
G. B. Dantzig* 

Inductive Proof of the Simplex Method 

Abstract:  Instead of the  customary  proof  of  the  existence  of an optimal basis in the  simplex  method  based 

on perturbation of the  constant  terms,  this paper gives a new proof  based  on  induction.  From a pedagogi- 

cal point  of view it permits an earlier and more elementary  proof of the fundamental duality theorem via 

the simplex  method.  Specifically we shall show that there exists a finite chain of feasible basis  changes, 

which results in either an optimal feasible solution  or in  an infinite class of  feasible solutions,  such that 

the  objective form tends  to  minus infinity. 

Instead of the customary proof of the existence where E ,  is a constant and dlj  are  the new values 
of an optimal basic set of variables in the simplex of the coefficients obtained by eliminating x l ,  . . .  , x ,  
method based on  perturbation of the constant  terms from all but one of the equations and  the b,  2 0 
we shall give a new  proof based on induction [1]. for i = 1, 2,  - , m. The basic feasible solution is 
From a pedagogical point of view it permits an obtained by assigning to  the nonbasic variables the 
early  elementary proof of the  fundamental  duality values zero and solving for  the values of the basic 
theorem  via the simplex method, which is favored variables, including x .  
by some 121. The simplex method  may be outlined as follows. 

The general linear programming problem is to Each  iteration begins with a canonical form with 
find x i  >_ 0 and  Min z satisfying respect to some set of basic variables. The associ- 

aI1x1 + aI2xz + . - + al,x, = b, 
ated basic solution is also feasible, i.e., the constants 
6( (as modified) remain nonnegative. The procedure 

aZ1x1 + aZ2x2 + . . + apnxn = b, terminates when a canonical form is achieved for ............................... (1) which either the ci 2 0 for all j (in which case the 

c1x1 + cpxz + . . - + C,X, = x .  

1 amlxl + amzx2 + - - + amnxn = b, basic feasible solution is  optimal), or else, in Some 
column with C, < 0, the coefficients are all non- 
positive di, 5 0, (in which case a class of feasible 

Our objective is to prove t,he following theorem: solutions exists for which z -+ - m).  In all  other 
If a basic  feasible solution  to (1) exists,  then there cases a “pivot” term is selected in a column, s, and 

exists a finite  number of changes in the feasible  basic row, r ,  such that e, = Min ci is < 0 and 6,/&,, = 
sets resulting in.  either a n  optimal basic feasible soh-  Min (6Ja,.J for a,,, a,., positive. The variable x. 
tion or in an infinite class of feasible solutions for becomes a new basic variable replacing one in the 
which z has  no lower bound. basic set-namely, by using the equation  with the 

Let the canonical form for (1) with respect to pivot  term to eliminate x, from  the  other equations. 
the assumed initial  set of basic variables,  say x l ,  
x2, ... , x,, be 

x1 + a l m + l  xm+1 + * * .  + 6 1 s ~ .  + * .  + alnxn 61 

X, + a , m + 1  xm+1 + * + 2 s  + . + + X, = 6, ................................................. 
xm + am.m+lZm+l  + . * * + a m a ~ a  + . * * + am,xn = 6, 

I E,+, X*+r + * . *  + c, x ,  + * * + En x, = z - 2 0 ,  
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When the coefficient of the pivot  term is adjusted 
to be unity,  the modified system is in canonical 
form,  and  a new basic feasible solution is available 
in which the value of z = z0 is decreased by a 
positive amount if 6, > 0. In the nondegenerate 
case, we have  all 6i’s positive. If this remains true 
from iteration to iteration,  then  a  termination  must 
be reached in a finite number of steps, because (1) 
each canonical form is uniquely determined by choice 
of the m basic variables; ( 2 )  the decrease in  value 
of z0 implies that all the basic sets  are  strictly 
different; and (3) the number of basic sets is finite; 

indeed, not  greater than . (“,> 
In  the degenerate case it is possible that b, = 0; 

this results  in 2, having the same value before and 
after pivoting. It has been shown (by examples due 
to Hoffman and Beale) that  the procedure can 
repeat a basic set  and hence  cycle indefinitely with- 
out termination.  This phenomenon occurs (as can 
be inferred from what follows) when there is am- 
biguity  in the choice of pivot term  by  the above 
rules. A proper choice among them will always get 
around the difficulty. To show this we make the 
following inductive  assumption: 

W e  assume for 1, 2, - . , m - 1 equations  that 
only a finite  number of feasible basic set changes are 
required to obtain a  canonical form  such  that the z 
equation  has all nonnegative coefiients (Ei 2 0) ,  or 
some column s has I?, < 0 and all nonpositive  coefi- 
cients (a,. 5 0). 

We first show the  truth of the inductive assump- 
tion for m = 1. If the initial basic solution is non- 
degenerate, 6, > 0, then we note that each subse- 
quent one  is  also. It follows that  the finiteness proof 
of the simplex method outlined above is valid, so 
that a final canonical form will  be obtained that 
satisfies our  inductive assumption. The degenerate 
case 6, = 0, is established by invoking the following 
convenient lemma: 

If the inductive  assumption holds for m, where n.ot 
all 6, are initially zero, then it holds when all 6 ,  are 
zero. 

Change one or more 6, = 0 to 6: = 1 (or any 
other positive value) and  then,  by hypothesis, a 
sequence of basic set changes exists such that  the 
final one has  the requisite properties. If exactly 
the same sequence of pivot choices are used for the 
totally degenerate problem, each basic solution re- 
mains feasible (namely zero). Since the desired 
property of the final canonical form depends only 
on the choice of basic variables and  not on the 
right-hand side, the lemma is demonstrated. 

To establish the inductive step, suppose our in- 
ductive assumption holds for 1, 2 ,  . - . , m - 1 ,  
and that 6 ,  # 0 for at  least one i in the m equation 
system ( 2 ) .  If we are  not at  the point of termination, 
then  the  iterative process is a.pplied until on  some 
iteration,  a  further decrease in the value of 2, is 
not possible, because of degeneracy. By rearrange- 
ment of equations,  let 6, = 6, = - * - = 6r = O 
and 6 ,  # 0 for i = r + 1, , m. Note for any 
iteration that r < m holds because it is not possible 
to have total degeneracy on a subsequent cycle if, 
as assumed, a t  least one of the 6i # 0 initially. 
According to our  inductive  assumption  there exists 
a finite series of basic set changes using pivots from 
the first r equations that results  in a subsystem 
satisfying all Fi 2 0 or,  for some s, all &, 5 0, 
1 5 i 5 r and 6, < 0. 

Since the constant terms for the first r equations 
are all xero, their values will all remain xero throughout 
the sequence of pivot term choices for the subsystem; 
this  means we can  apply the same sequence of choices 
for the entire system of m equations without replacing 

values in the basic solutions. 
If the final basis for the subsystem has  all Ei 2 0, 

then  the same property holds for the system as a 
whole.  On the other  hand, suppose the final basis 
of the subsystem has for some s, E ,  < 0 and 6,. 5 0 
for i = 1, 2, . . , r;  in this case we either have 
ai, _< 0 for i = r + 1, . . - , m (in which case the 
inductive  property holds for m) or the variable x. 
can be introduced  into the basic set for the system 
as a whole, producing a positive decrease in Zo since 
6, > 0 for i = r + 1, . - . , m. We have seen earlier 
that this value of x can decrease only a finite number 
of times. Hence the  iterative process must  terminate, 
but  the only way it can is when the inductive 
property holds for the m equation system. 

This completes the proof for m equations, except 
for the completely degenerate case where 6, = 0 
for all i = 1, 2 ,  . , m. The  latter proof, however, 
now follows directly from the lemma. Q. E. D. 

xr+1, * * .  , x, as basic variables or changing their 
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