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Minimal Complete Relay Decoding Networks

Abstract: The standard relay-contact-tree network has been used extensively for many years. If n is the
number of relays involved, it has always been assumed that the 2(2"—1) contacts used in the standard tree
network is the smallest possible number of contacts with which such a network could be made. This paper
proves that this is true, provided no sneak paths are allowed. This is in contrast to the result obtained by
Lupanov, who showed that when n is five or more it is possible to save contacts below the usual number by
permitting sneak paths.

This paper proves further theorems about any network which satisfies the same specifications as an n-relay
tree without sneak circuits, and which is built with the minimal number of contacts. In particular, these
theorems characterize such a network well enough that it can be shown to be one of the standard forms of

relay tree network.

Introduction

A relay is a device, somewhat like an ordinary
electric light switch, having contacts which are used
to connect and disconnect within electrical networks.
There is a certain class of these networks, called
relay trees, which is frequently used and practically
important. Each relay tree has a network con-
figuration which is topologically a tree in the graph-
theoretic sense. A relay tree for n relays is used to
perform a certain job of connecting to any one of
2" specified terminals. A relay tree is made up of
relay contacts only, and uses exactly 2(2" — 1) of
these. These trees have long been known [13], [14],
and various papers have been written [4], [9], [13]
solving various theoretical problems about relay
trees. However, one problem which remained open
until recently was the question as to whether these
circuits used the smallest possible number of con-
tacts. It had been assumed or conjectured by most
persons working on the subject that a standard
relay tree for n variables used the minimal number
of contacts, that is, was the most economical net-
work for performing the specified job. A recent
paper by Lupanov [8], however, gives a relay net-
work for five relays, using only 60 contacts instead
of the customary 62. Lupanov’s network, shown in
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Fig. 6, is not topologically tree-like, hence it seems
appropriate to use the term ‘“complete relay de-
coding network” to denote any solution to the
problem, and to reserve the term ‘‘relay tree” for
the kind of network previously known. Lupanov’s
paper indicates that the network he gives can be
generalized to larger values of n, and that in the
limit for large n the generalized network uses a
number of contacts which asymptotically approaches
half the number of contacts of a standard relay tree.
However, there is a certain stricter version (ex-
cluding sneak paths) of the statement of the network
requirements which his network fails to satisfy,
although the standard tree does satisfy this stricter
statement of the requirements. In certain appli-
cations, his networks could be used instead of trees,
but in other applications Lupanov’s networks would
not be admissible because of the sneak paths. The
present paper shows that if sneak paths are excluded,
then 2(2" — 1) is the smallest number of contacts
with which a complete relay decoding network can
be built. That is, in this stricter version of the
problem, the relay tree is the most economical
solution possible.

This paper also demonstrates a number of
characteristic properties of those complete relay
decoding networks which do not have sneak paths
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and do have the smallest possible number of con-
tacts. In particular, it is shown that these must
actually be relay trees of the kind which is already
standard.

Contact networks

In this paper the terminology for graphs will be
used which is customary in electrical network
theory, and by this terminology a graph will be said
to have nodes (which other terminologies call points
or vertices) and branches (which other terminologies
call lines or edges).

A relay is a device having two admissible stafes,
which will be called 0 and 1. At any given time a
relay will be said to be in one or the other of these
two states. State 1 will be said to be the operated
state, and the relay will be said to be operated if it
is in state 1. Similarly, state 0 will be said to be the
released state, and the relay will be said to be
released if it is in state 0.

Given a set of n relays, the variables which indi-
cate which state each relay is in will be taken in this
paper to be the last n small letters of the Latin
alphabet. The stafes of such a set of relays are the
ordered n-tuples of states of the n relays. Hence a
set of n relays has 2" states. For instance, the state-
ment that the set {w, z, y, 2} of relays is in the state
0100 merely asserts that relays w, y, and z are
released, and relay z is operated.

Associated with each relay are electrical circuit
elements called contacts. Each contact is a two-
terminal device which connects or disconnects
(depending on the state of the relay) electrically
the two nodes which are its terminals. There are
two kinds of contacts, indicated in Figs. 1 and 2.
A front contact of a relay 2 is a contact which closes
(that is, makes a connection or a short cireuit
between the two terminals) when the relay z is
operated, and opens (that is, disconnects the two
terminals from each other), when the relay z is
released. A front contact is denoted by the variable
associated with the relay, without any prime, as in
Fig. 1. A back contact of a relay z is a contact which
closes when 2 is released, and opens when z is
operated. A back contact is denoted by adding a
prime to the variable associated with the relay, as
in Fig. 2,

A conlact network is a graph of which each branch
is taken to be a relay contact. Figs. 3, 4, 5, and 6 are
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Figure 1 Front contact on relay z.
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examples of contact networks, drawn with the
symbols for the relay contacts drawn along each
branch of each graph. The state of a contact network
is the state of the set of all relays whose contacts
occur in that network.

Given two nodes F and @ of a contact network, a
path between F and G is a sequence Fy, F,, --- Fp
of distinct nodes and a sequence @,, @, --- @p of
contacts, such that F, = F, F, = @, and such that
Q; is a contact joining node F;_, to node F,, when-
ever 1 satisfies 1 < ¢ < D. If all the conditions of
the previous sentence are satisfied, the path will be
said to have length D, and F and G will be said to
be the endpoints of the path. A path will be said to
be electrically connected in state W, if when the relays
of the network are in state W, each of the contacts
of the path is closed. Node F will be said to be
electrically connected to G in state W if there is a path
between F and G which is electrically connected in
state W. A path will be said to be sometimes con-
nected if there is a state W of its network such that
the path is electrically connected in state W. Given
any two nodes F and @G, the distance from F to G is
the smallest length of any path between F and G
which is sometimes connected. A contact network
will be called a topological tree if for any two nodes
F and @, there is exactly one path between them.

Relay decoding networks

A contact network is said to be a relay decoding
network if it contains one special node (called the
root) and other special nodes (called leaves) such
that each leaf is electrically connected to the root
in exactly one of the states of the network.

An external node of a relay decoding network is a
node which is either the root or a leaf. This termi-
nology is justified by the fact that the external nodes
are the only ones referred to in the definition of a
relay decoding network. In the applications which
are made of such a network, it is customary to make
it become a part of a larger electrical network by
attaching other circuit elements to the external
nodes but not to any nodes other than the external
nodes.

The definition of a relay decoding network does
not prohibit such a network from having other
unused states in which the root is not electrically
connected to any leaf. However, a relay decoding
network will be said to be a complete relay decoding
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Figure 2 Back contact on relay z.
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Figure 3 Ordinary relay tree for 3 relays.

network if there is one leaf for every state of the
network. Since in a network of n relays the number
of states is 2", a complete relay decoding network
has exactly 2" leaves.

For each n, there is a well-known complete relay
decoding network called a relay tree. Fig. 3 shows an
ordinary (or nonfolded) relay tree having 3 relays,
and Fig. 4 shows an ordinary relay tree for 4 relays.

The terms *‘leaf”, “root”, “tree”’, and “decoding”
are intended to be mnemonic. All of the trees shown
in this paper (Figs. 3, 4, and 5) are drawn with the
root at the bottom attached to the electrical ground
symbol, and with the leaves at the top of the trees.
Each state of the circuit is represented by a sequence
of binary digits, which can be considered to be a
code word, and this word may be said to be the
coded name of the corresponding leaf. The operation
of putting the network into a state W then decodes
the code word W by connecting the root of the tree
to the leaf named W.

The ordinary relay tree for » relays has 2 contacts
from one relay, 4 from another, 8 from another,
until 2" contacts occur on the nt relay. The total
number of contacts used in the network thus
amounts to

> 28 =22 —1).
i=1

Another well-known contact network, called a
folded tree, is obtained from the ordinary relay tree
by an operation called folding, whenever n > 3. A
folded tree which has n = 4 is shown in Fig. 5. A
folded tree has the same total number of contacts
as an ordinary relay tree, but the number of con-
tacts on the individual relays are not constrained to

Figure 4 Ordinary relay tree for 4 relays.

be successive powers of 2, as they are in an ordinary
relay tree. The exact extent to which the numbers of
required contacts can be redistributed among the
various relays is indicated in [5], [6], [14] and in-
vestigated in [4] and [13].

Sneak paths

In general, the statement that a contact network
has a sneak path is used somewhat loosely to mean
that there is a path through the network which
electrically connects certain nodes to each other,
which the designer of the network either did not
intend to electrically connect at all, or did not
intend to electrically connect when the network
was in certain states in which this path is electrically
connected. Hence determining whether a network
has sneak paths cannot be done by merely inspecting
the network. It must also relate to the intentions
of the designer. This subjective part of the determi-
nation of sneak paths can be evaded in this paper,
since the only networks considered are relay de-
coding networks. It will be assumed that the designer
of the network intentionally puts into it only those
paths which are necessary to satisfy the definition
of a relay decoding network.

A relay decoding network will be said to have a
sneak path if there exist two external nodes # and @
and a state W of the network, such that F is electri-
cally connected to @ in state W, but the definition
of the relay decoding network does not require F to
be electrically connected to @ in state W.

Since the definition of a relay decoding network
specifies exactly when the root is connected to each
leaf, a sneak path of the network electrically con-
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nects two leaves in a state in which neither one of
these leaves is electrically connected to the root.
Lupanov [8] constructed a complete relay de-
coding network for 5 relays which uses only 60
contacts instead of the 62 contacts which the
corresponding tree would use. This network permits
sneak paths, and it is shown in Fig. 6. By way of
comparison, no relay tree permits sneak paths.

Minimality

In this section theorems will be proved which show
that a complete relay decoding network cannot
have fewer contacts than a relay tree for the same
number of relays, unless sneak paths are permitted.
Further theorems will give various characteri-
zations of complete relay decoding networks having
this minimal number of contacts and having no
sneak paths.

o Theorem 1

In a contact network containing n relays, if there is a
sometimes connected path of length K between two
nodes, then the number R of states in which this path
is electrically connected satisfies B > 2"°%. Further-
more, B = 2" if, and only f, all of the contacts
along this path belong to different relays.

Proof: When K = 0 the theorem is vacuously
true. To complete the proof by induction on K,
assume that it holds for all paths of length K — 1.
Consider a path of length K between two nodes F
and G, and let H be the node occurring just after ¥
along this path. Then there is a contact joining
node F to node H, and there is a shorter path of
length K — 1 which is closed in a number R of
states satisfying B > 2" %70,
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Figure 5 Folding tree having 4 relays.

Case I. The contact between F and H belongs to
a relay z different from any of the relays whose
contacts are along the shorter path. Then the
shorter path is electrically connected independent
of the state of z. That is, for each state in which the
shorter path is electrically connected and z = 1,
there is another state in which the shorter path is
electrically connected and z = 0. Thus the set of B
states in which the shorter path is electrically con-
nected is divided into two subsets having R/2
members each. The path of length K is electrically
connected in the states of one or the other of these
subsets, depending on whether the contact on z is a
front contact or a back contact. Hence the number
R’ of states in which the path of length K is electri-

AN NNV

v X

WWW

7
e

\_?L//

Figure 6 Llupanov’s network, with a sneak path indicated by dotted lines.
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Table 1

)

L:lmgWOZ>HCDNmtaI>~1w:>Q

The matrix C corresponding 0000
to the network of Fig. 5. 0001

The quadruples of binary 0010
digits are the states of the 0011
network, and the lower-case 0100
Greek letters are the nodes 0101
which are not leaves. 0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

oNmDEPHmPbONEHEPHEE®

P

cally connected satisfies R = R/2 > 2*°% If
equality holds in the longer path, then it must also
hold in the shorter path, and so all of the contacts
are different from each other. Similarly, if all of the
contacts are different from each other, equality
holds in the shorter and hence in the longer path.

Case II. The contact between F and H belongs
to a relay = which is the same relay to which some
contact. on the shorter path belongs. Then if one of
these two contacts is a front contact and the other
is a back contact, we have one of them closed when
the other is open, which violates the assumption
that the path is sometimes connected. Hence we
must have these two contacts be either both front
or both back contacts. In either case the contact
between F and H is closed whenever the other
contact is closed, hence the path of length K is
electrically connected in all of those states in which
the shorter path is electrically connected. Hence the
number of states in which the path of length K is
closedis B > 275" > 2°7%, Since B = 2" cannot
oceur in Case II, this completes the proof of both
parts of the theorem.

o Theorem 2

If a complete relay decoding network for n relays has
no sneak paths, the number of contacts in the network
s al least 2(2" — 1). Furthermore, if the number of
contacts equals 2(2" — 1), then the network is a
topological tree.

Proof: Given any relay decoding network for n
relays which has no sneak paths, consider the matrix

HrnzgRoOoze~HuzgrROoZ> 2

—_—

PHEPHEEHED> AT >
ONHEHONDHOONDEHONDTHE
BERERPOEEEZRZ2RPSREST
FmEHROZOoOZEHMEHAMO 70z S
WhhErErEPOETEREE> D
BHD>HPHADHDBPHADADHAD A -
NNEENNEENNgEENNEE
PO HHOPOHEHOO H KOO EHE >
ARARRRSZ AR RR-T P2 P E
222 EREFEE -
NMMMNHZZZZHMHHNZ2Z 22
HHaHHooooHHBHOOOO ©

.

C which has one row for each state of the network
and one column for each node which is not a leaf.
Let each matrix entry ¢;; be the name of the leaf
which is electrically connected to node ¥ when the
circuit is in state j, if there is such a leaf, and let it
be blank otherwise. The absence of sneak paths is
used in constructing this matrix, since this con-
dition insures that the matrix C has at most one leaf
whose name is supposed to occupy each position of
the matrix.

To illustrate the ideas involved in this proof,
Table 1 is the matrix C which has been constructed
for the folded tree network of Fig. 5. The leaves of
Fig. 5 were labelled with capital Greek letters, and
the nodes of Fig. 5 other than the leaves were
labelled with lower-case Greek letters. In addition
to the matrix itself, the label (i.e., the state) corre-
sponding to each row and the label (i.e., the lower-
case Greek letter for the non-leaf node) correspond-
ing to each column have been indicated. It should
be noted that every entry of the matrix of this
example is the name of a leaf, rather than being
blank. The remainder of the proof will be for the
general network, without referring specifically to
this particular example.

For each leaf L, let d(L) be the distance along a
shortest, sometimes connected path from L to the
root. For each L and each integer ¢ satisfying
1 < d(L), let f(L, ©) be the node at distance 7 along
a sometimes connected path of length d(L) between
L and the root. Then for each <, the node f(L, 7) is
connected to L in at least 2*° states of the circuit,
by Theorem 1.
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But f(L, d(L)) is electrically connected to L in
exactly one state of the circuit. Hence d(L) is at
least n, and the name L must have at least

i 2n—i =

i=1

2" -1 )

occurrences in the matrix C.

But since there are 2" different leaves, and the
name of each of these leaves must have at least
2" — 1 occurrences in the matrix C, the total number
of non-blank entries in ¢ must be at least 2"(2" — 1).
The number of rows of the matrix C equals the
number 2" of states of the network. Hence, to have
this many entries, the matrix must have at least
2" — 1 columns, so we may conclude that there are
at least 2" — 1 nodes which are not leaves. Since
there are 2" leaves, there must be a total of at least
2"*' — 1 members of the set V of all leaves and
all those nodes for which there is some leaf to which
they are sometimes connected. Each leaf is sometimes
connected to the root, hence the subnetwork con-
sisting of all branches which have both their nodes
in V must be connected in the topological sense.
Then by Theorems 14 and 15 in [7], the number of
branches of this subnetwork is at least 2**' — 2,
and if it has exactly this many branches, this sub-
network must be a topological tree. If the entire
network has exactly this many branches, then the
subnetwork must be identical with the entire net-
work, which must therefore also be a topological
tree. Since each branch of a relay contact network
is considered to be a relay contact, the network must
have at least 2(2" — 1) contacts, and if equality
occurs, the network must be a topological tree.
This completes the proof.

Although it has been shown above that the net-
work must be a topological tree, the theorems given
later in this paper must be proved before the network
will have been shown to be a relay tree. This is an
appropriate point at which to mention the different
uses to which the word ‘‘tree’” has been put. When
writing about graph theory and about the theory
of these electrical networks which do not contain
relay contacts, most authors use the word ‘‘tree”
without any preceding adjective to denote what is
called a topological tree in this paper. When writing
about relay contact networks, most authors use the
word ‘““tree” without any preceding adjective to
denote what is called a relay tree in this paper.
Since this paper deals with both subjects, it is
impossible to be consistent with both terminologies.
The two longer terms are used in this paper to avoid
confusion, but at the same time to be fairly close
to the standard terminology from both fields.
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& Theorem 3

If a complete relay decoding network for n relays has
no sneak paths and uses exactly 2(2" ~— 1) coniacts,
then the distance from the root to each leaf is exactly
n, and in each stale of the network, each node of the
network is connected to exactly one leaf.

Proof: For a complete relay decoding network
which has » relays and uses exactly 2(2" — 1)
contacts, the matrix C of the proof of Theorem 2
must have exactly 2"(2" — 1) entries, none of which
are blank. Hence by the definition of the matrix C,
in each state of the network each node of the net-
work is electrically connected to exactly one leaf.

But in order for the matrix to have only this many
entries, we must have each name of a leaf occurring
only 2° — 1 times. Since if the distance from any
leaf L to the root were different from n, the sum
corresponding to (1) would have more terms and
the name of L would occur more than 2* — 1 times.

& Theorem 4

If a complete relay decoding network for n relays has
no sneak paths and uses exactly 2(2" — 1) conlacts,
then every somelimes connected path between nodes
of the network is a part of the path from the root to
some leaf.

Proof: Consider any nodes F and G of the net-
work, such that F is sometimes connected to G. Let
W be a state of the network such that F is elec-
trically connected to @ in state W. But since none
of the entries of the matrix C can be blank, we must
have some leaf L which is connected to G in state W.
But then L is obviously also connected to F in state
W. Then it suffices to prove that both ¥ and G lie
on the path from the root to L.

To prove this, we need only show that if any node
F of a network is electrically connected to leaf L in
state W, then F lies on the path from the root to L.
If we assume otherwise we will arrive at a contra-
diction. By (1), the name L must have at least
2" — 1 occurrences in those columns of C' which
correspond to the nodes which occur on the path
from the root to L. But the name L must have at
least one occurrence in the column corresponding
to F, and hence the name L must have more than
the required number of occurrences, which gives a
contradiction.

& Theorem &

If a complete relay decoding network for n relays has
no sneak paths and uses exacily 2(2" — 1) contacts,
then every sometimes connected paih belween nodes
of the nelwork passes through a set of nodes whose




distances from the root are all different.

Proof: Suppose that there were a sometimes
connected path which passes through two distinct
nodes @ and H, and that the distance from the root
to G is the same as the distance from the root to H.
Without loss of generality we may consider ¢ and
H to be the endpoints of the path. But by Theorem
4 nodes G and H lie on the unique path from the
root to some leaf L. But since the network is a topo-
logical tree, the unique path from the root to G
must be contained in this path, and the unique path
from the root to H is also contained in this same
path, and since the distances from the root to G
and to H are equal to each other, we must have
G = H, which contradicts the assumption that G
and H were distinct.

& Theorem 6

If a complete relay decoding network for n relays has
no sneak paths and uses exactly 2(2" — 1) contacts,
then for each node F of the network, if F 78 not a leaf,
there is a relay such that front and back conlacts of
that relay go from F to other nodes whose distances
from the rool are greater than the distance of F.

The above theorem, together with the preceding
ones, characterizes these networks by making it
possible to show that each of the networks is a folded
tree in the sense defined in [4] (page 14). As applied
to the examples of Figs. 3, 4, and 5, each node which
is not a leaf must have exactly two contacts between
it and the nodes drawn above it in the diagrams,
and these two contacts must be a front contact and
a back contact on the same relay.

Proof: By Theorem 3, in each state of the net-
work F is electrically connected to exactly one leaf.
Hence in each state of the network there must be a
closed contact which is the first contact along the
path connecting ¥ to this leaf. But by Theorems 4
and 5 the other end of this contact must be farther
from the root than F. Consider the set J of all
contacts joining F to some node farther from the
root. Then if J has only one member, we could put
the network into a state in which this contact was
open, contradicting Theorem 3. But if J has three
or more members, or if it has two members which
are contacts of different relays, we could find a set
of two contacts in J which are closed in the same
state of the network, contradicting Theorem 5.
Hence J must consist of exactly two contacts on
the same relay. If these two contacts were both front
contacts or both back contacts, there would again
be a state of the network in which both of them
would be closed. Hence one must be a front contact
and the other must be a back contact.

Other papers on decoding networks

Besides those publications cited in this paper,
others are listed in the references. It should be
mentioned that [1], [2], {3], and [12] deal with the
minimizing of electronic rather than relay decoding
networks. Marcus [9] gives a technique for con-
structing economical incomplete folded relay trees,
when only some specified subset of the 2" leaves are
required. Realization by means of relay contact net-
works of certain generalizations of relay decoding
networks are given in [5] and {11]. An abstract giving
Theorem 2 of this paper was published as [10], before
Theorems 3, 4, 5, and 6 of this paper were proved.
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