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J. H. Griesmer

A Bound for Error-Correcting Codes

Abstract: This paper gives two new bounds for the code word length n which is required to obtain a bi-

nary group code of order 2% with mutual distance d between code words. These bounds are compared

with previously known bounds, and are shown to improve upon them for certain ranges of k and d.

Values of k and d are given for which one of these bounds can actually be achieved; in such cases, the

structure of the resulting codes is shown to satisfy a certain condition.

1. Introduction

This paper deals with the class of error-correcting
codes called group codes, and examines the problem
of determining the minimum code word length n, or
equivalently, the mintmum number of check positions
n — k, which are necessary for a group code to have
a given error-correcting ability. The basic paper of
Hamming [1] gives a lower bound on minimum
number of check positions which is quite sharp for
low values of n/(n — k), i.e., for codes which have a
low redundancy or transmit information at a high rate.
Improvements have been made on the Hamming
bound for higher redundancy codes [2, 3, 4]. The
present paper gives two lower bounds which are a
further improvement on the Hamming bound for
the case of higher redundancy group codes. These
bounds are derived in Section 2, and are compared
with previous results in Section 3. Section 4 con-
tains two theorems on the existence and structure
of group codes for which one of the bounds is
actually attained.

We begin by introducing some of the basic notions
in the theory of error-correcting binary codes which
we shall require. A sequence of n binary digits is
called a code word. Two code words are said to have
mutual distance d, if they differ in exactly d out of
n positions [1]. A set S of code words is called an
e-error-correcting code [1], if any two code words have
mutual distance at least d = 2¢ 4 1. If the members
of S form a group under the operation of digit-
wise modulo 2 addition, we say S is a group code [5].
In this case, S has order 2%, & < n. Our interest
is in group codes of order 2" having mutual distance
at least d between code words; we shall term such
a code a (k, d) group code, for short. Because of
the group property, the requirement that any two
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code words have mutual distance at least d is
equivalent to the requirement that all nonzero code
words contain at least d ones, i.e., have weight
at least d, since the mutual distance between code
words is precisely the weight of that code word
which is their sum.

We shall assume that a group code of order 2*
and code word length n is obtained by forming a
k X n generator matriz [6], consisting of k inde-
pendent vectors of length n, whose components are
binary digits, and combining these & vectors in all
possible ways to generate the set of 2° — 1 non-
zero code words. This set, together with the sequence
of n zeros, forms a group code of order 2°. Any
group code can be generated in this way.

Each column of a k X n generator matrix is one

~of 2¥ — 1 different types of columns, where a column

of type j, i = 1,2, --- , 2 — 1, is a column of %
binary digits which is the binary representation of
the integer j, considering the top entry as the units
digit and proceeding downward. Any generator
matrix, and, hence, any group code, can be de-
scribed, within a permutation of columns, by giving
the number of columns of each type which occur
in the matrix: N = (n,, 0y, -+- , Nee_y). This is
Slepian’s modular representation [5].

The weights of the 2* — 1 nonzero code words
of a group code of order 2 can be obtained by
multiplying the vector N by a 2* — 1 X 2° — 1
matrix C, [3, 6]

W = C.NT, (1.1}
where W7 is a (2 — 1)-component vector:

W?T = (w17 Way =, w2”——l)}




with wW; = Wsi-1409a-14.00499.—1 designating the
weight of the code word formed by combining r
rows of the generator matrix indexed by £ > p, >
P> o+ >p. 21,1 < r Lk We shall say,
for short, w; is the weight of the 1** code word, 1 = 1,
2, - -+, 2* — 1. Using this convention for W requires
that the matrix C, have its entries defined as follows:

1 if the number of places where (z), and (j),
. = have ones in common is odd,
0 otherwise,

where (7), and (j), denote the binary representation
of integers ¢ and j, respectively, 1 < 4,j < 2* — 1.
For example, if

11101
G=10 1 01 1
00111

is a generator matrix of a group code of order 2°,
it has modular representation N = (1,0,1,0,1, 1, 1).
The set of nonzero code words indexed by 7 =
1, --. , 7 which are generated by the rows of G
are the following:

i=1: 11101

t1=2: 01011
1=3: 10110
i=4: 00111
1=511010
t=6: 01100

1=7: 10001

The weight w; of the ¢* code word can be calcu-
lated directly, or by using (1.1),

(1010101
0110011
1100110
W=CN" ={0001111
1011010
0111100
(110100 1]

Our aim will be to work in the reverse direction
from (1.1), viz., given a weight vector W' =
(Wy, Wy, -+ , Wy +c- , Wery), With w; > 1, find
a vector N = (ny, ny, + -+ , 0y, + -+ , Nary) satisfying
the inequality system

| e = T T = T =
I

. <~

CN">W. (1.2)

Such a vector N will be the modular representation
of a group code of order 2°, where the ¢* code
word has weight at least w,. That the resulting
group code has order 2%, i.e., that the resulting
generator matrix consists of & linearly independent
rows, is immediate, since any dependence among
generator rows would imply w; = 0 for some 2.
In particular, since our interest is in (k, d) group
codes, i.e., each nonzero code word is required to have
weight at least d, we shall use for W7 a (2* — 1)-
component vector with each component equal to d.

Our object will be to study (k, d) group codes of
minimum length. We define N (k, d) as the minimum
code word length required for a (k, d) group code.
Given k and d, an integer program can be formulated
whose solution is the modular representation of a
(k, d) group code of minimum length, so that the
code word length for this code is N(k, d):

2k—1

Minimize n = > n;

i=1

subject to

2k—1
Sem;i>d i=1,---,2"—1, (1.3)
i=1
n; > 0, integral j=1,.--,2"— 1.
A veetor N = (ny, By, --- , By, -+ , Nyr_y) Which

is a solution to this integer program is the modular
representation of the desired minimum length (%, d)
group code.

An equivalent integer program for finding a (k, d)
group code of minimum length was given by Me-
Cluskey [2]. The formulation there differs slightly
from (1.3) in the indexing of code words and column
types, and in the specification of the first & columns
of the generator matrix, leaving only the remaining
n — k columns to be determined. Following Ref.
[6], we can state this second assumption as a re-
quirement that the generator matrix is in “reduced
echelon form.” Any generator matrix can be put
into this form by premultiplication by a suitable
nonsingular matrix and postmultiplication by a
suitable permutation matrix.

2. Lower bounds on N(k, d)

We use the inequality system for the integer pro-
gram (1.3) to deduce a result relating N (%, d) and
Nik — 1, [(d + 1)/2]}, where [(d 4+ 1)/2] means
“the greatest integer less than or equal to (d + 1)/2.”
We first prove three lemmata.
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o Lemma 1

i) Cii = Cob~141,iy i=1,---,2"—1,
ji=1, , 257 — 1,

) 16 = ey, G 1, e, 21,
j=2 28 =1

e Proof

i) (9), and (2*' 4+ ), have the same number of
ones in common with (j),, when1 <7, < 27! — 1,
ii) (2"' 4+ 1), has an additional one in common
with (j)., as compared with (¢),, when 1 < ¢ <
91 9l < i< 9 1,

o Lemma 2

Let S, be a (k, d) group code in which at least one
code word has exactly weight d. Then there exists
a generator matrix @ for 8, in which this code word
is the &*® generator row.

o Proof

Let G’ be any generator matrix for the code S,,
and assume that a code word which has weight
exactly d is the sum of r rows of G' indexed by
1< <P < - <p, <k, 1< r <k If we
premultiply G’ by the nonsingular matrix KX which
adds the generator rows indexed by p1, P2, -+, Pr=a
to the row indexed by p,, we obtain the equivalent
generator matrix G = K@ with a code word having
weight exactly d as its p,* row, 1 < p, < k. A
simple interchange of the p,*® row of G with the k*
row of (¢ will make this code word the k* generator.

e Lemma 3

Let 8, be a (k, d) group code in which at least one
code word has exactly weight d, and let a generator
matrix G be chosen for the code S: so that this
row is the k" generator row. Let n; be the number

of columns of type j, j = 1, , 2" — 1, in G.

Then

2k—1-1

>oem>ld+1/2  i=1,--,27 =1
§=1

e Proof

We have

2k—1

Semi>d  a=1,--,2"—1. 2.1)

i=1

Adding the 7t inequality to the (2! + 2)t,
i =1, ---,2"" — 1, and using Lemma 1, we
obtain
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2k-1—1

2. E c:in; + E n; > 2d

f=2k=

i=1,---,2"" — 1. (2.2

We have assumed the kt* generator row, i.e., the
(2"-Y)*t code word, has weight exactly d. Hence,

2k—1 2k—1

Zczk—l.ini = E n; = d,

i=1 jm=2k—2

since

= {
62"_1‘1. =
1

Upon substitution in (2.2), we obtain

gk—1.1

E c;n; > d/2

i=1

1<j< 2!
T2~ 1.

i=1,---,2"7—1. (2.3)
Since the left-hand side of (2.3) is an integer, we
may strengthen the right-hand side to
2k—1-1
Z cim; 2 1d/2) i=1,---, 2" — 1, (2°4)
i=1
where I(x/p) denotes “the least integer greater than
or equal to z/p.”” Now I(x/p) = [(x + p — 1)/p].
Hence,

2k—1-1

; cim; > [(d + 1)/2]

i=1,---,2" '~ 1. (2.5

e Theorem 1
N, d) > d+ N{k — 1,[(d + 1)/2]}. (2.6)
e Proof

Let S, be a (k, d) group code of minimum length,
i.e., S; has code word length n = N(k, d). Clearly,
at least one code word of S, has exactly weight d,
since otherwise S; would not have minimum length.
Let G be a generator matrix for S, in which the
k't generator row of G has exactly weight d. Let

n; be the number of columns of type j,j =1, -+,

2 —1,in G.
Then

2k—1_)
N(kd)-—n—}:n,—d+ Zn 2.7

i=1
From Lemma 3,
gk—1_1
Z cony > [(d 4+ 1)/2]
i=1
i=1,---,2"" —1. (2.8)

Hence, the (2! — 1)-component vector (n,,
Ngy *+ - , Ngr-1_,) 18 the modular representation of
a {k — 1, [(d + 1)/2]} group code. Hence




gk—1_1

> n; = Nik—1,[d+ D/2]}. (2.9)

i=1
Combining (2.7) and (2.9), we obtain (2.6).
Theorem 1 can now be applied £ — 1 times to
obtain one bound on N(k, d).

e Theorem 2
k-1
Nk, d) > 2, [(d+2° ~ /2. (2.10)

e Proof
N, d) >d+ Nk — 1, [(d + 1)/2)}
>d+[(d+ 1)/2]
+ N{k — 2, [{[@ + 1)/2] + 1}/2]}
d+ [(d+ 1)/2]
+ Nk — 2, [(d + 3)/4]}

p=1

E @+ 2° — 1)/2°]
+ Nk —p, [(d + 2° — 1)/2°]}

v

31 + 2 — /27

i{=0

V(L @+ 27 — D2
= Y+ 2 - /2

i=0

+ [(d + 2k-1 - 1)/2k—1]
= T @ +2 - /2,

using the fact that N(1, d) = d.

Theorem 2 provides a sharp lower bound on
N (k, d) when d is large compared with k. Section 4
discusses minimum length codes which achieve this
bound for values of d satisfying d > 2*% — 1.

As an example of the use of Theorem 2, we com-
pute a bound on code word length for a group code
of order 2° which corrects three errors:

N(G,7) >27+ N4, 49
>7+4+ NGB, 2
> 11424+ N@2, 1)
> 13+ 1+ N({, 1)
>14+1 =15

For d fixed, when k¥ > 1 + log, (d — 1), the
bound (2.10) assumes a simpler form. Let ||(d — 1),||

v

denote the number of ones in the binary representa-
tion of d — 1, i.e., the weight or norm of (d — 1),.
Then, using the relation

> 1@~ /2 = 26 - 1 = |i@ = D,
we have

k-1

Nk, d) = 2 [(d+2° — 1)/29]

i=0

k-1

=2 d—-D/21+k (2.11)

— i [(d — 1)/27 + k
2(d - 1) — |l(d = Ds|| + &.

The bound (2.11) increases at the same rate as k,
for a fixed d. Yet the results of Hamming [1] give
a lower bound on N (%, d):

N(k,d = 2 + 1)
[2/5()] =2}

[2/50)] =2}

which increases slightly faster than k. Thus, for
fixed d, as ¥ becomes large, (2.11) becomes more
slack than (2.12). We shall compare these bounds
in more detail in the next section. We shall also see
in the next section that combined use of (2.6) and
(2.12) provides a better lower bound on N(k, d),
for certain values of & and d, than either (2.10),
i.e., (2.11), or (2.12) alone.

We complete this section by using (2.12) for the
cases d = 3 and d = 4 to improve (2.10) or (2.11)
for d in the range 3 < d < 2**'. We shall make
use of the fact, as shown by Hamming, that (2.12)
actually becomes an equality for d = 3 and d = 4.

> min {n
(2.12)
Nk,d =2+ 2)

> 1+min{n

e Theorem 3

i) If 2?4+ 1 <d < 2% 4+ 2"7' 4+ 1, where
0<p<k-—1,then

k=p~

NGk ) 2 3 1@+ 2 = 1/2]

+ min {n |[2%/0 + D] > 227}, (2.13)

i) If 257 4+ 287! L 1 < d < 2" + 1, where
0<p<k—1,then

535
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k—p-2

Nk, d) > Z [(d+ 2 -~ 1/27+1

+ min {n |[[2*/(n + 1)] > 2°"'}. 2.19

e Proof
) Nk, d =2d+ Nk —1,[d+ 1)/2]}

k=—p—2

> }: @+ 2° — 1)/29

+ Nip+ 1, [@+ 2" — p/2""7]}

2 @+2 —1/27+ Np+1,3

$=0

I

k—p-2

2 [@+ 2 — 1/2]

H]

-+ min {n |[2"/(n + 1)] > 2°*'].
i) N(,d) >d+ N{kt—1,[(d+ 1)/21}

k—p—2

E [+ 2° — 1)/29

v

+ Nip + 1, [d+ 277" — 1)/2""7]}

k~p—2

= 2 @+ 2 — 1D/27+ N+ 1,4)

k-p—2

= Z [(d + 2° — 1)/27

+ 1 + min {n [[2"/( + 1] > 27},

Table 1 gives the values of the lower bounds on
N (%, d) provided by Theorems 2 and 3 for the cases
k < 16 and odd d satisfying 5 < d < 25. Equation
(2.10) is used whenever d > 2**' + 1, and (2.13)
and (2.14) are used otherwise. Table 1 is divided
into three sections: (2.10) is used to compute the
bound in Section I; (2.10) and (2.13)-(2.14) produce
an equivalent bound in Section IT; (2.13)-(2.14) is
used in Section ITI. The bound for d even is one
more than the bound for d — 1. As an example,
using (2.14),

NQ12,7 > 7+ N1, 4)
=7+ 1+ min {n |[2"/(n + 1)] > 2"}
=74+1+15= 23.

Hence, as does (2.12), (2.14) shows that a code
word length of at least 23 is required in order to
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obtain a (12, 7) group code, i.e., a group code of
order 2'? which is 3-error correcting.

3. Comparison of lower bounds on N(k, d)
McCluskey [2] has shown that, for d > k,

Nk, d) > I[2" — Dd/2"], @.1)
and for d < k,

Nk, d) > 1[(2" — 1) d/2*

k
+2' X (’”)(s - d)]. (3.2)
s=d+1 \§

(3.1) can also be derived from the work of Mac-
Donald [3]. We show in Theorem 4 that (2.10)
improves on (3.1) when d > k, and on (3.2) when
d < k. We use an alternative form for (2.10) in
Theorem 4, viz.,

NG, ) > 3 1@+2 — /2] = 3 16/2). 33)
o Theorem 4
) TFor d>k,

I[2F — Dd/2* ) < SI(d/Z‘). (3.4)

i) For d <k,
1[(zk — Dd/2"t + 2t f_‘,l (I:)(s - d]

< El(d/z‘). 3.5)
« Proof

i) Case A. d = h2"", b > 1.

In this case, both left- and right-hand sides of
(3.4) are equal to h(2* — 1).

Case B. d = h2*' 4+ 27 4 27* ... 4 27,
where k — 2> 4, > 4> -+ >34, >0,k > 0.
On the one hand,

INEQ" — Dd/2*") = I(2d — d/2*™") = 2d — h
On the other hand,

12y 2 h S ( $hgn-i 4 1)

i=0 i=0 i=0

+(§22"""+ 1)+ et (iZ"z"""H)

i=0 i=0
— h(2k _ 1) + 2i;+1 + 2in+l + - + 21'p+1
= 2(h2k—l + 21': + 2:': + R + 21';:) - h
= 2d — h,

since I(d/2') has a contribution 27~° from 2,




Table 1 A lower bound on N(k, d)
1<k<16,5<o0ddd< 25

AN

\\dk\ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
5 5 8 10 11 12 14 15 16 17 18 19 20 22 23 24 25

7 7 11 13 14 15 17 18 19 20 21 22 23 25 26 27 28

9 9 14 17 19 20 21 23 24 25 26 27 28 29 31 32 33

11 11 17 20 22 23 24 26 27 28 20 30 31 32 34 35 36
13 13 20 24 26 27 28 30 31 32 33 34 3 36 38 39 40
15 15 23 27 29 30 31 33 34 35 36 37 38 39 41 42 43
17 17 26 31 34 36 37 38 | 40 41 42 43 44 45 46 48 49
19 19 29 34 | 37 39 40 41 43 44 45 46 47 48 49 51 52
21 21 32 38 | 4 43 44 45 | 47 48 49 50 51 52 53 55 56
23 23 35 41 4 46 47 48 | 50 51 52 53 54 55 56 58 59
25 25 38 45 | 49 51 52 53 | 55 56 57 58 59 60 61 63 64

Section I 11 III

1 <r < p,if i< j, and has a contribution +1 for an even d which is as good as that given by
from 27,1 < r < p,ifi =5, + 1. (2.10) or (3.3) is when d = 10. Here, for k = 4,
ii) It can be shown that, if d < k, (3.1) gives
3 4 3y _
I[(zk CDa a2 3 @(s 3 d)] N(4,10) > (2" — 110/2° = 19,
while (2.10) gives

< I[(2* — 1)d/2*! k — d;
=1l /21 + N#4,100>2 104+ 543 +2 = 20.

we omit the argument. Using (3.4) for the case

k = d, we have the following chain of inequalities: We shall use Theorem 4 in comparing the condi-
. . tion on k provided by (2.10) with one appearing in
1[(2" — Dd/2 " + 27 > <f)(s — d)J the work of Plotkin [4]. He showed
s=d+1
<IN - VA2 +k~—d A, d) < [2d2d n] 2 > n, 3.6)
d—1
< 12:5 1d/2) +k —d where A(n, d) is the maximum number of binary
- sequences of length n which have mutual distance
< Z Id/2Y, at least d, and [z]... denotes ‘‘the greatest even
i-0 integer less than or equal to z.” If (3.6) is applied
which gives (3.5). to group codes, it states that
The bound (3.1) is relatively sharp for even d > k. 2
This fact can be used to improve the bound for 2t < |:2 ¥ :I 2d > n. 3.7
d — 1, by subtracting 1 from the bound for d. T Meven
The first time that (3.1) does not produce a bound This bound can also be obtained from (3.1): 537
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n > I[(2° — 1d/2*7'] > (2 — 1)d/2"!
=n/d>2 - 27"
=2 < d/(2d — n)
= 2" < 2d/(2d — n)
= 2" < [2d/(2d — n)]ven-
Hence, the condition (2.10) or (3.3) on k

nzgﬁw+f—nm1

=§KW%=k+§ﬁ@—nmﬂ

is stronger than that provided by (3.7), because of
Theorem 4.

The work of Plotkin can also be used to provide
a condition on & when 2d < n. For this case, in
addition to (3.6), we also use [4]

An,d) < 24m — 1,4d) (3.8

and repeat its use (n — 2d 4+ 1) times to obtain:

A, d) < 277 A(2d — 1, d). (3.9

Now, by (3.7),

A, @ < 27'24/124 = @4 = Dl w510
< d2rrE,

When (3.10) is applied to group codes, it states that
2F < dor ¥t 2d < n. (3.11)

We now show that (2.10) or (3.3) provides a stronger
condition on k than (3.11). We first treat in detail
the case n = 2d. Let p be defined by 2° < d < 2°**.
Then (3.11) reduces to £ < p + 2. We now evaluate
(2.10) or (3.3) for £ = p + 2, and show that it is
at least as large as n = 2d:

p+1

> ld+ 2 —1)/27

i=0

p+1

=(+2 + E (@ - 1)/27]

I

(p+2 +2d-1) — [[(d— 1)
2d +p - H(d - 1)2”
> 2d,

li

since d — 1 < 2°*' — 1 implies that ||(d — 1),]| <
p + 1. Hence, when n = 2d, (2.10) or (3.3) is as
strong a condition on % as (3.11). Now the bound
(3.11) on k increases at the same rate as n. How-
ever, the condition (2.10) or (3.3) on k increases
at the same rate as n only for £ > 1 + log, (d — 1).
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For k < 1 + log, (d — 1) it increases at a slower
rate than n. Hence, for a fixed d, since (2.10) or
(3.3) is as strong a condition on £k as (3.11) when
n = 2d, it remains as strong as (3.11) for all n > 2d.

We now present an example comparing the use
of (3.11) with (2.10). Let d = 5 and n = 10. Then,
using (3.11), 2° < 5-2° or k < 4. Using (2.10), we
see that & can be at most 3, since

2
2 ld+2 —1/27=5+3+2=10.
i=0

Finally, we compare the bounds (2.10), (2.13),
and (2.14) with the Hamming bound (2.12). As
already noted in the last section, for k sufficiently
large, (2.12) provides a sharper bound than (2.10).
For small %k, the bound (2.12) can be improved
upon, using (2.10), (2.13), or (2.14). Furthermore, for
certain values of k¥ and d, by using (2.6), and sub-
stituting the best bound for N{k — 1, [(d + 1)/2]},
we can improve on (2.12). For example, in the case
k = 18, d = 13, from (2.12) we have

N(18, 13) > 41.
However, by (2.6),
N(18,13) > 13 + N(17,7)

> 13 + 29 = 42,
since (2.12) gives N(17, 7) > 29. Table 2 gives a
summary of when (2.12) can be improved upon
for odd values of d from 5 up to 21. It lists the
largest value of &k for which an improvement can
be made upon (2.12), and the smallest value of &
for which (2.12) provides a better bound on N(k, d)
than either (2.10), (2.13), (2.14), or the use of (2.6)

and a bound for N{k — 1, [(d + 1)/2]}. In each
case, the corresponding bound is given.

4. Codes which achieve the bound
(2.10) and their structure

In Theorem 5, we present (k, d) group codes which
achieve the bound (2.10) and, thus, are minimum
length codes. In all cases, d > 2°7% — 1.

o Theorem 5
For the following values of d, the lower bound (2.10),

NG @) > 0@+ 2 - 1/2)

can be achieved by a (%, d) group code:




Table 2 Comparison of lower bounds on N(k, d)
5<oddd< 21

Largest k for which Smallest & for
d an improvement upon which (2.12) is
(2.12) can be made Corresponding n best Corresponding n
5 14 23 23 33
7 8 19 18 31
9 25 43 33 52
11 18 38 23 44
13 35 62 43 71
15 27 56 33 63
17 45 81 52 88
19 37 75 48 88
21 55 100 68 115

i) d=h2"" 422 L2 4 .. p 24
d=h2k—1+2k-—2+2k—3+ . +2k—n+2

#20
2<p<k-1
i) d=G+ 12" -2 -1

— hzk—l + 2k—2 + R + 2k—p _ 1
d=(h+ 12"~ 2"
— h2k—l 4_ 2k—2 *_ ... ‘F 2k—p

%zo
2<p<Lk—1.
o Proof

We treat only the case of odd d. The even case
follows from the well-known result that a (k, 2f)
group code can always be obtained from a (%,
2t — 1) group code by adding one additional column.

i) Let n;, the number of columns of type j used in
forming the code, be defined as follows:

h if j<2" — 1, but §#2,
n; = 0<r<k—rp,
h + 1 otherwise.

We first observe that, since a column of type 27,
r =20, ---,k — 1, occurs at least once in the
generator matrix, its & rows are independent and
the resulting code will be of order 2°.

We must now show

2k—1

> o= 30+ 2 — /2, (4.1)

i=1 i=0

and

2k—1

Zciin;Zd ’l:=1,”‘

i=1

, 2 — 1. (4.2)

We first evaluate the left-hand side of (4.1):

2k—1 2b—1 2k=p+1_1
Zni = Z n; + E n; + Z n;
i=1 fm2E—p+1 j=27 i=3

r=0,%*,k~p 2

(h+ DE + 25777 oo 27
+Gh+DE—-p+ 1
+h1+34 - + @27 - 1)

= h(2k _ 1) + 2k-p+1 + 2k-z:+2

+ 2T L -+ D).

Listing the sum on the right-hand side of (4.1)
term by term, we have:
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Z [(@+ 2 — /27 =h2"" 277 420 4. 427 42 41 (=0
+ R 2Rt 42t p o 2br 2l (=)
+ hzk—l—i + 2k—2—i + 2k—3—|‘ + e + 2k—p+1—-i + Zk—p—i + 1 (," < k — p)
+ h2? +27 42 .42 +1 41 (@E=k-p
+h2p—1 +2D‘2 +21"3 ++1 +1 (’L=k—p+1)
+ 2 +1 (t=k—-2
= h@ =D+ 27+ 2T 42 LT h—p D).

To show (4.2), we observe that »_:-! ¢;;n; receives
weight #2°~' from h occurrences of each column
type, since C, has 2°~! ones in each row. We must

. . b
now calculate the contribution to each ZL,‘ CiiM;

of one each of column types 1, 2, 4, --- , 2°77,
and 2F-7*' ... 2F — 1,

o Case A.

If (2), does not have ones appearing in digits indexed
1,2, 4, ---, 252, then, for this ¢, ¢;; = 0 for j <

277" so that all 27" ones in this row occur after the
(2"-7*") st column. Hence

2k—1

2ocimy = h2 42 = (h+ D27 2 d

i=1

where ¢ satisfies one of 7 = 2! (mod 2"7*%),
i = 27" (mod 2°°*%), .-+ , 4 = 2% (mod 2",
i= 2"
e Case B.
If (), has a one in at least one of the digits indexed
1,2,4, - ,2"7 then, for this¢, ) _223! ¢;;n; receives

at least weight 1 from columns of type 1, 2, 4,

, 2"?. Furthermore, it receives weight 2"~
from columns of type j, 2"7*' < j < 2F7%% — 1,
weight 2°”*! from columns of type j, 2"-°** <
j < 297 — 1, ..., weight 2" from columns
of type j, 2°°' < j < 2* — 1, so that

2k—1
2 camg > R
i=]

+2k—2+ e +27c—p+1+2k—p+1=d

for all such 7.
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ii) These codes are given explicitly by McCluskey
[2] and MacDonald {3]. We give the modular repre-
sentation for the general case, following MacDonald:

" _{h if 1<j<2v"
h+1

if 2P 4+1<j< 2" —1.
That the code given by this modular representation
is actually a (k, d) group code with code word
length equal to N(k, d), can be demonstrated in a
manner similar to (i). We omit the argument.
As examples of the range of Theorem 5, for
k = 5, minimum length codes are given for d > 7,

d =717 ---,16 (mod 16). For £k = 6, minimum
length codes are given ford > 15,d = 15, --- , 18
(mod 32) and d = 23, --- , 32 (mod 32).

For the case k = 5, Table 3 gives an explicit
code for the distances d = 7, 9, 11, 13, 15, based
on Theorem 5. The table states which part of the
theorem is used in constructing the codes. For each
code, we have n; = 1, for 17 < j < 31, and so the
table lists only the values of n; for 1 < j§ < 16.

Finally, we give a result on the structure of
(k, d) group codes which achieve the bound (2.10).
If an integer A > O is defined by

T <d-1< (4 12,

then any column type is used at most & + 1 times
in such a code. When A = 0, ie., d < 2! 4+ 1,
this means that such a code uses a column of each
type at most once. We first need:

o Theorem 6

If Nk,d) = kZ—Z @+ 2" — 1)/27,



Table 3 Minimum length codes

k=5, d=17,9,11,13,15
Part of
j 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 Theorem
5 used
d
7 0o 0 0o 0 0 0 0 O 0 0 0 0 0 0 0 (ii)
9 1 1 0 1 0 0 0 1 0 0 0 0 0 0 1 ®
11 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 (ii)
13 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 @
13 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 (i)
15 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 @)
then Since there are 2° — 1 different types of columns,
o2 each type of column must be used at least h times
Nk —1,d) = 2 [d+ 2 — 1)/27] to form M, or one type of column is used at least
0 h + 1 times to form M. In the first case, we will
= Nk, d) — [(d+ 2" - 1)/2""]. have at least h occurrences of the column of type
2¥=' (in fact, exactly h occurrences). Dropping these
» Proof h columns, together with the one column of this

Let A > 0 be the integer defined by
R <d -1 < (b4 D%

Then [(d + 2°' — 1)/2*'1 = h + 1. We shall
prove the theorem by taking a k X n generator
matrix G for a (k, d) group code with code word
length n = N(k, d), and derivinga k — 1 X n —
h — 1 generator matrix @’ for a (k — 1, d) group
code.

We may assume that G has been put in reduced
echelon form, G = {1, | M 1, where I, is the identity
matrix of order k, and M is a k X n — k matrix.
We have

k—

n—k=>[(d+2 —1)/27 -k

i

—

I
- (=]

k—

= > {[(d+2 —1/27 -1}

E S
[
-]

I
™

[(d — /27

> -
[}
~ o

> 2, [h27/27]

-
f
- =1

&
|

— hzk-—l—i

Q2" — 1).

-
=

I

type in I, and then eliminating the k* row of G,
we obtain a submatrix

G = [[hr ' M1

which is clearly the generator matrix of a (k — 1, d)
group code. The code word length is

k—2
W=n—h—1= 2 [(d+2 —1)/27.

i=0

In the second case, we may assume, without loss

of generality, that a column of type j, with j > 2",
occurs at least A 4+ 1 times in M. Let this type of
column have ones in rows %;, --- , 2, and in row k.
We may premultiply ¢ by a nonsingular matrix
K which adds the last row of G to the rows indexed
%1, - -+, ¢.. The result, a generator matrix H equiva-
lent to ¢, has the appearance

L
H=\|___AM1!,
i

0.

where A is a k X 1 matrix, i.e., a column vector,
with ones in rows ¢,, --- , 7, and k, and M’ is a
k X n — k matrix with at least &~ + 1 columns
of type 2"~' (in fact, exactly & + 1 columns of type
2F-"). As in the first case, we drop these & + 1
columns, plus the k* row, and obtain a generator

541
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matrix for a (k — 1, d) group code with code word
length

n=n—h—1= Iz_z[(d+2"—1)/2i].

o Corollary 1

If Nk, d) = D.*2) [(d + 2° — 1)/27], then any
generator matrix for a (k, d) group code of length
n = N(k, d) uses a column of type j, 7 = 1, --- ,
2 — 1, at most & + 1 times, where 2 > 0 is the
integer defined by 72" < d — 1 < (h + 1)2*".

s Proof

Assume a column of type j is used more than & + 1
times. Without loss of generality, we may assume
j > 2'. Then an equivalent generator matrix
can be obtained which contains more than A + 1
columns of type 2°~*, by premultiplying by a suitable
nonsingular matrix. Then the submatrix obtained
by dropping the columns of type 2°°' and the ktt
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