
performed. In other words, in this case, for II, to
be (K, c¢#N)-perfect, the proposition

[(2.01)v(3.01)] & [(2.10)v(3.10)]

must be true.
This algorithm may be represented by the fol-
lowing flow chart (Fig. 7).

4.6 Remark. In the operation of the over-all
algorithm to find & minimum Boolean tree, described
in Section 8, I visualize that the above #-construction
will first be used to determine whether or not a
given Il-operator is (K, K#N)-perfect by applying
the test to each cube of a cover C of K (except, of
course, to those cubes of C which are elements of V)
until one ¢ is found for which II, is not (K, ¢#N)-
perfect or until all elements of C are tested. As soon
as a IT-operator is found not to be (K, K#N)-perfect,
it is dropped from consideration. On the other
hand, if it is found to be (K, K#N)-perfect, then the
Griesmer-Karp method will be applied to ascertain
the image of N under IT,,, to complete the computa-
tion of the I-operation. Thus most of the time only
the #-construction will be used.

*Attention is here restricted to the case when « is Boolean, « ¢ B,
This form of that test is due to William Boyle, IBM Data Systems
Division, Poughkeepsie,

exley] = ¢
e\fag] = ¢

A

SAME AS ON THE

RIGHT, WITH [ap] [ay1Ces
SUBSTITUTED
FOR [a]
NO \YES
DO SAME TEST FOR RECORD ¢y x1

BOTH [ag] AND [ey]. IN IMAGE Ila
FOR M. TO ACT ACTS PERFECTLY
PERFECTLY, BOTH ON ¢
PRODUCTS OF TYPE P

MUST BE ¢
YES

P [lay 1%, (8N, J2C = @

NO

¢ NOT PERFECTLY
COVERED BY Il

Figure 7 Flow chart for test whether II, acts
perfectly on a cube ¢ ¢ C,

5. Projective words

Projective words are products of projection operators
and correspond, under suitable restrictions, to
multiple decompositions. In order to define these
products suitably, however, it is necessary to
extend the domain of the projection operator.
In Section 4.2 the Il-operator was defined as a

mapping IT: A" X K! X Ji* — K**!, withr -+ s = ¢.
More generally let the domain of II be the union
D = OUA' X K' X I

<r

0<Ls

Thus the range of II will be the union of all K***,

It is sufficient for the purposes of this paper to
consider only pairs (A, ) of maps which are order-
preserving, that is, if ¢ < j then A(¢) < A(j), and
similarly for ux. Under this assumption the selection
of the function N uniquely determines p. With this
assumption, the domain ®’ may be modified by
changing the last factor Ji° to J™ = {A\:, — I,
M order-preserving}. Let
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D= U A XK XJ
AMr)Se
denote this new domain.
Now let « ¢ A" and A ¢ J™ be considered fixed.
Then II(a, K, \) becomes a function IT,, of K alone.
Thus IT,,, defines a mapping

O UK S>UK, MO <t M) —r+1<u,

with the property II.,|JK' C K'""*'. To simplify
notation let K = \J, K* and let II,, be extended
over K by the agreement that for all K ¢ K’ for
E<AP),TInK =¢. LetaecA , AeJ,BeA’weJ’,
with A" N wI® = ¢. The product 1, -M;, can then
be defined as Ig,-followed-by-II,, with its domain
restricted to the range of Ig,. A projective word is
a product of projection operators. Strictly speaking,
however, the product, II,,IIs,, actually means II,,,
followed by II,», restricted to the range of ITs,. As
with the projection operator, the domain and range
of a projective word is K.

By the way of motivation, since both the domain
and range of a projection operator is now K, the set
of all cubical eomplexes, we are now set up to iterate
these maps. Thus the result of the application of a
IT-operator on a complex is again a complex, which
means that the new factorization problem comes
out in the same general format as the old.

In dealing with projection operators, particularly
as factors in a projective word, it is convenient to
designate the “new’” coordinate introduced; for
example, in the definition of the II-operator in 4.2
this new coordinate is s + 1. In Roth-Wagner [15]
this new coordinate was used as a superscript and
termed the “output coordinate.”” Thus, for example,

if 1) = 1, .-+ , AMr) = r then the operator
II(e, K, A) might be written as
1 PRI

The subscripts 1, 2, - - -
nates. A projective word

_ y(g+1)
II = Hoinptayerentorian *

, 7 are termed input coordi-

* H:(((21))y(1,1) ceey(l,r(1))
shall be termed acyclic if it satisfies the condition:

(1) Let Ao = {al, vt
inputs, and

A, = A,V {yB},

In words, A; is the set of all input and output
labels up to the (¢ — 1)st term in II. The first condi-
tion is that: (a) each subscript y(7, j) belong to the
set A;; this means that each input label shall be
either an initial variable or else an output label
from an “‘earlier” projection, and (b) y(z) £ 4,_..

, 0.}, the set of initial

0<t<s.
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For the remainder of the paper the term projective
word will always be understood to mean acyclic
projective word. It is said to be tree-like (Roth-
Wagner) if in addition to condition (1) it also
satisfies the second condition:

(2) Each superscript, excepting one, appear exactly
once as a subscript; the exceptional superseript
shall not appear as a subscript. It follows that this
exceptional superscript is y(s + 1).

A one-to-one correspondence is established in
Roth-Wagner [15] between equivalence classes of
Boolean trees and equivalence classes of projective
words.

6. Injective words

Injection operators and their products, injective
words, to be defined in this section, are used princi-
pally for proofs and certain constructions. They are
directly useful, however, in analyzing logical designs.
In particular, they have been fruitful in the theory
of diagnosis of machine failures. They are types of
inverses of projection operators and projective words.

6.1 Let A, g, v be one-to-one mappings of I,, I,.,,
I, respectively into I,, for r + s < ¢, with pairwise
disjoint images. Actually A, u, » are considered as a
set of maps into I,, one set for each {. Furthermore,
it is convenient to consider the domain of A as being
a subset I} of I,, of cardinality s, rather than 7,,
and similarly for 4 and ». Let F denote the set of
all such maps. The injection operator is a map

m*: A" XK' X F—-K
defined as follows: for « = (ag, ;) e A", K ¢ K’,
N\ uv)eF,

M*a, K, (\, g, ) D¢ X a0
¥, K, A\, p,9) D¢’ X en
O*a, K, (A, 1, 9) Dc” X2’

where " = xz --- 2z, r2’s. From the definition it
follows that the image of such a triple is a cubical
complex of K.

In the use of IT*, usually p will be determined by
A and »; p will usually be an order-preserving map
of I,_, into the complement of NI, U »I,.

Let the arguments o and (A, g, v) be fixed: let

oK — K

if ¢X,,0eK
if ¢ X,,1eK
if ¢’ X,,xekK,

denote the corresponding mapping. Par un abus de
langage, M will be referred to as the injection
operator. If K is Boolean, then so is I (K).

Since the elements A\, p, v of F were considered
as sets of mappings, one for each ¢, the domain and




range of II* may be extended over K = \J. K/,
o*: K — K.
6.2 Ezample. Let o & K?, with

1 2 1 2

[1 0} [1 1}
Qy = o =
0 1 00

Let K be a complex of K* prescribed by the rows
C1, €3, s of the following array:

1({2131]5

G |1l]lxlx|O0

|0zl |2

G |lz|2z|[0]0

Let »(1) = 3, AM(1) = 6, AM(2) = 7. Finally, with p
determined by A and », u(1) = 1, u(2) = 2, u(3) = 5.
Then I K) is given by the cover consisting of
the rows of the following matrix:

1 2 5 6 7

1 2 0 2 =z

0z 2z 1 O
z v 0 1

z 2z 0 0 O
z xz 0 1

6.3 Proposition.
WIENK) = K, and IZNIW(K) C K.

6.4 Injective word. The product of injection
operators I, I18¢, if defined, is termed an 4njective
word and is of course a map of K into K. A product
of several injection operators is also termed an
ingjective word. There is a clear one-to-one correspon-
dence between projective and injective words,
obtained by interchanging the roles of subscripts
and superscripts.

6.5 The definitions of the properties acyclic and
tree-like for injective words are defined as for pro-
jective words, with the roles of superseripts and
subsecripts interchanged.

7. The singular and nonsingular complex
of a tree-like word

7.1 In Roth-Wagner [15] it was shown how a
Boolean tree defines a nonsingular cubical complex

K(T). Let II* be a tree-like injective word. Let
[1] denote the cubical complex consisting of the
single vertex 1. The singular complex s(I1*) is defined
to be IT*([1]), the image of II* acting on [1]. This
complex is singular if some of the “initial” co-
ordinates of II* (see Roth-Wagner) are repeated.
The degeneracy map ¢ is defined by the identifica-
tions, if any, among the input labels of II*. If I
is the projective word dual to IT*, then its singular
complex sIT shall also be TT*([1]).

7.2 A tree-like injective or projective word II* or
IT define also a nonsingular complex, by application
of the consistency operator C,

R+ = es(*)
K@) = es().

7.3 Proposition: Let T be the Boolean tree of a
tree-like projective word II. Then K(T) = K(II).
Similarly for an injective word IT*.

7.4 Proposition: If 1L is (K, L)-perfect and II(K) =
[1] then TT*([1]) O L and conversely.

7.5 It is considerably more advantageous, espe-
cially from a programming point of view, however,
to compute the nonsingular complex of a Boolean
tree by the following procedure,* which in effect
removes redundancies and inconsistencies as soon
as they arise. For an injection operator IIJ*"""r,
let P7*'""*" denote the operation of II;™ "™ fol-
lowed by the consistency operator € followed by
the subsuming operation Y :

aay*ccar ___ aay***a
Peoe = 3T eI

For II* an injective word, let P* be the mapping
derived from II* by replacing each one of its factors
II;° """ by the appropriate P """,

Proposition: K(II*) = P*([1]).

Figure 8 exhibits this method as applied to the
Boolean tree of Fig. 3, and is to be compared with
the more lengthy table of Fig. 4.

8. The algorithm

8.1 First a precise statement of the problem will
be given. Let K be a nonsingular cubical complex
and L a subcomplex. The problem is to find, in the
class of all Boolean trees 7T constructed using
primitive components from B such that K D
K(T) D L, one of minimum cost.

*Suggested independently also by Miss Ruth E. Norby, IBM Research
Laboratory, and Mr. Charles Stieglitz, IBM General Products Division
Development Laboratory.
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vih
0 1 it
1 0
uabe
x 0 0 1 Fy
0 x O 1
0 0 x 1
x 1 1 0
1 x 1 0
1 1 x 0
P;:dga 2
x 0 0 1 1
0 x 0 1 1
0 0 x 1 1
0 0 1 x 1
0O 0 1 1 X
x 1 1 0 0
1 x 1 O 0
1 1 x O 0
1 1 0 x 0
1 1 0 O X
Pveb.

x 0 0 1 1 ?
0O 1 0 1 O
0 0 x 1 1
0 0 1 x 1
0 0 1 1 «x
6 1 1 0 1
x 0 1 0 0
1 1 x 0 1
1 1 0 x 1
1 1 0 0 x

Figure 8 The “P-operations” for Figure 3

8.2 The algorithm will now be described. Instead
of dealing with the subcomplex L of K, it is more
convenient to deal with its complement in K,

K#L = M.

Thus, one seeks a Boolean tree T, of minimum cost,
such that K O K(T) O K#M.
Let € be a cover of K and D a cover of M.

1° The first step is to determine whether or not
K may be embedded in a lower dimensional cube,
that is, whether or not any of its coordinates are
redundant. Coordinate j is redundant if and only
if for each cube ¢ of a cover C of K the product
c¢'#C = ¢, where ¢’ is the cube obtained from ¢
by changing its j** coordinate to .

2° Assume then that no coordinate of K is re-
dundant. Select a projective word II,,. Determine
whether 1L, is (K, K#M)-perfect, by use of the
#-construction of Section 4,

If I, is (K, K#M)-perfect, then use the Griesmer-
Karp construction of the I-operation on M to find
the total images of K and M under I1,,,. Let K,, M,
denote these images, K, = I \(K), M, = T .(M):
note carefully that M, is the image of II,, restricted

IBM JOURNAL ¢ NOVEMBER 1960

to M. This procedure is then repeated, with K,, M,
substituted for K, M.

If 11,5 is not (K, K#M)-perfect another projective
word Il, is tried on (K, K#M).

This procedure is repeated until either K has been
reduced to a complex in K' (i.e., until the image
complex has only one coordinate) or until, in effect,
all projective words have been tried on K. Of
course, it is not necessary to try all projective words
since, for example, if II is the produet of two projec-
tive words, II = II,- I, and if II, is not (K, K#M)-
perfect, then, of course, neither is II. That is, if I,y
is found to be not (K, K#M)-perfect then no tree
with «, A selected will “work’’—one trial stands for
millions.

Consider first the case when the cost of any
primitive element of B is one less than the number
of its inputs. Then if a projective word II is found
which is (K, K#M)-perfect and reduces K to a
complex of K, i.e., to a complex of order 1, then
this projective word, and its corresponding Boolean
tree, is minimal. (The proof is given below.)

3° Suppose then that no projection operator is
(K, K#M)-perfect. One next constructs complete
singular complexes s(K, ¥) of degeneracy 1. Let S,
denote the complete singular complex defined by
K and ¢. Let R, denote the complex formed by the
union of s(M, ¢) and N ().

One then seeks, as in step 2°, a projective word II
which is (1) (8S,, Si#R,)-perfect and (2) reduces S,
to a complex with only one coordinate, that is,
to a complex in K'. If no satisfactory Boolean tree
had been found in step 1° and, as stated above,
the cost of any primitive element of ¥ is its number
of inputs, less one, then a projective word which
does satisfy conditions (1) and (2) is a minimum.
(Proof below).

All singular complexes of degeneracy 1 are in-
vestigated until either they are exhausted or until
one is found for which a projective word satisfies
the two requirements.

If none exist, one investigates singular complexes
s(K, ¢) of degeneracy 2 in similar fashion, et cetera,
until a smallest degeneracy d is reached for which
a ‘“satisfactory’” complex and projective word are
found. The proof of the effectiveness of the algorithm
is given by the following theorem.

8.3 Theorem. Let K be a nonsingular cubical com-
plex and M a subcomplex. Let the cost of a com-
ponent of B be its number of inputs, less one. Let
S,, R, be complete singular complexes defined by
K, M and degeneracy mapping ¥, of degeneracy p.
Let II be a projective word which is (S,, S,#E,)-




perfect and for which TI(S,) = [1] and let p be the
smallest degeneracy for which such a II exists. Then
I defines a Boolean tree T of minimum cost and
satisfies the requirement

K#M C K() C K.

Proof. First it will be established that if II is
(8,, S,#R,)-perfect, and II(S,) = [1] then it satisfies
the condition (1) as above. Now for II to be (S,
S,#R,)-perfect implies by Proposition 7.4, that

S#R, C I*([1]) = s(I).

Hence, by the propositions of 3.8
K#M = e(S,)#C(R,) = C(S,#R,) C es() = K{I).
Hence

K#M C RQD).

On the other hand, since

(1] = 1(S,),

by Proposition 6.2,

s(I) = mx([1)) = m*MS,) C S,.
Hence

KI) = es(l) C e§, = K,

so that the above conditions are indeed satisfied.
The only fact remaining to be established is that
no other II’ satisfying these conditions has lower
cost. But this is not possible since the singular
complex corresponding to II’ would have then lower
degeneracy than the degeneracy d of II, contrary
to hypothesis that d was the smallest such. Q.E.D.

Next remains the case when the cost of a primitive
element of B is not the number of its inputs, less one.

8.4 Case where cost is not the number of inputs,
less one. The procedure for constructing a minimum
word must be augmented by the following step.

4° Let C be the cost of a tree which satisfies the
specifications of the problem. Let ¢ be the ratio,
minimum over all elements of B, of the cost of a
block divided by the number of its inputs less 1.
Then one need search only for complexes whose
degeneracy is < [C/g] — n where n is the rank
of the complex in which K is originally embedded.
In Appendix 4, R.M. Karp gives a best determina-
tion, based on Bellman’s dynamic programming, for
the necessary size of the degeneracy.

Appendix A—Optimum criterion for termination

The problem of determining when the algorithm of
Section 8 terminates reduces to the following:

Let B consist of elements E,, --- , E,, where
E; has cost ¢; and has s; inputs, 7 = 1, --- , N.

Problem: What is the largest number O(k) of inputs
a tree T of cost &k may have, where T is constructed
from B? O(k) is computed by the following recur-
rence scheme, adapted from a method due to Bell-
man, cited in Dantzig [6]

Ok) = — o, E<O
00 =1
o) = max s — 1) 4+ Ok — ¢))],

k>0, i=1,.-+,N.

Related is the determination of the minimum cost
C(m) a tree with m inputs may have; C(m) is given
by the following relations:

C(m) = — ™,
c@) =0,
C(m) = min [¢; + Clm — (s — ),

m < 0,

m > 0.

This method was communicated to the author by
Dr. R. M. Karp.

Appendix B—Concerning the efficiency of the
algorithm and of fast approximations

In the absence of experimental tests on the speed
of the algorithm, in the form of program-computed
problems, it is hazardous to make any definite state-
ments as to the efficiency of an algorithm. (Hand
computations, however, have been promising.) In
its favor let it be said that: (1) The single test for
whether or not a given projection operator is (K, L)-
perfect is actually equivalent to a very large number
of other tests: In essence it determines whether or
not any tree exists which realizes the function and
has « as one of its logical blocks with inputs XA;
(2) the speed of the Griesmer-Karp construction
depends essentially on the number of cubes of a
cover and not on the number of vertices; (3) the
inconsistencies due to adding redundant variables
is expeditiously handled by the nonsense cubes N (¢).

Only a program will test the commercial effec-
tiveness of the algorithm!

Past experience has indicated that it is easy to
develop “fast’” approximate methods to a given
algorithm. (See Ewing, Roth, Wagner [7].) One
mode of procedure for the present algorithm would
be to proceed as follows: Try a single projective
word on a particular set of coordinates. If it does
not act (K, L)-perfectly, then add suitable redundant
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coordinates to ‘foree’” it to act (S, M)-perfectly
where S and M are the singular complexes derived
by this additional redundancy. Proceed in this
manner until a satisfactory Boolean tree has been
so obtained. In particular, one might start out
with rather large building blocks, large in the sense
of being a function of a rather large number of
variables. It is certain that experimental results will
give indications as to effective modes of procedure
of this type. The algorithm should be programmed
in subroutine form so that each particular sub-
algorithm can be examined to develop appropriate
approximations thereto.

Another development which will be reported else-
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