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A Bound  for  Error-Correcting  Codes 

Abstract: This paper gives two new bounds for the code word length n which is required to obtain CI bi- 
nary group code of order 2k with mutual distance d between code  words.  These  bounds are compared 

with previously known bounds, and are shown  to improve upon  them for certain  ranges of k and d. 
Values  of k and d are given for which  one of these  bounds  can actually be achieved;  in  such  cases,  the 

structure of  the  resulting codes is shown  to  satisfy a  certain  condition. 

1. Introduction 

This  paper deals with  the class of error-correcting 
codes called group  codes, and examines the problem 
of determining the minimum code word  length n, or 
equivalently, the minimum number of check positions 
n - IC, which are necessary for  a  group code to  have 
a given error-correcting  ability. The basic paper of 
Hamming [l] gives a lower bound  on  minimum 
number of check positions which is quite  sharp for 
low values of n/(n - k ) ,  i.e., for codes which have a 
low  redundancy or transmit information a t  a high rate. 
Improvements  have been made  on the Hamming 
bound  for higher redundancy codes [a,  3, 41. The 
present  paper gives two lower bounds which are a 
further  improvement  on  the  Hamming  bound  for 
the case of higher redundancy  group codes. These 
bounds  are derived  in  Section 2, and  are compared 
with  previous  results in Section 3. Section 4 con- 
tains  two theorems  on the existence and  structure 
of group codes for which one of the bounds is 
actually  attained. 

We begin by  introducing some of the basic notions 
in the  theory of error-correcting  binary codes which 
we shall  require.  A sequence of n binary  digits  is 
called a code word. Two code words are said to  have 
mutual  distance  d, if they differ in  exactly d out of 
n positions [l]. -4 set X of code words  is called an 
e-error-correcting code [I], if any  two code words  have 
mutual  distance a t  least d = 2e + 1. If the members 
of X form  a  group  under  the  operation of digit- 
wise modulo 2 addition, we say S is  a group code [5] .  
In  this case, X has  order 2k, k 5 n. Our  interest 
is  in  group codes of order 2k having  mutual  distance 
a t  least d between code words; we shall term  such 
a code a ( k ,  d )  group  code, for  short.  Because of 

532 the group  property,  the  requirement  that  any  two 

code words  have mutual  distance a t  least d i s  
equivalent to  the requirement that all  nonzero  code 
words  contain a t  least d ones, i.e., have weight 
a t  least d ,  since the  mutual  distance between  code 
words is precisely the weight of that code word 
which  is their sum. 

We  shall  assume that a  group code of order 2k 
and code word length n is obtained  by  forming a 
k X n generator matrix  [B], consisting of k inde- 
pendent  vectors of length n, whose components are 
binary  digits,  and combining these k vectors  in  all 
possible ways to  generate the  set of 2k - 1 non- 
zero code words. This  set,  together  with  the sequence 
of n zeros, forms a group  code of order 2k. Any 
group code can  be  generated  in this way. 

Each column of a k X n generator  matrix is one 
of 2k - 1 different types of columns, where  a column 
of type j ,  j = 1, 2, . - -  , 2k - 1, is a  column of k 
binary  digits which is the binary  representation of 
the integer j, considering the  top  entry  as  the  units 
digit  and proceeding  downward.  Any  generator 
matrix,  and,  hence,  any  group code, can  be  de- 
scribed,  within  a permutation of columns, by giving 
the number of columns of each  type which occur 
in the  matrix: N = (nl, n,, , n 2 k - l ) .  This is 
Slepian's modular  representation [ 5 ] .  

The weights of the 2k - 1 nonzero code words 
of a  group code of order 2k can  be  obtained  by 
multiplying the vector N by a 2k - 1 X 2k - 1 
matrix c k  [3, 61 

w = C k N T ,  (1 *I)  

where W T  is a (2k  - 1)-component  vector: 

TirT = (wl ,   w*,  * * , Wz", 

IBM JOURNAL NOVEMBER 1960 



with w i  = w ~ ~ , - , + ~ ~ . - ~ + . . . + ~ ~ . - ~  designating the CkNT 2 W .  ( 1 -2) 
weight of the code word formed by combining r 
rows of the generator  matrix indexed by k 2 pl > 
p ,  > - > p, 1 1, 1 5 T 5 k. We shall  say, 
for  short, wd is the  weight of the ith code word, i = 1, 
2, - , 2k - 1. Using this convention for W requires 
that  the matrix Ck have its entries defined as follows: 

Such a vector N will be the modular representation 
of a  group code of order 2k, where the ith code 
word has weight at,  least w,.  That  the resulting 
group code has  order 2k, i.e., that  the resulting 
generator  matrix consists of k linearly independent 
rows, is immediate, since any dependence among 

1 if the number of places where (i)2 and ( j ) ,  generator rows would imply w i  = 0 for some i. 
have ones in common is odd, In particular, since our  interest is in ( k ,  d )  group 

codes, i.e., each nonzero code  word  is required to have 
0 otherwise, weight a t  least d,  we shall use for W T  a (2k - 1)- 

e . .  = s 2  

where (i)2 and ( j ) 2  denote  the binary  representation 
of integers i and j ,  respectively, 1 5 i, j 5 2‘ - 1. 
For example, if 

component vector  with each component equal to d.  
Our object will be to  study ( k ,  d )  group codes of 

minimum length. We define N ( k ,  d )  as the minimum 
code word  length  required for a ( k ,  d )   group code. 

G = O 1 0 1 1  [: 1 : : :I 
is a generator  matrix of a  group code of order Z3, 
it has modular  representation N = (1, 0,  1 ,0 ,1 ,1 ,1 ) .  
The  set of nonzero code words indexed by i = 
1, - , 7 which are generated by the rows of G 
are  the following: 

i = l :   1 1 1 0 1  

i = 2 :  0 1 0 1 1  

i = 3 :   1 0 1 1 0  

i = 4 :  0 0 1   1 1  

i = 5 :  1 1 0 1 0  

i = 6 :  0 1 1 0 0  

i = 7 :  1 0 0 0 1  

The weight wi of the i t h  code word can be calcu- 
lated  directly, or by using ( l . l ) ,  

W = C,NT = 

- ” - - -  
1 0 1 0 1 0 1  

2 1 0 1 1 1 1 0 0  

3 1 1 0 1 1 0 1 0  

3 .  = 0 0 0 0 1 1 1 1  

3 1 1 1 0 0 1 1 0  

3 0 0 1 1 0 0 1 1  

4 1 

-1 1 0 1 0 0 1- -1, -2- 

Given k and d ,  an integer  program can be formulated 
whose solution is  the modular  representation of a 
( k ,  d )  group code of minimum length, so that the 
code word length  for this code is N ( k ,  d ) :  

Minimize n = ni 

subject to 

2 k - 1  

i = l  

2 k - 1  

ciini 2 d i = 1, - - , 2k - 1, (1.3) 
i - 1  

ni 2 0 ,  integral j = 1, , 2 k -  1. 

A vector N = (nl, n,, . . , ni, . , n 2 k - 1 )  which 
is a solution to  this integer  program is the modular 
representation of the desired minimum length ( k ,  d)  
group code. 

An equivalent  integer  program  for finding a ( k ,  d )  
group code of minimum length  was given by Mc- 
Cluskey 121. The formulation  there differs slightly 
from (1.3) in the indexing of code words and column 
types,  and  in  the specification of the first k columns 
of the generator  matrix, leaving only the remaining 
n - k columns to be determined. Following Ref. 
[6], we can state  this second assumption as a re- 
quirement that  the generator  matrix is in “reduced 
echelon form.” Any generator  matrix  can  be put 
into  this form by  premultiplication  by a suitable 
nonsingular matrix  and postmultiplication  by a 
suitable  permutation matxix. 

2. lower bounds on N(k, dl 
Our aim will be to work in the reverse direction We use the inequality  system  for the integer pro- 

from ( l . l ) ,  viz., given a weight vector W T  = gram (1.3) to  deduce a result  relating N ( k ,  d )  and 

a  vector N = (nl, n,, - , ni, - . , n , k - , )  satisfying “the  greatest integer less than or equal to (d + 1)/2.” 
the inequality  system We first prove three  lemmata. 533 

(w1, WZ, . * .  , w i ,  * - e  , W a k - I ) ,  with w i  2 1,  find N ( k  - 1, [(d + 1)/2]}, where [(d + 1)/2] means 
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Lemma 1 

i) cij = C 2 k - - l + i , i ,  i = 1, " ' 2"" - 11 

11 j = 1, . . . 2k-' - 
.. 
11) 1 - cii = c z k - l + i , i ,  i = 1, " , 9 - 1  - 1 1  

j = 2k-1 , e.. 1 2 k  - 1. 

0 Proof 

i) (i)z and (2k-1 + i), have the same number of 
ones in common with ( j ) , ,  when 1 5 i, j 5 Zk-' - 1. 
ii) (2'-l + i )z  has an additional one in common 
with (j)zl as compared with (i),, when 1 5 i I 
Zk" - 1, 2k-1 5 j 5 2k - 1. 

Lemma 2 
Let s k  be a (IC, d )  group code in which at  least one 
code  word has  exactly weight d .  Then  there exists 
a generator  matrix G for S, in which this code word 
is the kth generator row. 

0 Proof 
Let G' be any generator  matrix for the code s k t  

and assume that a code  word which has weight 
exactly d is the sum of r rows of G' indexed by 
1 5 p, < p, < < p, 5 k, 1 I: r I k. If we 
premultiply G' by the nonsingular matrix K which 
adds  the generator rows indexed by pl,  p,, - . . , pr.-l 
to  the row indexed by p,, we obtain the equivalent 
generator  matrix G = KG' with a code  word having 
weight exactly d as its pTth row, 1 5 p, I k. A 
simple interchange of the p,th row of G with the kth 
row of G will make this code  word the kth generator. 

Lemma 3 

Let f i k  be a ( k ,  d )  group code in which at least one 
code  word has exactly weight d l  and  let  a  generator 
matrix G be chosen for the code f i b  so that  this 
row is the kth generator row. Let ni be the number 
of columns of type j ,  i = 1, - , 2k - 1 ,  in G. 
Then 
2 k - 1 - 1  

ciini 2 [(d + 1)/2] i = 1 ,  . - -  , 2&-' - 1 .  
i-1 

Proof 
We have 

x c i i n i  2 d a = 1 ,  1 2k - 1. (2.1) 

Adding the ith inequality to  the (Zk" + i)th, 

2 k - 1  

i -1  

i = 1, ... , Zk-' - 1, and using Lemma 1 , we 
534 obtain 
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i = 1, . . . ,2k-' - 1. (2 .2) 

We have assumed the kth generator row, i.e., the 
(2k-') s t  code word, has weight exactly d. Hence, 
2 k - 1  2)-1 

~ ~ k - ~ . ~ n ~  = ni = d ,  
i - 1  j - 2 k - 1  

since 

Upon substitution  in (2.2), we obtain 
2 k - x - l  

ciini 2 d/2 i = 1, ,2k-1 - 1. (2.3) 

Since the left-hand side of (2.3) is an integer, we 
may strengthen  the right-hand side to 

i - 1  

2 k - x - 1  

ciini 2 I(d/2) i = 1, , 2k-l - 1, (2.4) 

where I(x/p) denotes  "the  least integer greater than 
or equal to z/p." Now I(z/p) = [(x + p - l)/p]. 
Hence, 

i = l  

2 k - 1 - 1  

ciini 2 [(d + 11/21 

Theorem 1 

N(k ,  2 d + N ( k  - l , [ ( d  + 1)/2] 

- 1. (2.5) 

Proof 
Let s k  be a ( k ,  d )  group code of minimum length, 
i.e., s k  has code  word length n = N ( k ,  d ) .  Clearly, 
at  lea,&t one code  word of s k  has  exactly weight d ,  
rjnce otherwise s k  would not  have minimum length. 
Let G be a  generator  matrix for s k  in which the 
kth generator row of G has exactly weight d .  Let 
ni be the number of columns of type j, j = 1, - - - , 
2k - 1, in G. 
Then 

N ( k ,  d) = n = ni = d + ni .  

From Lemma 3, 

2 k - 1  p k - x - 1  

i - 1  i = l  

2k--1-1 

ciini 2 [(d + 11/21 
i-1 

i = 1, .. . , zk" - 1.  (2.8) 

Hence, the (2&-' - 1)-component vector (nl, 
n,, . .  . , n2t-x-1) is  the modular representation of 
a { k - 1, [ (d  + 1)/2] ] group code. Hence 



2 2 [(d + 2' - 1)/2'] 
' - 0  

2 E [(d + 2' - 1)/2'] 
i-0 + N {  1, [(d + 2"" - 1)/2k"]) 

= [(d + 2' - 1)/2'] 
k - 2  

i -0 + [(d + 2k" - 1)/2k"] 

= [(d + 2' - 1)/2'], 
k - I  

i - 0  

using the  fact  that N(1, d)  = d. 
Theorem 2 provides a sharp lower bound on 

N ( k ,  d) when d is large compared with k. Section 4 
discusses minimum length codes which achieve this 
bound for values of d satisfying d 2 Zk-' - 1. 

As an example of the use of Theorem 2, we  com- 
pute a bound on  code  word length for a group code 
of order 25 which corrects  three errors: 

N(5,  7) 2 7 + N(4 ,  4) 

2 7 + 4 + N 3 , 2 )  

1 11 + 2 + N(2, 1) 

2 13 + 1 4- NO, 1) 

2 14 + 1 = 15. 
~ For d fixed, when k 2 1 + log, (d - l), the 

bound (2.10) assumes a simpler form. Let ll(d - 1)21 [ 

denote the number of ones in the binary representa- 
tion of d - 1, i.e., the weight or norm of (d - 
Then, using the relation 

C [(d - V/21 = 2(d - 1) - II(d - O 2 1 1 ,  

we have 

m 

i -0  

N ( k ,  d) 2 2 [(d + 2' - 1)/2'] 
1-0 

k -  1 

= [(d - 1)/2'] + k 
1-0 

m 

= [(d - 1)/2'] + k 
1-0 

(2.11) 

= 2(d - 1) - ll(d - 1 ) 2 1 I  + k. 
The bound (2.11) increases at  the same rate as k ,  
for a fixed d. Yet the results of Hamming [l] give 
a lower bound on N ( k ,  d): 

N ( k ,  d = 2% + 1) 

N ( k ,  d = 2e + 2) 

which increases slightly faster than k. Thus, for 
fixed d, as k becomes large, (2.11) becomes more 
slack than (2.12). We shall compare these  bounds 
in more detail  in the next section. We shall also see 
in the next section that combined  use of (2.6) and 
(2.12) provides a better lower bound on N ( k ,  d) ,  
for certain values of k and d, than either (2.10), 
i.e., (2.11), or (2.12) alone. 

We complete this section by using (2.12) for the 
cases d = 3 and d = 4 to improve (2.10) or (2.11) 
for d in the range 3 5 d 5 2k+1. We shall make 
use of the  fact, as shown by  Hamming, that (2.12) 
actually becomes an equality for d = 3 and d = 4. 

+ min {n 1[2"/(n 4- l)] 2 2D+1}. (2.131 

ii) If 2k-p + 2'"" + 1 _< d < 2'-"" + 1, where 
0 I p 5 k - 1,  then 535 
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+ min (n  1[2"/(n i- I)] >_ 2"l). (2.14) 3. Comparison of lower bounds on N(k, d) 

0 Proof McCluskey [2] has shown that, for d 2 k, 
9 N(k,  4 2 d + N(lc - 1, [(d + 1)/211 N ( k ,  d) 2 I[(2k - l)d/2k-1], 

and for d < k, 
r 

2 [(d + 2i - 1)/2i] 
k-P-2 N (k ,  d) 2 I (2k - 1) d/2k-1 1 

i = O  

1)/2k-"-1] ] 
+ 21-k 5 (!)(s - d)]. (3.2) + N { p  + 1, [(d + 2k-p-1 - a - d + l  

k-p--2 (3.1) can also be derived from the work of Mac- 
= [(d + 2i - 1)/2i1 + N ( p  + 1, 3) Donald [3]. We  show in Theorem 4 that (2.10) 

improves on (3.1) when d 2 k, and on (3.2) when 
i - 0  

= [(a + 2i - 1)/2j] 
k-p--2 

' - 0  

d < k. We use an alternative form for (2.10) in 
Theorem 4, viz., 

2 [(d + 2' - 1)/2'] 
k--8-2 

i - 0  

i) For d 2 k, 
1[(2& - l)d/2k-'] I 2 I(d/2'). (3.4) 

i = O  

k-P--2 

I = c [(d + 2i - 1)/2i1 + N ( p  + 1, 4) 
i - 0  

k-P--2 

= [(d + 2j - 1)/2'] 
i-0 

+ 1 + min {n 1[2"/(n + I)] 2 2"+l]. 

Table 1 gives the values of the lower bounds on 
N ( k ,  d)  provided by Theorems 2 and 3 for the cases 
k 5 16 and odd d satisfying 5 5 d 5 25. Equation 
(2.10) is used  whenever d 2 Zk" + 1, and (2.13) 
and (2.14) are used otherwise. Table 1 is divided 
into  three sections: (2.10) is used to compute the 
bound in Section I; (2.10) and (2.13)-(2.14) produce 
an equivalent bound in Section 11; (2.13)-(2.14) is 
used in Section 111. The bound for d even is one 
more than  the bound for d - 1. As an example, 
using (2.14), 

N(12,7) 1 7 + N(11, 4) 

I[(2k - l)d/2k-' + 2 (f)(S - a] 
s=d+l 

5 5 I(d/27. (3.5) 
i -0  

0 Proof 
i) Case A. d = h2k-1, h 2 1. 

In this case, both left- and right-hand sides of 
(3.4) are equal to h(2k - 1). 

Case B. d = h2k-' + 2" + 2" + - e  + 2jP, 
where IC - 2 2 j ,  > jz > - . > j p  2 0, h 2 0. 
On the one hand, 

1[(2k - l)d/2""] = I(2d - d / P ' )  = 2d - h 

On the other  hand, 

+ (5  2'"' + 1) + . . . + (2  2 ' 4  + 1) 
i -0 1-0 

= 7 + 1 + min (n I [2"/(n + I)] 2 211 } 
= 7 +  1 + 15 = 23. 

= h(2k - 1) + 2"+" + 2'"' + . . . + 2'"" 

= 2(hzk" + 2" + 2'' + . . . + 2jv) - h 

= 2d - h, Hence, as does (2.12),  (2.14) shows that a code 
536 word length of a t  least 23 is required in order to since I ( ~ l / 2 ~ )  has a contribution 2ir-i from 2", 
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Table 1 A lower bound on N(k, d) 
1 I k I 16, 5 5 odd d 5 25 

\k d\ 1 2 3 4 5  6  7 8 9 10 11 12 13 14 15 16 
\ 

5 

7 

9 

11 

13 

15 

17 

19 

21 

23 

25 

Section 

5 

9 

11 

15 23 

17 26 31 

19  29  34 

21 32 38 

23 35 41 

25 38 45 

I 

14 15 

19 20 21 

22 23 24 

26  27 28 

29 30 31 

34 36  37 38 

37  39 40  41 

41  43 44 45 

44  46 47 48 

49 51 52 53 

I1 

1 5 r 5 p ,  if i 5 j,, and  has  a  contribution +1 
from 2;', I 5 r 5 p ,  if i = j ,  + 1. 
ii) It can be shown that, if d < k ,  

I I[(2d - l)d/2d"] + k - d; 

we omit the  argument. Using (3.4) for the case 
lc = d, we have  the following chain of inequalities: 

1[(2' - l)d/2k" + 2"& 5 (f)(s - d)] 
s=d+l 

5 I[(2d - l)d/2d-1] + k - d 

I 5 I ( d / 2 < )  + IC - d 

I 2 I ( d / 2 i ) ,  

i -0  

i - 0  

which gives (3.5). 
The bound (3.1) is relatively sharp for even d 2 12. 

This  fact can be used to improve the bound for 
d - 1, by  subtracting 1 from the bound for d. 
The first time that (3.1) does not produce a bound 

16 17 18 19 20  22 23 24 25 

19 20 21 22  23 25 26 27 28 

24 25 26  27 28 29 31 32 33 

27  28 29 30 31 32 34 35 36 

31 32 33 34 35 36 38 39 40 

34 35 36  37 38 39  41 42 43 

40 41 42 43 44 45 46 48 49 

43 44 45 46  47  48  49 51 52 

47  48 49 50 51 52 53 55 56 

50 51 52 53 54 55 56 58  59 

55 56 57  58  59  60 61 63 64 

111 
J 

for  an even d which is as good as  that given by 
(2.10) or (3.3) is when d = 10. Here, for IC = 4, 
(3.1) gives 

~ ( 4 ,  io) 2 - 1)10/2~) = 19, 

while (2.10) gives 

N(4 ,  10) 2 10 + 5 + 3 + 2 = 20. 

We shall use Theorem 4 in comparing the condi- 
tion on k provided by (2.10) with one appearing  in 
the work of Plotkin [4]. He showed 

A(n, d) I [""I 2d > n, (3.6) 

where A(n, d) is the maximum number of binary 
sequences of length n which have mutual distance 
a t  least d, and [xIeven denotes  "the  greatest even 
integer less than or equal to x." If (3.6) is applied 
to group codes, it  states  that 

2d - n even 

2'" I [A] 2d > n. 
2d - n even 

(3.7) 

This bound can also be  obtained from (3.1): 537 
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n 2 l[(zk - 1)d/2~-'] 2 (zk - l)d/zk-l 

= + n / d  2 2 - 2"k 

=+ 2"" 5 d/(2d - n) 

=+ 2k I 2d/(2d - n) 

=+ 2k 5 [2d/(2d - n)leY,,. 

Hence, the condition (2.10) or (3.3) on k 

n 2 [(d + 2' - 1)/2'] 
k-1 

i=O 

= I(d/2') = k + [(d - l)/Zi] 
k-1  k-1 

i = O  i-0 

is stronger than  that provided by (3.7), because of 
Theorem 4. 

The work of Plotkin  can also be used to provide 
a condition on k when 2d I n. For this case, in 
addition to (3.6), we also use [4] 

A(%, d) I 2&n - 1, d) (3 8 
and repeat its use (n - 2d + 1) times to obtain: 

A(n, d) I 2"-2d+1A(2d - 1, d). (3 *9) 

Now, by (3.7), 

A(n, d)  2"-2d"[2d/(2d - (2d - l)}] 
(3.10) 

5 d2"-2d ' '. 
When (3.10) is applied to group codes, it  states  that 

2k 5 d2n-2d+2 2d I n. (3.11) 

We  now  show that (2.10) or (3.3) provides a  stronger 
condition on k than (3.11). We first treat  in  detail 
the case n = 2d. Let p be defined by 2' 6 d < 2"". 
Then (3.11) reduces to k 5 p + 2. We now evaluate 
(2.10) or (3.3) for k = p + 2, and show that  it is 
at least as large as n = 2d: 
"+1 

[(d + 2i - 1)/2'] 
4-0 

= ( p  + 2) + 2 [(d - 11/27 
i-0 

= (P + 2) + 2(d - 1) - II(d - 1 ) z I I  

= 2d + p - II(d - 1)z I I  

2 2 4  

For k < 1 + log, (d - 1) it increases at a slower 
rate  than n. Hence, for a fixed d, since (2.10) or 
(3.3) is as  strong a condition on k as (3.11) when 
n = 2d, it remains as  strong  as (3.11) for all n 2 2d. 

We now present an example comparing the use 
of (3.11) with (2.10). Let d = 5 and n = 10. Then, 
using (3.11), 2k 6 5.2' or k 5 4. Using (2.10), we 
see that k can be a t  mosk 3, since 

2 

[(d + 2< - 1)/2'] = 5 + 3 + 2 = 10. 
i-0 

Finally, we compare the bounds (2.10), (2.13), 
and (2.14) with the Hamming bound (2.12). As 
already  noted in the last section, for k sufficiently 
large, (2.12) provides a sharper bound than (2.10). 
For small k ,  the bound (2.12) can  be improved 
upon, using (2.10), (2.13), or (2.14). Furthermore,  for 
certain  values of k and d,  by using (2.6), and  sub- 
stituting  the best bound for N {  k - 1, [(d + l)/2] }, 
we can improve on (2.12). For example, in  the case 
k = 18, d = 13, from (2.12) we have 

N(18, 13) 2 41. 

However, by (2.6), 

N(18, 13) 2 13 + N(17, 7) 

2 13 f 29 = 42, 

since (2.12) gives N(17, 7) 2 29. Table 2 gives a 
summary of when (2.12) can  be improved upon 
for odd values of d from 5 up to 21. It lists the 
largest  value of k for which an improvement  can 
be  made  upon (2.12), and  the smallest value of k 
for which (2.12) provides a better bound on N ( k ,  d) 
than either (2.10), (2.13), (2.14), or the use of (2.6) 
and a bound for N { k  - 1, [(d + 1)/2]}. In each 
case, the corresponding bound is given. 

4. Codes which  achieve the bound 
(2.10) and their structure 

In Theorem 5 ,  we present (k, d) group codes which 
achieve the bound (2.10) and,  thus,  are minimum 
length codes. In all cases, d 2 2k-2 - 1. 

since d - 1 < 2"" - 1 implies that [l(d - 1)2[[ < 
p + 1. Hence, when n = 2d, (2.10) or (3.3) is as For the following values of d, the lower bound (2.10), 
strong a condition on k as (3.11). Now the bound 
(3.11) on k increases at the same rate  as n. How- N ( k ,  d) 2 [(d + 2' - 1)/2'], 
ever, the condition (2.10) or (3.3) on k increases 

Theorem 5 

k-1 

i - 0  

538 at  the same rate as n only  for k 2 1 + log, (d - 1). can be achieved by a ( k ,  d) group code: 
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Table 2 Comparison of lower bounds on N(k, d) 
5 5 odd d <  21 

d 

5 

7 

9 

11 

13 

15 

17 

19 

21 

Largest k for which 
a n  improvement upon 

(2.12) can be made 

14 

8 

25 

18 

35 

27 

45 

37 

55 

Corresponding n 

23 

19 

43 

38 

62 

56 

81 

75 

100 

i) d = h2k" + 2k-2 + 2k-3 + . . . + Zk-' + 1 

d = h2k" + 2k-2 + 2"' + . . . + Zk-" + 2 

i 3 : : , k - l  

ii) d = (h + l)zk-' - 2k-p - 1 

= h2'" + 2k-2 + . . . + Zk-"  - 1 

d = (h + 1)2k-1 - 2k-p 
= h2k" + 5jk-' + . . . + 2k-p 

{ : : : S k - l .  

Proof 
We treat only the case of odd d. The even case 
follows from the well-known result that a (IC, 2t) 
group code can always be obtained from a (k ,  
2t - 1) group code by adding one additional column. 

i) Let ni, the number of columns of type j used in 
forming the code, be defined as follows: 

n, = [ O i r S k - p ,  

h if i 5 2k-p+' - 1 ,  but j # 2', 

h + 1 otherwise. 

Smallest k for 
which (2.12) i s  

best 

23 

18 

33 

23 

43 

33 

52 

48 

68 

Corresponding n 

33 

31 

52 

44 

71 

63 

88 

88 

115 

We first observe that, since a column of type 2', 

generator matrix, its k rows are independent and 
the resulting code  will be of order 2k. 
We must now  show 

r = 0, ... , k - 1, occurs at least once in the 

2 k - 1  k-1 

ni = [(d + 2i - 1)/2'], (4.1) 
i-1 i P O  

and 
2)-1 

ciini 2 d i = 1, , 2k - 1. (4 -2) 
i-1 

We first evaluate the left-hand side of (4.1): 

26-1  2"I 2r-9+1-1 

E n i  = ni + ni + ni 

- - (h + 1)(2k--g+l + 2k-9'2 + . . . + 2 7  

i - 1  j - Z k - D + l  
r-O,**-.k-p 

i-2' 
i Z 2 '  
i - 3  

+ (h  + - P + 1) 

+ h[l  + 3 + - * -  + (2k-p - l)] 

+ - * .  + 2k-2 + Zk" + (IC - p + 1). 

= h(2k - 1) + 2k-p+1 + Zk-P+' 

Listing the sum on the right-hand side of (4.1) 
term by term, we have: 539 

IBM JOURNAL NOVEMBER 1960 



k-1 

[(d + 2; - 1)/2’] = h P 1  + 2k-2 + 2k-3 + . . . + 2k--”+1 + 2k-” + 1 (i = 0) 

+ h2k-2 + p 3  + 2k-4 + . . . + 2k-p + 2k-”-1 + 1 (i = 1) 
i - 0  

+ h2k-”i + 2k-2-i + 2k-3-i + 
* + 2k-”+”i + 2k-”i + 1 (i < k - p )  

+ h2p + 2”” + 29-2 + . . . + 2 “ 1  + l  ( i = k - p )  

+ h2”’ + 2”-2 + 2”-3 + . . . + 1 + 1  ( i = k - p + l )  

+ h2 + 1  

+ h  + 1  

(i = k - 2) 

(i = k - 1) 
= h(2k - 1) + 2k-1 + 2k-2 + . . . + Zk-”+2 + 2!=-”+’ + (IC - p + 1). 

To show (4.2), we observe that x::;‘ ciini receives 
weight h2k” from h occurrences of each column 
type, since C ,  has 2k-1 ones in each row.  We must 
now calculate the contribution to each x::;’ ciini 
of one each of column types 1, 2,  4, . . , 2 k - P  

9 

and 2k-p+‘, . . . , 2k - 1. 

Case A .  
If (i)2 does not  have ones appearing  in  digits indexed 
1, 2, 4, . , 2k-p, then, for this i, cii = 0 for j < 
2k-v‘1, so that all 2k“ ones in this row occur after  the 
(2k-p+1) * t  column. Hence 
2k-1  

ci;ni = h2k-1 + zk” = (h + 1)2k” 2 d 
i = 1  

where i satisfies one of i = Zk-”+’ (mod 2k”p+Z), 

i = 2k-1 

Case B. 
If has  a one in at  least one of the digits indexed 
1,2,4,  . , 2k-”, then, for this i, x::;’ ciini receives 
at least weight 1 from columns of type 1, 2, 4, 
... , 2‘-”. Furthermore, it receives weight Zk-” 
from columns of type j ,  P ” + ’  5 j 5 2 1, 
weight 2k-”” from columns of type j, Zk-”” < 
j 5 2k-p+3 - 1, . . . , weight 2k-1 from columns 
of type j ,  2k” 5 j 5 2k - 1, so that 

i Zk-”’’ (mod 2k-p+3), . . . , i E 2k-2 (mod 2k-1), 

k-P+2 - 
- 

2 k - 1  

ciini 2 h@”)  
i - 1  

+ 2k-2 + . . . + 2k-p+1 + 2k-” + 1 = d 

for all such i. 

ii) These codes are given explicitly by McCluskey 
121 and MacDonald 131. We give the modular repre- 
sentation for the general case, following MacDonald: 

ni = { h if 1 5 j 5 2k-p+1 

h + 1 if z~-”+’ + 1 5 j 5 zk - 1. 

That  the code given by this modular representation 
is actually a ( k ,  d )  group code with code  word 
length  equal to N ( k ,  d) ,  can be demonstrated in a 
manner similar to (i). We omit the argument. 

As examples of the range of Theorem 5, for 
k = 5, minimum length codes are given for d 2 7, 
d 7, . . -  , 16 (mod 16). For k = 6, minimum 
length codes are given for d 2 15, d = 15, . , 18 
(mod 32) and d = 23, . . , 32 (mod 32). 

For  the case k = 5, Table 3 gives an explicit 
code for the distances d = 7, 9, 11, 13, 15, based 
on Theorem 5. The  table  states which part of the 
theorem is used in  constructing the codes. For each 
code, we have ni = 1, for 17 5 j 5 31, and so the 
table  lists only the values of ni for 1 5 j 5 16. 

Finally, we give a result on the  structure of 
(k, d )  group codes  which achieve the bound (2.10). 
If an integer h 2 0 is defined by 

h2k-’ 2 d - 1 < (h + 1)2k”, 

then  any column type is used at  most h + 1 times 
in such a code. When k = 0, i.e., d < 2k“ + 1, 
this means that such a code uses a column of each 
type at most once. We first need: 

Theorem 6 
k-1 

If N ( k ,  d) = [(d + 2i - 1)/2i]1, 
i -0  
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Table 3 Minimum length codes 

k =  5, d =  7, 9, 11, 13, 15 

\ 1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6  

7 

1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1  15 

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1  13 

1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1  13 

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1  11 

1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1  9 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

I 
Part of 

1 Theorem 
5 used 

then 

N ( k  - 1 ,  d) = [(d + 2' - 1)/2'] 
k - 2  

i - 0  

= N(k ,  d) - [(d + 2k" - 1)/2&-'].  

Proof 
Let h 2 0 be the integer defined by 

h2k" 5 d - 1 < (h  + 1)2"". 

Then [(d + 2k" - I)!2k"] = h + 1 .  We shall 
prove the theorem by  taking a k X n generator 
matrix G for a ( k ,  d )  group code with code word 
length n = N ( k ,  d) ,  and deriving a k - 1 X n - 
h - 1 generator matrix G' for  a ( k  - 1, d) group 

Since there  are 2k - 1 different types of columns, 
each type of column must be used at  least h times 
to form M ,  or one type of column is used at least 
h + 1 times to form M .  In  the first case, we  will 
have a t  least h occurrences of the column of type 
2k-1 (in fact, exactly h occurrences). Dropping  these 
h columns, together  with the one column of this 
type in Ik, and  then eliminating the kth row of G, 
we obtain  a  submatrix 

G' = [Ik-l I M'] 
which is clearly the generator  matrix of a (k  - 1 ,  d )  
group code. The code  word length is 

n' = n - h - 1 = [(d + 2;  - 1)/2". 
k--2 

i = O  

code. In  the second case, we may assume, without loss 
I of generality, that a column of type j ,  with j 2 2'-', echelon form, G = [I ,  I MI, where Ik is the  identity at least h + times in M .  Let this type of 

matrix of order k ,  and 144 is  a k X n - k matrix. column have in rows i l ,  . . . 
We have , i, and  in row k. 

We may premultiply G by  a nonsingular matrix 

We may assume that G has been put in reduced 

n - k = [(d + 2' - l ) / 2 i ]  - k 
k - 1  

i = O  

k - 1  

= ( [ ( d  + 2' - l ) / 2 ' ]  - 1 )  

= [(d - 1)/2'] 

i = O  

k -  1 

i = O  

2 E [h2k"/2i] 
i =O 

k-I  
= h2k"" 

i = O  

= h(2k - 1 ) .  

K which adds  the last row of G to  the rows indexed 
i,, . . . , i,. The  result,  a  generator  matrix H equiva- 
lent to G, has  the  appearance 

where A is a k x 1 matrix, i.e., a column vector, 
with ones in rows i,, . . , i, and k ,  and M' is a 
k X TZ - k matrix  with at  least h + 1 columns 
of type 2k"1 (in fact, exactly h + 1 columns of type 
2&-'). As in the first case, we drop  these h + 1 
columns, plus the k t h  row, and obtain a generator 541 
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matrix for a ( k  - 1, d)  group code with code word 
length 

n' = n - h - 1 = [(d + 2i - 1)/2". 
k-2 

i=O 

e Corollary 1 

If N ( k ,  d )  = [ (d  + 2i - 1)/2'],  then  any 
generator  matrix for a ( k ,  d)  group code of length 
n = N ( k ,  d )  uses a  column of type j ,  j = 1, . - , 
2k - 1, at most h + 1 times,  where h 2 0 is the 
integer defined by h2k-1 5 d - 1 < (h + 1)2k". 

Proof 
Assume a  column of type j is used more than h + 1 
times. Without loss of generality, we may assume 
j 2 Zk". Then  an equivalent  generator  matrix 
can  be  obtained  which  contains  more than h + 1 
columns of type 2k-1, by  premultiplying  by a suitable 
nonsingular matrix.  Then  the  submatrix  obtained 
by dropping the columns of type 2k" and  the kth 
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