A. W. Tucker

Solving a Matrix Game
by Linear Programming

Abstract: This paper presents (1) a new characterization, via linear programming, of extreme optimal
strategies of a matrix game and (2) a simple direct procedure for computing them. The first pertains to the
neat formulas of L. S. Shapley and R. N. Snow for a “basic solution”, and the second to the highly effective
“simplex method"” of G. B. Dantzig. Both are related to the authot’s “combinational equivalence” of matrices,
the first through an optimal block-pivot transformation and the second through « suitably chosen succession

of elementary pivet steps.

Introduction
Let exhibits player I’s expected gains
gn 1 i Pigut+ o F Dufm = 6
: : : L o PG=E
gmi "t Gmn Pigin T Dufre = €a
be the payoff matrix of a two-person zero-sum game against II’s columns, and player II’s expected
in normalized form. Let probabilities p;, + - , pn losses

(each =z 0, sum = 1) and ¢, +-- , ¢. (each = 0,
sum = 1) constitute mixed strategies P and @ for
the “‘payee’” player I and the ‘“payer’ player IT,
respectively. Then the schema (schematic repre-
sentation)

% qn

Pr| In G | = f1

pm gml gmn = fm

= & .o = e,

guqi + -+ gl = h
: : - or GQ=F

gmlql + cet + gmnqn = fm

against I’s rows. In the above G-schema, inner
(scalar) products of P with the columns of G produce
the column equation-system PG = E, and inner
products of the rows of G with @ produce the row
equation-system GQ = F,

Let w denote the minimum among e, --- , e,
and v the maximum among f,, -+ , f.. Player I’s
objective is to choose his mixed strategy P so as
to maximize the “floor” u under his expected gains
e, - , €. Player II’s objective is to choose his
mixed strategy @ so as to minimize the ‘“‘ceiling”
v over his expected losses fy, -+ , fn Necessarily
u =< v. By the Minimax Theorem (1928) of John
von Neumann (the Main Theorem in [1]), there
must exist mixed strategies P and @ for which the
“foor” u coincides with the ‘‘ceiling” ». This state
of equilibrium is eptimal for both players, assuming
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rational behavior. Such mixed strategies P and @
are called optimal; the equilibrium value u = v is
the (unique) value of the game.

Transferring attention from e, , € and
fi, 0 yfmtoe, —u=8(20), - e, —u = 8/(20)
andv — f, = £,(20), -+« ,v — fn = £.(20), form
the schema

—_p ql LR q”
]
w |01 —1 -1]= -1
___: ___________
P Ilgu 1. | = — b
| .
. I
pm 1 E gml e gmn = —tm
= ]_ =sl ... =S,,

which describes column and row equation-systems
as follows:

Y2 +"'+pm =1

—U F Pigi + 0 T Pulfmr = 8
—u + P1G1n + ‘e + Prnlmn = Su
and

__ql_... ——q"=—1
4+ gugy + -0 + 910 = —4
-—v + gmlql + M + gmnqn = —tm .

This schema may be written more compactly as

- @ Q
]
|
u _(_)_:_?_1_ =1 op G = -T,
P|1 :' G |=-1
=1 =8 =8

where G denotes the matrix obtained by bordering
G with a column of 1’s, a row of —1’s, and a corner
entry 0, where P denotes the vector [u, P], and so
on. Player I’s objective is to maximize u subject
to the column equation-system PG = 8 and the
inequalities P = 0, § = 0. Player /I’s objective
is to minimize v subject to the row equation-system
GQ = —T and the inequalities @ = 0, T = 0.
(A vector inequality holds in each component—
eg., P =z Omeansthat p, 2 0, --- , pn 2 0.)
Note that the bordered matrix G, just as the
payoff matrix G, is replaced by its negative-transpose
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if the roles of players I and I are interchanged.
Block-pivot transformation to dual linear programs

The problems of players I and 17, as summarized
in the G-schema above, can be transformed into
an equivalent pair of dual linear programs of the
following form:

Maximize v = —XB 4+ d constrained by
XA =zC,Xz0.

Minimize v = —CY + d constrained by
AY £ B, Y z 0.

To this end, take a square submatrix G;; of @
such that its bordered counterpart G,; is a non-
singular square submatrix of G. (This is always
possible; for example, det G;; = 1 when G, is any
square submatrix of order one, ie., just a single
entry of G.) Let Gz, Go1, Gy and Gy, Gsy, Goy = Gag
be the submatrices of G and G, respectively, that
remain when G,, and G,, are removed. Then the
G-schema can be rearranged as follows (by suitable
permutation of rows and/or ecolumns):

- @ @
ul 0 IE —1| —-1]=~1
P, 1 %Gu G | =-T
P, 1 :: G | Go | = =T
=1 =8 =8
or
Q Q.
B, G G, = -T,
P, G Gy | = —T,
=5, =S,

In the latter schema, solve
PG+ PGy, = 8, and GuQ; + GiQ. = — T,
for P, and — @, (G,, being nonsingular) to get
8.G11 — P.,G.,G1i = P,
and
GiT: + G11G@ = — Qs .
Now, substitute for P, and @, in
PGy, + PGo = 8, and  GuQy + Gox@e = — T




to get

8iG1iGr2 + Po(Gr — GnG1iGr) = S,

and

—GuGiiT, + Gr — G0G71G10)Q. = ~T, .

These new equation-systems, equivalent to the
old (i.e., having the same solutions), are described
by the schema

1 r, @

t
1| d 3—01 -0, | =

I
Sl _Bl|: Au Alz = '_QI
|
Py| =By | Au | An|= T
=u =P1 =S2
or
T, Q-
Sl I‘Iu A-lz = ’_Q!
Pz A-21 Azz = “Tz
=Pl =02
where
A, = —11 y Ay = G;}Glz 3

fizl = _G21G——li ’ Azz = G22 - G_21G—;:G-12 .

The nonsingular submatrix G,,, which plays the
central réle in the transformation from the old
schema to the new schema, is called a block-pivot.
The matrix G of the old schema and the matrix 4
of the new schema are “combinatorially equivalent”
(see [2], Theorem 4), a fundamental relation of broad
applicability.

Let
X =[S, P,],

and
el
Q- T,

Then the new schema, rewritten as

U =[P, 8]

1 Y Y
i
|
Nd =Cl=v ox| 41 |=-v
X|—-Bi 4 |=-v
1

pertains to the dual linear programs:

Maximize v = —XB + d constrained by
U=X4-Cz0,X=z=0.

Minimize » = —CY + d constrained by

V=AY -B=0,Y =z0.

Thus the problems of players I and 11, as sum-
marized in the G-schema, have been transformed
via a block-pivot G,, into a (combinatorially)
equivalent pair of dual linear programs, as sum-
marized in the A-schema.

The term feastble is applied to solutions X, U, u
and Y, V, v of the column and row equation-systems
of the A-schema if they satisfy the constraint
inequalities X 2 0, U 2 0and Y 2 0, V = 0 of
the respective linear programs. For any pair of
feasible solutions, 4 < v necessarily, as may readily
be verified; if « = », then both feasible solutions
are oplimal.

Note that any mixed strategies P and @ give
rise to feasible solutions

X, =8,X,=P,, U, =P, U, = 8,,
% = minimal component of PG

and

Yi=T,Y,=@Q,V,=Q,V, =T,
v = maximal component of GQ,

where S = PG —uand T = v — GQ.

Optimal block-pivots and Shapley-Snow
basic kernels

The “basic solutions” X = 0, U = —C, u = d and
Y =0,V = B, » = d of the column and row
equation-systems of the A-schema, above, are
feasible if and only if —C = 0 and B = 0, respec-
tively. When both these conditions hold simul-
taneously, the basic solutions are optimal, since
% = v = d. Then

P,=-C,P,=0 and Q1=B1;Q2=O

constitute optimal strategies for players I and II,
and 4 = v = d is the value of the game. Accordingly,
when both —C = 0and B = 0, let the term optimal
be applied also to a block-pivot G,;, through which
the G-schema is transformed into an A-schema
with “optimal basic solutions.”

Let

adj Gv, = [|hyll,
h;; being the cofactor of the ji-th entry of G,,.
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Then, since

[ d _ij) = A, = G‘li = adj G*u/det éll

_Bl All
adj [0 _1}+det[0 _1},
1 Gy 1 Gy

it can be shown that
d = det G\,/Z; Z; hyy,
the j-th entry of —C, = Z,; h,;/Z; Z; hi;,
the ¢-th entry of B, = Z; h;;/Z; Z; hi;.

Il

I

For G,, an optimal block-pivot, these are the
“basic solution” formulas of L. 8. Shapley and
R. N. Snow [3]: the square submaftrix Gy, of G is a
basic kernel and the mixed strategies P, = —C|,
P, =0, and @, = B,, @, = 0 are extreme optimal
strategies for players I and II. (Also see [4], p. 85,
where the Shapley-Snow formulas are derived from
“gsystems of equated constraints.”) Each basic
kernel G, of G gives rise to a nonsingular Gy, (since
det Gy, = 3; Z; h;; # 0), which constitutes an
optimal block-pivot as described above. Note that
a basic kernel G, is singular if and only if the game
value d is zero, but that Gy, is nonsingular without
exception.

o Example 1
As payoff matrix, take

il
¥y @

where the entries in this two-by-two matrix are
such that

azf, azy, 9

1\Y

B, o=z«
and

a—B—y+06=1.

Make the block-pivot transformation

from the G-schema, at left, to the A-schema, at
right. Here the block-pivot (;; = G and

A= A4, = G;} = adj G,,/det G,
= adj G, = adj G,
since
det Gy =det G =a —B—7+5=1.

In the A-schema take s, = 0, s, = O and ¢, = O,
t; = 0 to get

u=oad— By =0,
pr=28—7v(20),p, = =8+ a (20), and
@i =38—8(20),¢a = —y + a (Z0).

These illustrate the Shapley-Snow formulas for a
“basic solution”; @y, = @ is basic kernel, v = v =
det G/det G, and the p’s and ¢’s are column-sums
and row-sums from

l: 5 _B} = adj G/det G.
-«

Ifa>g,a>v 8 >8 6> v (termed “separated
diagonals’ [1], p. 173), then the optimal p’s and ¢’s
above are all positive. In this case (an instance of a
“completely mixed” game of I. Kaplansky [5]),
G is the only basic kernel and the optimal p’s and
¢’s are unique. However, if at least one among the
p’s and ¢’s is zero, then G is not the only basic
kernel. For example, if p, = —8 + « = 0 (ie,,
B = a), then there is also a basic kernel of order
one, i.e., a ‘“saddlepoint,” provided by the entry a
in the payoff matrix, to which correspond the extreme
optimal strategies

pr=1,p, =0 and n=1,q =0.

Ifp, = ~B4+a=0andg, = —y + a =0 (ie,
v = B = a), then these extreme optimal strategies
are the same as those above arising from the basic
kernel G of order two. In this case, there is still
another basic kernel of order one (saddlepoint),

—v [/} qs 1 t, [
i i
ul 0 ) =1 —1]=-—1 1<w—575m—7—3+a =0
e e e U
| 1 E a B = —t —> 8 ~5+BE 1 ~1 |=-q
p| 1 '. v 6 | = —t, | v—a i -1 1 = —q,
510 =] =g =8, =U = =P

IBM JOURNAL ¢, NOVEMBER 1960




provided by the entry v in the payoff matrix, to
which correspond the extreme optimal strategies

p=0,p. =1 and a=1,¢ =0.
o Example 2
As payoff matrix, take
1 -1 0
G=|-6 3 -2
8 —5 2

Make the block-pivot transformation
-0 q2 qs T

ul O EI -1 -1 =-1{=—1
p) 1 Ii -1 0 1= -4
P2 1 :: 3 2| =6 = —1
ps| 1 é -5 2 8| = —1
=1 =3, =8 =8
!
1 4 ly ]
1| —-1/3 j 5/6 1/6 1/6 | =
S, —;/3 ::——1—/6 1/6 | =5/6 | = —¢.
8, —2/3§ 1/6  —1/6| 11/6 | = —q¢s
Da 0 f: -2 1 0 = —l
=u =D =Ps =8

from the G-schema (suitably permuted), above, to
an A-schema, below. Here the (optimal) block-
pivot Gy, is the three-by-three submatrix of G got-
ten by bordering

Gu = [—1 O].
3 =2

In the A-schema take s; = s3 = p: = 0 and
tl = tz = 91 = Otoget

= —1/3 =,
= 5/6, p. = 1/6, s = 1/6
and
@=1/3, ¢=2/3, =0

That is, the extreme optimal strategies corresponding
to the above basic kernel G, are

pl=5/67 p2=1/67 P3=0
and
q = 0, q: = 1/3: qs = 2/3

Another block-pivot transformation

]

ul 0 ) =1 —-1]-1]=-1

U —-— — -

| 1 5 3 —=2|-6{=—-t

sl 1 1 =5 2 8 | = —4
i
]

n| 1 1 -1 0 1] =—¢
[}

=1 =8, =8 =8
1 ts I3 G
1| =173 7/12 5/12 | 1/6 | =0

1
1
|
8 —1/3i /12 —1/12 | =5/6 | = —¢q,
ss | —2/31 —1/12 1/12 | 11/6 | = —gq
[
|
| O 5—1/2 -1/2 0 | =—¢t
=U =p2 =p3 =81
having

as basic kernel, yields in similar fashion the game
value

U= —1/3 =v

and the extreme optimal strategies

DL = 0) P2 = 7/12) P = 5/12
and
4 = 07 g = 1/3; qs = 2/3-

Elementary pivot steps

A (combinatorial equivalence) transformation by a
block-pivot of order r, as from a G-schema to an
A-schema, exchanges r of the individual marginal
labels (variable or constant) at the left with r labels
at the bottom and the r parallel labels at the right
with the r parallel labels at the top, signs being
reversed in the latter exchange. Such a block-pivot
transformation can always be decomposed into a
succession of pivot transformations of order one, 511
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exchanging just one label on a margin at a time,
together with suitable permutation of rows and/or
columns at the end (see [2], Theorem 7).

An elementary pivot step (pivot transformation of
order one) works as follows. (See E. Stiefel [6] for
the connection with “Jordan elimination”.)

n n
¢ @ B = —7
gl v 5 = —q
=g =a"

Take an entry a # 0 as pivol. Solve for £ and — 7y the
equations

B . LR N VN
oo danp e F By e = —7

of the column and row containing the pivot a.
Then substitute for £ and 7 in the remaining column
and row equations, such as

e+ Bt -+ I+ =
ety A e 0 A e = =

There result new column and row equation-
systems described by the schema

’

T 7
o a”! - = —9
14 ~ya™! 8 —ya '8 = —7

Since an elementary pivot step is a special case
(r = 1) of a block-pivot transformation, the pattern
is the same as that in the block-pivot formulas
previously given for A’s submatrices in terms of
(’s submatrices.

The formal rules for the above elementary pivot
step may be summarized briefly as follows: Replace
the pivot a (#0) by 1/a. Multiply each remaining
entry 8 in a’s row by 1/« and each remaining entry

IBM JOURNAL s NOVEMBER 1960

v in o’s column by —1/«. Add to every other entry
8 the product (—v/a)B of the new entry —vy/a in
&’s row and o’s column and the old entry 8 in é’s
column and o’s row. Finally, exchange the marginal
labels attached to a’s row and column (with reversal
of sign at top and right), but make no change in
the other marginal labels.

In the following sections a simple constructive
procedure, adapted from G. B. Dantzig (7], will
be outlined for the determination of an optimal
block-pivot G, and the corresponding A-schema by
a succession of elementary pivot steps, together
with suitable permutation of rows and columns at
the end. This provides an effective practical means
of computing (extreme) optimal strategies by linear
programming, more natural and direct than the
well-known one that depends on the game value
being positive [8] (also [4], p. 74).

Preliminary transformation to dual linear
programs in a feasible form

For the purpose at hand, form the equation-systems
o+t =1
U+ pigu+t o F Pl = &

—Uu + plgln + et + pmgmn = sﬂ

and

-~ — -+ —Q, = —1
V= guQi— "~ Gun@n = b
v — gmlql _ = gmnqn = tm

described by the columns and rows of the G-schema

v _ql _qz PP —q"
T

—ul 0 2 1 1 1 }J=-1
yo :I g1 G2 G1n =
P2 1 E g21 G2 G2n =1
. L. . .
pm 1 : gml gm2 gmn = tm

=1 =sl =sz .o =sn

These equation-systems differ from those described
by the columns and rows of the G-schema (at the
end of the Introduction) only in the inessential
fact that all equations, except the first, in the row
system have been multiplied through by minus one.




Formally, the G-schema is gotten from the G-schema,
(1) by reversing the signs of all marginal labels
at the top and right and (2) by multiplying through
the entries in the first row by minus one and reversing
the signs of its two marginal labels. Note that (1)
makes no change within the schema but that (2)
does, although this change reflects only a trivial
alteration in the equation-systems described by
the schema. (The change from G to G is made to
fit the following computational procedure to the
pattern of the Dantzig ‘“‘simplex method.” This
change, convenient but not essential, does emphasize
that there is some arbitrariness in the precise
schema chosen for a given purpose.)

Solve the first column equation in the G-schema
for p. and the last row equation for —v, and sub-
stitute for p,, and v in the remaining equations of
the two systems. There results the following G'-
schema,

=l —@1 —Q —Gn
—ul| 0 1 1 1| =—-1
?|—1 i gie gl.| = b
D | —1 95 952 gz’)n =t
1 1 Imi Gme Goun | = —V
=pm =31 =82 L) zsn
where
gl = Gii — Gui (¢ 7 m).

This is an elementary pivot step, using as pivot
the entry 1 in the lower left corner of the G-schema.

Now solve the last column equation in the G'-
schema for —w and the first row equation for g,,
and substitute for —% and —gq, in the remaining
equations of the two systems. There results the
following G'’-schema

_tm _ql _q2 PP 1
1
s.] 0 1 1 1l | =q
[
m|—1 gif gl 5 —gl. | =t
p: | =1 g3l g% E —¢i | = L
. ) ) ! .
! :
_______________ e
1|1 g gl E — G | = —¥
=pm =sl =s2 P =—u

where

gii = gii = Gin = Gii — Gmi = Gin T Gun

and

Gmi = Gmi — Gmn (@ & m,j #Zn).

This is also an elementary pivot step, using as
pivot the entry 1 in the upper right corner of the
G’-schema. Note the invariance of the entries g’/
and ¢’ when each payoff g.; is replaced by ¢.; + k,
where k is an arbitrary constant; the only change in
the entire G"-schema is that the lower right corner
entry —g¢,., is replaced by —¢,., — k.

By a mere change of notation, rewrite the G'’-
schema as the following A°-schema:

0 0 0
—Yn —Y —Y2 P 1
|
0 0 1} 0 ! 0 0
xm amn aml am2 : bm e vm
0 0 o 0 | 0 0
Ty | G Q11 12 : 1 =1
(] (] 0 0 | 0 (1]
Lz | Q2p 21 (/2 I : 2 = Uz
1
1
[
_______________ oo o
| 0
1 |- & - v =d" | = —v
|
or
-Y° 1
|
1
X°| A B |=7V°
[ [ .
1
1 _Col —do = —v
|
=U" = —u

This A°schema pertains to dual linear programs
in the following form:

Minimize —u = X°B° — d° constrained by
U°=X°4"-C"20,X°20.

Maximize —v = C°Y° — d° constrained by
V= —AY"+ B 20,7 20.

Y° =0, V® = B% v = d° is a feasible solution of
the second program (corresponding to player II’s
problem) if, and only if, B® = 0. This condition can
be satisfied merely by arranging that the payoff
entry g,. is maximal in its column, i.e., gme = ¢ia
fors =1, --- , m — 1. Thus it may (and will) be
assumed that the second program associated with
the A°-schema has the feasibility property B® = 0,
to be utilized in the remaining part of the game-
solution procedure.
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N ote that the A°-schema can be reformulated as
the A°-schema

1 Y°
1 d —-C'l=v
XO __BO AO — _VO ’
=y =U°

gotten from the G-schema via the block-pivot

o = [O —1}
1 G

of order two. The block-pivot Gi, is optimal if, and
only if, ¢,.. is a saddlepoint (i.e., gn, is minimal in
its row of the payoff matrix ¢, as well as maximal
in its column). This suggests that a Shapley-Snow
basic kernel G, of order greater than one may be
regarded as a generalized saddlepoint. It might be
called a ‘“‘saddle-block.”

o Exzample

Here the payoff matrix G is the same as in Example 2.
Pivot entries are starred.

v _ql —(I2 _q:;
|
m| 111 -1 of=u4
p. | 1 ':—6 3 —2| =14 (G-schema)
Ps 1* I: 8 -5 21 = t3
=1 =§ =8, =8,
_.t3 _ql ‘—q2 ‘Qa
—u 0 1 1 1*| = =1
pl _1 - 7 4 —2 = tl
,—
ml—1 —14 8 —4 |=14 (G’-schema)
=ps =8 =8, =8
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—l&3 —q —q 1
t
ss| 0 1 15 1 gs
nl—-1 -5 GE 2 noo
- _f}____l_o___l_z_i__%_ -4 (G'’-schemay
1 1 6 —7:1 —2 | = -
=p; =8 =8 = —U

The G'’-schema (or A°schema) has the desired
“feasible form”’: take t; = ¢, = ¢ = O0togetgs = 1,
&, = 2, t, = 4, all nonnegative! This is because the
entry 2 in the lower right corner of the G-schema
is maximal in its column of the payoff matrix G.

Note that a like result is gotten from the following
block-pivot transformation (of order two) from a
G-schema to an A°-schema:

u 0 :: -1} -1 —=-1{|=-1

ps| 1 ::“2 8 :——5 = —{

D1 1 il 0 1 —-1|=—4

D2 1 E -2 | -6 3| = —4¢
=1 =8 =8 =S8,

1 2 :: 1 6 —7]=v

D} —2 :: —1 -5 6| =—4 '

P | —4 i —1 —10 12| = —¢
=y =p; =8 =8

Completion of game solution by simplex method

From the A°schema with B® = 0, as specified
above, the solution procedure follows the usual
technique of the Dantzig ‘“‘simplex method” (along
the lines of the elementary version used by S.
Vajda [9]). Moving through a succession of ele-

mentary pivot steps, with resulting schemata




-y 1
1
x|a | B |=V
RN )
1 —C’i —d | = —v
=U" = —u

the goal is to drive —C" = 0 while keeping B” = 0.
In each A"-schema (r = 0, 1, ---) select a column
with its —¢} < 0 and then, from among the entries
a}; > 0 in this column, choose as pivot an entry aj;
for which b}/a}; is minimal. With this pivot, make
the elementary pivot step to an A" *'-schema. The
rule for choice of the pivot a7; ensures that B"*" = 0
and that —d"** = —d’.

Since there are only a finite number of possible
A"-schemata and the column and row equation-
systems are feasible at each step (the equivalent
systems of G being feasible), either the process
terminates in a final A-schema

-Y 1
]
x| 4 B |=vV
[ R y
1| -Cci —d|=—v
[}
having

B=0 and -C = 0,

or the process “cycles,” i.e., there occurs an A’-
schema which is the same as a previous A"-schema
(except for possible permutation of rows and/or
columns). Since —d'*' = —d’, this rare event can
happen only if d” = d'*' = ... = d°. However,
such “eycling” can be avoided (see an inductive
proof by G. B. Dantzig [10] in a companion paper
in this issue of the IBM Journal). From the final
A-schema read off the (extreme) optimal solutions

X=0,U=~-C and Y=0,V =B

yieldingu = d = v.

By suitable permutations of rows and columns,
rearrange the initial G-schema and the final A-
schema

-u 0

|

|
P1 1 E G” G]z = T1
P 1

and

'—Yl —“Yz 1
|
Xl Au sz E Bl = Vl
Xz A21 A22 l: Bz = Vz )
1 _Cl _Czi '_d = —9

=U1 = 7 = —U
s0 that
X1=Sl, X2=P2; U1=P1, U2=Sz
and
Y, =T, Y, = Qz} V= @, Ve=T,.

Then it can be shown that the corresponding
A-schema is obtained from the corresponding
(G-schema by the block-pivot transformation

- @ Q
U 0 IE_I -1 ] =-1
o e o |- o
P, 1 E G | Goz | = =T,
=1 =8 =8
!
1 T, Q.

|
1| 4 5—0, —C | =v

1
S, _BJE Aq Ap | = —Q.
|
P, =By 4u | An | = —T,
=U =P1 =Sz

Thus, an optimal block-pivot G,, has been deter-
mined, with G, as Shapley-Snow basic kernel and
P, = —-C,, P, =0and ¢, = B, @, = 0as extreme
optimal strategies, the game value being v = d = v.

& Completion of previous example

Starting from the G’-schema of the previous
Example, proceed by elementary pivot steps, as
follows. Pivot entries are starred.
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— ~q —q> 1
I
Ss 0 1 1 E 1| =g
e 1 5 61 2 b (A°-schema)
| -1 —10 12 {‘ 4=t
1 1 6 —7 i -2 | = —p
=p,‘ =81 =-S'2 = —U
_t3 ~ G "'tl 1
]
ss| 1/6 11/6 —1/6;: 2/3 | = ¢
]
82 _1/6 _5/6 1/6 : 1/3 = qz (El-schema)
p| 1I* 0 -2 i 0 |=¢t
1{-1/6 1/6 7/6:' 1/3 | = —v
=p3 =81 =p1 = —Uu
_'tz "‘ql "'tl 1
]
s | —1/6 11/6 1/61: 2/3 | = ¢s
{
| 1/6 —5/6 —1/611/3 | =g (A-schema)
p3 1 0 —2 5 0 = ta
1| 1/6 1/6 5/65 1/3 | = —v
=p2 =81 =p1 = —Uu

Taking s; = s, = p3 = O0and i, = ¢, = 1§, = 0,
read off the game value v = —1/3 = v and the
extreme optimal strategies p, = 5/6, p, = 1/6,
ps = 0and g = 0,9, = 1/3, ¢5 = 2/3.

Thus, a succession of elementary pivot steps has
achieved the same result as the first block-pivot
transformation in Example 2, above. Similarly,
the result of the second block-pivot transformation
in Example 2 can be achieved by returning to the
G"-schema and making the following elementary
pivot step.
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|
83 0 1 1 E 1| =g
l —
Py 1 =5 6 ; 2=t (A°-schema)
p| —1 =10 12, 4| =14,
e e e e e - — | -~
1 1 6 —7 1 =2|=—p
|
;—..ps =s1 =82 = —U
—'ta — ¢ —tz 1

|
ss| 1/12 11/6 —1/12|§ 2/3 | = ¢,
!

p|—1/2 0 -1/2 | 0 =h (A-schema)
s, | —1/12 —5/6 1/123 173 | = ¢

1l 512 1/6 7/12{1/3 | = —v

=p3 =sl =.p2 = —U
Taking s; = p, = s, = 0and 3 = ¢, = &, = 0,
read off the game value v = —1/3 = v again and

the extreme optimal strategies p, = 0, p, = 7/12,
ps = 5/12and ¢, = 0, ¢, = 1/3, ¢ = 2/3.

Comment

A block-pivot transformation from a G-schema to
an A-schema and a succession of elementary pivot
steps from a G-schema to an A-schema, as pre-
sented in this paper, demonstrate operationally the
efficacious methods, theoretical and practical, of
“combinatorial equivalence.” These methods apply
generally in the combinatorial linear algebra of
linear inequalities and related systems. They per-
tain to the matrix representation of the abstract
linear-transformation structure of a partially-ordered
vector space over an ordered field (in which the
“nonnegative orthant”’ of vectors X = 0 conforms
to the nonnegative halfline of scalars x = 0 in the
ordered field).
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