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Maximal Paths on Rectangular Boards

Abstract: A combinatorial approach is made to the problem of obtaining a path on a rectangular board of

m by n squares with both terminals at the edges of the board. A square is said to be covered when the path

enters one edge and leaves an adjacent edge. All other squares are said to be missed. Maximal paths are

found, i.e., those which cover a maximum number of squares. Form = n, m — 2 squares are missed when

m is even, and m — 1 squares are missed when m is odd. For m < n, m — 2 squares are missed if m is even,

and n — 2 squares are missed if m is odd. The method of proof for m and n even is quite different from that

for m or n odd. Certain properties of terminal positions, path length, types of missed squares, and unique

paths are also investigated. The dependence of the results on the parity of m and n is again very striking.

Introduction

In a systematic design procedure, the following
problem arose: arrange & set of elements on a
rectangular plate so that a maximum number of
elements may be placed on the plate. All elements
are assumed to be of equal size and to occupy a
square area on the plate. If the input to the element
is on one edge of the square, the output must be
on an adjacent edge, perpendicular to the input.
The set of elements is connected in series, i.e., the
output of the first element is the input for the
second, et cetera.

We formulate this problem as the determination
of a path on a board of m by n squares with both
terminals at the edges of the board. We call a square
covered (i.e., an element can be placed in the square)
whenever the path enters one edge of the square
and leaves an adjacent edge. All other squares are
said to be missed.

We find paths which cover the maximum number
of squares (maximal paths), and investigate resulting
properties of terminal positions, path length and
types of missed squares. In certain cases maximal
paths of minimum length having a maximum number
of blank squares are unique.

The problem

Given a rectangular board composed of m rows and n
columns of squares, we wish to describe a path

through the squares of the board which satisfies the
following properties.

(a) Both ends of the path must lie on the edges
of the board, and no part of the path may
be external to the board.

(b) If the path enters one edge of a square and
leaves an adjacent edge, then this square
cannot contain any other part of the path,
and the square is said to be covered by the
path.

(¢) If the path enters one edge of a square and
leaves the opposite edge, then the path may
pass through this square perpendicular to the
original direction. Such squares are said to
be missed by the path, as well as all squares
not entered by the path. Missed squares are
classified into the following three types:

(0) Squares not entered by the path, called
blanks: [,

(1) Squares having the path through 2 oppo-
site sides; £, and

(2) Squares having the path pass through in
both directions; EEI-

If a square has a Type 1 miss, then the path
through the square is called a wasfed stroke,
either horizontal or vertical. A Type 2 miss
has two wasted strokes.
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(d) The desired path, called a maximal path, is
to cover a maximum number of squares in
the board.

Figure 1 shows a maximal path on a 3 X 5 board
containing one missed square of each type. The
missed squares are shaded.

Maximal path theorems and algorithms

The maximal paths must miss a minimum number
of squares on the board. The following theorems
determine the minimum number of misses on a
board with m rows and n columns, for any m and 7.

Each segment of the path, except the terminal
segments, joins the centers of a pair of covered
squares, horizontally or vertically. A terminal seg-
ment reaches the center of just one covered square.
It follows from this pairing that if the row length
is odd, each row has a missed square or contains a
terminal segment. Now consider three cases, de-
pending on the parity of m and =.

o Theorem 1

If m s even and n s odd, then any maximal path
misses m — 2 squares and has horizontal terminal
segments.

Proof. There are m rows of n squares each, and a
square is missed in each row except those with
horizontal terminal segments. Thus any path misses
at least m — 2 squares and any path missing m — 2
has horizontal terminal segments. To construct a
maximal path, proceed zigzag across the first pair
of rows, turn and proceed back across the next
pair of rows, et cetera. See Fig. 2.

Figure 1
A maximal path on a 3 x 5 board.

o Theorem 2

If m and n are even, m < n, then any maximal path

misses m — 2 squares ond has parallel (horizontal
if m < n) terminal segments.

Proof. There are less than two squares missed in
a given row only if either (a) one square is missed
and a terminal segment lies on the row, (b) both
terminal segments lie on the row, or (c) the squares
are paired 1-2, 3-4, 5-6, et cetera, by path segments.
Now designate the top two rows as the first couple,
the next two rows as the second couple, et cetera.
Suppose some path misses less than m — 2 squares.
Then condition (¢) holds in both rows of some
couple, since otherwise there are at least two squares
missed in each couple except two, and at least two
missed in these, for a total of at least m — 2 missed.
By the same argument, condition (¢) exists in both
columns of some couple of columns. The four squares
common to these two couples have the closed loop
of Fig. 3, which is impossible.

If exactly m — 2 squares are missed, then con-
dition (c¢) holds for one (exactly one if m < n)

Figure 2
6 x 9 board maximal path

with all missed squares blank.
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row of each couple. Also, either condition (b) holds
for some row (or column if m = n) or condition (a)
holds for rows (or columns if m = n) in each of
two couples. This proves the part about terminal
segments. A maximal path ean be constructed by
zigzagging as in Fig. 2, but using Type 1 misses
instead of blanks.

o Theorem 3

If m and n are odd, m < n, then any mazimal path
misses n — 2 squares and has vertical terminal seg-
ments. If m = n, a marimal path misses n — 1
squares and has perpendicular lerminal segments.

Proof. Any path misses at least n — 2 squares,
since a square is missed in each column except
those with vertical terminal segments. If the path
misses just n — 2, the missed squares then must be
distributed with an odd number in each row. So when
m = n, n squares will be missed if the terminal
segments are parallel. If we have a horizontal and
a vertical terminal segment, then we need miss
only n — 1 squares. Maximal paths when m = n
are depicted in Fig. 4 with systematic extensions
by adjoining L-shaped sections. When m < n
start with the array of Fig. 4 with m 4+ 2 rows
and m + 2 columns. Remove the two rows added
last. Cut the figure vertically along AB. Insert
n — m — 2 columns and connect the path cuts
by horizontal zigzags.

The results of Theorems 1, 2, and 3 are summarized
in Table 1.

Additional properties of maximal paths

The following theorems and remarks give additional

Table 1 Maximal paths on a board with m rows
and n columns,

m=n m<n
m m m m

even odd even odd
No. of
missed m—2 m—1 m—21 n—2
squares
Position of
terminal parallel perpend.| horiz. vertical
segments

Figure 3 A closed loop.

properties of terminal locations for maximal paths,
and also find maximal paths which have minimum
length and which contain a maximum number of
blanks. Some properties of uniqueness obtain under
these conditions. We consider the following three
cases; m and n even, m and n odd, and m even,
n odd.

o Theorem 4

Suppose m and n are even, m < n, and an m by n
board contains a path missing m — 2 squares. Then
the terminal segments are on the same side tf and
only if m 1s divisible by 4.

Proof. We know from Theorem 2 that the terminal
segments are parallel and we may assume without
loss that they are horizontal. Designate Columns 1
and 2 as the first couple, Columns 3 and 4 as the
second couple, et cetera. Then in one of the n/2
couples of columns there are no missed squares,
since all missed squares come in vertical pairs, and
2(n/2) > m — 2. Think of the couple of columns
in which there are no misses as a barrier. Now
recall from the proof of Theorem 2 that condition (¢)
holds for one row of each couple of rows. In this
row the path crosses the barrier. It cannot cross
on the other row of the couple, since this would
produce a closed loop. Thus, the barrier is crossed
by the path exactly m/2 times, proving the theorem.

When m and n are even and n > m > 4, not
all the missed squares can be blanks. The proof
of this fact is straightforward, but tedious, and we
omit it.
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Figure 4 Maximal paths on a square board wherem is odd.

Figure 5 gives maximal paths on square, even-
sided boards having no wasted strokes when m < 4,
and only one wasted stroke when m > 4. These
maximal paths are thus minimal length and have
a maximum number of blanks. To produce analogous
paths on m by n rectangular boards, m < n, with
m and n even, start with the m by m array of Fig. 5,
cut at 4B and add n — m columns of m rows.
Then connect the path with horizontal zigzags.

Figure 6 shows maximal paths on square boards
where m = 2 mod 4, in which both terminals are
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on the same row. Cutting along AB, adding m — n
columns, and connecting with horizontal zigzags
produce maximal paths for any even n > m.

Note that in Fig. 5 when m = 0 mod 4, m > 4,
the terminals are separated by only one square,
and for m = 2 mod 4, m > 2, one terminal is located
on the top row, and the other on the bottom row.
For the zigzag path described in Theorems 1 and 2
the terminals may be located on the top and bottom
rows for all m. These terminal locations give the
maximum possible separation between terminals.




paired by vertical path segments, and the square
next above must be paired with the square next
below by a wasted vertical stroke passing through

this missed square. Hence there are i(m — 1)

wasted vertical strokes.

o Theorem &

If m and n are odd, m < n, then any maximal path
has at least 3(m — 3) wasled horizontal strokes and

at least 1(m — 1) wasted vertical strokes.

Proof.

In any row the & blank squares occurring in even-
numbered columns separate the row into k + 1

Consider an even-numbered row. It contains

a missed square. This is the only missed square in
its column. The other squares in this column are

rowlets, each rowlet having an odd number of

Figure 5§ Maximal paths on square boards when m is even with m — 3 blank squares for m > 4,

A
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squares and hence a missed square. Only $(n + 1)
of these missed squares can be in odd-numbered
columns. Let = be the number of blank squares
occurring in even-numbered columns. Then there
are m + « rowlets and at least m 4+~ 2z — 3(n + 1)
wasted horizontal strokes. There are at least
i(n — 1) — 2 even-numbered columns which do
not contain terminal segments. Hence there are
at least 3(n — 1) — 2 — z wasted horizontal strokes.

Adding, we get 2k > m — 3, where h is the number
of wasted horizontal strokes.

Figure 4, and the method of obtaining rectangular
boards, gives maximal paths with minimum length
for m and n odd, m < n. If m = n, then, by the
first argument in the proof of Theorem 5, there are
i(m — 3) wasted horizontal strokes and $(m — 3)
wasted vertical strokes.

To obtain a maximal path of minimum length

Figure 6 Maximal paths on square boards, m = 2 mod 4, in which both terminals appear on the same

row,
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Figure 7 Maximal paths of minimum length having a maximum number of blanks on square boards

where m is odd.

which has a maximum number of blanks when
m and n are odd, misses of Type 2 must be used.
Fig. 7 shows such paths. When m = n there are
t(m — 3) Type 2 misses and 3(m -+ 1) blanks.
To form a rectangular board, m < n, take the
m by m board, add two columns with a vertical
zigzag path having one wasted vertical stroke, and
cut along AB adding n — m — 2 columns with
horizontal zigzag paths.

If m = n and m is odd, then the only maximal

path having 1(m + 1) blanks is shown in Fig. 7,
except for rotations and reflections. The idea of
the proof of this fact is to detail the path structure
in the outer pair of rows and columns. Show that
a terminal lies on the second row from the edge,
then that the path must zigzag across and down
asin Fig. 7, and complete the argument by induction.
Details are omitted.

For m even and n odd, the algorithm in the proof
of Theorem 1 gives a maximal path with all m — 2
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Table 2 Additional properties of maximal paths.

m = 0 mod 4 (1) Terminals are on the same side.
(2) Minimum length path has one wasted stroke, m > 4. See Fig. 5.
m and n
even
m<n (1) Terminals are on opposite sides.
m = 2 mod 4 (2) Terminals may appear on the same row. See Fig. 6.
(3) Minimum length path has one wasted stroke, m > 2, and terminals can be at
diagonal corners. See Fig, 5.
(1) Minimum length path has £(m — 3) wasted strokes in each direction.
m and n (2) Minimum length path having a maximum number of blanks uses 3(m — 3)
odd m= n Type 2 misses and £(m -+ 1) blanks. The path is unique. See Fig. 7.
(3) Minimum length path having no Type 2 misses uses m ~— 3 Type 1 misses and
2 blanks. See Fig. 4.
(1) Minimum length path has 1(m — 3) wasted horizontal strokes and %(m — 1)
wasted vertical strokes.
(2) Minimum length path having a maximum number of blanks uses (m — 3) Type
m<n 2 misses, one Type 1 miss having a wasted vertical stroke, and n — %(m + 3)
blanks. Cut Fig. 7.
(3) Minimum length path having no Type 2 misses uses m — 2 Type 1 misses and
n — m blanks. Cut Fig. 4.
m even (1) Maximum path of minimum length has blanks for all missed squares.
n odd (2) This path is unique when n > 5. See Fig. 2.
missed squares blank. Figure 2 shows such a path unique maximal path of minimum length except
for a 6 X 9 board. for rotations and reflections.
These maximal paths are obviously of mirimum A summary of the results in this section is shown
length and have a maximum number of blanks. in Table 2.

It can be shown for » > 5 that this path is the Recewved June 1, 1960.
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