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Minimal Complete Relay Decoding Networks 

Abstract:  The standard  relay-contact-tree  network has  been  used extensively for many  years. If n is the 
number of relays  involved, it has always been  assumed that the 2(2n-1) contacts  used in the  standard  tree 

network is the  smallest  possible  number of contacts with which such a network could be made. This paper 

proves that this is true, provided no  sneak  paths are allowed. This is in contrast to the  result  obtained  by 

Lupanov, who showed that when n is five  or more it is possible to save  contacts below the usual number by 

permitting sneak  paths. 

1 This paper  proves further theorems about  any  network  which satisfies  the  same  specifications  as an  n-relay 
1 tree without sneak  circuits, and which is built  with the minimal number of contacts. In particular, these 

theorems  characterize  such a network well enough that it can be shown to be one of  the  standard  forms of 

relay tree  network. 

Introduction 

A relay is a device, somewhat like an ordinary 
electric light switch, having contacts which are used 
to connect and disconnect within electrical networks. 
There is a certain class of these networks, called 
relay trees, which  is frequently used and  practically 
important.  Each  relay  tree  has a network con- 
figuration which is topologically a  tree in the graph- 
theoretic sense. A relay tree for n relays is used to 
perform a certain  job of connecting to  any one of 
2” specified terminals. A relay tree is made up of 
relay contacts only, and uses exactly 2(2“ - 1) of 
these. These trees  have long been known [13], [14], 
and various papers have been written [4], [9], [13] 
solving various  theoretical problems about.  relay 
trees. However, one problem which remained open 
until  recently was the question as to whether these 
circuits used the smallest possible number of con- 
tacts. It had been assumed or conjectured by most 
persons working on the subject that a standard 
relay tree for n variables used the minimal number 
of contacts, that is, was the most economical net- 
work for performing the specified job. A recent 
paper by  Lupanov [8], however, gives a  relay  net- 
work for five relays, using only 60 contacts  instead 
of the customary 62. Lupanov’s network, shown in I *Bell Telephone  Laboratories, Incorporated, Murray Hill, New  Jersey. 

Fig. 6, is not topologically tree-like, hence it seems 
appropriate to use the  term “complete relay de- 
coding network” to denote any solution to  the 
problem, and  to reserve the term “relay tree” for 
the kind of network previously known. Lupanov’s 
paper indicates that  the network he gives can be 
generalized to larger values of n, and  that in the 
limit  for large n the generalized network uses a 
number of contacts which asymptotically approaches 
half the number of contacts of a standard  relay  tree. 
However, there is a  certain  stricter version (ex- 
cluding sneak paths) of the  statement of the network 
requirements which his network fails to satisfy, 
although the  standard  tree does satisfy this  stricter 
statement of the requirements. In certain appli- 
cations, his networks could be used instead of trees, 
but in other applications Lupanov’s networks would 
not be admissible because of the sneak paths. The 
present paper shows that if sneak paths  are excluded, 
then 2(2” - 1) is the smallest number of contacts 
with which a complete relay decoding network can 
be built. That is, in  this  stricter version of the 
problem, the relay tree is the most economical 
solution possible. 

This paper also demonstrates a number of 
characteristic properties of those complete relay 
decoding networks which do not  have sneak paths 525 
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and do have the smallest possible number of con- 
tacts. In particular, it is  shown that these must 
actually be relay trees of the kind which is already 
standard. 

Contact networks 

In this paper the terminology for graphs will  be 
used  which  is customary in electrical network 
theory, and  by  this terminology a graph will be said 
to have nodes (which other terminologies  call points 
or vertices) and branches (which other terminologies 
call lines or edges). 

A relay is a device having two admissible states, 
which will be called 0 and 1. At  any given time  a 
relay will  be said to be in one or the other of these 
two states. State 1 will be said to be the operated 
state,  and  the relay will be said to be operated if it 
is in state 1. Similarly, state 0 will  be said to be the 
released state,  and  the relay will be said t o  be 
released if it is  in state 0. 

Given a  set of n relays, the variables which indi- 
cate which state each relay is in will be taken  in  this 
paper to be the  last n small letters of the Latin 
alphabet.  The states of such a  set of relays are  the 
ordered n-tuples of states of the n relays. Hence a 
set of n relays has 2” states.  For instance, the  state- 
ment that  the set { w, x ,   y ,  z )  of relays is in the  state 
0100 merely asserts that relays w,   y ,  and z are 
released, and relay x is operated. 

Associated with each relay are electrical circuit 
elements called contacts. Each  contact is a two- 
terminal device  which connects or disconnects 
(depending on the  state of the relay) electrically 
the two nodes  which are  its terminals. There  are 
two kinds of contacts, indicated in Figs. 1 and 2. 
A front contact of a relay z is a  contact which closes 
(that is, makes a connection  or a  short circuit 
between the two terminals) when the relay z is 
operated, and opens (that is, disconnects the two 
terminals from each other), when the relay z is 
released. A front  contact is denoted by  the variable 
associated with the relay, without  any prime, as in 
Fig. 1. A back contact of a relay z is a  contact which 
closes  when z is  released, and opens  when z is 
operated. A back contact  is denoted by adding a 
prime to  the variable associated with the relay, as 
in Fig. 2. 

A contact network is a graph of which  each branch 
is taken to be a relay contact. Figs. 3,4 ,5 ,  and 6 are 

examples of contact networks, drawn with the 
symbols for the relay contacts drawn along  each 
branch of each graph. The state of a  contact network 
is the  state of the  set of all relays whose contacts 
occur in that network. 

Given two nodes F and G of a  contact network, a 
path between F and G is a sequence F,, F,, - FD 
of distinct nodes and  a sequence Q1, Q2, - - * QD of 
contacts, such that F, = F,  FD = G, and such that 
Qi is a  contact joining node Fi-,  to node F,, when- 
ever i satisfies 1 < i < D. If all the conditions of 
the previous sentence are satisfied, the  path will be 
said to have length D, and F and G will  be said to 
be the endpoints of the  path.  A  path will be  said to 
be electrically connected in state W ,  if when the relays 
of the network are in state W ,  each of the contacts 
of the  path is  closed. Node F will be said to be 
electrically connected to G in state W if there  is a path 
between F and G which  is electrically connected in 
state W .  A path will be said to be sometimes con- 
nected if there is a state W of its network such that 
the  path is electrically connected in state W. Given 
any two nodes F and G, the distance from F to G is 
the smallest length of any  path between F and G 
which  is  sometimes connected. A contact network 
will  be  called a topological tree if for any two nodes 
F and G, there  is exactly one path between them. 

Relay decoding  networks 

A  contact network is  said to be a relay decoding 
network if it  contains one  special  node  (called the 
root) and other special  nodes  (called leaves) such 
that each  leaf is electrically connected to  the root 
in exactly one of the  states of the network. 

An external  node of a relay decoding network is a 
node  which is either the root or a leaf. This termi- 
nology is justified by the  fact that  the ext,ernal nodes 
are  the only ones referred to in the definition of a 
relay decoding network. In  the applications which 
are made of such a network, it is customary to make 
it become a part of a larger electrical network by 
attaching  other circuit elements to  the external 
nodes but  not  to  any nodes other than  the external 
nodes. 

The definition of a relay decoding network does 
not prohibit such a network from having other 
unused states  in which the root is not electrically 
connected to any leaf.  However, a relay decoding 
network will  be said to be a complete relay decoding 
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Figure 4 Ordinary  relay tree for 4 relays. 
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Figure 3 Ordinary  relay tree for 3 relays. 

network if there  is one leaf for  every  state of the 
network.  Since  in a network of n relays the number 
of states is 2”, a  complete  relay  decoding  network 
has  exactly 2“ leaves. 

For each n, there is a well-known complete  relay 
decoding  network called a relay tree. Fig. 3 shows an 
ordinary (or nonfolded)  relay tree  having 3 relays, 
and Fig. 4 shows an  ordinary  relay  tree  for 4 relays. 

The  terms “leaf”, “root”,  “tree”,  and “decoding” 
are intended to  be mnemonic. All of the trees  shown 
in  this  paper (Figs. 3, 4, and 5 )  are  drawn  with  the 
root at the  bottom  attached  to  the electrical  ground 
symbol, and with the leaves at the  top of the trees. 
Each  state of the circuit is represented by a  sequence 
of binary  digits, which can  be considered to  be a 
code word, and  this word may be  said to  be  the 
coded name of the corresponding  leaf. The operation 
of putting  the network  into a state W then decodes 
the code word W by connect’ing the root of the  tree 
to  the leaf named W .  

The  ordinary  relay  tree for n relays has 2 contacts 
from  one  relay, 4 from  another, 8 from  another, 
until 2” contacts occur on the nth relay. The  total 
number of contacts used in the network thus 
amounts  to 
n 

2i = 2(2” - 1) .  
i = l  

Another well-known contact  network, called a 
folded tree, is  obtained  from the ordinary  relay  tree 
by  an operation  called  folding,  whenever n 2 3. A 
folded tree which has n = 4 is shown  in  Fig. 5. A 
folded tree  has  the  same  total  number of contacts 
as  an  ordinary  relay  tree,  but  the  number of con- 
tacts  on  the  individual  relays  are  not  constrained  to 

be successive powers of 2, as  they  are in an  ordinary 
relay  tree.  The  exact  extent  to which the numbers of 
required  contacts  can  be  redistributed  among  the 
various  relays  is  indicated  in [5], [6] ,  [14] and in- 
vestigated  in [4] and [13]. 

Sneak  paths 

In  general, the  statement  that a contact  network 
has a  sneak path is used somewhat loosely to mean 
that  there is a path t,hrough the network which 
electrically  connects  certain  nodes to  each  other, 
which the designer of the network  either  did  not 
intend  to electrically  connect at all, or did  not 
intend  to electrically  connect when the network 
was in  certain  states  in which this  path  is electrically 
connected.  Hence  determining  whether  a  network 
has  sneak pat.hs cannot  be  done  by merely  inspecting 
the network. It must also relate  to  the intentions 
of the designer. This  subjective  part of the determi- 
nation of sneak  paths  can be  evaded  in this  paper, 
since the only  networks considered are  relay de- 
coding networks. I t  will be  assumed that  the designer 
of the network  intentionally  puts  into  it only  those 
paths which are necessary to  satisfy the definition 
of a relay  decoding  network. 

A  relay  decoding  network will be  said to  have a 
sneak  path if there exist two  external nodes F and G 
and a state W of the network,  such that F is  electri- 
cally connect,ed to  G in  state W ,  but  the definition 
of the relay decoding network does not require F to  
be electrically  connected to  G in  state W .  

Since the definition of a  relay  decoding  network 
specifies exactly when the root is connected to  each 
leaf,  a  sneak path of the network  electrically con- 527 
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nects  two leaves in a state  in which neither  one of 
these  leaves is electrically  connected to  the root. 

Lupanov [8] constructed  a  complete  relay de- 
coding  network  for 5 relays which uses only 60 
contacts  instead of the 62 contacts which the 
corresponding tree would use. This  network  permits 
sneak  paths,  and  it is shown  in  Fig. 6. By  way of 
comparison, no  relay  tree  permits  sneak  paths. 

Minimality 

In  this section  theorems will be proved which show \ / \ / 
that a  complete  relay  decoding  network cannot 
have fewer contacts  t,han a relay  tree  for  the  same yy 
number of relays,  unless  sneak paths  are  permitted. 
Further  theorems will give  various  characteri- 
zations of complete  relay  decoding  networks  having - " " 
this minimal number of contacts  and  having no 
sneak  paths. 

Figure 5 Folding  tree having 4 relays. 

0 Theorem I 
I n  a  contact network  containing n relays, if there i s  a 
sometimes connected path of length K between two 
nodes,  then  the  number R of states in which  this  path 
i s  electrically  connected  satisJies R 2 2n-K. Further- 
more, R = 2n-K if, and  only if, all of the contacts 
along this  path belong to diferent  relays. 

Proof: When K = 0 the theorem is vacuously 
true.  To complete the proof by  induction on K ,  
assume that it holds  for  all paths of length K - 1. 
Consider  a path of length K between two nodes F 
and G, and  let H be  the node  occurring just  after F 
along this  path.  Then  there is a contact joining 
node F to  node H ,  and  there  is a shorter  path of 
length K - 1 which is closed in  a  number R of 
states  satisfying R 2 2""K-". 

Case I. The  contact between F and H belongs to  
a  relay x different  from any of the relays whose 
contacts  are  along t.he shorter  path.  Then  the 
shorter  path is electrically  connected  independent 
of the  state of x. That is, for  each  state  in which the 
shorter path is  electrically  connected and x = 1, 
there  is  another  state  in which the  shorter  path is 
electrically  connected and x = 0. Thus  the  set of R 
states  in which the shorter path is  electrically con- 
nected is divided into  two  subsets  having R / 2  
members each. The  path of length K is  electrically 
connected in  the  states of one or the  other of these 
subsets,  depending  on  whether the  contact on x is a 
front  contact or a back contact.  Hence  the  number 
R' of states  in which the  path of length K is  electri- 
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Table 1 

The matrix C corresponding 
to the network of Fig. 5. 

The  quadruples of binary 
digits  are  the  states of the 
network,  and  the  lower-case 
Greek  letters  are  the  nodes 
which  are  not  leaves. 

0000 
OOO1 
0010 
001 1 
0100 
0101 
01  10 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

a p y ~ e ~ q e c K ~ p v ~ o  

A A I A E I N A ~ E H I A N O  

~ ~ N ~ Z I N A ~ Z ~ I A N O  
A A O A B A O B A Z B I A N O  
E E K A E K E A ~ E H K M E T I  

Z Z E ~ Z K E A ~ Z ~ K M E H  
~ ~ H A ~ M ~ B A Z ~ K M ~ ~  
I A I A E I N A ~ E H I A N O  

N ~ N ~ Z I N A ~ Z B I A N O  
O A O A B A O B A Z B I A N O  
K E K A E K E A ~ E H K M E I I  

M e ~ ~ r ~ ~ ~ ~ r ~ ~ ~ ~ ~ n  
J I ~ I I A ~ M H B A Z ~ K M E U  

B B A B H A O B A E H I A N O  

H H M B H M T I B A E H K M E H  

A B A B H A O B A E H I A N O  

M H M B H M T I B A E H K M E U  

cally connected satisfies R' = R / 2  2 2'"=. If 
equality holds in the longer path,  then  it  must also 
hold in the shorter  path,  and so all of the contacts 
are different from each other. Similarly, if all of the 
contacts  are different from each other,  equality 
holds in the shorter  and hence in the longer path. 

Case II. The  contact between F and H belongs 
to a relay x which is the same relay to which some 
contact on the shorter path belongs. Then if one of 
these two  contacts is a front  contact and  the other 
is a back contact, we have one of them closed  when 
the other is open, which violates the assumption 
that  the  path is sometimes connected. Hence we 
must  have these two  contacts be either  both  front 
or both back contacts. In either case the contact 
between F and H is closed  whenever the other 
contact is closed, hence the  path of length K is 
electrically connected in all of those states in which 
the shorter path is electrically connected. Hence the 
number of states in which the  path of length K is 
closed is R 2 2n"K+1 > 2"-". Since R = 2"-K cannot 
occur in Case 11, this completes the proof  of both 

~ parts of the theorem. 

Theorem 2 

If a  complete relay decoding network for n relays  has 
no  sneak  paths, the number of contacts in the  network 
i s  al least 2(2" - 1). Furthermore, if the number of 
contacts equals 2(2" - l), then the network i s  a 
topological tree. 

Proof: Given any relay decoding network for n 
relays which has no sneak paths, consider the  matrix 

C which has one row for each state of the network 
and one column for each node which is not a leaf. 
Let each matrix entry c j k  be the name of the leaf 
which  is electrically connected to node k when the 
circuit is in state j ,  if there is such a leaf, and  let  it 
be blank otherwise. The absence of sneak paths is 
used in  constructing this matrix, since this con- 
dition insures that  the matrix C has at most one leaf 
whose name is supposed to occupy each position of 
the matrix. 

To illustrate the ideas involved in this proof, 
Table 1 is the matrix C which has been constructed 
for the folded tree network of Fig. 5 .  The leaves of 
Fig. 5 were labelled with  capital Greek letters,  and 
the nodes of Fig. 5 other than  the leaves were 
labelled with lower-case Greek letters. In addition 
to  the matrix itself, the label (Le., the  state) corre- 
sponding to each row and  the label (i.e., the lower- 
case Greek letter for the non-leaf node) correspond- 
ing to each column have been indicated. It should 
be noted that every entry of the  matrix of this 
example is the name of a leaf, rather  than being 
blank. The remainder of the proof  will be for the 
general network, without referring specifically to 
this  particular example. 

For each leaf L, let d ( L )  be the distance along a 
shortest, sometimes connected path from L to  the 
root. For each L and each integer i satisfying 
i 5 d(L), let f(L, i) be the node at distance i along 
a sometimes connected path of length d(L) between 
L and  the root. Then for each i, the node f(L, i) is 
connected to L in at  least 2'"' states of the circuit, 
by Theorem 1. 529 
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But f(L, d ( L ) )  is electrically connected to L in 
exactly one state of the circuit. Hence d ( L )  is at 
least n, and  the name L must  have at least 

occurrences in the matrix C. 
But since there  are 2" different leaves, and  the 

name of each of these leaves must  have at least 
2" - 1 occurrences in  the  matrix C, the  total number 
of non-blank entries  in C must be at least 2"(2" - 1). 
The number of rows of the matrix C equals  the 
number 2" of states of the network. Hence, to have 
this  many  entries, the matrix must have at least 
2" - 1 columns, so we may conclude that there  are 
at least 2" - 1 nodes which are  not leaves. Since 
there  are 2" leaves, there  must be a total of at least 
2"" - 1 members of the set V of all leaves and 
all  those nodes for which there is some  leaf to which 
they  are sometimes connected. Each leaf is sometimes 
connected to  the root, hence the subnetwork con- 
sisting of all branches which have  both  their nodes 
in V must be connected in the topological sense. 
Then  by Theorems 14 and 15 in [7], the number of 
branches of this subnetwork is at least 2"" - 2, 
and if it has exactly this  many branches, this sub- 
network must be a topological tree. If the entire 
network has  exactly  this many branches, then  the 
subnetwork must be identical with the entire  net- 
work,  which must  therefore also be a topological 
tree. Since each branch of a  relay  contact network 
is considered to be a  relay  contact, the network must 
have at least 2(2" - 1) contacts, and if equality 
occurs, the network must be a topological tree. 
This completes the proof. 

Although it has been shown above that  the net- 
work must  be a topological tree, the theorems given 
later  in  this  paper  must be proved before the network 
will have been shown to be a relay  tree.  This is an 
appropriate  point at which to mention the different 
uses to which the word  "tree" has been put. When 
writing about  graph  theory  and  about the theory 
of these electrical networks which do  not  contain 
relay contacts,  most  authors use the word  "tree" 
without any preceding adjective to denote  what is 
called a topological tree in this paper. When writing 
about relay contact networks, most authors use the 
word "tree" without  any preceding adjective to 
denote what is called a relay tree in this  paper. 
Since this paper deals with both  subjects, it is 
impossible to be consistent with both terminologies. 
The two longer terms  are used in this paper to avoid 
confusion, but at  the same time to be fairly close 

530 to  the  standard terminology from both fields. 

Theorem 3 

If a complete  relay decoding network for n relays  has 
n o  sneak  paths  and  uses  exactly 2(2" - 1) contacts, 
then  the  distance f rom Ihe root to each leaf is exactly 
n, and in each  state of Ihe network, each node of the 
network i s  connected  to exactly  one  leaf. 

Proof: For a complete relay decoding network 
which has n relays and uses exactly 2(2" - 1) 
contacts, the matrix C of the proof of Theorem 2 
must  have  exactly 2"(2" - 1) entries, none of which 
are blank. Hence by  the definition of the matrix C, 
in each state of the network each node of the net- 
work is electrically connected to exactly one leaf. 

But in order for the matrix to have only this  many 
entries, we must  have each name of a leaf occurring 
only 2" - 1 times. Since if the distance from any 
leaf L to  the root were different from n, the sum 
corresponding to (1) would have more terms  and 
the name of L would occur more than 2" - 1 times. 

Theorem 4 
If a complete  relay decoding network for n relays has 
no  sneak  paths  and  uses  exactly 2(2" - 1) contacts, 
then every sometimes connected path between nodes 
of the  network i s  a part of the path  from the root to 
some  leaf. 

Proof: Consider any nodes F and G of the net- 
work, such that F is sometimes connected to G. Let 
W be a state of the network such that F is elec- 
trically connected to G in state W. But since none 
of the entries of the matrix C can be blank, we must 
have some  leaf L which is connected to G in state W. 
But then L is obviously also connected to F in state 
W. Then it suffices to prove that both F and G lie 
on the  path from the root to L. 

To prove this, we  need only show that if any node 
F of a network is electrically connected to leaf L in 
state W ,  then F lies on the  path from the root to L. 
If we assume otherwise we  will arrive at a contra- 
diction. By (I), the name L must  have at least 
2" - 1 occurrences in  those columns of C which 
correspond to  the nodes which occur on the  path 
from the root to L. But  the name L must haGe a t  
least one occurrence in the c.olumn corresponding 
to F ,  and hence the  name L must  have more than 
the required number of occurrences, which gives a 
contradiction. 

Theorem 6 

I f  a complete  relay decoding network for n relays  has 
no  sneak  paths  and  uses  exactly 2(2" - 1) contacts, 
then every sometimes connected path between nodes 
of the network  passes  through a set of nodes  whose 
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distances  from the root are all different. 
Proof: Suppose that  there were a  sometimes 

connected path which passes through  two  distinct 
nodes G and H ,  and  that  the  distance from the root 
t o  G is the  same  as  the  distance  from  the  root  to H .  
Without loss of generality we may consider G and 
H to  be  the  endpoints of the  path.  But  by Theorem 
4 nodes G and H lie on the unique path from the 
root  to some leaf L. But since the network is a topo- 
logical tree,  the  unique  path  from  the  root  to G 
must  be  contained  in  this  path,  and  the  unique  path 
from  the  root  to H is  also  contained  in  this  same 
path,  and since the distances  from the  root t,o G 
and  to H are equal to  each other, we must  have 
G = H ,  which contradicOs the assumption that G 
and H were distinct. 

Theorem 6 
If a  complete relay decoding network lor n relays  has 
no sneak paths  and  uses exactly 2(2” - 1) contacts, 
then for each node F of the network, if F i s  not  a leaf, 
there i s  a relay  such  that  front  and back contacts of 
that relay go from F to other nodes whose distances 
from the root are greater than the distance of F.  

The  above  theorem,  together  with  the preceding 
ones,  characterizes  these  networks by making it 
possible to show that each of the networks  is  a  folded 
tree  in  the sense defined in [4] (page  14). As applied 
to  the examples of Figs. 3,  4, and 5, each  node which 
is  not a leaf must  have  exactly  two  contacts between 
it  and  the nodes drawn  above  it  in  the  diagrams, 
and  these  two  contacts  must  be a front  contact  and 
a  back  contact on the same  relay. 

Proof: By Theorem 3, in  each state of the net- 
work F is  electrically  connected to  exactly  one leaf. 
Hence  in  each state of the network there  must  be a 
closed contact which is the first contact along the 
path connecting F to  this leaf. But  by Theorems 4 
and 5 the  other  end of t.his contact  must be farther 
from the  root  than F. Consider the  set J of all 
contacts joining F to  some  node farther  from  the 
root.  Then if J has  only one  member, we could put 
the network  into a state  in which this  contact was 
open,  contradicting  Theorem 3 .  But if J has  three 
or more  members, or if it  has two members which 
are  contacts of different  relays, we could find a set 
of two  contacts  in J which are closed in  the same 
state of the network,  contradicting  Theorem 5. 
Hence J must consist of exactly  two  contacts  on 
the  same relay. If these  two  contacts were both  front 
contacts or both  back  contacts,  there would again 
be a state of the network  in which both of them 
would be closed. Hence  one  must be a front  contact 
and  the  other  must  be a  back contact. 

Other papers on decoding networks 

Besides those  publications  cited in  this  paper, 
others  are listed  in the references. It should be 
mentioned that  [I], [a], [3 ] ,  and [12] deal  with  the 
minimizing of electronic rather  than relay decoding 
networks. Marcus [9] gives a technique  for con- 
structing economical incomplete folded relay  trees, 
when  only some specified subset of the 2“ leaves are 
required.  Realization by  means of relay contact  net- 
works of certain  generalizations of relay decoding 
networks  are given in [5] and  [ll]. An abstract giving 
Theorem 2 of this  paper was published as  [lo], before 
Theorems 3, 4, 5, and 6 of this  paper were proved. 
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