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On the  Exceptional  Case 
in a Characterization of the Arcs 
of a Complete  Graph 

Abstract: It is known that a certain  simple set of  properties  characterize  the  relationship  of  adjacency of 
the n(n - 1)/2 arcs of  the  complete graph of order n, when n # 8, and that these properties are 

not a sufficient characterization when n = 8 (see [l], [2], [3], [4], and [7]). The  present paper describes a 
method for enumerating all counter-examples when n = 8. 

1. Introduction 

In  an  abstract set S of n(n - 1)/2 objects,  let  there 
be defined two symmetric relationships, “first asso- 
ciates” and “second associates” on pairs of distinct 
objects  in S,  so that  any two  distinct  objects  are 
either first associates or second associates. Suppose 
that 

every  object  has 2(n - 2) first associates; (1.1) 

if two  objects  are first associates, there  are 
exactly n - 2 other  objects, each of which 
is a  first associate of each of the two; (1.2) 

if two  objects  are second associates, there 
are exactly four objects, each of which is a 
first associate of each of the two. (1.3) 

It is known that, provided n Z 8, properties 
(1.1)-(1.3) suffice to prove that S is isomorphic 
to  the set of n(n - 1)/2 arcs of the complete graph 
determined by n points, first associates correspond- 
ing to a pair of arcs  with a common end point, 
second associates corresponding to a pair of arcs 
without an end point.  This does not necessarily 
hold, however, when n = 8 ([l], [2], [4]). A complete 
enumeration of all counter-examples when n = 8 
has also been given (see [2]). 

The purpose of the present manuscript is to indi- 
cate  an  alternate method of arriving at  the enumera- 
tion of these counter-examples, a method based on 
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the exploitation of properties of the eigenvalues and 
eigenvectors of symmetric matrices and  their princi- 
pal submatrices. As will be seen, the calculations 
become rather formidable, and  have therefore not 
been carried to completion. In view of the results 
of [a ] ,  there would  seem to be no point in carrying 
them  further. 

What is given in the sequel can best be described 
as a method which, when properly executed, will 
complete the discussion of all models of the postulate 
system (1.1)-(1.3), a problem first posed by Connor 
and solved by him [3] for n 2 9. The method will 
also furnish evidence to supplant that offered in 
[4] and [5] of the usefulness of eigenvalue and eigen- 
vector considerations in combinatorial problems, a 
development predicted in [SI. 

Now to begin the  attack on the problem. 
Number the elements of X from 1 to 28 in any 

order.  Let A be a square  matrix of order 28 defined by 

A = (Uij )  r O i f i = j  

0 if i and j are second associatesl (1.4) 

Then it is obvious that (1.1)-(1.3) with n = 8 
imply A’ = 8 1  + 2A + 4J,  where I is the identity 
matrix  and J is the matrix every entry of which 
is 1. It is shown in [2] that this  equation implies 
that  the eigenvalues of A are 

= 1 if i and j are first associates 1 . 
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corresponding eigenvector Let us tentatively assume that A contains 
(b) 4, with  multiplicity 7, and r 

(c) -2,  with  multiplicity 20.  (1.5) 0 0 1 1 1 1  

We shall now make use of some  well-known 
properties of (real) symmetric matrices, which we 
list now for  ready reference: 

1 1 0 1 1 1  

1 1 1 0 1 1  Let M be a real  symmetric  matrix of order m, 
with a! as maximum eigenvalue, and p < CY the 1 1 1 1 0 1  
minimum eigenvalue. Let b be the multiplicity of p. 
Let K be  a  submatrix of order IC, with 6 the mini- L1 1 1  1 1 0 ,  
mum eigenvalue of K ,  !/ a corresponding eigenvector. as a principal submatrix,  say from rows and columns 

(2.1) 

Then 6 2 p, and if 6 = p, y is orthogonal to 
that  part of every column of M not meeting 
K consisting of those rows that do meet K. (1.6) 

1-6. -It is  -an easy consequence of (1.1) and (1.3) 
that there  are exactly six objects,  say 7-12,  which 
are second associates of both 1 and 2 .  

We first show that no more than two of these 
I f k + b > m , 6 = p .  (1.7) objects can be second associates of all of 3, 4, 5, 6. 

Suppose as  many  as  three of them (say 7, 8, 9) 
using other Properties of eigenvalues and e b n -  were. Then (2.1)  would  be imbedded in a principal 

vectors, it was shown in [4] that if submatrix of order 9 

I: : II 0 0 0  I 0 0 1 1 1 1 0 0 0  

0 0 1 1 1 1 0 0 0  

1 1 0 1 1 1 0 0 0  

is a principal submatrix of A ,  consisting (say) of 

1 1 1 1 0 1 0 0 0 ,  the first three rows and columns of A ,  then  there 
1 1 1 0 1 1 0 0 0  

is  either exactly one (say object 4) which is a second 
associate of 1, 2 ,  and 3 ,  or exactly one object (say 1 1 1 1 1 0 0 0 0  
object 4) which is a first associate of 1, 2,  3; and 0 0 
that, in the former case, the first four rows of A 
may be taken  to be 

(2.2) 

. o o o o o o  
where B is a symmetric (0, 1) matrix of order 3, 

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 with 0 on the main diagonal. Such a matrix  cannot 
* have  -2 as  an eigenvalue. Since  (2.2) is the direct 

sum of (2.1) and B, and neither (2.1) nor B has 
0 0 0 0 0 0 0 0 0 o 0 0 1 1 1  1 o 0 0 0 1 1 1  1  1 1 1 1 -2  as  an eigenvalue, it follows that -2 is not an 

eigenvalue of (2.2). But, in view of (1.5) (c), this 

We know, therefore, that each of at  least  four 
(1.8)(a) would violate (1.7). 

objects of 7-12 has the property of being a first 
In the the first four Of A may associate of a t  least one of 3, 4, 5,  6.  Assume, 

say, that 7 is a first associate of 3. Since 1, 2, 7 are be taken  to be 

1 Io '1 of 1, 2, 7, it follows  we are in situation (1.8) (b), 
mutually second associates, and 3 a first associate 

1 10 0 0 1 0 0 0 0 0 1  1  1  1  1 1 1 1 0 0 0 0 0 0 0 0 1  1 1 )  and 7 is a second associate of 4, 5, 6. Again, by 
* (1.8) (b), 3 is a second associate of 8-12, and 7 is I 1 1 a  first assooiate of 8-12. This line of reasoning shows 

1  1  1 0 o 0 0 o 0 1 1 1 0 0 0 0 0 1 1  1 0 0 0 0 0 1 1 1) that, after some renumbering, one may assume that 
the principal submatrix of A formed by rows and 
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u u 1 1 1 1 u u u u u u  

1 1 0 1 1 1 1 0 0 0 0 0  

1 1 1 0 1 1 0 1 0 0 0 0  

1 1 1 1 0 1 0 0 1 0 0 0  

1 1 1 1 1 0 0 0 0 1 0 0  

0 0 1 0 0 0 0 1 1 1 1 1  

0 0 0 1 0 0 1 0 1 1 1 1  

0 0 0 0 1 0 1 1 0 1 1 1  

0 0 0 0 0 1 1 1 1 0 1 1  

0 0 0 0 0 0 1 1 1 1 0 z  

(2.3) 

~ ~ 0 0 0 0 0 1 1 1 1 ~ 0 J  
Now 1 , 2, 11 are  mutually second associates; it 

is clear from (2.3) that no object is a first associate 
of all of 1, 2, 11, so we must by (1.8) (a) have 
an object which is a second associate of 1, 2, and 11. 
The only possibility is 12. Hence, in (2.3) the quan- 
tity x = 0, and we rewrite 

0 0 1 1 1 1 0 0 0 0 0 0  

0 0 1 1 1 1 0 0 0 0 0 0  

1 1 0 1 1 1 1 0 0 0 0 0  

1 1 1 0 1 1 0 1 0 0 0 0  

1 1 1 1 0 1 0 0 1 0 0 0  

I 1 1 1 1 1 0 0 0 0 1 0 0  I . (2.3) 
0 0 1 0 0 0 0 1 1 1 1 1  

0 0 0 1 0 0 1 0 1 1 1 1  

0 0 0 0 1 0 1 1 0 1 1 1  

1 0 0 0 0 0 1 1 1 1 0 1 1  

0 0 0 0 0 0 1 1 1 1 0 0  

, 0 0 0 0 0 0 1 1 1 1 0 0 ~  
Each of rows 3-10 contains exactly six  ones in 

(2.3), so by (1.1) the remainder of each of these 
rows in the sixteen remaining columns contains 
exactly six 1’s. By (1.2), it follows that in columns 
13-28, rows 3 and 7 are  identical, rows 4 and 8 
are identical, rows 5 and 9 are identical, and rows 6 
and 10 are identical.  Furthermore,  by (1.2), (1.3), 
and (2.3), any  two rows not  “paired” (i.e., not 3 
and 7, 4 and 8, 5 and 9, or 6 and 10) in 3-10 have 
exactly two common ones in columns 13-28. Also, 
by (1.1)-.(1.3), four of columns 13-28 contain ones 
in rows 1 and 11, zeroes in rows 2 and 12; four 

in rows 1 and 12; and four contain ones in rows 2 
and 12, zeroes in rows 1 and 11. 

For simplicity, let us now look at the submatrix 
of order 8 of (2.3) obtained from rows and columns 
1-4 and 9-12. We get 

~ 0 0 1 1 0 0 0 0 ’  

0 0 1 1 0 0 0 0  

1 1 0 1 0 0 0 0  

1 1 1 0 0 0 0 0  

0 0 0 0 0 1 1 1  

0 0 0 0 1 0 1 1  

0 0 0 0 1 1 0 0  

, 0 0 0 0 1 1 0 0 ,  

(We shall continue to call these rows and columns 
1, 2, 3, 4, 9, 10, 11, 12). It is clear from the fore- 
going paragraph that when one describes the entries 
of any one of columns 13-18 in the rows 1-4 and 
9-12, one also automatically describes the entries 
in rows 5-8. 

If we note that (2.4) is  invariant  with respect to: 

interchanges of 1 and 2, 
interchanges of 11 and 12, 
interchanges of 3 and 4, 
interchanges of 9 and 10, 

and  the mapping 

1 12 
2-  11 
3 * 10 
4 -  9, 

then  any of the possible columns 13-28, rows 1-4 
and 9-12, is represented after  permutations as ex- 
actly one of the following: 

( 4  (b) ( 4  (dl ( 4  (f) 
> 

1 1 1 1 1 rl 

0 

,1, ,1, .1, .1, (1, .1, 

0 0 0 0 0 0 

1 0 1 0 0 0 

1 1 0 0 0 0 

1 1 0 1 0 0 

1 1 1 1 1 0 

0 0 0 0 0 

. (2.5) 
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Now consider the matrices of order 9  obtained 
by  appending each of the six columns of (2.5) to 
(2.4), the corresponding row, and 0 on the main 
diagonal. In each case, -2 is an eigenvalue of the 
matrix of order  9, and here are  the corresponding 
eigenvectors of order 9: 

( 4  

2 

1 

-1 

-1 

-1 

-1 

1 

2 

-2 

(b) 

1 

0 

1 

-1 

-1 

-1 

1 

2 

-2 

Notice that 1 

( 4  

a 
-1 

1 

1 

-1 

- 1  

1 

2 

-2 

1 

0 

1 

-1 

-1 

1 

0 

1 

-2 

n each case, 

, 

J 

el 

( 4  

a 
-1 

1 

1 

1 

-1 

0 

1 

-2 

0 

-1 

1 

1 

1 

1 

-1 

0 

-2 

very entry in 
rows 3,4,9,10 is f l ;  the  entry correspond- 
ing to  the added row is -2. Also, in cases 
(2.5) (a),  (c),  (d), and (f), when the number 
of ones in rows 3, 4,  9, 10 is even, the sum 
of the entries  in 1 and 12 in (2.6) is even, 
and so is the  sum of the entries in 2 and L L ,  
whereas the  sum of the entries in 1 and 11 
is odd,  and so is the sum of the entries in 2 
and 12. In cases (b) and  (e), where the num- 
ber of ones in rows 3, 4, 9, 10 is odd, the 
situation is reversed. In view of (1.6), these 
facts imply that eight of the columns 13-28 
contain an even number of ones in rows, 3, 
4, 9,  10,  and the remaining eight columns 
contain an odd number of ones in these 
rows. 

What possibilities are  there for the submatrix B 
of A formed by rows 3,  4, 9, 10 and columns 13-28? 
Recall that each row contains six 1’s and  the pro- 
duct of any two rows of B is 2.  We  will consider 
all possibilities in lexicographic order,  ranking in 
terms of largest number of columns with largest 
number of ones. 

We cannot  have  two columns with four l’s, 
since among other  arguments  there would then be 
sixteen additional columns, each containing exactly 
one 1,  and there are only sixteen columns in B. 
We cannot  have one column with four l’s, and 
two  or more columns with three l’s, since this 
would  yield two or more rows with an inner product 

490 of 3. Could we have exactly one column with four 

l’s, and exactly one column with three  l’s?  Then 
we would have 

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0  

1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0  

1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0  

. 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 ,  

which has four columns with an even number of 
1’s’ twelve columns with an odd number of 1’s. 
Thus  this must be ruled out. 

Could we have exactly one column with  four l’s, 
and no columns with three l’s? Then  there will 
be eight columns with exactly one 1. Then B may 
be taken  to be 

9 

0 1 1 1 0 0 0 0 0 0 1 0 1 1 0 0  

0 1 0 0 1 1 0 0 0 0 1 0 0 0 1 1  

0 1 0 0 0 0 1 1 0 0 0 1 1 0 1 0  

~ 0 1 0 0 0 0 0 0 1 1 0 1 0 1 0 1 ,  

This is true since if  we had a column which appears 
in rows  1-4 and 9-12 as 

(11 

l:i 
then we cannot  have  another column identical to 
the above  in those rows, for it would make an 
inner  product of 4 or 2  with  (2.6)(b), violating 
(1.6).  We cannot  have  another column 

1 

0 

1 

0 

0 

0 

1 

,O, 

or 

7 

0 

1 

1 

0 

0 

0 

0 

1, 

in those rows, for either would make an inner pro- 
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duct different from 0 with (2.6)(b), also violating 
(1.6). So there  are at  most two columns which, 
in B,  have exactly one 1 and that 1 in the same 
row. From these considerations, the appearance of 
B in (2.8)  follows. 

This completes the discussion of possibilities for 
B in which there  are one or more columns with 
four 1’s. 

Suppose that  the largest number of ones in  a 
column of B is 3. Suppose there  are four of them. 
Then B would have the appearance 

0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0  

1 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0  

1 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0  

, 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1  

. 

with  every column containing an odd number of 
1’s’ which is impossible. 

Suppose there  are exactly three columns con- 
taining  three 1’s. Then B would have the appearance 

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0  

1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0  

1 0 1 0 0 0 1 0 0 0 1 1 1 1 0 0  

. 0 1 1 0 0 0 0 1 0 0 1 0 0 0 1 1 ,  

which has  thirteen columns containing an odd num- 
ber of 1’s and is impossible. 

Suppose B contains exactly two columns with 
three 1’s. These three  1’s may all be in the same 
rows or not. If they  are in the same rows, then B 
would have the appearance 

7 

1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0  
’ 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0  

0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0  

, 0 0 0 0 0 0 0 0 1 1 1 1 i 1 3 0 ,  

(2.9) 

If they are not  in the same rows, then B would 
have the appearance 

b 0 1 0 1 1 0 0 1 0 0 0 1 0 1 0 ’  

0 0 0 1 1 1 0 0 0 1 0 0 0 1 0 1  

0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1  

~ 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 ,  

(2.10) 

Now suppose B contains exactly one column with 
three 1’s. Then B would  be 

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0  

1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0  

1 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0  

, 0 0 0 1 1 0 0 1 1 0 1 1 0 0 0 0 ,  

’ 

where twelve columns have an even number of 1’s’ 
which is impossible. 

If there  are no columns containing as many as 
three  l’s,  then, for the reasons explained in deriving 
(2.8), we may assume B begins 

rl 1 0 0 0 0 0 0  

0 0 1 1 0 0 0 0  

0 0 0 0 1 1 0 0  

, 0 0 0 0 0 0 1 1 ,  

and  it is easy to show that at least one of the re- 
maining columns must  have more than two l’s, 
which  case has been excluded. 

Thus our examination has produced three pos- 
sible cases, namely (2.8), (2.9),  and (2.10) for B. 
Notice that  the allowable renumbering of 3-10  dis- 
cussed earlier might produce other cases, but  these 
would be, of course, equivalent to  the three cases 
considered. 

Let us now  see  how each of these three possi- 
bilities for B can be imbedded in  a  matrix C formed 
by rows  1-4 and 9-12, and columns 13-28. Consider 
first (2.8).  There is no loss of generality in assuming 
that  the first column of the corresponding C is 

’ 

(11 

ilJ 

Then examination of (2.6)(a)  together 
with (1.6) implies that  the second  column 
of C is 

\ 

1 

0 

1 

1 

1 

1 

0 

,1, 49 1 
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The  facts established in (2.7) show that  it is no 
loss of generality to assume the next 8 columns of 
C are 

1 0 1 0 1 0 1 0 ’  

0 1 0 1 0 1 0 1  

1 1 0 0 0 0 0 0  

0 0 1 1 0 0 0 0  

0 0 0 0 1 1 0 0  

0 0 0 0 0 0 1 1  

1 0 1 0 1 0 1 0  

0 1 0 1 0 1 0 1 ,  

All that remains is to consider the last six columns 
of C. The  last four of those columns have  a 1 in 
rows 3 or 4, and a 1 in  either row 9 and 10. Examina- 
tion of (2.6)(c) shows that, if the column of C 
containing column 

1 

1 

0 

0 ,  

of (2.8) is 
, 

0 

1 

1 

1 

0 

0 

1 

,O, 

then, by  (1.6), the last four columns of C would 
each have  a 1 in  rows 1 and 12. Since the first two 
columns of C also have a 1 in rows 1 and 12, we 
would have  a violation of the  last sentence of the 
paragraph following (2.3). 

Hence, the mat,rix C containing (2.8) is 

1 1 1 0 1 0 1 0 1 0 1 1 0 0 0 0  

0 0 0 1 0 1 0 1 0 1 0 0 1 1 1 1  

0 1 1 1 0 0 0 0 0 0 1 0 1 1 0 0  

0 1 0 0 1 1 0 0 0 0 1 0 0 0 1 1  
I 

0 1 0 0 0 0 1 1 0 0 0 1 1 0 1 0  

0 1 0 0 0 0 0 0 1 1 0 1 0 1 0 1  

0 0 1 0 1 0 1 0 1 0 0 0 1 1 1 1  

492 , 1 1 0 1 0 1 0 1 0 1 1 1 0 0 0 0  

Bearing in mind that, in columns 13-28, the above 
automatically describes rows 5-8, along with 1-4 
and 9-12, we see that we have now fully specified 
one way (arising from (2.8)) that all rows and 
columns containing (2.3) can be completed in the 
matrix A.  To determine the remainder of the matrix 
A ,  all we need do is invoke (2.6). This produces 
the matrix of order 28: 
0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0 0 0 0  
0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1 1 1 1  
1 1 0 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 1 1 0 0  
1 1 1 0 1 1 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 1 1  
1 1 1 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 0 1 0  
1 1 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 0 1  
0 0 1 0 0 0 0 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 1 1 0 0  
0 0 0 1 0 0 1 0 1 1 1 1 0 1 0 0 1 1 0 0 0 0 1 0 0 0 1 1  
0 0 0 0 1 0 1 1 0 1 1 1 0 1 0 0 0 0 1 1 0 0 0 1 1 0 1 0  
0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 1 1 0 1 0 1 0 1  
0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 1 1 1  
1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0  

1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 0  
0 1 1 0 0 0 1 0 0 0 0 1 1 0 1 0 0 1 0 1 0 1 1 0 1 1 0 0  
1 0 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 0 1 1  
0 1 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 0 1 1  
1 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 1 0  
0 1 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 0  
1 0 0 0 0 1 0 0 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1  
0 1 0 0 0 1 0 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1  
1 0 1 1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0  
1 0 0 0 1 1 0 0 1 1 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0  
0 1 1 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0  
0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 0 0 1  
0 1 0 1 1 0 0 1 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1  
0 1 0 1 0 1 0 1 0 1 1 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0  

1 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0  (2.11) 

The  matrix (2.11)  will provide a counter-example 
if, and only if, the consequences of (1.4) and (1.1)- 
(1.3) hold with n = 8. This is indeed the case. 

Arguments simular to  the above yield, from (2.9) 
and (2.10) respectively, matrices (2.12) and (2.13), 
displayed on page opposite. 

It has been calculated that (2.12) is indeed a 
counter-example. The calculation has  not been per- 
formed for (2.13). 

It is possible that a  suitable renumbering may 
show that (2.11)-(2.13) are  not  all  distinct.  This 
has  not been checked. 

3. Further possible  counter-examples 

For the remainder of this discussion, we may assume 
A contains no principal submatrix of the form (2.1). 
Consider now the matrix 

0 0 0 1 ”  

0 0 0 1  

0 0 0 1  

,1 1 1 0,  

As was shown in [4], if (3.1) is not a principal 
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0011110000001010101010101010 
0011110000000101010101010101 
1101111000001100001111000000 
1110110100000011001100110000 
1111010010000000111100001100 
1111100001000000000011111100 
0010000111111100001111000000 
0001001011110011001100110000 
0000101101110000111100001100 
0000011110110000000011111100 
0000001111000101010110101010 
0000001111001010101001010101 
1010001000010110101011000011 

1001000100011001101000110011 
0101000100100110010100110011 
1000100010011010011000001111 
0100100010100101100100001111 
1011101110011010100100000000 
0111101110100101011000000000 
1010011001101100000001101010 
0110011001011100000010010101 
1001010101100011000010011010 
0101010101010011000001100101 
1000110011100000110010100110 
0100110011010000110001011001 
1000000000101111110010101001 
0100000000011111110001010110 

0110001000101001010111000011 (2.12) 

submatrix of A ,  then S is isomorphic to  the  arcs 
of the complete graph on n points: 

Suppose (3.1) is a  principal  submatrix of A.  Then, 
by (1.8) (b), A contains a principal submatrix of 
order 9 of the form 

0011110000001010101001101001 
0011110000000101010110010110 
1101111000000010110010001010 
1110110100000001110001000101 
1111010010000000001111000011 
1111100001000000000000111111 
0010000111110010110010001010 
0001001011110001110001000101 
0000101101110000001111000011 
0000011110110000000000111111 
0000001111000110011010100101 
0000001111001001100101011010 
1000000000010111101101111000 
0100000000101011011110110100 (2.13) 
1010001000101100111010101000 
0101000100011100110101010100 
1011001100011011010001001000 
0111001100100111100010000100 
1000100010101110000111100001 
0100100010011101001011010010 
0110101010100110011100000010 
1001100110011001101100000001 
1000010001101110001000011101 
0100010001011101000100101110 
1010011001011010100000110010 
0101010101100101010000110001 
0110111011010000000110011000 
1001110111100000001001100100 

which has - 2 as  its least eigenvalue, and (2, 1,  1, 
- 2, - 1,  - 1) as corresponding eigenvector. By 
( l . G ) ,  i t  follows that, in (3.2),  

0 0 0 1 1 1 1 1 1  

0 0 0 1 0 0 0 0 0  

0 0 0 1 0 0 0 0 0  

1 1 1 0 0 0 0 0 0  

1 0 0 0 0 2 2 x 2 .  

1 0 0 0 x 0 2 x 2  

1 o o o x x o x 2  

1 0 0 0 x 2 2 0 2  

1 0 0 0 2 x 2 x 0 ,  

If every x = 1, then - 2 is not an eigenvalue of 
(3.2), which violates (1.7). So at least one 2 = 0, 
say asa = ass = 0. It follows that  the first six rows 
and columns of (3.2) form 

0 0 0 1  1 1 ’  

0 0 0 1 0 0  

D O 0 1 0 0  

1 1 1 0 0 0  

1 0 0 0 0 0  

1 0 0 0 0 0 ,  

(3 -3) 

so we may  rewrite 

‘ 0 0 0 1 1 1 1 1 1 ”  

0 0 0 1 0 0 0 0 0  

0 0 0 1 0 0 0 0 0  

1 1   1 0 0 0 0 0 0  

1 0 0 0 0 0 1 1 1 .  

1 0 0 0 0 0 1 1 1  

1 0 0 0 1 1 0 2 z  

1 0 0 0 1 1 z o x  

, 1 0 0 0 1 1 2 x 0 ,  

Thus, 5 and 6 are second associates, 1,  7, 8,  9 are 
first associates of 5 and 6, 1 is a first  associate of 
7, 8, 9. It follows from the stipulation beginning 
this section that  at  least  two of 7, 8, 9 are second 
associates. Without loss of generality, assume 7 and 
8 are second associates; i.e., in (3 .2) ,  

U 7 8 = a s 7 = 0  

Then rows and columns 5 ,  6, 7,  8 of (3.2) form a 
principal submatrix 493 
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of A , with - 2 as eigenvalue, (1, 1, - 1, - 1) cor- 
responding eigenvector. Application of (1.6) then 
implies that, in (3.2), a,, = asp = a,, = uO7 = 1. 
So we have finally concluded that we may  write 
(3.2) as 

r O O O l l l l l l  
0 00100000 

000100000 

111000000 

100000111. (3 4 
100000111 

100011001 

100011001 

,100011110, 
Referring back to (1.8)(b), and invoking (3.2), 

the supposition that A contains (3.1) as a principal 
submatrix implies that A contains 

[ o o o l l l l l l o o o  

000100000111 

000100000111 

111000000111 

100000111xzz 

= al0.8 = a11.8 = &2,8 = 0. 

Hence, we may assume (3.5) has the appearance 

b00111111000’ 

000100000111 

000100000111 

111000000111 

100000111000 

100011001zzz 

100011110zxz 

OlllxzxzzOzz 

OlllzzzzzzOz 

,0111zzzzXz~0, 
The argument used before in connection with 

(3.3) show that, in (3.8), 

a5.10 = a5.11  = a5.12 = a6.10 = a6,ll 

- - a6.12 = al0.5 = all,, = alZ.5 

- al0.6 = all.6 = al2.6 = 0, (3 -6) - 

494 and considerations applied to (3.4), in view of (3.6), 
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100000111000 

100011001000 
(3.5) 

100011001000 

100011110zzz 

olllooooxozz 

ollloooozzoz 

Q1110000xzx0, 
Now 2, 3, 9 are  mutually second associates. 1, 5, 

6, 7, 8 are first associates of 9, second associates of 
2 and 3. It follows from (1.8)(b) that exactly one 
of the  three x’s in column 9 of (3.5) is 1, say a,, ,g = 

= 1, while as,lo = = a11,9 = ~ ~ 0 . 0  = 0. 
Further, since 7, 8, 12 are mutually second  asso- 
ciates,  and 9 is now known to be a first associate 
of each, we infer from (1.8)(b) that ulo.lz = all ,12 = 
a l l , l o  = ul,,ll = 1. Further, 7, 8, 11 are mutually 
second associates. There is no object which is a 
first associate of all  three, so by (1.8)(a), alo,l l  = 
a,,,,,, = 0. Hence, we know we can write (3.5) as 

000111111000’ 

000100000111 

000100000111 

111000000111 

100000111000 

100000111000~ 

100011001000 

100011001000 

100011110001 

011100000001 

011100000001 

.011100001110, 

(3 -5) 



Let us now  look at  the submatrix of (3.5) formed 
by rows and columns 2, 3, 11, 12, 1, 7, 5, 6, and 
rewrite it so that 2 is first, 3 second, 11 third, 
et cetera. We obtain 

‘ 0 0 1 1 0 0 0 0  

, 0 0 1 1 0 0 0 0  

1 1 0 1 0 0 0 0  

1 1 1 0 0 0 0 0  

0 0 0 0 0 1 1 1  

0 0 0 0 1 0 1 1  

0 0 0 0 1 1 0 0  

. 0 0 0 0 1 1 0 0  

a matrix which looks identical to (2.4), and suggests 
that  the technique used in Section 3 may be applied 
here, albeit  with slightly different side conditions. 

First, if we  know  how any column other than 
1-12 “meets” rows 2, 3, 11, 12, 1, 7, 5, 6, we know 
how it meets rows 4, 8, 9, 10. For it is clear from 
(3.5) and (1.1)-(1.3) that  the entries  in rows 1 and 
4 will  be identical; the entries  in 7 and 8 completely 
different; 12 and 9 identical; and 11 and 10 com- 
pletely different. 

Second, if we let B be the submatrix of A formed 
by rows 11, 12, 1, 7 (written  in that order) and 
columns 13-28, then (3.5) and (1.1)-(1.3) show that 

8 3 3 4  

3 6 2 3  

3 2 6 3  
BBT = (3 8 

-4 3 3 8, 

Third, in 13-28, there are 

four columns with 1’s in rows 2 and 5, 
and 0’s in rows 3 and 6; 

four columns with 1’s in rows 2 and 6, 
and 0’s in rows 3 and 5;  

four columns with 1’s in rows 3 and 5, 
and 0’s in rows 2 and 6; 

four columns with 1’s in rows 3 and 6, 
and 0’s in rows 2 and 5. 

The  material  in (2.5) and (2.6), and  the remarks 
of (2.7) and the subsequent paragraph,  apply mu- 
tatis mutandis to  the current  situation. 

In particular, an examination of all possibilities 
for B satisfying the above  facts  and (3.8) yields 
these four possibilities (and no others): 

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0  1 
1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0  

1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 0  

1 1 0 0 1 1 0 0 1 0 0 1 0 0 1 1 ,  

> 

1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0  

1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 0  
(3.10) 

rl 1 1  1 1  1 1   1 0 0 0 0 0 0 0 0 ~  

1 1 0 1 0 0 0 0 1 1 1 0 0 0 0 0  

1 0 1 0 1 0 0 0 1 0 0 1 1 0 0 0  

, 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 0 ~  

1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0  

1 1 0 1 1 0 0 0 0 1 1 0 0 0 0 0  

1 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0  

. 0 1 1 1 0 0 1 1 0 1 0 1 0 1 0 0 ,  

7 (3.11) 

7 

(3.12) 

A development of the full matrix A containing 
(3.9) obtained by using (2.5) and (2.6) is 
0011000010011010101001011010 
0011000010010101010110100101 
1101000010001111111100000000 
1110000010111110000011100000 
0000011111101101000000011100 
0000101100101100110010010011 
0000110001100101011011001010 
0000110001101010100100110101 
1111100000011101000000011100 
0000101100100011001101101100 
0001111101001110000011100000 
1101000010000000000011111111 
1011110110100110100000010000 
0111111010101001010010000000 (3.13) 
1011000101101000101101100000 
0110101011000100011100001100 
1010010100001010011100010011 
0110011000000101101110000011 
1010001001000011110101001010 

0101011000110100010001100011 
1001001001110010001010101010 
0101000101110010000111000101 
1000110110011000100000001111 
1000101011010001001001010110 
0100100111010001000100111001 
1000011000010000111011011001 
0100010100010000110110110110 

after we have effected the permutation 

0110000101000011111000100101 n 
i 1 2 3 4 5 6 7  8 9 1 0 1 1 1 2  

5 1 2 9 7 8 6 1 0 1 1 1 2  3 4 I. 
Note  that  the outlined box, together  with the 

third row and column, form a principal submatrix 495 
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of (3.13) of the form (2.1), so (3.13) either does not 
satisfy (1.1)-(1.3), or it is a counter-example met in 
Section 3. In either case, it need not be considered 
further. 

The “immersion” of (3.10)-(3.12) respectively in 
matrices A has  not been calculated. 

In  any case, assuming all the calculations are 
correct, the  task  that remains  after such immersions 
have been deduced from (2.5) and (2.6) is to test 
if they satisfy the postulates, and  then to test among 
those that do, how many are different. 

Received  March 9, 1960. 
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