A. J. Hoffman*

On the Exceptional Case
in a Characterization of the Arcs

of a Complete Graph

Abstract: It is known that o certain simple set of properties characterize the relationship of adjacency of
the nfn — 1)/2 arcs of the complete graph of order n, when n < 8, and that these properties are
not a sufficient characterization when n — 8 (see [1], [2], [31, [4], and [7]). The present paper describes a
method for enumerating all counter-examples when n— 8.

1. Introduction

In an abstract set S of n(n — 1)/2 objects, let there
be defined two symmetric relationships, “first asso-
ciates” and ‘“‘second associates” on pairs of distinct
objects in 8, so that any two distinct objects are
either first associates or second associates. Suppose
that

every object has 2(n — 2) first associates; (1.1)

if two objects are first associates, there are
exactly n — 2 other objects, each of which
is a first associate of each of the two; (1.2)

if two objects are second associates, there
are exactly four objects, each of which is a
first associate of each of the two. (1.3)

It is known that, provided n = 8, properties
(1.1)-(1.3) suffice to prove that S is isomorphic
to the set of n(n — 1)}/2 arcs of the complete graph
determined by n points, first associates correspond-
ing to a pair of arcs with a common end point,
second associates corresponding to a pair of arcs
without an end point. This does not necessarily
hold, however, when n = 8 ([1], [2], [4]). A complete
enumeration of all counter-examples when n = 8
has also been given (see [2]).

The purpose of the present manuscript is to indi-
cate an alternate method of arriving at the enumera-
tion of these counter-examples, a method based on
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the exploitation of properties of the eigenvalues and
eigenvectors of symmetric matrices and their princi-
pal submatrices. As will be seen, the calculations
become rather formidable, and have therefore not
been carried to completion. In view of the results
of [2], there would seem to be no point in carrying
them further.

What is given in the sequel can best be described
as a method which, when properly executed, will
complete the discussion of all models of the postulate
system (1.1)-(1.3), a problem first posed by Connor
and solved by him (3] for n > 9. The method will
also furnish evidence to supplant that offered in
[4] and [5] of the usefulness of eigenvalue and eigen-
vector considerations in combinatorial problems, a
development predicted in [6].

Now to begin the attack on the problem.

Number the elements of S from 1 to 28 in any
order. Let A be a square matrix of order 28 defined by

4 = (a:;)
0if¢ = l
= 91 if 7 and j are first associates J

0 if 7 and j are second associates (1.4)

Then it is obvious that (1.1)-(1.3) with » = 8
imply A* = 8T + 24 + 4J, where I is the identity
matrix and J is the matrix every entry of which
is 1. It is shown in [2] that this equation implies
that the eigenvalues of A are
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(a) 12, with multiplicity 1, (1, 1, --- , 1)
corresponding eigenvector

(b) 4, with multiplicity 7, and

(¢) —2, with multiplicity 20. (1.5)

We shall now make use of some well-known
properties of (real) symmetric matrices, which we
list now for ready reference:

Let M be a real symmetric matrix of order m,
with o as maximum eigenvalue, and 8 < « the
minimum eigenvalue. Let b be the multiplicity of 3.
Let K be a submatrix of order k, with § the mini-
mum eigenvalue of K, y a corresponding eigenvector.

Then § > 8, and if § = S, y is orthogonal to
that part of every column of M not meeting
K consisting of those rows that do meet K. (1.6)

Ifk+b>ms =4 (1.7)

Using other properties of eigenvalues and eigen-
vectors, it was shown in [4] that if

2. Construction of examples

Let us tentatively assume that A contains

o

0 011 1 1
001111
110111
111011 2.
111101
1 111 1 0

as a principal submatrix, say from rows and columns
1-6. It is an easy consequence of (1.1) and (1.3)
that there are exactly six objects, say 7-12, which
are second associates of both 1 and 2.

We first show that no more than two of these
objects can be second associates of all of 3, 4, 5, 6.
Suppose as many as three of them (say 7, 8, 9)
were. Then (2.1) would be imbedded in a principal
submatrix of order 9

000 1 111
000

000

R}
(=]
[==]

is a principal submatrix of A, consisting (say) of
the first three rows and columns of A4, then there
is either exactly one (say object 4) which is a second
associate of 1, 2, and 3, or exactly one object (say
object 4) which is a first associate of 1, 2, 3; and
that, in the former case, the first four rows of A
may be taken to be

; (2.2

o O o o O o
o O o © O ©o
o oo o o o o

[T =T R =

[ T e R e B = R
[ e R e R = e o

1
1
0
1
1
0
0
0

OO D e e e O
OO QD e e = O

0

~

00001111111111110006000000000
00001111000000001111111100060
000000001111000011110000'1111.
0000000000001111000011111111

where B is a symmetriec (0, 1) matrix of order 3,
with 0 on the main diagonal. Such a matrix cannot
have —2 as an eigenvalue. Since (2.2) is the direct
sum of (2.1) and B, and neither (2.1) nor B has
—2 as an eigenvalue, it follows that —2 is not an
eigenvalue of (2.2). But, in view of (1.5) (¢), this
would violate (1.7).

We know, therefore, that each of at least four
objects of 7-12 has the property of being a first
associate of at least one of 3, 4, 5, 6. Assume,
say, that 7 is a first associate of 3. Since 1, 2, 7 are
mutually second associates, and 3 a first associate
of 1, 2, 7, it follows we are in situation (1.8) (b),
and 7 is a second associate of 4, 5, 6. Again, by
(1.8) (b), 3 is a second associate of 8-12, and 7 is
a first associate of 8-12. This line of reasoning shows
that, after some renumbering, one may assume that
the principal submatrix of 4 formed by rows and
columns 1-12 is

(1.8)()

In the latter case, the first four rows of A may
be taken to be

0001111110000000011100000111
0001000001111111100000000111
0001000001110000011111111000.
1110000001110000011100000111
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(2.3)

— = e OO QO = OO
= = O - OO = oo O
Lol e == R — T = T e Y e B
(=R Y = S o B e N o I -]
| o == e B e S e B e B
e el e e — I I = =]

O OO D e e O e
[ e = =R e T S W SO U
S = O O O O o e e e

[
(=]
2

(===l - e T = =)
[l T e e = i e T = T = =]
©C O OO - O e O e

00 001111 =2 O

Now 1, 2, 11 are mutually second associates; it
is clear from (2.3) that no object is a first associate
of all of 1, 2, 11, so we must by (1.8) (a) have
an object which is a second associate of 1, 2, and 11.
The only possibility is 12. Hence, in (2.3) the quan-
tity = 0, and we rewrite

0011110O00O0O0O0TGO0
001111000O0O00O0
110111100000
111011010000
111101001000
111110000100 . 2.3)
001000011111
000100101111
000010110111
000O0O0O1111011
0000O0O0OT111100
000O0O0COT1T1T1T1TQ0 0

Each of rows 3-10 contains exactly six ones in
(2.3), so by (1.1) the remainder of each of these
rows in the sixteen remaining columns contains
exactly six 1’s. By (1.2), it follows that in columns
13-28, rows 3 and 7 are identical, rows 4 and 8
are identical, rows 5 and 9 are identical, and rows 6
and 10 are identical. Furthermore, by (1.2), (1.3),
and (2.3), any two rows not ‘‘paired” (i.e., not 3
and 7, 4 and 8, 5 and 9, or 6 and 10) in 3-10 have
exactly two common ones in columns 13-28. Also,
by (1.1)-(1.3), four of columns 13-28 contain ones
in rows 1 and 11, zeroes in rows 2 and 12; four

contain ones in rows 1 and 12, zeroes in rows 2
and 11; four contain ones in rows 2 and 11, zeroes
in rows 1 and 12; and four contain ones in rows 2
and 12, zeroes in rows 1 and 11.

For simplicity, let us now look at the submatrix
of order 8 of (2.3) obtained from rows and columns
1-4 and 9-12. We get

(001100 0 0
00110000
11010000
11100000 2.4)
00000111
00001011
00001100
0000110 0

(We shall continue to call these rows and columns
1, 2, 3, 4, 9, 10, 11, 12). It is clear from the fore-
going paragraph that when one describes the entries
of any one of columns 13-18 in the rows 1-4 and
9-12, one also automatically describes the entries
in rows 5-8.

If we note that (2.4) is invariant with respect to:

interchanges of 1 and 2,
interchanges of 11 and 12,
interchanges of 3 and 4,
interchanges of 9 and 10,

and the mapping

1o 12
211
310
4+ 9,

then any of the possible columns 13-28, rows 1-4
and 9-12, is represented after permutations as ex-
actly one of the following:

@ ® (© @ (9 6)

1 1 1) 1 1) 1]

0 0 0 0 0 0

0 1 1 1 1 1

0 0 1 0 1 U s
0 0 0 0 1 1

0 0 0 1 0 1

0 0 0 0 0 0

1) 1) 1) 1 1 (1)
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Now consider the matrices of order 9 obtained
by appending each of the six columns of (2.5) to
(2.4), the corresponding row, and 0 on the main
diagonal. In each case, —2 is an eigenvalue of the
matrix of order 9, and here are the corresponding
eigenvectors of order 9:

@ ® @@ @ @@ O

(2’(1'0"1’“0’f0‘
1 0 -1 0 —1 -1
-1 1 1 1 1 1
-1 —1 1 —1 1 1
-1 -1 -1 -1 1 1 (2.6)
—1 -1 —1 1 -1 1
1 1 1 0 0 -1
2 2 2 1 1 0
-2} |-2) (-2) (-2 l-2] (-2

Notice that in each case, every entry in
rows 3, 4, 9, 10 is == 1; the entry correspond-
ing to the added row is —2. Also, in cases
(2.5) (a), (¢), (d), and (f), when the number
of ones in rows 3, 4, 9, 10 is even, the sum
of the entries in 1 and 12 in (2.6) is even,
and so is the sum of the entries in 2 and 11,
whereas the sum of the entries in 1 and 11
is odd, and so is the sum of the entries in 2
and 12. In cases (b) and (e), where the num-
ber of ones in rows 3, 4, 9, 10 is odd, the
situation is reversed. In view of (1.6), these
facts imply that eight of the columns 13-28
contain an even number of ones in rows, 3,
4, 9, 10, and the remaining eight columns
contain an odd number of ones in these
rows. (2.7)

What possibilities are there for the submatrix B
of A formed by rows 3, 4, 9, 10 and columns 13-28?
Recall that each row contains six 1’s and the pro-
duct of any two rows of B is 2. We will consider
all possibilities in lexicographic order, ranking in
terms of largest number of columns with largest
number of ones.

We cannot have two columns with four 1’s,
since among other arguments there would then be
sixteen additional columns, each containing exactly
one 1, and there are only sixteen columns in B.
We cannot have one column with four 1’s, and
two or more columns with three 1’s, since this
would yield two or more rows with an inner product
of 3. Could we have exactly one column with four
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1’s, and exactly one column with three 1’s? Then
we would have

1111110000000000
1100001111000000
1100000000111100’
1010001000100011

which has four columns with an even number of
1’s, twelve columns with an odd number of 1's.
Thus this must be ruled out.

Could we have exactly one column with four 1’s,
and no columns with three 1’s? Then there will
be eight columns with exactly one 1. Then B may
be taken to be

0111000000101100
0100110000100011
0100001100011010.
0100000011010101

This is true since if we had a column which appears
in rows 1-4 and 9-12 as

1

2.8

.

o O QO o = O

1

then we cannot have another column identical to
the above in those rows, for it would make an
inner product of 4 or 2 with (2.6)(b), violating
(1.6). We cannot have another column

r Y

0
0 1
1 1
0 or 0
0 0
0 0
1 0
0) 1

in those rows, for either would make an inner pro-




duct different from 0 with (2.6)(b), also violating
(1.6). So there are at most two columns which,
in B, have exactly one 1 and that 1 in the same
row. From these considerations, the appearance of
B in (2.8) follows.

This completes the discussion of possibilities for
B in which there are one or more columns with
four 1’s.

Suppose that the largest number of ones in a
column of B is 3. Suppose there are four of them.
Then B would have the appearance

0111111000000000
1011000111000000
1101000000111000
1110000000000111

with every column containing an odd number of
1’s, which is impossible.

Suppose there are exactly three columns con-
taining three 1’s. Then B would have the appearance

1111110000000000
1100001111000000
1010001000111100,
0110000100100011

which has thirteen columns containing an odd num-
ber of 1’s and is impossible.

Suppose B contains exactly two columns with
three 1’s. These three 1’s may all be in the same
rows or not. If they are in the same rows, then B
would have the appearance

1100001111000000
0011001100110000
0000111100001100'
00000000111111600

(2.9

If they are not in the same rows, then B would
have the appearance

0010110010001010
0001110001000101
0000001111000011'
0000000000111 111

(2.10)

Now suppose B contains exactly one column with
three 1’s. Then B would be

1111110000000000
1100001111000000
1010001000111000,
0001100110110000

where twelve columns have an even number of 1’s,
which is impossible.

If there are no columns containing as many as
three 1’s, then, for the reasons explained in deriving
(2.8), we may assume B begins

11000000
00110000
00001100,
00000011

and it is easy to show that at least one of the re-
maining columns must have more than two 1’s,
which case has been excluded.

Thus our examination has produced three pos-
sible cases, namely (2.8), (2.9), and (2.10) for B.
Notice that the allowable renumbering of 3-10 dis-
cussed earlier might produce other cases, but these
would be, of course, equivalent to the three cases
considered.

Let us now see how each of these three possi-
bilities for B can be imbedded in a matrix ¢ formed
by rows 1-4 and 9-12, and columns 13-28. Consider
first (2.8). There is no loss of generality in assuming
that the first column of the corresponding C is

v

= —

Then examination of (2.6)(a) together
with (1.6) implies that the second column
of Cis

)
1_‘ <o (= ot o ek o b
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The facts established in (2.7) show that it is no
loss of generality to assume the next 8 columns of

C are
(10101010
01010101
11000000
00110000
00001100
00000011
10101010
01010101

Bearing in mind that, in columns 13-28, the above
automatically describes rows 5-8, along with 1-4
and 9-12, we see that we have now fully specified
one way (arising from (2.8)) that all rows and
columns containing (2.3) can be completed in the
matrix A. To determine the remainder of the matrix
A, all we need do is invoke (2.6). This produces
the matrix of order 28:

0000001
00

All that remains is to consider the last six columns
of C. The last four of those columns have a 1 in
rows 3 or 4, and a 1 in either row 9 and 10. Examina-
tion of (2.6)(c) shows that, if the column of C

2.11)

containing column

1

1
0 of (2.8) is
0

then, by (1.6), the last four columns of C would
each have a 1 in rows 1 and 12. Since the first two
columns of C also have a 1 in rows 1 and 12, we
would have a violation of the last sentence of the

paragraph following (2.3).
Hence, the matrix C' containing (2.8) is

(111010101011000 0
0001010101001111
0111000000101100
0100110000100011].
0100001100011010
0100000011010101
0010101010001111
492 1101010101110000)
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lo

OCOCOHFHOHOHOROKHMMHEHOOLODOOHKHRFRMHOO
HHEEREHEROOHROHOHORROOOLOOOOOHEHEHFOO
COCOHRHFOOOOQLOOOOCOO NI M HO M
CORHOROHOHORHROOHHOOOHOOOROK
COR MO FHROHROMMOOHOMRMOOOOROOOHREO
OO0 OROHMFHFOOHRORFFOOROOOROOR
I OOOR N O=OORHOOMOOOROOCO=O O
CHORHOOFRHOOHOHOHEHOHOOOHOQOOK
CHORHOFHOOHHOHOO=OOHOOOROO~RO
FOHOHOHQOH O OHOHMNMEMNOOOHOOO O
HO-HOHRQOQOEHMHROHOHOOHOHOODOHROOOO
COOOOLOOO O I HEFEEREEFEOOO OO QO
COCOOOHRRHFOOOOFHHOHFOORFEFOOO
OCHHFOOQCOCOHRHFOOHHRHROOHOHOROHOMHEEHEO
M OOHOOHROQOOOHHOOHROOHHHOORHRD
HFOOHOOOCORMHFRMFEHOOQOOHOHEFHOORROFRD
OHHOOOHFEOOHHOOOOHHOFROHOHORO

1111
1111
0111
1011
1101
1110
1000
0100
0010
0001
0000
0000
1111
1000
1000
0100
0100
0010
0010
0001
0001
1100
0011
1010
1001
0110
0101

COHHROHOOOOOO R HHOHMHROODOO—O
HEOOOHOOOOHHFOOHORRFHOROOROO
CHOFRMHOOCOHMFHOOOOHOMFHEORFROHFOOO
HFOROHOREFOOOOOO-HOHOKHMHMERENOOO

HEHEHEROQOCOHOHOHOHOOOMMEHMHOOOO

COCOHHMROHEHOROHORFHORKFEMHEOODOOO
COCORMPEHPHHMMEMEREBEOOOOLOODOOOOOO

The matrix (2.11) will provide a counter-example
if, and only if, the consequences of (1.4) and (1.1)-
(1.3) hold with » = 8, This is indeed the case.

Arguments simular to the above yield, from (2.9)
and (2.10) respectively, matrices (2.12) and (2.13),
displayed on page opposite.

It has been calculated that (2.12) is indeed a
counter-example. The calculation has not been per-
formed for (2.13).

It is possible that a suitable renumbering may
show that (2.11)-(2.13) are not all distinet. This
has not been checked.

3. Further possible counter-examples

For the remainder of this discussion, we may assume
A contains no principal submatrix of the form (2.1).
Consider now the matrix

0001
0001
0001.
1110

3.1)

As was shown in [4], if (3.1) is not a principal




(g
(=]
L

(2.13)
(3.2)

HOO N HHQOMMNHHOOOODOOOO QOO O~OO
CrrOrAmHrMOmM OO0 OO~ HMOOO
OO O -HOr-OHHOOHO HOHOOOO - OO o —
HMOHOO™W OO HOHrHO " ONOOOOO OO ~MD
OO0 HOOO O HMMHMONOOOHOO O MmO
HOOOOHOOO - rHOrNmMrMOOO OO mrm O —
HOOmHOOHHOO M HOO M ~NO - OO0 OoOoO O~
OO~ OrOHMOFOOH OO HrFOOOOOO O
OO0 rHOOCO OO MmO mMOOrONmOr~OO MO
—HO OO HOOOHO O MEMOOOO N rmMerOOOO ~
Crr OO rHOOHQOQOHH - OO0 HQOOODOHOOD
HOFMHMOOH OO MmO MO rHMOOOHMOOROOO
OrOM OO~ OO0kt r OO MmO r~O~MO O -HOD
O rH OO OO - O r OO~ - O~ OO~ OOoO
OCr-HOOCOOLOO OO HO " —Ar-O~r-~O0~0O0O
HOOOOOOOLOOMHMOH MmO H O -HFNHNOOO
COCODOLOHMHHHFHOO OO r-OOrOMHMO MO -O
COCOLONMmMHHOOOHmrMOO - rOrOrHOO O~
COCOOOHHHHOAHMOOQLOOODODOOO i rtrmird v v
COQQOHONHOHNHMOOCOQOOrmrE-OOOO ™
COO-HOCOHOH - HMOOO OO OO O
COrFOPOCOHHHAHHOO O OO OO ~O O
= AEH O OO H OO0 H mrdm
HHE A O OO H OO e mHOOOO =
HEA AN O OO0 - HOOO OO0 —-O
T O H A~ OO0 rHO-rHOoOOrOOoOOHO O
OO HHHOOOOOOOrHOHOHON OO O~ -
OO N OO HO—=OHOHEQO MO ~O O~
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[L21
0

G785 = Qg7

= Qg7

= Qg
Qs = Qg5 = Qg5 = Oz = Ogg = Qog = 1,

I

000100000
000100000
100000111,;.
100000111
1000110z =
10001120=x
100011 zxzz0)

—2, —1, —1) as corresponding eigenvector. By
111000000

(1.6), it follows that, in (3.2),
421
7, 8, 9. It follows from the stipulation beginning

this section that at least two of 7, 8, 9 are second
associates. Without loss of generality, assume 7 and

8 are second associates; i.e., in (3.2),
Then rows and columns 5, 6, 7, 8 of (3.2) form a

first associates of 5 and 6, 1 is a first associate of
principal submatrix

which has —2 as its least eigenvalue, and (2, 1, 1,
Thus, 5 and 6 are second associates, 1, 7, 8, 9 are

S0 we may rewrite
000111111

Q57 = Ops

3.2
0,

(2.12)
(3.3)

OO0 H MMM rmMOQOO OO O
HOQOOQCOOLOOCOHOHmmMrerrmrmOOmOMO=-O O
OCr-OCO ™ rOOrrmMOrOOOOmrMiOOO O OO
OO HOO M rNrmMOOCOCOOH OO rNO~MOoOO =D
OCrOrOmOrmMO™NMO-OOMrMOOOOOm ~OO~O —~
HOOHO MO FMONHFOOON™mMOOOOO OO RO~
OrrOCO™mHOONMOHHrOOOOOO OO MO O
HFOFN OO OO FMOHHOQOOOCOOOHmMOmO~O
O = O HOHOO—O O N rOOOoOODODOOD
O EEH T OA AT A OO mOMOFNOO-HODOOODOOD
OHMOO MO OCOHOHOOrHO - rOO—OOOC v rm rf r
HOOCONMOOO-OOrMrO OO —OOOOO m ™~
CHOMOOO OO HOO N HMOOHNOHOO~NmMOO ~m
HOOHOOOHOOOHNrmMOOHmO~OOO ™M eEtOO ™™
OO0 OO rHOmMOOHOrmMOHErirtOOOO
HOHMOOOCHOOOOHOHMHMOHAOHO R -OOOO —
COCOCOrmmrmmMmMOOrHO O mOmMOOmO OO~
COCODOrHremmMOOO OO MO H OO OO
COCOOrHmrmrmOrmrrOoOOoOCOOOOO mmMmrmMremremrOO
COCO MO rHmrMOH OO NN rHOOOO-=-OoOO
COOrHOOrHOrmMrmrM OO - OO M OO ~M-OOOo O
COrMOOOOmrHrrr OO rrrOOOo0OO
e OO0 O HOOOOCOOCOOOO N rmHmMmMre=-OD
HE A A O OO HOOOOOOOO M HOOOO-rOD
HrH At OO OO0 0O OO OO mHmMOOO D
HHE O A A O OO0 N H OO OO AN HOOOOOD
COHm MO0 HO OO HOAOROMNO
CONMMNFMHMHFHOQOOOLONOFHOFHO—OmO-OmMO O

1, then —2 is not an eigenvalue of

(3.2), which violates (1.7). So at least one x

ags = 0. It follows that the first six rows

and columns of (3.2) form

Suppose (3.1) is a principal submatrix of A. Then,

by (1.8)(b), 4 contains a principal submatrix of

order 9 of the form
000111111
000100000
000100000
111000000
10000zzz 2.
1000z0zz2=x
1000z20zxx
1000zxzzz0x
1000zzz20
000111
0006100
000100
111000
100000
100000

-

submatrix of A, then 8 is isomorphic to the arcs

of the complete graph on n points:

S
>
-
M)
>
M)
Yy
—

8ay Qse




0011
0011
1100
1100

of 4, with —2 as eigenvalue, (1, 1, —1, —1) cor-
responding eigenvector. Application of (1.6) then
implies that, in (3.2), a;; = g = Ags = Qo7 = 1.
So we have finally concluded that we may write
(3.2) as

(000111111
000100000
000100000
111000000
10000011 1. 3.2
100000111
100011001
100011001
100011110

Referring back to (1.8)(b), and invoking (3.2),
the supposition that 4 contains (3.1) as a principal
submatrix implies that A contains

000111111000
000100000111
000100000111
111000000111
10000011 1zzzx
100000111lzzx
100011001xxx.
100011001 z=xzx
100011110

011lzzz2zxz0zzx

(34)

(3.5)

8
8
8

01ll1llzzzzz2xz02

Oll1lzzzzzzx0

The argument used before in connection with
(3.3) show that, in (3.8),

A5,10 = O5,11 = Q5,12 = Qg,10 = ds,11

= OGg,12 = Q10,5 = Q11,5 = Qi2,5
= G106 = Q11,6 = Oag,6 = 0, (3.6)
494 and considerations applied to (3.4), in view of (3.6),
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imply a;.10 = @711 = G712 = 5,10 = Gs, 11

= Qg2 = Gio,7 = Q11,7 = Qua,z

= Q9,8 = Qi1,8 = Q12,3 = 0.
Hence, we may assume (3.5) has the appearance
000111111000
000100000111
000100000111
111000000111
100000111000
100000111000
100011001000'
100011001000
100011110zzw=
0111000020z«
01110000zz0z
01110000zzz0

Now 2, 3, 9 are mutually second associates. 1, 5,
6, 7, 8 are first associates of 9, second associates of
2 and 3. It follows from (1.8)(b) that exactly one
of the three z's in column 9 of (3.5) is 1, say @iz, =
G915 = 1, while @50 = @o.u = A9 = o0 = 0.
Further, since 7, 8, 12 are mutually second asso-
ciates, and 9 is now known to be a first associate
of each, we infer from (1.8)(b) that @012 = G112 =
@120 = Gz, = 1. Further, 7, 8, 11 are mutually
second associates. There is no object which is a
first associate of all three, so by (1.8)(a), @01 =
@110 = 0. Hence, we know we can write (3.5) as

000111111000
000100000111
000100000111
111000000111
100000111000
100000111000

100011001000.
100011001000
100011110001
011100000001
011100000001
011100001110

(3.5)

(3.5)




Let us now look at the submatrix of (3.5) formed
by rows and columns 2, 3, 11, 12, 1, 7, 5, 6, and
rewrite it so that 2 is first, 3 second, 11 third,
et cetera. We obtain

(00110000
00110000
f11010000
111100000 -
00000111
l0oo001011
loooo01100
00001100

a matrix which looks identical to (2.4), and suggests
that the technique used in Section 3 may be applied
here, albeit with slightly different side conditions.

First, if we know how any column other than
1-12 “meets” rows 2, 3, 11, 12, 1, 7, 5, 6, we know
how it meets rows 4, 8, 9, 10. For it is clear from
(3.5) and (1.1)-(1.3) that the entries in rows 1 and
4 will be identical; the entries in 7 and 8 completely
different; 12 and 9 identical; and 11 and 10 com-
pletely different.

Second, if we let B be the submatrix of 4 formed
by rows 11, 12, 1, 7 (written in that order) and
columns 13-28, then (3.5) and (1.1)-(1.3) show that

83314
3623
3263.
4338

BB" = (3.8

Third, in 13-28, there are

four columns with 1’s in rows 2 and 5,
and 0’s in rows 3 and 6;

four columns with 1’s in rows 2 and 6,
and 0’s in rows 3 and 5;

four columns with 1’s in rows 3 and 5,
and 0’s in rows 2 and 6;

four columns with 1’s in rows 3 and 6,
and 0’s in rows 2 and 5.

The material in (2.5) and (2.6), and the remarks
of (2.7) and the subsequent paragraph, apply mu-
tatis mutandis to the current situation.

In particular, an examination of all possibilities
for B satisfying the above facts and (3.8) yields
these four possibilities (and no others):

N

11111100000000
10000011100000/ 3.9)
01000000011100

0011001001001 1]
1111110000000 0)
10000011100000
01000000011100
10110010011010
11111100000000]
01000011100000
10100010011000
100100010101 10
1011111000000 0]
01100001100000
11010000011000]

110011010101 00
A development of the full matrix 4 containing
.9) obtained by using (2.5) and (2.6) is
000100110101010010110

— e et e

I

N

) 3.10)

) (3.11)

= N
o - o p—t (S p— - — [ ot — [

(3.12)

[ =T R R = R = T e e e S S SO SRRV

w
©

3.13)

HOMMOMRO OFROFO MO MOOROOOOMMHOO ~
HOOROOR COHMO OFRHMOMMOO R M OMROOO
HOMOOMM OHFHOH OFEQOORHROOSHRROOO
OCHOFHHOO NOOrHO HOHORMFOOORMHOOCO
CrRrR RO OCOCOH OFHMEOOOOO O
CrHMFREORMO HFHOOMH OO0 RO ELOROOO
COCOHHFHH OOCOCO HHHMOOHOHMEMFE OO
HiEir - QOO0 OO OO O
COCOHOOCO OOOHD HrOOHORHRORMHMMO
COCOOCOO COMOF QOO OO i =
COQCOQ MmO R HOHO OCOHOHMOMOOOHMO
OH-HHOOOOI R R OO|OROOCO R HOD MO~ O
HEOOHOQO|IR OO OODOCOHROFOORD
HOOQCOOR|IRHrOoORIOHFOOOODO O O O M=
CrHOOOHOI~ O HIFOOOOHROOHOOORD
= OHOOCHROO|IOmH IR OOOOROROOOO =

10 1
10 0
10 0
00 0
00 0
01 1
01 1
01 0
11 0
01 0
11 0
10 1
11 0
11 0
10 0
01 0
00 1
00 1
00 1
00 0
10 1
190 1
10 0
01 1
01 1
01 0
00 0
1

HHEOOOHMHO OOHOO OFHOHRKHOOORHOFROM
CHOMOFHOH OO0 HOOKRHMROOHROOOO
HFOFROOOHRMH MOOOO HFOCHRHOROOO RO
HEER=EOOO0O0 OO0 OCO OO HMOREROOO
CrMrMQOrHROMRO OFHROOM COO RO NMFOROEODD
HFOOMHRMFHEMHEOQO MO0 OO0 HOHMHMOOKHOO =
O=MFHORHOH RFOHFRO OCCORSOODHOROODORD

010001010001000011
after we have effected the permutation
1234567 8 91011 12
5129786101112 3 4‘

Note that the outlined box, together with the
third row and column, form a principal submatrix
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of (3.13) of the form (2.1), so (3.13) etther does not
satisfy (1.1)-(1.3), or it is a counter-example met in
Section 3. In either case, it need not be considered
further.

The “immersion” of (3.10)-(3.12) respectively in
matrices A has not been calculated.

In any case, assuming all the calculations are
correct, the task that remains after such immersions
have been deduced from (2.5) and (2.6) is to test
if they satisfy the postulates, and then to test among
those that do, how many are different.

Received March 9, 1960.
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