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Maximal Paths  on  Rectangular  Boards 

Abstract: A combinatorial approach is made  to  the  problem of obtaining a path on a rectangular board of 
m by n squares with both terminals at the edges of the board. A square is said to be covered when  the path 

enters  one  edge  and  leaves an adjacent edge. All other  squares are said to be missed. Maximal paths are 
found, i.e., those which cover a maximum  number of squares.  For m = n, m - 2 squares are missed when 
m is even, and m - 1 squares are missed when m is odd.  For m < n, m - 2 squares are missed if m is even, 

and n - 2 squares are missed if m is odd. The method  of proof for m and n even is quite different from that 
for m or n odd.  Certain  properties of terminal positions, path length,  types of missed  squares, and unique 

paths  are  also  investigated. The  dependence  of the  results  on  the parity of m and n is again very  striking. 

Introduction 

In  a systematic design procedure, the following 
problem arose: arrange  a  set of elements on a 
rectangular  plate so that a maximum number of 
elements may be  placed  on the plate. All elements 
are assumed to be of equal size and  to occupy a 
square  area on the plate. If the  input  to  the element 
is on one edge of the square, the  output must be 
on an adjacent edge, perpendicular to  the  input. 
The set of elements is connected in series, i.e., the 
output of the first element is the  input for the 
second, et cetera. 

We formulate this problem as the determination 
of a path on a board of m by n squares  with both 
terminals at  the edges of the board. We call a square 
covered (i.e., an element can be placed in the square) 
whenever the  path enters one edge of the square 
and leaves an adjacent edge. All other squares are 
said to be missed. 

We  find paths which  cover the maximum number 
of squares (maximal paths),  and investigate resulting 
properties of terminal positions, path length  and 
types of missed squares. In certain cases maximal 
paths of minimum length having a maximum number 
of blank squares are unique. 

The problem 

Given a  rectangular board composed of m rows and n 
columns of squares, we  wish to describe a path 

through the squares of the board which satisfies the 
following properties. 

(a) Both  ends of the  path must lie on the edges 
of the board,  and no part of the  path may 
be external to the board. 

(b) If the  path enters one edge of B square  and 
leaves an adjacent edge, then  this  square 
cannot  contain any other part of the  path, 
and  the square is said to be covered by  the 
path. 

(c) If the  path enters one  edge of a  square  and 
leaves the opposite edge, then  the  path may 
pass through  this  square perpendicular to  the 
original direction. Such squares are said to 
be missed by the  path, as well as all squares 
not entered by the  path. Missed squares are 
classified into  the following three  types: 

blanks: 0, 

site sides; and 

both directions; @. 
If a square  has a Type 1 miss, then the  path 
through the square is called a wasted  stroke, 
either horizontal or vertical. A Type 2 miss 
has two wasted strokes. 479 

(0) Squares  not entered by the  path, called 

(1) Squares having the  path through 2 oppo- 

(2) Squares having the  path pass through  in 
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d) The desired path, called a maximal  path, is 
to cover a maximum number of squares in 
the board. 

Figure 1 shows a maximal path on a 3 X 5 board 
containing one missed square of each type.  The 
missed squares  are shaded. 

Maximal path theorems and algorithms 

The maximal paths  must miss a minimum number 
of squares on the board. The following theorems 
determine the minimum number of misses on a 
board with m rows and n columns, for any m and n. 

Each segment of the  path, except the terminal 
segments, joins the centers of a pair of covered 
squares, horizontally or vertically. A terminal seg- 
ment reaches the center of just one covered square. 
It follows from this pairing that if the row length 
is odd, each row has  a missed square or contains  a 
terminal segment. Now consider three cases, de- 
pending on the  parity of m and n. 

Theorem I 
If m i s  even and n i s  odd, then any  maximal  path 
misses m - 2 squares  and has horizontal terminal 
segments. 

Proof. There  are m rows of n squares  each,  and a 
square is missed in ea,ch  row except those with 
horizontal terminal segments. Thus  any  path misses 
at least m - 2 squares and  any  path missing m - 2 
has horizontal terminal segments. To construct a 
maximal path, proceed  zigzag across the first pair 
of rows, turn and proceed back across the next 
pair of rows, et cetera. See Fig. 2. 
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Figure 1 
A maximal  path on a 3 x 5 board. 

Theorem 2 

If m and n are even, m 5 n, then  any  maximal  path 
misses m - 2 squares and  has parallel (horizontal 
if m < n) terminal segments. 

Proof. There are less than two  squares missed in 
a given row only if either (a) one square is missed 
and  a  terminal segment lies on the row, (b) both 
terminal segments lie  on the row, or (c) the squares 
are paired 1-2, 3-4, 5-6, et cetera, by  path segments. 
Now designate the  top two rows as  the first couple, 
the next two rows as  the second couple, et cetera. 
Suppose some path misses less than m - 2 squares. 
Then condition (c) holds in  both rows of some 
couple, since otherwise there  are at  least  two  squares 
missed in each couple except two,  and a t  least two 
missed in  these, for a total of at least m - 2 missed. 
By the same argument, condition (c) exists in both 
columns of some couple of columns. The four squares 
common to these  two couples have the closed loop 
of Fig. 3,  which is impossible. 

If exactly m - 2 squares  are missed, then con- 
dition (c) holds for one  (exactly one if m < n) 

Figure 2 
6 x 9 board maximal path 
with all missed  squares blank. 
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row of each couple. Also, either condition (b) holds 
for some row (or column if m = n) or condition (a) 
holds for rows (or columns if m = n) in each of 
two couples. This proves the  part  about terminal 
segments. A maximal path can be constructed by 
zigzagging as in Fig. 2,  but using Type 1 misses 
instead of blanks. 

0 Theorem 3 

I f  m and n are odd, m < n, then any  maximal  path 
misses n - 2 squares and  has vertical terminal seg- 
ments. I f  m = n, a maximal  path  misses n - 1 
squares and  has  perpendicular  terminal segments. 

Proof. Any path misses a t  least n - 2 squares, 
since a  square is missed in each column except 
those with  vertical  terminal segments. If the  path 
misses just n - 2 ,  the missed squares  then  must be 
distributed with an odd number in each row. So when 
m = n, n squares will  be  missed if the terminal 
segments are parallel. If we have a horizontal and 
a vertical  terminal segment, then we need  miss 
only n - 1 squares. Maximal paths when m = n 
are depicted in Fig. 4 with systematic extensions 
by adjoining L-shaped sections. When m < n 
start with the  array of Fig. 4 with m + 2 rows 
and m + 2 columns. Remove the two rows added 
last. Cut  the figure vertically along AB.  Insert 
n - m - 2 columns and connect the  path cuts 
by horizontal zigzags. 

The results of Theorems 1,2, and 3 are summarized 
in  Table 1. 

Additional properties of maximal paths 

The following theorems  and  remarks give additional 

Table 1 Maximal Daths on a board with rn rows 
and n colbmns. 

I 
I m =  n 

nz m 
even odd 

No. of 
missed 
squares 

m - 1  m - 2  

Position of 
terminal 
segments 

perpend. parallel 

m < n  

m m 
even I odd 

I 

m - 2  n - 2  

horiz. vertical 

Figure 3 A closed  loop. 

properties of terminal locations for maximal paths, 
and also find maximal paths which have minimum 
length and which contain a maximum number of 
blanks. Some properties of uniqueness obtain under 
these conditions. We consider the following three 
cases; m and n even, m and n odd,  and m even, 
n odd. 

Theorem 4 
Suppose m and n are even, m I n, and a n  m by n 
board contains a path  missing m - 2 squares. Then 
the terminal segments are on the  same side if and 
only if m i s  divisible by 4. 

Proof. We know from Theorem 2 that  the terminal 
segments are parallel and we may assume without 
loss that they  are horizontal. Designate Columns 1 
and 2 as  the first couple, Columns 3 and 4 as  the 
second couple, et cetera. Then in one of the n / 2  
couples of columns there  are no  missed squares, 
since all missed squares come in vertical pairs, and 
2(n/2) > m - 2. Think of the couple of columns 
in which there  are no  misses as a barrier. Now 
recall from the proof of Theorem 2 that condition (c) 
holds for one row of each couple of rows. In this 
row the  path crosses the barrier. It cannot cross 
on the other row of the couple, since this would 
produce a closed  loop. Thus, the barrier  is crossed 
by the  path exactly m/2 times, proving the theorem. 

When m and n are even and n 2 m > 4, not 
all the missed squares can be blanks. The proof 
of this fact is straightforward, but tedious, and we 
omit  it. 48 1 
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Figure 4 Maximal paths on a square board  wherem is odd. 

Figure 5 gives maximal paths on square, even- 
sided boards having no  wasted  strokes when m < 4, 
and only one wasted stroke when m > 4. These 
maximal paths  are  thus minimal length  and  have 
a maximum number of blanks. To produce analogous 
paths on m by n rectangular  boards, m < n, with 
m and n even, start  with  the m by m array of Fig. 5, 
cut  at AB and  add n - m columns of m rows. 
Then connect the  path  with horizontal zigzags. 

Figure 6 shows maximal paths on  square  boards 
482 where m E 2 mod 4, in which both terminals are 

on the same row. Cutting along AB, adding m - n 
columns, and connecting with horizontal zigzags 
produce maximal paths for any even n 2 m. 

Note that in Fig. 5 when m = 0 mod 4, m > 4, 
the terminals are separated by only one square, 
and for m = 2 mod 4, m > 2, one terminal is located 
on the  top row, and  the  other on the  bottom row. 
For the zigzag path described in Theorems 1 and 2 
the terminals  may be located on the  top  and  bottom 
rows for all m. These terminal  locations give the 
maximum possible separation between terminals. 
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Theorem 5 paired by vertical path segments, and  the  square 

"" 

If m and n are odd, m < n, then  any  maximal  path 
has  at least $(m - 3) wasted horizontal strokes and 
at least $(m - 1) wasted vertical strokes. 

next above must be paired with the square next 
below by a wasted vertical  stroke passing through 
this missed square. Hence there  are $(m - 1) 
wasted vertical strokes. 

Proof. Consider an even-numbered row. It contains In any row the k blank squares occurring in even- 
a missed square. This is the only missed square  in numbered columns separate the row into IC + 1 
its column. The  other  squares  in this column are rowlets, each rowlet having an odd number of 

Figure 5 Maximal paths on square boards when m is even with m - 3 blank squares for m > 4. 

i 
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squares and hence a missed square. Only $(n + 1) 
of these missed squares can be  in odd-numbered 
columns. Let x be the number of blank  squares 
occurring in even-numbered columns. Then  there 
are m + x rowlets and  at least m + x - $(n + 1) 
wasted horizontal  strokes.  There are  at least 
$(n - 1) - 2 even-numbered columns which do 
not  contain  terminal segments. Hence there  are 
a t  least $(n - 1) - 2 - x wasted horizontal  strokes. 

Adding, we get 2h 2 m - 3, where h is the number 
of wasted  horizontal strokes. 

Figure 4, and  the method of obtaining  rectangular 
boards, gives maximal paths  with minimum length 
for m and n odd, m I n. If m = n, then,  by  the 
first argument  in the proof of Theorem 5, there  are 
$(m - 3) wasted  horizontal  strokes  and $(m - 3) 
wasted vertical  strokes. 

To obtain a maximal path of minimum length 

Figure 6 Maximal paths on square  boards, m 3 2 mod 4, in which  both terminals appear on  the  same 
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Figure 7 Maximal paths of minimum length having a maximum number of blanks  on  square  boards 
where m is odd. 

which has a  maximum  number of blanks  when 
m and n are  odd, misses of Type 2 must be used. 
Fig. 7 shows such paths.  When m = n there  are 
+(m - 3) Type 2 misses and +(m + 1) blanks. 
To form  a  rectangular  board, m < n, take  the 
m by m board, add two columns with a  vertical 
zigzag path having one wasted  vertical  stroke,  and 
cut along A B  adding n - m - 2 columns with 
horizontal zigzag paths. 

Tf m = n and m is odd,  then  the only  maximal 485 
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path having +(m + 1) blanks  is  shown  in  Fig. 7, 
except for rotations  and reflections. The idea of 
the proof of this  fact  is  to  detail  the  path  structure 
in  the  outer  pair of rows and columns. Show that 
a  terminal lies on  the second row from the edge, 
then  that  the  path  must zigzag across and down 
as in  Fig. 7, and complete the argument by induction. 
Details  are  omitted. 

For m even and n odd, the algorithm  in the proof 
of Theorem 1 gives a  maximal path  with all m - 2 



Table 2 Additional properties of maximal paths. 

m and n 
even 

m s n  

m and n 
odd 

m even 
n odd 

m =  Omod4 

m =  2mod4 

m = n  

m < n  

(1) Terminals are on the same side. 
(2)  Minimum length path has one  wasted stroke, m > 4.  See Fig. 5.  

(1) Terminals are on opposite  sides. 
(2) Terminals may appear on the same  row.  See Fig. 6. 
(3) Minimum length path has one  wasted stroke, m > 2, and terminals can be a t  

diagonal corners. See Fig. 5. 

(1) Minimum length path  has $(m - 3) wasted strokes in each direction. 
(2) Minimum length path having a maximum number of blanks uses a(m - 3) 

(3) Minimum length path having no Type 2 misses  uses m - 3 Type 1 misses and 
Type 2 misses and $(m + 1) blanks. The path is unique. See Fig. 7. 

2 blanks. See Fig. 4. 

(1) Minimum length path has $(m - 3) wasted horizontal strokes and $(m - 1) 
wasted vertical strokes. 

(2)  Minimum length path having a maximum number of blanks uses $(m - 3) Type 
2 misses,  one Type 1 miss having a wasted vertical stroke, and n - $(m + 3) 
blanks. Cut Fig. 7. 

(3) Minimum length path having no Type 2 misses  uses m - 2 Type 1 misses and 
n - m blanks. Cut Fig. 4. 

(1) Maximum path of minimum length has blanks for  all  missed squares. 
(2) This path is unique when n 2 5.  See Fig. 2. 

missed squares  blank.  Figure 2 shows  such a path unique  maximal  path of minimum  length  except 
for a 6 X 9 board. for  rotations  and reflections. 

These  maximal  paths  are  obviously of minimum A summary of the  results  in  this  section is shown 
length  and  have a maximum  number of blanks. in  Table 2. 
It can  be  shown  for n 1 5 that this path is the Received June 1, 1960. 
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