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Inductive Proof of the Simplex Method

Abstract: Instead of the customary proof of the exisience of an optimal basis in the simplex method based

on perturbation of the constant terms, this paper gives a new proof based on induction. From a pedagogi-

cal point of view it permits an earlier and more elementary proof of the fundamental duality theorem via

the simplex method. Specifically we shall show that there exists a finite chain of feasible basis changes,

which results in either an optimal feasible solution or in an infinite class of feasible solutions, such that

the objective form tends to minus infinity.

Instead of the customary proof of the existence
of an optimal basic set of variables in the simplex
method based on perturbation of the constant terms
we shall give a new proof based on induction [1].
From a pedagogical point of view it permits an
early elementary proof of the fundamental duality
theorem via the simplex method, which is favored
by some |2].

The general linear programming problem is to
find z; > 0 and Min z satisfying
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Our objective is to prove the following theorem:

If a basic feasible solution to (1) exists, then there
exists a fintte number of changes in the feastble basic
sets resulting in either an optimal basic feasible solu-
tion or in an infinite class of feasible solutions for
which z has no lower bound.

Let the canonical form for (1) with respect to
the assumed initial set of basic variables, say z,

where %, is a constant and a,; are the new values
of the coeflicients obtained by eliminating z,, - - - , 2.,
from all but one of the equations and the b, = 0
for¢ = 1, 2, --- , m. The basic feasible solution is
obtained by assigning to the nonbasic variables the
values zero and solving for the values of the basic
variables, including z.

The simplex method may be outlined as follows.
Each iteration begins with a canonical form with
respect to some set of basic variables. The associ-
ated basic solution is also feasible, i.e., the constants
b; (as modified) remain nonnegative. The procedure
terminates when a canonical form is achieved for
which either the ¢; > 0 for all j (in which case the
basic feasible solution is optimal), or else, in some
column with é, < 0, the coefficients are all non-
positive @;, < 0, (in which case a class of feasible
solutions exists for which 2 — — o). In all other
cases a “‘pivot” term is selected in a column, s, and
row, 7, such that é, = Min ¢; is < 0 and b,/d,, =
Min (b;/a;,) for @,., d;, positive. The variable x,
becomes a new basie variable replacing one in the
basic set—namely, by using the equation with the
pivot term to eliminate z, from the other equations.
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When the coefficient of the pivot term is adjusted
to be unity, the modified system is in canonical
form, and a new basic feasible solution is available
in which the value of z = Z, is decreased by a
positive amount if 5, > 0. In the nondegenerate
case, we have all b,’s positive. If this remains true
from iteration to iteration, then a termination must
be reached in a finite number of steps, because (1)
each canonical form is uniquely determined by choice
of the m basic variables; (2) the decrease in value
of Z, implies that all the basic sets are strictly
different; and (3) the number of basic sets is finite;
indeed, not greater than n

In the degenerate case it is possible that &, = G;
this results in Z, having the same value before and
after pivoting. It has been shown (by examples due
to Hoffman and Beale) that the procedure can
repeat a basic set and hence cycle indefinitely with-
out termination. This phenomenon occurs (as can
be inferred from what follows) when there is am-
biguity in the choice of pivot term by the above
rules. A proper choice among them will always get
around the difficulty. To show this we make the
following inductive assumption:

We assume for 1, 2, -+- , m — 1 equations that
only a finite number of feasible basic set changes are
required o obfain a camonical form such that the z
equation has all nonnegative coefficients (¢; > 0), or
some column s has ¢, < 0 and all nonpositive coeffi-
ctents (a;, < 0).

We first show the truth of the inductive assump-
tion for m = 1. If the initial basic solution is non-
degenerate, b; > 0, then we note that each subse-
quent one is also. It follows that the finiteness proof
of the simplex method outlined above is valid, so
that a final canonical form will be obtained that
satisfies our inductive assumption. The degenerate
case b, = 0, is established by invoking the following
convenient lemma:

If the inductive assumption holds for m, where not
all b; are initially zero, then it holds when all b; are
2ero.

Change one or more b, = 0 to b, = 1 (or any
other positive value) and then, by hypothesis, a
sequence of basic set changes exists such that the
final one has the requisite properties. If exactly
the same sequence of pivot choices are used for the
totally degenerate problem, each basic solution re-
mains feasible (namely zero). Since the desired
property of the final eanonical form depends only
on the choice of basic variables and not on the
right-hand side, the lemma is demonstrated.
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To establish the inductive step, suppose our in-
ductive assumption holds for 1, 2, --- , m — 1,
and that b, 5 O for at least one ¢ in the m equation
system (2). If we are not at the point of termination,
then the iterative process is applied until on some
iteration, a further decrease in the value of %, is
not possible, because of degeneracy. By rearrange-
ment of equations, let b, = b, = -+ = b, = 0
and b, # 0 fori = r + 1, --- , m. Note for any
iteration that » < m holds because it is not possible
to have fofal degeneracy on a subsequent cycle if,
as assumed, at least one of the b; = 0 initially.
According to our inductive assumption there exists
a finite series of basic set changes using pivots from
the first r equations that results in a subsystem
satisfying all ¢; > 0 or, for some s, all a;, < 0,
1<7<rand ¢ <0.

Since the constant terms for the first r equations
are all zero, thevr values will all remain zero throughout
the sequence of pivot term choices for the subsystem;
this means we can apply the same sequence of choices
for the entire system of m equations without replacing
Topry, °° , T, a8 basic variables or changing their
values in the basic solutions.

If the final basis for the subsystem has all ¢; > 0,
then the same property holds for the system as a
whole. On the other hand, suppose the final basis
of the subsystem has for some s, é, < 0and d@;, < 0
for ¢ = 1, 2, --- , r; in this case we either have
die < 0forz =7+ 1, ---, m (in which case the
induective property holds for m) or the variable z,
can be introduced into the basic set for the system
as a whole, producing a posilive decrease in Z, since
b: > 0fori=r-+1, ---, m. We have seen earlier
that this value of z ean decrease only a finite number
of times. Hence the iterative process must terminate,
but the only way it can is when the inductive
property holds for the m equation system.

This completes the proof for m equations, except
for the completely degenerate case where b, = 0
forallt =1, 2, --- , m. The latter proof, however,
now follows directly from the lemma. Q. E. D.
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