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Solving a Matrix Game 
by Linear  Programming 

Abstract: This paper presents (1) a new  characterization, via linear programming, of extreme optimal 

strategies of a matrix game and (2) a simple  direct  procedure for computing them.  The first  pertains  to  the 
neat  formulas of 1. S. Shapley and R. N. Snow for a “basic  solution“, and  the second to the highly effective 

“simplex  method“ of G. B. Dantzig.  Both are related to  the  author’s ”combinational  equivalence” of matrices, 

the first through an optimal block-pivot  transformation and the second through a suitably chosen  succession 

of elementary pivot steps. 

Introduction 

Let 

... 

S m l  * * .  
be the payoff matrix of a two-person zero-sum game 
in normalized form.  Let probabilities p , ,  . , p ,  
(each 2 0,  sum = 1) and q, ,  . , q. (each L 0, 
sum = 1) constitute mixed strategies P and Q for 
the “payee”  player I and  the  “payer” player 11, 
respectively. Then the schema (schematic repre- 
sentation) 

n 

or * 
Q 

= f l  

= fm 

exhibits  player I’s expected gains 

plgl l  + - + p,gml = el 

or PG = E 

p l g l ,  + - * *  + P m g m n  = e,  

against 11’s  columns, and player Il ls  expected 
losses 

g l l g l  + * * *  + glnq” = f l  

- or GQ = F 

gmlqt + . + gmnqn = fm 

against I’s rows. In  the above G-schema, inner 
(scalar) products of P with the columns of G produce 
the column equation-system PG = E ,  and inner 
products of the rows of G with Q produce the row 
equation-system GQ = F .  

Let u denote the minimum among e, ,  . . 1 en 

and v the maximum among f, ,  - . , f,,,. Player 1’s 
objective is to choose his mixed strategy P so as 
to maximize the “floor” u under his expected gains 
e, ,  ... , e,,. Player 11’s  objective is to choose his 
mixed strategy Q so as  to minimize the “ceiling” 
v over his expected losses f l ,  a .  , fm. Necessarily 
u 5 v. By the Minimax Theorem (1928) of John 
von  Neumann  (the  Main Theorem in [l]), there 
must exist mixed strategies P and Q for which the 
“floor” u coincides with the “ceiling” v. This  state 
of equilibrium is optimal for both  players, assuming 507 

= E  

IBM JOURNAL NOVEMBER 1960 



Transferring attention from e,, - + . , e,, and The problems of players I and 11, as summarized 
f,, . . , f m  to e, - u = sl( LO), - e,, - u = s,( LO) in the 8"schema above, can be transformed into 
and v - f l  = tl (2  0), * , v - fm = tm( 2 0), form an equivalent  pair of dual  linear  programs of the 
the schema following form: 

U 

P l  

Pm 

= 1 = 8, ... - - sn 
which describes column and row equation-systems 
as follows: 

p ,  + ... + p m  = 1  

--u + plg11 + * + prngml = 81 

and 

"Q1 - " *  -qn = -1 

"21 + 91191 + * * .  + 81.9n = --t1 

Maximize u = - X B  + d constrained by 
X A  2 C, X 2 0. 

Minimize v = -CY + d constrained by 
AY 5 B ,  Y 2 0.  

To  this  end,  take a  square  submatrix G,, of G 
such that its bordered counterpart 8,, is a non- 
singular square  submatrix of 8. (This is always 
possible; for example, det GI, = 1 when Gll is  any 
square  submatrix of order one, i e.,  just a single 
entry of G.) Let G,,, G,,, G,, and a,,, 8,,,  8,, = GZ2 
be the submatrices of G and 8, respectively, that 
remain when G,, and e,, are removed. Then  the 
8-schema can be  rearranged as follows (by  suitable 
permutation of rows and/or columns) : 

U 

Pl 

Pz 

or 
This schema may be written more compactly as Q1 Q2 

-0 Q Q I I I 

where 8 denotes the  matrix obtained by bordering 
G with a column of l's, a row of - l's, and a corner In  the  latter schema, solve 

= 8, = s, 

entry 0, where P denotes the vector [u, PI, and so 
on. Player 1's objective is to maximize u subject 
to  the column equation-system = 8 and  the for pl and -a1 (ell being nonsingular) to get 

p1811 + P2821 = 8, and 8,,Q1 + 8,,Q2 = -pl 

inequalities P 2 0, X 2 0. Player 11's objective 8 ,~ ; ;  - p , ~ , , ~ ; ;  = pl 
is to minimize v subject to  the row equation-system 
8Q = - T and  the inequalities Q 2 0, T 2 0. and 
(A vector  inequality holds in each component- 8;iTl + C;l;~~,,Q2 = -Q1 . 
e.g., P 2 0 means that p ,  2 0, - a  - ,-pm 2 0.) 

Note that  the bordered matrix G, just  as  the NOW,  substitute  for  and Q1 in 

508 payoff matrix G, is replaced byitsnegative-transpose P1812 + P,G2, = S2 and 8,,Q1 + GZ2Q2 = -T2 

I -  



to get 

These new equation-systems, equivalent to  the 
old (i.e., having the sa,me solutions), are described 
by the schema 

or 

-BI All  1 A,,  I = -&, 
I” 

=u =P1 =Xz  

Fl QZ 

=P,  = s, 
where 
A,, = 8;: 1 A,, = G;:Gl, 1 

A,, = -G,,G;: , A,, = G22 - 8,,8;:G,, . 
The nonsingular submatrix G,,, which plays the 
central  rale in the transformation from the old 
schema to  the new schema, is called a block-pivot. 
The  matrix G of the old schema a,nd the matrix A 
of the new schema are “combinatorially equivalent” 
(see [2], Theorem 4), a  fundamental relation of broad 
applicability. 

Let 

Then the new schema, rewritten as 

1 Y  F 

pertains  to  the  dual linear programs: 

Maximize u = -XB + d constrained by 

U = X A - C 2 O 1 X 2 0 .  

Minimize v = -CY + d constrained by 

- V = A Y - B ~ O , Y ~ O .  

Thus  the problems of players I and 11, as sum- 
marized in the o-schema,  have been transformed 
via a bIock-pivot 8,, into a (combinatorially) 
equivalent  pair of dual  linear programs, as sum- 
marized in the A-schema. 

The  term feasible is applied to solutions X ,  U ,  u 
and Y ,  V ,  v of the column and row equation-systems 
of the A-schema if they satisfy the constraint 
inequalities X 2 0, U 2 0 and Y 2 0, V 2 0 of 
the respective linear programs. For any pair of 
feasible solutions, u 5 v necessarily, as  may readily 
be verified; if u = v, then  both feasible solutions 
are optimal. 

Note that  any mixed strategies P and Q give 
rise to feasible solutions 

x, = X,, x, = P,, Ul = P,, u, = s2, 
u = minimal component of PG 

and 

Y1 = Ti, Yz = Q2,  Vl = Q 1 ,  v, = T,, 
v = maximal component of GQ, 

where X = PG - u and T = v - GQ. 

Optimal  block-pivots and  Shapley-Snow 
basic kernels 

The “basic solutions” X = 0, U = - C, u = d and 
Y = 0, V = B, v = d of the column and row 
equation-systems of the A-schema, above, are 
feasible if and only if -C 2 0 and B 2 0, respec- 
tively. When both  these conditions hold simul- 
taneously, the basic solutions are  optimal, since 
u = v = d. Then 

PI = -Cl , P, = 0 and Q1 = B, , Q, = 0 
constitute  optimal  strategies for players I and 11, 
and u = v = d is the value of the game. Accordingly, 
when both -C 2 0 and B 2 0, let the  term optimal 
be applied also to a block-pivot 8,,, through which 
the G-schema is transformed into  an 2-schema 
with  “optimal basic solutions.” 

Let 

adj GI, = I l h i i l l ,  

hii being the cofactor of the  j,i-th  entry of Gll. 509 

IBM JOURNAL NOVEMBER 1960 



Then, since 

= adj 

= 6;: = adj dll/det 8,, 

it can be shown that 

d = det G,,/Zi Zi hii ,  

the  j-th  entry of -C, = Zi hi i /Zi  Zi hi j ,  

the  i-th  entry of B, = Zi hi j /Zi  Z j  hii. 

For 8,, an optimal block-pivot, these are  the 
“basic soIution” formulas of L. S. Shapley and 
R. N. Snow [3]: the  square submatrix G,, of G is a 
basic kernel and  the mixed strategies P, = -Cl, 
P, = 0, and Q1 = B,, Q2 = 0 are extreme optimal 
strategies for players I and 11. (Also  see [4], p. 85, 
where the Shapley-Snow formulas are derived from 
“systems of equated  constraints.”) Each basic 
kernel G,, of G gives rise to a nonsingular o,, (since 
det 8,, = Zi Zi hii  # 0), which constitutes an 
optimal block-pivot as described above. Note  that 
a basic kernel G,, is singular if and only if the game 
value d is zero, but  that dl, is nonsingular without 
exception. 

e Example 1 
As payoff matrix,  take 

G = E  3 ,  

”21 q1 q 2  

U 

P I  

P2 

510 

~~ 

0 I - 1  -1  = -1 1 

1 I a  p = “1 - 81 

“ “ I  ”_“”” 

I 

1 j y 6 J = - t ,  

= 1  =sl =sa 

from the &schema, at left, to  the A-schema, at 
right.  Here  the block-pivot 8,, = and 

A = A,, = 8;: = adj Cll/det 8,, 
= adj 8,, = adj 8, 

since 

det 8,, = det = a - /3 - y + 6 = 1. 

In  the A-schema take s, = 0, s, = 0 and t l  = 0, 
t ,  = 0 to get 

u = CY6 - py = 2)’ 
pl  = 6 - y ( Z O ) ,  p ,  = -0 + a (ZO) ,  and 

q1 = 6 - P (ZO) ,  q a  = -7 + (20) -  

These illustrate  the Shapley-Snow formulas for a 
“basic solution”: G,, = G is basic kernel, u = v = 
det G/det dl and  the p’s and q’s are column-sums 
and row-sums from 

[ -: -3 = adj G/det a. 

If a > 0, a > y, 6 > /3, 6 > y (termed  “separated 
diagonals’’ [l], p. 173), then  the optimal p’s and q’s 
above are a11 positive. In this case (an  instance of a 
“completely mixed” game of I. Kaplansky [5]), 
G is the only basic kernel and  the optimal p’s and 
q’s are  unique. However, if a t  least one among the 
p’s and q’s is zero, then G is not  the only basic 
kernel. For example, if p ,  = - p  + a = 0 (i.e., 
,8 = a), then  there is also a basic kernel of order 
one, i.e., a  “saddlepoint,” provided by  the  entry a 
in the payoff matrix, to which correspond the extreme 
optimal  strategies 

pl  = 1, p ,  = 0 and q1 = 1 ,  q2 = 0. 

If p z  = - p  + a = 0 and 9, = -y + CY = 0 (i.e., 
y = /3 = a), then these  extreme  optimal  strategies 
are  the Same as  those  above arising from the basic 
kernel G of order two. In this case, there is still 
another basic kernel of order one (saddlepoint), 

1 tl t a  -1 _ _ _ _ _ _ - I -  “ --------- = v  

= “1 

y - a  , -1 = - q 2  

=U = Pl = pz 
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P I  = 5/67 pz = 1/6, p3 = 0 
and 

ql = 0, qz 1/3, q3 = 2/3. 

Another block-pivot transformation 

p l  = 0, p z  = 1 and q,  = 1, q2 = 0. 

Example  2 

As  payoff matrix,  take 

G = [-% -; -:I. -1 

Make  the block-pivot transformation 
--v qz 

Pl I -1 

Pz I -2 
I 

I 
I 

P 3  I -5 2 
I 

=1 =sz =s3 

1 

- 1/3 

- 
-"" 

- 1/3 

- 2/3 

- 
I 
I 
I 

1/6 -1/6 
- 1 -  

0 I -2 1 

=U =PI = pz 

= S, 

1j6 = v ""_ 
-5/6 = - 4 2  

11/6 = - p 3  

0 = -ttl 

= s1 

from  the (?-schema (suitably  permuted),  above, to 
an A-schema, below. Here the (optimal) block- 
pivot 8,, is  the three-by-three  submatrix of (? got- 
ten  by bordering 

In  the A-schema take s2 = ss = p3  = 0 and 
t l  = tz = q1 = 0 to get 

u = -1/3 = V ,  

P I  = 5 / 6 ,  pz = 1/6, ~1 = 1/6 
and 
qz = 1/3, 4 3  = 2/3, t a  = 0. 
That is, the extreme  optimal  strategies corresponding 
to  the above basic kernel GI, are 

-v qz 4 3  q1 
I 

u 0 I -1 -1 -1 

p3 1 I -5 2 8  

p l  1 1 -1 0 1 

pz 1 ! 3 -2 -6 
""I "_""" "" 

I 

=1 =sz =s3 =s, 

J. 
1 t z  t 3  41 

= "1 

= "2 

= - t 3  

= "1 

-113 I 7/12 5/12 1/6 
""_l""""""""" 

-1/3 I 1/12 -1/12 -5/6 

-2/3 I -1/12 1/12 11/6 
I 

0 / -1/2 -1/2 1 0 I 
=U = pz = p3 = SI 

having 

= [-, J 3  -2 

= v  
- - - 4 2  
= - 4 3  

= "1 

as basic kernel, yields in similar fashion the game 
value 

u = -1/3 z= v 

and the extreme  optimal  strategies 

p l  = 0, pz  = 7/12, p 3  = 5/12 

and 

q1 = 0, = 1/3, q3 = 2/3. 

Elementary pivot steps 

A (combinatorial equivalence) transformation  by  a 
block-pivot of order r ,  as  from a (?-schema to  an 
2-schema, exchanges r of the individual  marginal 
labels (variable or constant) at   the left  with T labels 
at  the bottom and the T parallel labels at  the right 
with the T parallel  labels at  the  top, signs being 
reversed in the  latter exchange. Such  a block-pivot 
transformation  can  always  be decomposed into a 
succession of pivot  transformations of order one, 51 1 
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exchanging just one label on a margin at  a time, 
together with suitable  permutation of rows and/or 
columns at  the end (see [2], Theorem 7). 

An elementary  pivot step (pivot  transformation of 
order one) works as follows.  (See E. Stiefel [6] for 
the connection with "Jordan elimination".) 

rl 7' 

... ... p ... 

... Y * . .  6 ... 

= U  

Take  an  entry a # 0 as pivot. Solve for 4 and - q  the 
equations 

... + ta+ ... + E'Y+ ... = g 

... + a q  + ... + Pq' + ... = - 7  

of the column and row containing the pivot a. 
Then  substitute for and q in the remaining column 
and row equations, such as 
.. . + t p  + ... + t'6 + ... = u' 

. . . + yq + . . . + 6qf + . . . = -#. 
There  result new column and row equation- 

systems described by  the schema 

... a - 1  . .. a-'p . . . 

... -Ya-l .. . 6 - ya-lp . . . 

= E  = u' 

Since an elementary  pivot  step is a special case 
(T = 1) of a block-pivot transformation, the  pattern 
is the same as that in the block-pivot formulas 
previously given for 2's submatrices in terms of 
@s submatrices. 

The formal  rules  for the above  elementary  pivot 
step  may be summarized briefly as follows: Replace 
the pivot a (ZO) by l / a .  Multiply each remaining 

512 entry p in a's row by 1/a and each remaining entry 

6's row and a's column and  the old entry ,8 in 6's 
column and a's row. Finally, exchange the marginal 
labels attached  to a's row and column (with  reversal 
of sign a t  top  and  right),  but make no change in 
the other  marginal labels. 

In  the following sections a simple constructive 
procedure, adapted from G. B. Dantzig [7], will 
be outlined  for the determination of an optimal 
block-pivot 6,, and  the corresponding A-schema by 
a succession of elementary  pivot  steps,  together 
with suitable  permutation of rows and columns at 
the end. This provides an effective practical  means 
of computing (extreme) optimal  strategies  by  linear 
programming, more natural  and direct than  the 
well-known one that depends on the game value 
being positive [8] (also [4], p. 74). 

Preliminary transformation to dual linear 
programs in a feasible form 

For the purpose at hand, form the equation-systems 

,. 

P I  + *.. + p ,  = 1 

--u + plgll + * + p m g m 1  = 81 

--u + p l g 1 n  + + p m g m n  = s n  

and 

"1 - -.. - q n  = -1  

v - q , , q 1  - * - - Q l n q n  = tl 

v - gm,ql - a'. - g m n q n  = tm 

described by the columns and rows of the G-schema 

v - q 1  - q z  - . e  - Qn 

I 

-u o l 1  1 ... 1 = "1 

p1 1 I 911 912 * Q l n  = tl 

pz 1 I QZ1 Q 2 2  - *  * gzn = tz  

p m  1 I Qml 9 m z  " *  Qmn = t m  

""I_""""""~""- 

- 1 -  
* I  * 
- 1 .  

= 1  =SI =sz ... = Sn 

These  equation-systems differ from those described 
by the columns and rows of the B-schema (at the 
end of the Introduction) only in the inessential 
fact that all  equations, except the first, in the row 
system  have been multiplied through  by  minus one. 
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g!! = g!. - g! = 
I 1  I 1  zn g i i  - g m i  - gin + gmn 

and 

9 ' .  = g . - g 

This is also an elementary  pivot step, using as 
pivot the  entry 1 in the upper  right corner of the 
GI-schema. Note  the invariance of the entries g" 
and g' when each payoff g i i  is replaced by gii  + k, 
where k is an  arbitrary  constant;  the only change in 
the  entire @'-schema is that  the lower right corner 
entry -gmn is replaced by -gmn - k .  

By  a mere change of notation, rewrite the G"- 
schema as  the following XO-schema: 

ml m l  mn (i # m, j # n). 

0 1 1 ... 1 
""""""""""""" 

- 1  g:1 g:z . - *  g:, 

-1 911 g:2 * gL  

""""""""""""" 

1 g m l  gmz * * *  S m n  

- t m  - q 1  - q z  1 

-1 g::  g:: * * * - g:, 

-1 g::  9;: - 91, 

= q n  

= t i  

= tz  

- - -v  

-y: -y; -y; . . .  1 

"""""""_I"" 

= v: 
= v: 

= v; 

- - "21 

=u: =u; =u; . . . = -u 

or 

-YO 1 

x ° F l  = v o *  
1 -co I -& = "y 

= ( y o  = -u 

This XO-schema pertains to dual linear programs 
in the following form: 

Minimize -u = XoBo - do constrained  by 

uo = X O A O  - co 2 0, xo 2 0. 

vo = -A0Y0 + BO 2 0, YO 2 0. 

Maximize -v = Coyo - do constrained by 

Y o  = 0,  V o  = Bol v = do is a feasible solution of 
the second program (corresponding to player II's 
problem) if, and only if, Bo 2 0. This condition can 
be satisfied merely by  arranging that  the payoff 
entry gmn is maximal in its column, i.e., gmn 2 g,,, 
for i = 1, . . . , m - 1. Thus  it may  (and will)  be 
assumed that  the second program associated with 
the XO-schema has the feasibility property Bo 2 0, 
to be utilized in the remaining part of the game- 
solution procedure. 513 
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['-schema can 

= v  
9 

Note that  the 
the A'-schema 

1 YO 

dated  as be reformt "3 "1 - 9 2  1 

= 9 3  

= tl 

= t z  

= "v 

I 
I 

1 I  1 

61 2 

12 t 4 

-7 I -2 
"_I "" 

0 1 

-1  - 5 1 do -co 
X' -Bo A' 

((?"-schema) 
-1 -10 

1 6 
"""- - 

=u =u' 
gotten from the 8-schema  via the block-pivot 

G I 1  = [ ] 0 -1 

1 g m n  

of order two. The block-pivot is optimal if, and 
only if, gInn is a saddlepoint (i.e., gmn is minimal in 
its row of the payoff matrix G, as well as maximal 
in its column). This suggests that a Shapley-Snow 
basic kernel G,, of order greater than one may be 
regarded as a generalized saddlepoint. It might be 
called a "saddle-block." 

The @'-schema (or AO-schema) has  the desired 
"feasible form": take t3 = g, = g 2  = 0 to get qs = 1, 
tl = 2, t 2  = 4, all  nonnegative ! This is because the 
entry 2 in  the lower right corner of the (?-schema 
is maximal in its column of the payoff matrix G. 

Note  that a like  result is gotten from the following 
block-pivot transformation (of order  two) from a 
8-schema to  an A'-schema: 

91 q2 
I 1 

-v 93 
1 

0 I - 1  

1 1  2 

1 I  o 
1 I -2 

=1 =s3 

"" "" 

I- 

I 

r 
= -1 

= - t 3  

= "1 

= - t t ,  

U 

P3 

Pl 

P 2  

a Example 

Here the payoff matrix G is the same as in Example 2. 
Pivot  entries are  starred. 

1 -1 

-6 3 
v " p 1  -92 - 9 3  

=s, =s2 
= "I 

= tl 

= t z  

= t3 

((%schema) 
I -6  -2 
I 

1 t s  91 q 2  

= v  = 1  =SI =s2 =s3 

= -93 

= "1 

"3 "1  "2 -93 
= "2 

= -1 

= t ,  

= t z  

- - -v 

0 1  1 1' 
"""""""- 
- 1  - 7 4 -2 

- 1  -14 8 "4 

1 8 - 5  2 
""""-""" 

-U 

Pl 

P z  

1 

=u = p 3  =sl =s2 

(&-schema) 
Completion of game solution by simplex  method 

From the AO-schema with Bo 2 0, as specified 
above, the solution procedure follows the usual 
technique of the Dantzig "simplex method"  (along 
the lines of the elementary version used by S. 
Vajda [9]). Moving  through a succession of ele- 
mentary  pivot  steps, with resulting  schemata 514 

IBM JOURNAL NOVEMBER 1960 



-Y 1 

x r m  = V' 
1 -C' I -d' = -v 

I 

=U' = - U 

the goal is to drive -C' 2 0 while keeping B' 2 0. 
In each x'-schema (r = 0, 1, . e )  select a column 
with its - c i  < 0 and  then, from among the entries 
a:i > 0 in this column, choose as pivot an  entry aii 
for which b:/a:i is minimal. With  this  pivot,  make 
the elementary  pivot step  to  an A'+'-schema. The 
rule for choice of the pivot a:i ensures that B"' 2 0 
and  that -d"' 2 -dT.  

Since there  are only a finite number of possible 
x'-schemata  and the column and row equation- 
systems are feasible at  each step  (the equivalent 
systems of being feasible), either the process 
terminates in a final  A-schema 

-Y  1 

" 1 1 - " ' ,  1 -d  = -V 

= u  = "u 

having 

B 2 0 and -C 2 0, 

or the process "cycles," i.e., there occurs an A'- 
schema which is the same as a previous x'-schemn 
(except for possible permutation of rows and/or 
columns). Since -d'" >= "d", this  rare  event can 
happen  only if d' = d'" = - . . = d". However, 
such "cycling" can be avoided (see an inductive 
proof by G. B. Dantzig [lo] in a companion paper 
in this issue of the IBM Journal). From the final 
t?-schema read off the (extreme) optimal  solutions 

X = O , U = - C  and Y = O , V = B  

yielding u = d = v.  
By suitable  permutations of rows and columns, 

rearrange the initial &schema and  the final 2- 
schema 

v -Q1  -Qz 
I I 

0 1 1  1 

1 I G,, G12 
""I """" 

1 I Gz1 G22 

=1 =SI =sz 

= -1 

= T I  

= T2 

and 

X ,  

x2 

1 

- Y ,  " 2  1 

=TJ1 = l J z  = -u 

so that 

x, = s,, x, = P,; u, = PI, u2 = s2 
and 

Y1 = TI, Y2 = &2; VI = Q 1 ,  Vz = Tz.  
Then  it can be shown that  the Corresponding 
A-schema is obtained from the corresponding 
(?-schema by  the block-pivot transformation 

=u = P ,  

= s, 

Thus, an optimal block-pivot e,, has been deter- 
mined,  with G,, as Shapley-Snow basic kernel and 
P I  = -Cl ,  P,  = 0 and Q, = B,, Qz = 0 as extreme 
optimal  strategies, the game value being u = d = v .  

Completion of previous  example 

Starting from the @'-schema of the previous 
Example, proceed by elementary  pivot  steps, as 
follows. Pivot  entries are  starred. 515 
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"3 -q1  -qz 1 

p1I -1 -5  6* 2 I = t ,  (AO-schema) 
pz I -1 -10  12 I 4 I = tz 

"""""""I "" 

1 1  1 6 -7 I "2 I = -v 

= p ,  =s, =s, = -u 

- t 3  "1 "1 1 

1* 0 -2 I 0 I = t z  
"""""""I "" 

-1/6  1/6  7/6 I 1/3 I = -v  

"2 -q1 - t l  1 
I 

~3 -1/6  ll/6  1/6 I 2/3 
s, 1/6  -5/6  -1/6 I 113 

P 3  

1 

1 0 - 2 1 0  
"""""""I "" 

1/6  1/6  5/6  1/3 

= q3 

= qz 

= t3 
(A-schema) 

Taking s3 = s, = p 3  = 0 and t2 = q1 = 1, = 0, 
read off the game value u = -1/3 = v and  the 
extreme  optimal  strategies p ,  = 5/6, p 2  = 1/6, 
p3 = 0 and q1 = 0, q2 = 1/3, q3 = 2/3. 

Thus,  a succession of elementary  pivot  steps  has 
achieved the same result as  the first block-pivot 
transformation in Example 2, above. Similarly, 
the result of the second block-pivot transformation 
in Example 2 can be achieved by  returning to  the 
G"-schema and making the following elementary 

516 pivot  step. 

"3 -q1 "QZ 1 
I I 1 

83 I 0 1 1 f 1 = q 3  I 
6 I I 2 = t l  (Xo-schema) 
12* I 4 = tz 

1 
"""""""_I"" 

1 6 -7 I -2 = -V 
I 

"3 -q1 "2 1 

1/12  11/6  -1/12  2/3 I = q3 

Taking s3 = p ,  = s2 = 0 and t3 = q, = t2 = 0, 
read off the game value u = - 1/3 = v again and 
the extreme  optimal  strategies p ,  = 0, p z  = 7/12, 
p 3  = 5/12 and q1 = 0, q2 = 1/3, q3 = 2/3. 

Comment 

A block-pivot transformation from a (?-schema to  
an A-schema and a succession of elementary  pivot 
steps from a (?schema to  an A"-schema, as pre- 
sented in this paper,  demonstrate  operationally the 
efficacious methods,  theoretical  and  practical, of 
"combinatorial equivalence." These methods  apply 
generally in  the combinatorial  linear  algebra of 
linear  inequalities and related  systems.  They per- 
tain  to  the  matrix representation of the  abstract 
linear-transformation structure of a partially-ordered 
vector space over an ordered field (in which the 
"nonnegative orthant" of vectors X 2 0 conforms 
to  the nonnegative halfline of scalars z 2 0 in the 
ordered field). 
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