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” I -I .. m . . . . .  Abstract: An algorithm is provided for  what might be  termea  tne  general  problem ot logical design ot 

circuits with one output and no  feedback.  Given a set 8 of logical building blocks,  each with a positive cost, 

each with one  output, and given a Boolean function f the  problem is to  prescribe a Boolean tree constructed 

from the available set of building blocks which  realizes f and which has a minimum cost. Actually a more  gen- 

eral problem involving don’t care conditions is treated. The cost of a Boolean  tree shall be the sum of the 
costs of the building blocks of which it is composed. A special case of this  problem is the  classical logical 

problem of finding a functional expression for a given logical function  which uses a minimum  number of 

conjunctions,  disjunctions and negations.  Programmed  on  an IBM 704 computer,  the algorithm is believed  to 

be efficient  on  problems with eight or less variables. 

introduction 

The problem. We proceed by way of example. 
Consider the following functional expression for a 
Boolean function f of 4 variables, 

P { ( O [ & ( %  b) ,  4 ,  a, 4% f ) l ,  
where the symbols p ,  0, &, v denote,  respectively, 
the  MAJORITY,  the  EXCLUSIVE-OR,  the  AND, 
and  the 2-variable OR. This  functional expression 
may  be  represented  by  the “Boolean tree” of Fig. 1. 

f 
Figure 1 Boolean  tree of 

*This is  Part IV of a series of papers on a theory of logical design of auto- 
mata. 

The Boolean tree  may be thought of as a wiring 
diagram for a logical circuit realizing this  function, 
constructed  from a set 23 = ( p ,  0, &, V )  of primitive 
logical building blocks. 

This  paper  treats  the question of finding a  func- 
tional expression, or Boolean tree,  constructed  from 
an  arbitrary  set 23 of primitive logical building 
blocks, primitive Boolean functions;  more  generally, 
however, this  paper solves the following minimiza- 
tion problem. 

Let 8 be  a  set of primitive  building  blocks, that 
is, a prescribed set of Boolean functions,  with  each 
being associated  a  positive  integer called its cost. 
Let  the cost of a functional expression be  the  sum 
of the costs of the elements  therein.  Given  a Boolean 
function f ,  the problem  is to  devise an algorithm 
which will construct  a  functional expression for f ,  
from the set 23 which has a  minimum  cost.  Actually 
the problem treated here is a more  general  one, 
arising naturally  in  the design of automata, in- 
volving so-called DON’T-CARE conditions. 

A special case is  the classical logical problem 
(cf. Hilbert-Bernays) of finding a minimum  func- 
tional expression for f ,  constructed  from the set 
consisting of the following three  functions:  the two- 
variable AND,  the two-variable OR, and  the NOT; 
the cost of each of these expressions is usually 
considered to be one. 

”” 
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Previous work in the jield. As stated  by several 
authors, the bulk of the work in the area of minimiza- 
tion of Boolean functions  has been devoted to  the 
problem of finding minimum expressions of the so- 
called  two-level AND-OR type. Another way to 
describe the same thing: to find the minimum 
normal form expression for a given Boolean function. 
Still  another equivalent description for the same 
problem: to find a minimal cover of a cubical com- 
plex. A  fairly comprehensive list of references for 
work done in  this field is contained in the bibliog- 
raphy of the first three  parts of this series. Thus, 
attention here will be devoted to work  on the more 
general problem. 

Muller,  Ashenhurst, and  Markov have  attacked 
the problem of finding upper and lower bounds for 
the minimum cost of a decomposition, under  various 
assumptions. 

In  a series of papers Ashenhurst has devoted 
himself to finding decompositions for Boolean 
functions. In  his paper  in the Proceedings of the 
International Symposium on the Theory of Switch- 
ing [2], he considers the problem of disjunctive 
decompositions. A Boolean function f(x,, . * 1 x*) 
is said to have  a  disjunctive decomposition 

He describes a  method for detecting such decom- 
positions and gives illustrations for functions of 
six variables. Ashenhurst has several interesting 
results in this  study. 

Abhyankar [l] addresses himself to  the general 
problem of finding minimum “sums of products of 
sums”. Here 8 consists of ANDs  and ORs. He 
describes procedures for obtaining such expressions 
in the case  when the complex for the given function 
consists of two isolated vertices; he also obtains 
partial  results  in the case  when this complex  con- 
sists of three isolated vertices. Another way to 
describe the first problem is to say that  the function 
is such that  its complete canonical form consists 
of exactly two  terms  and  these  two  terms differ 
from each other in at least  two variables. A similar 
description is possible for the case when the cubical 
complex for the function consists of three isolated 
vertices. 

Roth  and Wagner [15] give an algorithm for the 
following specialization of the general problem. 
The decomposition is allowed to be a disjunction 
of a set of subdecompositions to be termed Boolean 
trees,  such that within each subdecomposition no 
input  variable  appears more than once. Each 
primitive  function  has a positive cost and  the 
algorithm gives a minimum over this class of circuits. 

F[Y,, * * * , u s ,  4(% * .  . , z , ) ]  if no y equals any x .  

544 The methods of the present paper  are generalizations 
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of the concepts there developed. Much insight into 
the present problem was provided by Eric G. 
Wagner. 

In a subsequent paper the  author gives an 
algorithm for the multiple-output problem. 

A compact notation for normal form. One of the 
essential difficulties in dealing with problems in a 
large number of variables is to develop a compact 
notation to represent these large functions. The 
truth-table  type of representation of a Boolean 
function, for example, is not very  efficient even for 
relatively small numbers of variables. The  author’s 
mode of representation of a Boolean function is 
essentially a  shorthand  notation for a normal form 
expression. This  notation will  become clear by 
means of a simple example. Consider the function 
f = abc v bcde v &. This normal form expression 
may be represented by the following array of 
symbols consisting of 0,  1 or x. 

a b c d e  
1 1 0 x z e . a b E  

x 1 1 0 l w b c d e  

0 x x x o e a a .  
This array  has five columns, one for each variable 
and three rows, one for each term. The  term abF is 
represented by  the first row of this  array, namely, 
IlOxx. The variables a and b appear  in the  term 
and  are represented by 1’s in the columns a and b; 
c appears negated and is thus represented by a 0 
in the c column. Variables d and e do not  appear: 
their absence is indicated by x’s appearing  in columns 
d and e. In similar fashion bcde is denoted x1101 and 
(z2 by OxxxO. 

In general, a normal form expression in n variables 
will be represented by an array  with n columns 
and  with as many rows as  terms  in  the normal 
form. If a variable occurs unnegated in this  term, 
a 1 appears  in the column corresponding to  this 
variable. If a variable occurs negated,  then  a 0 
appears  in  the appropriate column. If the variable 
does not occur in the  term,  then an x appears in 
the appropriate column. In  particular, the function 
f which is identically 1 would  be represented by a 
single row, each column of which is an x. The 
function f ,  identically 0 ,  would  be represented by 
an empty  array,  to be denoted 9. 

To correlate with the  author’s terminology, such 
an array of l’s, 0’s and x’s is termed  a cube and  the 
set of all possible cubes corresponding to  terms 
which might be  used in a normal form expression 
for a given Boolean function is termed the complex 
of the function. 



It is  not  sufficient merely to  have a  compact 
notation  to represent a Boolean function. One must 
be  able to  perform  all the necessary  operations 
on  this  array.  In other  words,  for  instance, tests 
for  implication,  complementation,  intersection,  et 
cetera,  must be described in  terms of a calculus based 
upon this  notation. Section 2 recapitulates  such  a 
calculus,  based  on the "cubical" notation. 

One more  conception,  familiar to  logical designers, 
involves the so-called DON'T-CARE conditions.  Let h 
and f be Boolean functions  such that h implies f .  
We seek a  functional expression G representing  a 
Boolean function g such that h implies g and g 
implies f. The  function f is the DON'T-CARE 

conditions. The customary  problem  is the case 
when h = f, but in the design of machines it is 
not uncommon that conditions  arise to  whose 
"outcome" the designer  is  indifferent:  these DON'T- 

CARE conditions may  be utilized to  achieve a more 
economical design. It may be noted that  the 
algorithm which the  author gives here  utilizes in 
a conceptual sense the DON'T-CARE conditions. 

Description of the  algorithm. An  indication of 
the method will be given by consideration of a few 
examples.  Consider the example  shown in  Fig. 1. 
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Figure 2 Table for injection  operations of Boolean 

tree of Figure 1 

This Boolean tree describes  a  function of six vari- 
ables. For  descriptive purposes  each  branch of the 
tree is labeled with a distinctive  letter.  The lowest 
branch  is  labeled j and we may  think of j as  the 
"output"  variable  for the function ,LL. This is, 
j = p(d,  h, i). We  shall  construct a normal  form 
expression defined by  this Boolean tree  in  iterative 
fashio,n.-,' Considered as a function of the single 
variable j, this  function  is 1 if and  only if j is 1. 
Thus, referring to  the  table of Fig. 2, the first row, 
labeled A ,  consists of the  entry 1 in  the column 
labeled j. Now we do  the  equivalent of making the 
substitution j = p(d, h, i). 

First, however, let  us  settle on a compact  normal 
form  notation for the majority element: p(d, h, i) = 
hi v d i  v dh; this corresponds in  the 0-1-x notation 
to  the cubes z l l ,  1x1, l l z .  Hence, the  substitution 
j = p(d, h, i) consists in replacing the row having 
a single 1 in  it,  in  the jth column, by  the  three 
rows labeled B in  Fig. 2. The exchange  from the 
row A to  the rows B is to  be thought of as  a trans- 
formation I I ; d h ' .  This is termed an injection  operator. 
Next the equivalent of the  substitution i = v(e, f) 
is  made.  Consider,  for  instance, the first row of 
the rows B. This  is  transformed  into  the first two 
rows of C according to  the following reasoning. 
The cubical representation used here  for v(e, f )  is 

e f  

x 1  

1 x. 
Similarly, the second row of B is  transformed  into 
the  third  and  fourth rows of C and  the  last row 
of B is  transformed  into the fifth row of C. 

In  similar  fashion the succeeding injection 
operators  are defined, to  yield the set of rows E 
which are a  normal  form  representation  for the 
function  described  by the Boolean tree of Fig. 1. 
This  normal  form  is expressed in  terms of the 
"input  variables" a, b,  c ,  d ,  e ,  f. A precise definition 
of the injection  operators  is given in  the  body of 
the  text.  The process of applying  a  set of injection 
operators corresponding to  some functional expres- 
sion is in effect a  method  for  transforming a Boolean 
function given in  any  functional expression into a 
normal  form expression. To  put it another  way, we 
have  analyzed the circuit, the Boolean tree of Fig. 1. 
The problem of synthesis  is, of course, more difficult: 
In  the synthesis  problem one would be  given a 
normal  form expression such as exhibited by  the 
rows E of Fig. 2, and one would be  attempting  to 
determine  whether or not a Boolean tree  such as 
that of Fig. 1 was an admissible  functional expres- 
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Figure 3 @ M a ,  b, c ) ,  d O ( b ,  e > ,  c, 4 1  
D 

sion, that is,  constructible  from a prescribed set 
of logical building  blocks. 

Let  us consider one more  example,  however, as 
shown in  Fig. 3 ,  to  illustrate a fundamental difficulty 
which did  not arise  in the previous example. 

It will be  observed in  this  Figure  that  the  input 
variables b and b, and c and cI appear; assume that - 
b = b, and c = c,. Figure 4 exhibits the successive 
injection  operations defined by  the Boolean tree 
of Fig. 3 .  It will be observed that  this Boolean 
tree  has each  branch labeled by a distinct  variable. 
The  output  branch  is labeled i and  the  function 
attached  thereto  is  the  EXCLUSIVE-OR 0. In  
similar  fashion to the previous  example, the first 
set of rows labeled A consists of a 1, in the column 
designated by  the variable i. Now the  EXCLUSIVE- 
OR @ will be designated by  the normal  form 
f h  v fi or in the 0-1-x notation. E 

f h  

0 1  

1 0  

The process of going from row A to rows B 
corresponds to applying the injection  operator 
IIYlh; of going from rows B to  rows C, to  applying 
the injection  operator I I ; O b C .  To describe the next 
operation,  a new phenomenon must be considered. 
Here we must  represent  not only the  majority 
function  but also the inverse of the  majority  function, - 
p = 6 F  v dc  v &6. Thus  the inverse of the  majority 

F 

Figure 4 Table  for injection operations of Boolean 
tree of Figure 3 followed by consistency 
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will be  represented by  the following array: 

a b c  

x 0 0  

o x o  
0 0 x.  

The first of the rows B thus  transforms  into  the 
first three of the rows C ,  while the second of the 
rows B transforms  into  the  last  three of the rows B. 
By similar  rules  one  transforms the rows C into 
the rows D and  the rows D into  the rows E by  the 
injection  operator II:dgcl and II:“*. 

Now, however, we impose the conditions b = b,, 
c = cl. Again, this  must  be performed in  the cubical 
calculus. In  effect, we must perform an “intersection” 
of the columns c and c,, b and b,. If we examine the 
fate of the first  two rows of the rows E,  as reproduced 
below in Fig. 5 ,  we will understand the general 
sihation. As indicated in  the figure, the first term 
corresponds to  the expression 6Cde6,. Since b and b, 
both  appear negated while c appears negated but 
c1 does not  appear,  this  term  is  equivalent to  the 
term &de, which in  the “complex” of the variables 
a b c d e is  represented by  the “cube” x001 1. 

Observe, however, the  fate of the second “cube,” 
corresponding to  6 E d 2 b,. Here b appears negated 
whereas 6 ,  is  not negated. This expression thus 
corresponds to a  contradiction  and  is hence repre- 
sented  by the  empty “cube” 4. Applying  similar 
rules to  each of the rows E ,  one deduces the  set of 
rows F described in the complex of variables a b c d e. 
Essentially, what we have  done  is to knock out  the 
inconsistent terms  inherent  in  the normal  form 
expression represented by  the rows E. The  set of 
rows F i s  a  normal  form  representation  for the 
Boolean function  in  Fig. 3. (See Section 7 for  a 
more efficient method of derivation.) 

This example  indicates that  there would be  no 
telling  from looking at the normal  form expression 
described by  the rows F that a Boolean tree  such 
as given in  Fig. 3 was  “admissible” for  the  function. 
This expression must somehow have been deduced 
from the larger !‘complex” described by  the  set 
of rows E. In  effect,  what  must be  done to  realize 
the existence of such a functional expression is to 

a b c d e b , ~ ,  a b c d e  

x 0 0 1 1 0 x * 6 E d e 6 , t , x  0 0 1 1 

x 0 0 1 0 1 x t , 6 E d E b l t t  4 

Figure 5 

adjoin  contradictions to  the normal  form expression. 
A  calculus and algorithm  for  such a procedure  is 
one of the main  results of this paper. 

Section 1 states  the problem.  Section 2 develops 
a  calculus  for  performing logical operations-speci- 
fically, a calculus of cubical complexes. Section 3 
describes the so-called singular complex, which is 
essentially the author’s  device  for  handling  variables 
which appear  more  than once in a term,  and  may 
be thought of as a systematic  procedure  for  identify- 
ing  variables and adding the contradictions  induced 
by  these  identifications.  Such a procedure seems 
to  be necessary to  recognize certain “economical” 
functional expressions. Section 4 describes the 
projection  operator which determines  for  a  given 
primitive  function  and selection of variables  whether 
or not a factorization  is permissible for  these 
choices. For a  particular  primitive  function a and 
selection of coordinates X, if the “projection  operator 
acts  perfectly”  then a  factorization  exists. A fast 
procedure  for  determining  whether  or not a projec- 
tion  operator  acts perfectly  is  given in this section. 
The algorithm  requires  frequent  constructions of 
the &operation and  the  author is indebted to  his 
colleagues Drs. J. H. Griesmer and  R.  M.  Karp 
for their  algorithm  for  this  construction, given  in 
Section 4.4. The procedure  is  “fast”  in that  it  
tests  each cube of a cover separately and each 
individual  test is rapid. Section 5 describes  projective 
words which are  products of projection  operators 
and, suitably  restricted,  are  in one-to-one cor- 
respondence with Boolean trees.  (More precisely, 
it is  a correspondence between  equivalence classes). 
Section 6 defines the injection  operator,  which is 
a type of inverse of the projection  operator. Its 
use in  this  paper  is mostly confined to  proving that 
the over-all  algorithm  does,  in  fact,  produce a 
minimum. This  operator, however, has  demonstrated 
its own utility  in  the  analysis of circuits.  Section 7 
describes an algorithm  for  computing the Boolean 
function of any Boolean tree. The method described 
was suggested independently  by Miss Ruth  Norby 
and Charles  Stieglitz.  A  comparison of Fig. 8 with 
Fig. 4 will give an indication of its relative efficiency. 
In Section 8 the algorithm  for finding a  minimum 
Boolean tree compatible  with the design require- 
ments  is given. The essential trick is to  note  that 
if the cost of a building block is  one less than  its 
number of inputs,  then  the cost of the Boolean 
tree is monotone with  the “degeneracy”  necessary 
in  order  to  make  the  projective word corresponding 
to  the Boolean tree  act “perfectly.”  A  solution  having 
been obtained  under  this assumpOion is then used to  
set a bound  on  the size of the singular complex, 547 
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through which it is necessary to  search  for  more 
economical solutions. As more economical solutions 
are  obtained,  this bound is diminished.  Appendix A 
describes a  procedure, adapted  from R. Bellman [6], 
for  determining an  optimum criterion  for  termina- 
tion.  This development is due  to R. M. Karp. 
Appendix  B  contains  a short discussion of the 
efficiency of the algorithm  and  fast  approximations 
thereto. 

1. Statement of the problem 

Let $3 be a  set of primitive  building blocks, that is, 
a  prescribed set of Boolean functions,  with  each 
being associated  a  positive  integer called its cost. 
Let  the cost of a  functional expression or Boolean 
tree be  the  sum of the costs of the primitive blocks 
or primitive  functions  prescribing it. 

Let f and d be Boolean functions (d corresponds 
to  the DON’T-CARE conditions). Problem: Find a 
functional expression F composed of primitives 
from $3 such that f + F -+ f v d,  of minimum  cost. 

2. The complex of a Boolean  function, 
a calculus of complexes 

A calculus of cubical complexes, essential  for  sub- 
sequent  developments,  is described in  this section. 

2.1 Let Q” denote the set of all  conjunctions of 
n literals a,, e , a, or their negations,  in  which 
each ai appears a t  most  once,  either  negated or 
unnegated:  such a conjunction T is called a term. 
Let  this  term  be represented by  an ordered set of 
n symbols ( t l ,  - e , t,), where: the ith “coordinate” 
t i  = 1 if ai appears  in  unnegated  form  in T ;  ti = 0 
if ai appears  in negated  form in T ;  ti  = x if ai does 
not  appear at all  in T .  Such a set t = ( t l ,  , t,) 
is  termed  a cube. If no ti  = x ,  t is  termed  a vertex, 
and corresponds to a term  in complete  disjunctive 
normal  form. The function f identically 1 defines 
the single cube x x  - . x ,  n x’s; the function g identi- 
cally 0 corresponds to  the empty  cube, denoted 4. 

2.2 Since there  is a one-to-one correspondence 
between terms T formed  from n literals,  and cubes 
with n coordinates, the set of all  such  cubes may  be 
identified with  the  set Q”, and  termed  thereby  the 
n-cube. 

Geometrical  cubes  have  long  been  familiar to  
switching  theorists.  Their  representation as  an 
ordered set of symbols 0 ,  1 or x makes possible 
the development of a calculus  for  performing 

548 logical operations,  suitable  for a digital  computer 
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and entailing  a  certain  “compactness of informa- 
tion.” 

2.3 The  complex of a Boolean  function. Let f be a 
Boolean function of n variables. The set of all 
terms permissible in any normal  form expression 
for f is  termed the complex of f ;  equivalently, it  is 
the  set of all  terms which  imply f. We  shall  deal 
with  the cubical  representation of the complex of f.  
The  set K(f) of cubes  determined  by the  terms 
which imply f has  the  property  that if it contains 
a given cube ( t l ,  - . , tn) then  it contains  all of its 
subcubes or “faces”,  obtained  by  replacing some 
coordinates ti, which are x ,  to  a 0 or 1:* This  set 
K ( f )  is termed the cubical complex of f .  This  may  be 
made the  abstract  property defining a  “cubical 
complex.” (Indeed, it is precisely the same  property 
which is used to  define the simplicial complex of 
combinatorial  topology.) 

Definition. A cubical  complex K of Q“ is  a  subset 
of Q“ with the  property  that if c is  a  cube which 
belongs to K ,  then  its faces also belong to  K. A 
subset L of K ,  L C K ,  is  termed  a subcomplex of 
K if L is itself a complex; if L is the cubical complex 
of a Boolean function g, L = X(g), and K ,  of f ,  
K = K(f), then L C K is  equivalent to  the proposi- 
tion g + f. 

2.4 K-cover of L. Given complex K and subcomplex 
L,  a K-cover of L is a set C of cubes of K such that 
each  vertex of L is a face of some cube of C .  This 
means that for  each  vertex v of L there  is a  cube c 
in C which can  be  transformed  into v = (v1,  . , v,) 
by changing  each of the coordinates ci of c, which 
are x ,  to  the value vi. 

This definition has  the following logical interpre- 
tation: K ,  C, and L define Boolean functions f ,  g, 
and h respectively - C is  a  normal  form expression 
for g -- such that h ”-f g ”+ f .  

If K = L,  a K-cover is referred to simply as a 
cover. 

2.5 Products of cubes  and  complexes.The products 
of cubes and of complexes introduced  in  this section 
provide a basis  for a calculus which permits the 
forming of all operations of the propositional 
calculus. 

Let c = (cl, . , c,) and d = (dl, , d m ) ,  
coordinates ci and di being 0, 1 or x ,  be  cubes of Q“. 
2.5a The interseation c n d of c and d is defined 
by  the following table 

* 
*Cube s = (SI, . . . , sn) is a fuce of cube t = ( t ~ ,  . . . , tn) if, for each i, 

t i  = s i  or x. 



n o 1 2  
- 
0 

1 4 1 1  
0 4 0  

and  the rule 

z o 1 z  

c A d = 4, if for any i, ci n di  = 4, 

c n d = (cl n d l ,  - - , C,  A dm) otherwise. 

The intersection of two cubes corresponds logically 
to forming the product of the corresponding terms. 
Following set-theoretic conventions, c and d are 
said to be disjoint if c n d = 4. The intersection 
of complexes A ,  B is the complex determined by 
all cubes a n b,  a c A ,  b E B, and shall be denoted 
A n B. 

2.5b The #-product c#d of cubes c and d is a 
particular  set of cubes forming a cover of the 
vertices of c which are  not  in d.  This  product is 
thus a species of differencing operation. Logically 
speaking, if c and d correspond to terms S and T 
respectively, then c#d is a way of forming S .  T .  

It is defined explicitly by  the following rules: 

1) c#d = if c C d .  

2) c#d = c if c A d = 4; i.e., ci n di  = 4 for some i. 
3) Otherwise, let i(l), . , i ( r )  be the set of 

coordinates i(j), for which c i ( i )  = x and 
d i ( i )  = 0 or 1. Then c#d contains r cubes, the 
jth being ( ~ 1 ,  * * - , C i ( i ) - l ,  J < ( i ) ,  C i ( i ) + l ,  . . * , c,), 
which has  all its coordinates equal to those 
of c ,  except for the i ( j ) th ,  which is 1 if diCi)  is 0 
and 0 if dit,, is 1. 
Examples:  xllO#xxlO = 4; zzlxl#slzOx = 

ZOlZl  + 22111; x11202#121002 = O l l Z O X  + 
z11102;  zx2#101 = 022 + 212 + xzo. 

Machinewise, the first two operations are per- 
formed first and in parallel-that is, on all coordi- 
nates simultaneously. 

Given complexes A and B,  we  use the same 
symbol, A#B, to denote the complex  composed of 
all cubes of A which are disjoint from cubes of B. 

Likewise if C and D are  sets of cubes (they  may 
be thought of as covers for K and L,  respectively) 
then C#D is the set of all  products c#d, with c an 
element of C and d an element of D .  Machinewise, 
however, C # D  is more efficiently programmed on a 
“subsuming-as-you-go” basis. 

2 . 5 ~  The *-product c * d of cubes c and d is deiined 
by  the following table of the coordinate *-product 

* 0 1 2  

o o y o  

1 y 1 1  

Z O l Z  

and  the rule: if ai * bi = y for more than one i, 
then a * b = 4; if not,  then a * b = (i(al * bl), - , 
i(a,  * b J ) ,  where i(0) = 0, i(1) = 1 and i(x) = 
i(y) = x. For example, xlOz * 1012 = 4; zzl00 * 
l X X O l  = 12102. 

Logically speaking, the *-product of two  terms is 
the “largest” term which implies their disjunction: 
it is a generalization of Quine’s  consensus. 

The  *-product of complexes A and B is the complex 
determined by  the set A * B of all *-products of 
cubes of A with cubes of B. In  particular A * A is 
the unique Boolean complex containing A. 

2.5d Given complexes A and B, the union  A U B 
shall  denote the complex determined by  their 
set-theoretic union. In general A U B  will not be 
Boolean. 

The next section develops a generalization of 
the cubical complex. 

3. Singular  cubical complexes 

3.0 Motivation. As indicated by the second example 
of the Introduction, shown in Fig. 3,  it seems 
necessary to have a systematic procedure for adding 
contradictions to normal form expressions for a 
given function  in order to recognize the existence 
of certain “economical” functional expressions. The 
singular cubical complex may be thought of as a 
device for realizing such a systematic procedure. 
(From  another  point of view, however, the singular 
complex may be  considered as standing  in  strict 
analogy to  the combinatorial singular complexes of 
combinatorial topology, with  a somewhat different 
twist.) 

Contradictions are here to be thought of as 
coming about  through the identification of certain 
variables. This identification is defined by means 
of the “degeneracy map.” 

3.1 The  degeneracy map.  Let I ,  = (1, 2 ,  - - - , n) .  
Let # be a mapping of I,+, into I,, such that #(i) = i 
for i 5 n; # is termed  a degeneracy map.  Its degeneracy 
is r. 

3.2  Complex of inconsistency. Given a degeneracy 
map #, let N ( # )  denote the complex in Q““ deter- 
mined by  the following cubes and  their faces: for 
each pair of integers i, j of I,,,,, i # j ,  for which 
#(i) = # ( j ) ,  N(#)  contains the cubes: col whose 

- 
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ith coordinate is 0 and whose jth coordinate is 1, 
all other  coordinates being x ,  and; clo whose it" 
coordinate is 1, jth coordinate 0, all  others being x .  
Now  N(+)-the N stands for nonsense-will be 
termed the complex  of  inconsistency of #. (Cubes of 
N(+)  are familiarly referred to  as nonsense cubes.) 

3.3 A &gular complex consists of a cubical com- 
plex S of V" plus a degeneracy map +:In+r "+ I,. 
The subcomplex X n N ( + )  of X is termed the 
subcomplex of inconsistency, while its complement 
X#N(+) is termed the subcomplex of consistency. 
The order of S is n + r;  its degeneracy is r ,  and its 
rank is n. The cubical complex without degeneracy 
map,  as defined in Section 2 above,  may be con- 
sidered as corresponding to  the special case when 
the degeneracy r is zero, so that + is the  identity 
map. In  this case the complex  will be  termed non- 
singular. 

3.4 Consistency operator. Associated with  any 
degeneracy map  are  three  other mappings. The 
first,  termed the consistency operator e, is a  map of 
&"+r into &": for d an element of Q " + r ,  d = (d(l), . . . , 
4 %  + r ) ) ,  

e d = 4 if for any i, n d(1j = 4, 

e d = ( n ~ ( k ) ,  . . . , n ~ ( p ) )  otherwise. 

i-eC(i) 

l ( k ) = l  eC ( v )  =n 

Such  a  map preserves face relations  and thus induces 
a map-this  will also be  denoted e-of K"" into 
K" preserving the algebra of cubical complexes.* 

3.5 The second map u, depending only on the 
degeneracy of #, maps &" into c'": for 

c = ( c ( l ) ,  * * * 7 c(n>), 
let 

uc = ( c ( l ) ,  , c (n ) ,   x ,  , x), 
the  last r coordinates being x. This  map commutes 
with the face  operators  and thus induces a map 
u * of K" into K"". 
3.6 The  third is a  map s of K" into Kn+r: for K a 
complex of K", let 

a ,  $1 = u*(K) u N(+); 

s(K,  +), together  with the degeneracy map #, is a 
singular complex. 

3.7 The singular complex s (K ,  +) is called the 
complete singular  complex defined by K and +. The 
following properties are easily verified. 

550 *Kn denotes the  set of all cubical complexes in Q". 
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3.8 Propositions. 

Q ( K ,  $1 = K ,  
A C B * e A  c eB, 

e(A#B) = eA#eB. 
3.9 Example. Let K C Q4 be given by  the following 
cover, 

1 2 3 4  [; E H I]. 
Let #:I ,  "-f I ,  be given by +(5) = 1.  Then 

1 2 3 4 5  
l X X X 0  

N(*) = [ 
O x x x l  1 

and s (K,  +) is given by  the following cover 

1 2 3 4 5  
1 o x 1 x -  

x x o o x  

1 0 1 X X  

1 2 x 2 0  

O X X X 1 ~  

4. Projection operator 

4.0 Motivation. A basic subproblem in the general 
problem of devising an efficient procedure for 
designing Boolean trees of minimum cost to realize 
any prescribed function is to  devise a fast test 
for  whether or not a conjectured factorization 
"works." 

To be specific, suppose f is a Boolean function, 
f = f(al, , a,, bl, , b J .  Given a  primitive 
a = ( ~ ( c , ,  - , c ~ ) ,  whether  there exists a function G 
such that 

f = G[a(al, , a,), bl,  e . .  , b,l 
is seen to be equivalent to determining  whether or 
not f can be rendered in the form 

a(al ,  - . . , aM'(b,, . e , b,) v 

8(al, ,a,> Q(b1, e . .  , b . ) v W 1 7  , b J ,  (1) 
where P ,  Q, and R are normal form expressions in 
the variables b,, - , b,. 

Given DON'T-CARE conditions d ,  the factorization 
problem then becomes: to determine  whether  there 



exist  normal  form expressions P ,  &, R of variables 
bl, , b,  such that 

f -+ c r P v ~ Q v R  -+ f v  d .  (2) 

The problem is not simply to determine  whether 
or not  this single factorization  exists, however, but 
to determine  a  complete  factorization (a Boolean 
tree) which realizes the given function, possibly 
involving  utilization of the DON'T-CARE conditions. 
Hence the procedure  for  determining  whether a 
single factorization  works  must  be  set  up so as to  
be convenient  for  iteration. The procedure to  be 
described is accomplished by  means of the cubical 
calculus. 

Let a be  a given primitive, a = a(a l ,  - , a,). 
Let X denote  (the selection of) r integers  from I,; 
let p denote  (the selection of) the complementary  set. 

Let K be  a  cubical complex. Let Kt denote the 
set of all  cubical complexes in Q t .  Then  the projection 
operator ITeh is  a  mapping of Kr+* into K"". 

Let f and f v d correspond to complexes L,  K of Q". 
If there exists an expression of type (1) such that 
implications (2) hold, so that  the conjectured 
factorization "works," then I I e x  is  said to be ( K ,  L)- 
perfect. 

Algebraically, the projection  operator or II- 
operator  is defined as a mapping of cubical com- 
plexes into cubical complexes. Products of projection 
operators,  termed projective words, are  thus defin- 
able. Interest in this  paper  centers  on "tree-like" 
projective  words and these  correspond to  Boolean 
trees  and hence to  multiple and complete  factori- 
zations. 

Since a  singular complex has been defined as a 
pair consisting of a  cubical complex X of K"" plus 
a map +:In+r + I,,, it will  suffice to  define the 
IT-operator on a  cubical complex. I n  Roth-Wagner 
[15] it was indicated that  the ?r-operators were inde- 
pendent of the cover on which they were defined. 
In  the present  context,  however,  a  considerably 
more  general  definition  is  required; the definition 
will be  intrinsic-that  is,  independent of the cover. 

4.1 A Cartesian  product. First  it  is necessary to  
define a special product of complexes. Let M e K' 
and N E K8 with t = r + s. Let X and p be one-to-one 
maps of I ,  and I., respectively into I , ,  with 
X(I,) n p ( I , )  = 4. The (X, p)-product of M and N 
is  a complex M Xi, N of K t :  for  each c E M and 
d E N ,  then M Xx, N shall  contain  a  cube c X h ,  d, 
where for  each i E I , ,  

(c X,& d)( i )  = c(~"(z3) if i E ~(1,) 

(c x,X d)(z3 = d(p"(z3) if i E p ( I J .  

~ ~ ~~ 

4.2 Abstract  definition of II-operator. Next  let A' 
be the  set of all pairs of disjoint complexes in &', 
A' = ~ ( a ~ , ~ ~ )  ~~~u~~ c&',aonal = 4 1 .  
The  subset B' of pairs (ao, a l )  of Boolean complexes 
whose union  contains  all  vertices of &' is in one-to- 
one correspondence with the  set of all Boolean 
functions of r variables  Let Kt denote the  set of 
all cubical complexes in Q'. Let J"" denote  the  set 
of all  pairs (X, p)  of one-to-one maps of I ,  and I ,  
into I ,  with  disjoint images. 

Let a = (ao, al) E A ,  K E K t  and (X, p)  E J ; , " .  
Then II(a, K ,  (X, p ) )  is a complex of K"", whose 
cubes are defined by  the following relations: 

, I I b ,  K ,  (1, PI) 3 P1 X 1 if a1 X l r h  P1 C K 

W a ,  K ,  (A, 1.4) 3 Po X 0 if a. Xx, Po C K 

ma!, K ,  (X, PI )  3 P x x 
if a1 W a. Xx, p C K and if a! E B'. 

Here P1 X 1 denotes an element of QS+l, defined in 
the following way: 

(P1 X l)(i) = P l ( i )  for i < s + 1 

(P, X l)(i) = 1 for i = s + 1. 

A similar definition  holds  for Po X 0 and P X x. 

Note:  It is  frequently  convenient, when iterating 
IT-operators, to consider that  the elements of the 
image complex in K"l are mappings  from the  set 
( p ( I , )  U s + 11, instead of from I,,, into (0, 1, x}. 
Since there is a natural one-to-one correspondence 
between these  two  sets,  this will cause  no difficulty. 

The image complex II(a, K ,  (X, p ) )  is thus defined 
by prescribing the cubes which it  contains. If it 
contains  no cubes, then it will be  said to  form the 
empty complex of I('+'. 

It is  convenient to  introduce the following notions. 
Let (X, p )  be  an element of J i V a  with t = r + s. 
The pair (X, p)  thus  splits  any cube c of &' into  two 
parts,  its "X-part" and  its "p-part," 

c = (ex, GI, 
CA being the coordinates of its X-part, or its 
X-coordinates, and c, the coordinates of its p-part, 
or its p-coordinates. 

4.3 Let a = (ao, a,) and (X, p)  be fixed, so that 
II becomes a  function of K alone, II = II(K). Let K 
be  a complex with  subcomplex L. Let (ex,  c,) be  a 
cube of L and suppose that cA A ai # 4, for i = 0 
or 1. The operator II is  said to  be (K,  L)-perfect if 
for each (cx,  c,) of L, the image II(K) contains the 
cube c, X i. 55 1 
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X P  Y X P  V 
" 

MI [a11 x ApX3 1 0  Mo [O~O]X~,X~ x x x 0 0 Step 1 x x x  
0 1  

, x l x  1 1  0 x 1   0 1  
0 x x 0 0 Step 2 x o x  MI # C = N1 1 0  

l x x   o x  l x x  o x  
x o x  1 1  x o x   1 1  

x l x   1 0  x l x  1 0  

x x x   1 1  x x x  
" 

C 0 1  C x x o   0 1  x x o  

" 

M o # C  = N o  

(Ml # C),,  = s ( M o  # C), = Po o x x  Step 3 x o x  
" 

0 x 1  x l x  

X8 x x x  x3 x x x  
" 

2' # PI = Q1 l l x  x3 # PO = Q O  l o x  Step 4 
" 

x 1 0  

QI X l l x  POX,.O 0 l o x  Step 5 1 
" 

x 1 0  1 

Figure 6 Example of Griesmer-Karp construction of 11-operation 

4.4 Griesmer-Karp  construction of 11-operation. The 
following efficient construction of the II-operation 
is  due to Griesmer and  Karp [8].* 

0) Let a be a Boolean function of r variables, 
determining  two  disjoint complexes ao, al. Let 
[ao], [a1] be covers of these complexes. Let X,  
p be as above.  Let  K be a complex and C a 
cover thereof. Then perform the following steps: 
for i = 0 or 1, 

1) Form Mj = [ai] Xxp x*  (x* = xx . . x, sx's) 
2) Form M,#C = Ni 
3) Let Pi = (M,#C),, denote the set of p-parts 

4) Form Qi = x"#(P,) 
5) Store Qi X,,, i in the image. 

of Ni#C 

The  above  table (Fig. 6) illustrates  this procedure for 
a complex K given by  the cover C shown in the 
second block of rows. 

This  construction gives the complete  answer, so 
to speak,  and  admirably does it in  terms of covers 
of the complexes K,  a. and al. (Do not  be misled 
by  the  fact  that  in  the example the covers [a0] and 
[a1] were vertices-it is  not necessary in general). 

The following is an algorithm for determining 
whether or not a projection operator is (K,  L)- 
perfect without  actually  constructing the operation. 

4.5 Test for (K, L)-perfection The next  construction 
enjoys the advantages that  are implied in Proposi- 

*Added in proof: This procedure works even better if one carries along 
covers CO of KO and CI of K ,  where KO is  the "care-complex" in the comple- 

sections. An "intersection" procedure,  due to E. G .  Wagner,  for  forming 
ment of K and where the #-procedure is replaced by appropriate inter- 

the projection operator seems for certain applications to be more  efficient 
than this construction: of. IBM Research Report SR-103. 552 

tion I below and  in  the  fact  that it is defined for 
covers of the complexes of a. 

Proposition I :  Let  K and L be complexes, K 
containing  L. A II-operator is (K, L)-perfect if and 
only if it is (K,  c)-perfect for  each  element c of an 
L-cover of L. 

The following is a restatement of the above 
proposition in  the form on which the construction 
is based. 

Proposition 11: Let C be a cover of K, N a sub- 
complex of K. A 11-operator is (K, K#N)-perfect 
if and only if, for each c of C,  11 is ( K ,  c#N)-perfect. 

In  the algorithm,  N will be the subcomplex of 
DON'T-CARE cubes plus nonsense cubes. 

Proposition 111: Let K be a complex and N a 
subcomplex. Let c = (cA, c,) be a cube of K.  The 
following algorithm  provides an effective test for 
whether or not a II-operator II, is (K, c#N)-perfect. 
Here al and a. are  the complexes of a and  are 
represented by covers [al]  and [a0] respectively. 

1' Determine  whether the following relations hold 

CA n [a11 = 4, (1) 

CA [a01 = 4. (2) 

Both equalities  cannot hold if a corresponds to a 
Boolean function. 

2.01' If Eq. (1) holds and  not Eq. (2), then  the 
X-part of c intersects [al] but not [a0].* Next  deter- 

*The designation 2.01°, the decimal part of it .01, is  to indicate that the 
first  formula (1) is 6 (hence the first digit is 0 )  and that the second (2) 
is not 6 (hence the second digit is 1). Similarly for 2.10, 2.00, et eetera. 
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mine  whether 

[a11 c c h ;  (2.01) 

if it is, then II, is (K, c)-perfect* and hence, a fortiori, 
11, is ( K ,  c#N)-perfect. 

3.01" On the other  hand, if [a1] a cA, then  the 
following test determines whether or not  the 
remaining  elements of C can  "make up" for  what 
c itself cannot do: 

[[a11 X h p  (C#N),I#C = 4. (3 .Ol) 

The factor (c#N) gives the subcomplex of c, not in 
N ,  and (c#N), denotes the p-part of this  set of 
cubes. The (X, p)-product [[a1] Xx, (c#N),] represents 
then  the subcomplex that  must  be covered by C 
in  order  that II, be (K,  c#N)-perfect; this condition 
shall  hold,  clearly, if and only  relation (3.01) is 
satisfied. t 
2.10" If relation (2) holds but (1) does not,  then 
proceed  with steps 2.10" and 3.10°, which are  the 
same  as 2.01" and 3.01", with [a1] replaced by [a,]. 

2.00" If neither (1) nor (2) hold, then ch has cubes 
in common with  both a1 and ao. ConsequentIy, 
both  sets of t e s t ~ " 2 . 0 1 ~  possibly followed by 3.10'; 
and 2.10" possibly followed by  3.10""must be 
performed. In  other words, in  this case, for II, t o  
be (K,  c#N)-perfect, the proposition 

[(2.01)  v(3.01)] & [(2.10)  v(3.10)] 

must be true. 

lowing flow chart (Fig. 7). 

4.6 Remark. In  the operation of the over-all 
algorithm to find a minimum  Boolean  tree,  described 
in  Section 8, I visualize that  the  above #-construction 
will first be used to  determine  whether or not a 
given  II-operator  is (K,  K#N)-perfect  by  applying 
the  test  to each  cube of a cover C of K (except, of 
course, to  those  cubes of C which are elements of N )  
until one c is found for which II, is  not  (K,  c#N)- 
perfect or until  all  elements of C are  tested. As soon 
as a  II-operator is found  not to be ( K ,  K#N)-perfect, 
it is  dropped  from  consideration. On the other 
hand, if i t  is  found to  be  (K, K#N)-perfect,  then  the 
Griesmer-Karp  method will be  applied to  ascertain 
the image of N under TI,, to  complete the  computa- 
tion of the TI-operation. Thus most of the  time only 
the #-construction will be used. 

This  algorithm  may  be  represented  by  the fol- 

*Attention is here  restricted to the case when a is Boolean, a e B r .  
*This form of that test is due to William Boyle, IBM Data Systems 

Division, Poughkeepsie. 

I I 

I J 
01 

R I G H T ,   W I T H  [ao] 
SAME  AS ON THE 

SUBSTITUTED 
FOR [a11 

i NC D O   S A M E  TEST  FOR 
B O T H  [a01 A N D  [all. 
FOR IT, T O   A C T  
PERFECTLY,  BOTH 

M U S T  B E  6 
P R O D U C T S   O F   T Y P E  P 

RECORD c,, x 1 
I N  I M A G E  II. 
ACTS  PERFECTLY 
ON c i 
/,,, 

N O T  PERFECTLY 
C O V E R E D   B Y  II, 

Figure 7 Flow  chart for test whether II, acts 
perfectly on a cube c e C. 

5. Projective  words 

Projective words are  products of projectionoperators 
and correspond, under  suitable  restrictions, to  
multiple  decompositions. In  order to  define these 
products  suitably, however, it is  necessary to  
extend the domain of the projection  operator. 

In  Section 4.2 the II-operator was defined as a 
mapping 11: A' X Kt X J:'" + K"", with T + s = t. 
More generally let  the domain of II be the union 

a' = u A' X K' X JI'". 
O<r 
OS* 

Thus  the range of II will be  the union of all K + ' .  
It is sufficient for the purposes of this  paper t o  

consider only  pairs (X, p)  of maps which are order- 
preserving, that is, if i < j then X(i) < X(j) ,  and 
similarly  for p. Under  this  assumption  the seIection 
of the function X uniquely  determines p. With  this 
assumption, the domain 2)' may be modified by 
changing the  last  factor J; ,"  to  J' = { A I M ,  "-f I , ,  
X order-preserving] . Let 553 
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a =  u A ' X K ' X X '  For the remainder of the paper the  term  projective 
word  will always  be  understood to mean  acyclic 

denote  this new domain.  projective word. It is said to  be Iree-like (Roth- 
Now let a! E A' and X E J' be considered fixed. Wagner) if in  addition to  condition (1) it also 

Then II(a, K ,  X) becomes a  function I I a A  of K alone. satisfies the second condition: 
Thus I I a A  defines a  mapping (2) Each superscript, excepting one, appear  exactly 
I I a A :  K t  + K", X(r) I t ,  X(r) - + I u, once as a subscript; the exceptional  superscript 

shall not  appear  as a subscript. It follows that  this 
with the  property  IIaAIK' C To simplify exceptional superscript  is Y(S + 1). 
notation  let K = ut I(' and let II,, be  extended  A one-to-one correspondence is established  in 
Over K by  the agreement that  for all K Kt for Roth-Wagner [15] between equivalence classes of 
t < X(r), = 4. Let a E A', X J', P A',w J" ,  Boolean trees  and equivalence classes of projective 
with X I '  n w I 8  = 4. The product IIaX.IIB, can  then words. 
be defined as IIB,-followed-by-II,x, with its domain 
restricted to  the range of JIB,. A projective  word is 6. Injective words I 

A ( r ) < t  

a  product of projection  operators. Strictly speaking, 
however, the product, I I a A I I B P ,  actualIy  means II,,, 
followed by Dah, restricted to  the range of JIB,. As 
with the projection  operator, the domain and range 
of a projective word is K. 

By  the way of motivation, since both  the  domain 
and  range of a projection  operator is now K, the set 
of all  cubical complexes, we are now set  up  to  iterate 
these  maps. Thus  the result of the application of a 
II-operator on a complex is  again  a complex, which 
means that  the new factorization problem comes 
out  in  the same  general format  as  the old. 

I n  dealing  with  projection  operators,  particularly 
as factors  in a projective word, it is  convenient to  
designate the "new" coordinate  introduced;  for 
example, in  the definition of the II-operator in 4.2 
this new coordinate is s + 1. I n  Roth-Wagner [15] 
this new coordinate was used as a  superscript  and 
termed the "output coordinate." Thus, for example, 
if X(1) = 1, , X(r) = r then  the operator 
II(a, K ,  X) might  be  written as 

II:;;. . .' 
The subscripts 1, 2, * , r are  termed input coordi- 
nates. A projective word 

U ( S + l )  II = IIa(s)u(a.l)...u(r.r(s)) * * * a ( l ) u ( l . l ) . . . u ( l . r ( l ) )  
IIu(2) 

shall  be  termed acyclic if it satisfies the condition: 

(1) Let A ,  = { a l ,  , a n } ,  the  set of initial 
inputs,  and 

Ai = Ai-1 U ( ~ ( i ) } ,  0 < i 5 S. 

I n  words, A i  is the  set of all  input  and  output 
labels up  to  the (i - 1)st  term  in II. The first condi- 
tion is that: (a) each  subscript y(i, j )  belong to  the 
set Ai;  this  means  that each input label  shall  be 
either an initial  variable or else an  output label 

554 from an '(earlier" projection, and (b) y(i) pl A,-1. 
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Injection  operators  and  their  products,  injective 
words, to be defined in this section, are used princi- 
pally  for proofs and  certain constructions. They  are 
directly useful, however, in  analyzing logical designs. 
In  particular,  they  have been  fruitful  in the theory 
of diagnosis of machine  failures. They  are  types of 
inverses of projection  operators and projective words. 
6.1  Let X, p, v be one-to-one mappings of I,,  I,-,, 
I ,  respectively into I , ,  for r + s < t ,  with pairwise 
disjoint images. Actually X, 1.1, v are considered as a 
set of maps  into I , ,  one set  for each 2. Furthermore, 
it is  convenient to consider the domain of X as being 
a subset I :  of I , ,  of cardinality s, rather  than I,, 
and similarly  for p and Y. Let F denote the  set of 
all  such  maps. The injection operator is a map 

I I* :A 'X  K" X F + K t  

defined as follows: for a = (ao, a,) E A', K E K', 
(X, FLt v) E F ,  

II*(a, K ,  (X, p ,  v)) 3 c XX, a0 if c X,, 0 E K 

II*(a!, K ,  (X,  p ,  v)) 3 c' X&, a1 if c' X,, 1 E K 

II*(a, K ,  (X, p ,  v)) 2 C" Xh, xr if C" X,, X E K ,  
where x' = xx . . . x, rx's. From the definition it 
follows that  the image of such a triple  is a cubical 
complex of Kt .  

In  the use of II*, usually p will be determined by 
X and v; p will usually be  an order-preserving map 
of I.-, into  the complement of XI,  U VI,. 

II;': I(" -+ K' 

denote the corresponding  mapping. Par  un abus de 
langage, II:A will be  referred to  as the injection 
operator. If K is Boolean, then so is II,"'(K). 

Since the elements X, p, v of F were considered 
as sets of mappings, one for  each t, the domain and 

Let  the  arguments a and (X, p, Y) be fixed: let 



range of II,"' may  be extended  over K = ut K', 
II,"': IC + K. 
6.2 Example. Let a E K2, with 

1 2   1 2  

a 0  = [; 3 a1 = [; 3 
Let K be a complex of K4, prescribed by  the rows 
cl, cz, c3 of the following array: 

2 
- 

X 

X 

X 

3 5  

x 0  

1 x  

0 0  

" 

Let v(1) = 3, X(1) = 6, X(2) = 7. Finally,  with p 
determined by X and Y ,  p(1) = 1,p(2) = 2, p(3) = 5. 
Then II,"'(K) is given by  the cover consisting of 
the rows of the following matrix: 

1 2 5 6 7  

1 X O X X  
- 

O X X l O  

O X X O l  

x z o o o  

X X O l l  

6.3 Proposition. 

IILx(II,"'(K)> = K ,  and II:'(II',x(K)) C K .  

6.4 Injective  word. The product of injection 
operators II;', II!"', if defined, is  termed an injective 
word and is of course a map of K into I(. A product 
of several  injection  operators  is also termed an 
injective  word. There is a clear one-to-one correspon- 
dence  between  projective and injective words, 
obtained  by  interchanging the roles of subscripts 
and superscripts. 

6.5 The definitions of the properties acyclic and 
tree-like for  injective words are defined as for pro- 
jective words, with the roles of superscripts and 
subscripts  interchanged. 

7. The singular and nonsingular  complex 
of a  tree-like word 

7.1 I n  Roth-Wagner [15] it  was shown how a 
Boolean tree defines a nonsingular cubical complex 

€C(T). Let 11* be a tree-like injective word. Let 
[ l ]  denote the cubical complex consisting of the 
single vertex 1. The singular complex s(II*) is defined 
to be II*([l]), the image of II* acting on [I]. This 
complex is singular if some of the "initial" co- 
ordinates of II* (see Roth-Wagner) are  repeated. 
The degeneracy map J/ is defined by  the identifica- 
tions, if any,  among the  input labels of II*. If II 
is the projective word dual  to TI*, then  its singular 
complex sII shall  also be II*([l]). 

7.2 A tree-like  injective or projective word II* or 
ll define also a  nonsingular complex, by  application 
of the consistency  operator e, 
IC@*) = es(rr*) 
K(n) = es(II). 

7.3 Proposition: Let T be the Boolean tree of a 
tree-like  projective word II. Then K ( T )  = €C(II). 
Similarly for an injective  word II*. 

7.4 Proposition: If II is ( K ,  L)-perfect and II(K) = 
[ 11 then II*([ 11) 3 L and conversely. 

7.5 It is  considerably  more  advantageous, espe- 
cially from  a  programming  point of view, however, 
to compute the nonsingular complex of a Boolean 
tree  by  the following procedure," which in effect 
removes  redundancies and inconsistencies as soon 
as  they arise. For  an injection  operator I I ~ a 1 " ' 5 r ,  

let P:a'"'at denote the operation of II~a*'**5' fol- 
lowed by  the consistency operator e followed by 
the subsuming  operation x: 
pcaax. . .a .  - - ,,;a,.*.a. 

For II* an injective word, let P" be  the  mapping 
derived  from rI* by replacing  each one of its factors 
IIral*'*a' by  the  appropriate P:al*'*or. 

Proposition: K(II*) = P * ( [ l ] ) .  
Figure 8 exhibits this  method as applied to  the 

Boolean tree of Fig. 3, and is to be compared  with 
the more  lengthy  table of Fig. 4. 

8. The algorithm 

8.1 First a precise statement of the problem will 
be  given.  Let K be a nonsingular  cubical complex 
and L a subcomplex. The problem  is to find, in  the 
class of all Boolean trees T constructed using 
primitive  components  from 23 such that K 2 
K ( T )  3 L, one of minimum cost. 

*Suggested independently also by Miss Ruth E. Norby, IBM Research 
Laboratory,  and Mr. Charles Stieglitz. IBM General Products Division 
Development Laboratory. 
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1 

0 1 
1 0 

x 0 0  
o x o  
o o x  
x 1 1  
1 x 1  
l l x  

x 0 0 1  
o x 0 1  
0 0 x 1  
O O l X  
0 0 1 1  
x 1 1 0  
1 x 1 0  
1 1 x 0  
l l 0 x  
1 1 0 0  

1 
1 
1 
1 

0 
0 
0 
0 

X 

X 

x 0 0 1 1  
0 1 0 1 0  
0 0 x 1 1  
0 0 1 x 1  
0 0 1 1 x  
0 1 1 0 1  
x 0 1 0 0  
1 1 x 0 1  
1 1 0 x 1  
l l O 0 x  

Figure 8 The  "P-operations" for Figure 3 

8.2 The algorithm will now be described. Instead 
of dealing  with the subcomplex L of K,  it is  more 
convenient to  deal  with its complement in K, 

K#L = M .  
Thus,  one seeks a Boolean tree T, of minimum cost, 
such that K 3 K ( T )  3 K#M. 

Let C be a cover of K and D a cover of M .  

1" The first step is to  determine  whether or not 
K may  be embedded in a lower dimensional cube, 
that is, whether or not  any of its coordinates are 
redundant.  Coordinate j is redundant if and only 
if for each  cube c of a cover C of K the product 
c'#C = $, where c' is the cube  obtained  from c 
by changing its jt' coordinate to x. 

2' Assume then  that no  coordinate of K is re- 
dundant. Select a projective word I I a X .  Determine 
whether T I e X  is (K ,  K#M)-perfect, by use of the 
#-construction of Section 4. 

If II,x is (K,  K#M)-perfect, then use the Griesmer- 
Karp construction of the II-operation on M to find 
the  total images of K and M under I I a X .  Let K,, M, 
denote  these images, K, = II,,(K), M, = IIeA(M): 

556 note carefully that M, is  the image of I I b X  restricted 

substituted  for K ,  M .  

word I I p y  is tried on ( K ,  K#M). 

reduced to a complex in K' (i.e., until  the image 
complex has only one coordinate) or until,  in effect, 
all  projective words have been tried  on K. Of 
course, it is not necessary to  try all  projective words 
since, for example, if 11 is the product of two projec- 
tive words, 11 = I12. II,, and if II, is not  (K, K#M)- 
perfect, then, of course, neither  is II. That is, if I I a A  

is found to be not  (K,  K#M)-perfect then no tree 
with a, X selected will "work"-one trial  stands  for 
millions. 

Consider first the case when the cost of any 
primitive  element of 23 is one less than  the number 

which is (K,  K#M)-perfect and reduces  K to a 
complex of K', i.e., to  a complex of order 1, then 
this  projective word, and its corresponding Boolean 
tree, is minimal. (The proof is given below.) 

3" Suppose then  that  no projection  operator  is 
(K, K#M)-perfect. One next  constructs  complete 
singular complexes s(K, $) of degeneracy 1. Let X, 

P V f A  If TI,,, is not (K,  K#M)-perfect another projective 

p o b c  
f This procedure is repeated  until  either K  has  been 

pr.r.z 

p v e b a  
P of its  inputs.  Then if a projective word II is found 
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denote  the complete  singular complex defined by 
K and $. Let R, denote the complex formed by  the 
union of s(M, $) and N ( $ ) .  

One then seeks, as in step 2O, a projective word TI 
which is (1) (Xl, X,#R,)-perfect and (2) reduces X, 
to  a complex with only one  coordinate, that is, 
t o  a complex in K'. If no  satisfactory Boolean tree 
had been found  in  step 1" and, as stated above, 
the cost of any primitive  element of 23 is its number 
of inputs, less one, then a projective word which 
does satisfy  conditions (1) and (2) is a minimum. 
(Proof below). 

All singular complexes of degeneracy 1 are in- 
vestigated  until  either  they  are exhausted or until 
one is  found for which a projective word satisfies 
the two  requirements. 

If none exist, one investigates  singular complexes 
s(K, $) of degeneracy 2 in similar  fashion, et cetera, 
until a smallest degeneracy d is reached  for which 
a "satisfactory" complex and projective word are 
found. The proof of the effectiveness of the algorithm 
is  given by  the following theorem. 

8.3 Theorem. Let K be a nonsingular  cubical com- 
plex and M a subcomplex. Let  the cost of a com- 
ponent of 23 be  its  number of inputs, less one. Let 
S,, R, be  complete  singular complexes defined by 
K,  M and degeneracy  mapping $, of degeneracy p .  
Let II be a projective word which is (AS,, S,#R,)- 



perfect and  for which II(S,) = [l] and  let p be the  Let 8 consist of elements E,, . - , E,,, where 
smallest  degeneracy for which such a II exists. Then Ei has cost ci and  has si inputs, i = 1, * 9 N .  

defines a tree Of minimum and Problem: What is the largest  number O ( k )  of inputs 
satisfies the requirement a tree T of cost k may have,  where T is  constructed 
K#M C IC@) C K .  from 8? O ( k )  is  computed by  the following recur- 

Proof. First  it will be established that if II is man, cited in Dantzig 
rence  scheme, adapted  from a  method  due to  Bell- 

(&, S,#R,)-perfect, and II(X,) = [I] then  it satisfies 
the condition (1) as  above. Xow for II to  be (Sp ,  O(k) = - a, k < 0 
S,#R,)-perfect implies by Proposition 7.4, that O(0) = 1 

O(k) = max [(si - 1) + O(k - ci)], 
Hence. bv  the moDositions of 3.8 , "  " 

K#M = e(S,)#e(R,) = e(S,#R,) c es(II) = 
" Related  is  the  determination of the minimum  cost 

k > 0,  i = 1, e . .  , N .  

Hence C(m) a tree  with m inputs  may  have; C(m) is  given 
K#M c IC@). by  the following relations: 

E11 = w3,>7 C(1) = 0, 

On the  other  hand, since C(m) = -a, m < 0 ,  

by  Proposition  6.2, 

s(II) = II*([l]) = II*(IIS,) c x,. 
Hence 

IC@) = es(II) C eSv = K ,  

so that  the  above conditions are indeed  satisfied. 
The only  fact  remaining to  be established  is that 
no  other II' satisfying  these  conditions  has lower 
cost. But  this is not possible since the singular 
complex  corresponding to  II' would have  then lower 
degeneracy than  the degeneracy d of II, contrary 
to  hypothesis that d was the smallest  such. Q.E.D. 

Next  remains  the case when the cost of a  primitive 
element of 8 is not the number of its  inputs, less one. 

8.4 Case where cost i s  not the number of inputs, 
less one. The procedure  for  constructing a minimum 
word must  be  augmented  by  the following step. 

4' Let C be  the cost of a tree which satisfies the 
specifications of the problem. Let g be the  ratio, 
minimum  over  all  elements of 8, of the cost of a 
block divided by  the number of its  inputs less 1. 
Then one  need  search  only for complexes whose 
degeneracy  is 5 [C/g] - n where n is the  rank 
of the complex in  which K is  originally  embedded. 
In  Appendix A ,  R. M. Karp gives a  best  determina- 
tion,  based  on Bellman's dynamic  programming,  for 
the necessary size of the degeneracy. 

Appendix A-Optimum  criterion for termination 

The problem of determining when the algorithm of 
Section 8 terminates reduces to  the following: 

C(m) = min [cj + C(m - (si - I))], m > 0. 
i 

This  method was  communicated to  the  author by 
Dr. R. M. Karp. 

Appendix B-Concerning the  efficiency of the 
algorithm and of fast approximations 

In the absence of experimental  tests on the speed 
of the algorithm,  in the form of program-computed 
problems, it is  hazardous to  make  any definite state- 
ments  as  to  the efficiency of an algorithm.  (Hand 
computations,  however,  have been promising.) I n  
its favor  let  it be  said that: (1) The single test  for 
whether or not a given  projection  operator  is ( K ,  L)- 
perfect is actually  equivalent to  a very  large  number 
of other  tests: In  essence it determines  whether or 
not any tree exists which realizes the function and 
has LY as one of its logical blocks with  inputs X; 
(2) the speed of the Griesmer-Karp  construction 
depends  essentially  on the number of cubes of a 
cover and not on the  number of vertices; (3) the 
inconsistencies due  to adding  redundant  variables 
is expeditiously  handled by  the nonsense cubes N(11.). 

Only  a  program will test  the commercial effec- 
tiveness of the algorithm! 

Past experience has  indicated  that  it is easy to  
develop "fast" approximate  methods to  a given 
algorithm. (See Ewing, Roth,  Wagner [7].) One 
mode of procedure  for  the  present  algorithm would 
be to  proceed as follows: Try a single  projective 
word on a particular  set of coordinates. If it does 
not  act ( K ,  L)-perfectly,  then  add  suitable  redundant 557 
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coordinates to ((force” it  to  act (S ,  M)-perfectly 
where S and M are  the singular complexes derived 
by  this additional  redundancy. Proceed in this 
manner  until  a  satisfactory Boolean tree  has been 
so obtained. In  particular, one might start out 
with rather large building blocks, large in the sense 
of being a function of a rather large number of 
variables. It is certain that experimental results will 
give indications  as to effective modes of procedure 
of this  type.  The  algorithm should be programmed 
in  subroutine form so that each particular  sub- 
algorithm can be examined to develop appropriate 
approximations  thereto. 

Another development which  will  be reported else- 
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