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Automorphisms of Steiner Triple Systems 

Abstract: This paper  treats  the following problem in combinatorial analysis:  Find an incomplete  balanced 

block  design D with parameters b, v, r, k, and 2 = 1, possessing an  automorphism  group G which is doubly 

transitive on  the elements of D and such that the  subgroup H of ,G fixing all the elements of a block is transi- 
tive on  the remaining elements. Also find transitive extensions of such groups G. If the  block  design is a finite 

projective plane, the plane is necessarily  Desarguesian.  Thus,  these  properties of the  automorphism group 

may be considered  as a “Desarguesian” property of the designs. 

This paper  considers  the  case in which D is a Steiner triple system. The main result is that a ”Desarguesian” 

Steiner triple system is either 1) a projective geometry  over GF(2) or 2) an  affine geometry  over GF(3). TWO 
intermediate results are of interest: 1) A Steiner triple system  has for each  element an involution fixing only 
this element, if and  only if every triangle generates an S(9), a Steiner triple system with 9 elements; 2) if a 

Steiner triple system  has for each triple an involution fixing only the  elements of this  triple,  then  every trian- 
gle generates an S(7 )  or an S(9). 

1. Introduction 

It is a classical result that  the validity of the 
Theorem of Desargues in a projective plane is 
equivalent to  the exist,ence of a  certain family of 
collineations [I, p. 3521. And recently Ostrom and 
Wagner [2] have shown that a finite projective 
plane is Desarguesian if it has a group of collinea- 
tions doubly transitive on its points.  Thus a natural 
generalization of the Desarguesian property to block 
designs is the  property of having  a highly transitive 
group of automorphisms. And conversely a  family 
of permutation groups originally investigated by 
Jordan [3] leads  in  a  very  natural  way to block 
designs. These are doubly but  not  triply  transitive 
permutation groups in which a subgroup exists 
fixing k 2 3 letters  and  transitive on the remaining 
1ett.ers. These groups and  their relationship to 
block designs are considered in Section 2. 

The  Steiner  triple systems are  the block designs 
with IC = 3 and X = 1, i.e., syst.ems with blocks of 
three elements (the elements are called points  in 
this paper) in which every pair of distinct elements 
occdrs together  in exactly one block. Two theorems 
in Section 3 relate combinatorial properties of 

460 Steiner  triple systems to  the existence of certain 

automorphisms. First, if for every  point of a triple 
system S there is an involution fixing only that 
point,  then  every  triangle  (three  points of S not 
in a b1oc.k) lies in  a  system S(9) with exactly 9 
points and conversely if all  triangles lie in  subsystems 
S(9), then S has the corresponding family of involu- 
tions. Second, if for every  triple of X there is an 
involution fixing exactly the points of this  triple, 
then  every  triangle lies in an S(7) or S(9). The 
converse of the second theorem is false. 

The final section uses the results of the previous 
sections to characterize Steiner triple systems which 
have highly transitive  automorphism groups. If X 
has  automorphisms  transitive on triangles,  then 
there  are  two  types: 

T y p e  I. Every  triangle of S generates an X(7). 

T y p e  2. Every  triangle of X generates an S(9). 

The systems of Type 1 are precisely the projective 
geometxies over GF(2). In Type  2  it is necessary to 
take  the stronger hypothesis that  the automorphisms 
are  transitive on sets of 4 independent  points (4 
points  not  in an S(9)) to conclude that S is the 
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affine geometry  over GF(3).  This  stronger  hypothesis 
is  probably  not necessary, but is needed for  the 
present  proof.  Indeed, it is conceivable that  the 
entire conclusion holds if we ask  only that  the 
automorphism  group  be  doubly  trmsitive. 

Much  remains to  be done. The  nature of t,he 
doubly  transitive  groups of the Steiner  triple  systems 
needs  investigation.  And of course  analogous 
questions  can  be  studied for block designs other 
than Steiner  triple  systems. 

2. On a class of groups related to block designs 

The following t,heorem  is due originally to  Jordan [3] 
and  the proof may be  found  in  Burnside [4,  p. 2071 
or in  Hall  [l, p. 661. The properties of block designs 
needed here  may be  found  in  Mann [5, pp. 83-1291. 

Theorem of Jordan 
Let G be a permutation group on n letters which i s  
primitive, and let H be a transitive subgroup of G 
on m letters, jixing the remaining n-m letters, 
2 5 m < n. Then (1) if H i s  primitive, G i s  n - m + 1 
fold transitive; (2 )  in any event G i s  doubly transitive. 

We  are  here  interested  in  the second alternative, 
where with 2 5 m 5 n - 3 ,  G is  not n - m + 1 
fold transitive. Suppose that G is t-ply transitive,  but 
not t + l-ply  transitive where 2 5 t 5 n - m - 1. 
We  note that if G is n - m fold transitive,  it  is also 
n - m + 1 fold transitive, since H fixes n - m 
letters  and  is  transitive on the remaining letters. 
Then  the  subgroup G* of G fixing f - 2 of the  letters 
fixed by H will be  doubly  but  not  triply  transitive, 
and  either G = G* (if t = 2)  or G is a transitive 
extension of G*. For example, the  Mathieu  group 
M,, quadruply  transitive on 23 letters  contains a 
subgroup H fixing 7 letters  and  transitive  on  the 
remaining 16  letters.  A  subgroup G* of &Iz3 fixing 
two of the fixed letters of H is  doubly but  not 
triply  transitive  on 21 letters  and  contains H .  
Group M,, is  a  transitive extension of G*. 

Let  us call a  group G a Jordan  group if 

1) G is  doubly but  not  triply  transitive on n letters; 
2) G has a subgroup H fixing k 2 3 letters  and  transi- 
tive  on  the m = n - k letters which i t  moves 

Theorem 2.1 
Let G be a Jordan group on n letters and suppose the 
subgroup H as large as possible, namely (i) H i s  not 
contained in a  subgroup H' jixing k' letters 3 5 k' < k 
and transitive  on the remaining n - k' letters, and 
(ii) H contains all permutations of G jixing the k 
letters which H jixes.  Then the sets of k letters $xed by 
H and its conjugates in G form the blocks of an  
incomplete balanced block design D with  param- 

eters v = n, b = n(n - l)/k(k - l), k = k ,  r = 
(n - I)/@ - l), X = 1. The group  G may be regarded 
as  an  automorphism group of D which i s  doubly 
transitive on the letters of D. The subgroup H jixes 
the letters of a block of D and i s  transitive  on the 
remaining letters. Conversely if D i s  a block design 
with  parameters v ,  b, r ,  k ,  and X = 1 which  has an  
automorphism group  G  doubly  transitive on the letters 
of D in which the subgroup H jixing the letters of a 
block i s  transitive  on the remaining letters, then G 
i s  a Jordan group on the v letters of D and H i s  the 
subgroup of G jixing k letters and transitive  on the 
remaining letters. 

Proof. The proof of this  theorem  is  not  much 
longer than  the  statement. Suppose G is  a  Jordan 
group  and H a,s large as possible. First we show 
that m = n - k > n / 2 .  Since G is  primitive  there 
exist  conjugates H,,  H z  of H displacing some letters 
in common but  not all. Then H ,  U H ,  is  transitive 
on  the  letters it displaces. By  the maximality of H ,  
H ,  W H ,  is  transitive on n - 1 or n letters.  But 
H ,  U H ,  displaces a t  most 2 m  - 1 letters.  Hence 
2 m  - 1 2 n - 1 and m 2 n /2 .  If m = n / 2  and 
H ,  W H ,  displaces  exactly n - 1 letters, a third 
conjugate H ,  will be  such that either H ,  W H ,  or 
H ,  V H ,  is  transitive  on more than n / 2  letters 
and on a t  most 3n/4.  Here 3n/4 < n - 1 since 
n 2 6 for  all but trivial cases. Thus we must  have 
m > n / 2  for H with  the maximal  properties of the 
theorem.  Hence any  two  conjugates of H ,  say H ,  
and H z ,  displaces  some letters  in common and 
H ,  W H ,  is transitive.  By  the maximal property of 
H this  means  that H ,  W H z  is trmsitive  on n or 
n - 1 letters.  This  is  equivalent to  saying bhat the 
k letters fixed by H ,  and  the k letters fixed by H ,  
have  no  letters  or exactly one letter  in common. 

Consider the  array D of the  sets of k letters fixed 
by  conjugates of H .  A pair of distinct  letters ai ,   a i  
occurs  together  in  one of these  sets a t  most once, 
since we have shown tha.t  two such sets  have a t  
most  one  letter  in common. But,  since G is  doubly 
transitive, a pair ai ,   a ;  will occur together  in  one 
set. If there  are b conjugates of H ,  D has b blocks 
each consisting of k letters,  there being n letters 
in all. Each unordered  pair ai,   ai  occurs  together 
exactly once in  a block. This  says  that D is an in- 
complet,e balanced block design whose parameters 
u ,  b, r ,  k ,  X include v = n, k = IC, and X = 1. But  it  
is well known that  the  parameters  satisfy bk = vr, 
r ( k  - 1)  = X(v - 1) whence r = (n - l)/(k - l ) ,  
b = n(n - l ) / k ( k  - 1). Clearly G permutes the 
conjugates of H among  themselves and so G may 
be considered as an automorphism  group of D, 46 1 
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being doubly transitive on the  letters of D, and 
having a subgroup H which  fixes the  letters of a 
block and is transitive on the remaining letters. 
This completes the proof of the direct part of the 
theorem. 

The converse part of the theorem is essentially 
obvious. Let D be a block design with  parameters 
6, v ,  r ,  k ,  X, where k 2 3 and X = 1, and let G be a 
group of automorphisms of D, doubly  transitive 
on the  letters of D and having a subgroup H fixing 
the  letters of a block and  transitive on the remaining 
letters. The group G cannot be triply  transitive, for 
if i, j ,  t are  letters of a block B, and if s is a letter 
not in B,, then G does not contain a  permutation 
mapping i, j, t onto i, j ,  s. Hence G is doubly but 
not  triply  transitive  and  contains  a subgroup H 
fixing k 2 3 letters, and  transitive on the remaining 
letters. Thus G is a  Jordan group and  the converse 
of the theorem is proved. 

In  the Mathieu group M,, mentioned above, the 
group G* is doubly but  not  triply  transitive on 21 
letters  with a subgroup H transitive on 16 letters 
and fixing the rest. In G* a conjugate of H fixes 
k = 5 letters  and we have n = v = 21, X = 1 for the 
block design D. Here for D, 

r = (n - I)/@ - 1) = 20/4 = 5 

and 

6 = n(n - l ) / k ( k  - 1) = 21.20/5-4 = 21. 

Thus D is  the finite projective plane of order 
k - 1 = 4. The group G* is the group of unimodular 
collineations of the plane. MZ8 is, of course, a  transi- 
tive extension of G*. 

In this paper we investigate  Jordan groups with 
k = 3. The corresponding design is, of course, a 
Steiner  triple system. An automorphism a of a 
Steiner  triple system which  fixes two  distinct  points, 
say x ,   y ,  will  fix the triple,  say x ,   y ,  z ,  containing 
these  two  points and therefore will also fix the 
third point z of the triple. Hence the subgroup H 
fixing a triple is just  the subgroup fixing two points. 
Thus if G is a group of automorphisms of a Steiner 
triple  system S which is doubly  transitive on the 
points of X, and if the subgroup H ,  fixing a triple, 
is transitive on the remaining points, this  is equiva- 
lent to saying that G is transitive on triangles of S ,  
meaning by a  triangle an ordered set of t,hree points 
not  in  a  triple. 

3. Combinatorial theorems 

In  this section we establish two theorems which 
relate the  structure of a Steiner triple system to 

462 the existence of a family of involutions of certain 
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types. We note that  an involution of a  Steiner  system 
S which interchanges two  points x ,  y necessarily 
fixes the  third point of the triple containing them. 
For if a is the involution, (.)a = y ,   ( y ) a  = x ,  the 
triple ( x ,   y ,  x)a = y ,  x, (2). = y ,  2, z whence x = (z)a. 
By a triangle of a Steiner  triple  system we shall 
mean  three  points  not  in a triple. An S(v) is a, 
Steiner  triple  system  with  exactly v points. 

Theorem 3.1 
Let S be a Steiner  triple  system in which, for every 
point x ,  there i s   a n  involution a of S which  has x as 
its  only  fixed  point. Then every triangle of S generates 
a n  S(9). Conversely suppose  that S i s  a Steiner 
triple  system in which  triangle generates a n  S(9). 
Then for every point x of S there i s   a n  involution (Y 

of S which  has x as its  only  fixed  point. 

Proof. Suppose S has a family of involutions such 
that for every  point x of S there is an involution a 
which has x as its only fixed point. By  the remark 
above, if r is a  point  and (r)a = s, (s)a = r,  x ,  r ,  s 
is  a  triple of S ,  and conversely if x ,  r ,  s is a triple, 
then, since x, r ,  (r)a is a  triple, (r)a = sand (s)a = r. 
Let 1, 2, 4 be a  triangle of X. Then  the following 
triples  are  determined: 

1, 2, 3 2, 4, 6 

1, 4, 5 
1, 6, 7. 
Here we have involutions a,, a, 

a, = (1) (2, 3) (4, 5) (6, 7) 
az = (2) (1, 3) (4, 6). (3.2) 

Applying a, to 2,  4, 6 we have (2,  4, 6)a,  = 3, 5, 7, 
a new triple. Thus 2, 5, 7 is not a triple,  and a, does 
not interchange 5 and 7 but  must interchange 5 
with  a  further  point 8, there being a  triple 2, 5, 8, 
and  let 9 be the  third point of the triple 1, 8, 9. 
We  now have  triples 

1,  2, 3 2 ,   4 ,  6 3, 5, 7 

1, 4,  5 2,  5, 8 

1, 6, 7 

1, 8, 9 
and also involutions 

a, = (1) (2, 3) (4, 5) (6, 7) (8, 9) 

az = (2) (1, 3) (4, 6) (5 ,  8) 

a3 = (3) (1, 2) (5,  7) 

a4 = (4) (1, 5) (2, 6) 



tions 

(2, 5,S)ar = 3,  4, 9 

(1, 2, 3)a5 = 4, 8, 7 

(4, 8, 7 ) ~ 1  = 5,  6, 9. (3.5) 

This  adds  to our  information,  giving  triples 

1 , 2 , 3   2 , 4 , 6   3 , 4 , 9   4 , 7 , 8   5 , 6 , 9  

1 ,4 ,  5  2,  5, 8 3, 5, 7 

1, 6 , 7  

1, 8, 9 (3.6) 

that X is a Steiner  triple  system  in which every 
triangle  generates an S(9). Let 1 be a  point of S 
and  let a,  be the  permutation which fixes 1 and  inter- 
changes x and y if 1, x ,   y ,  is a triple of X. We  must 
prove that a ,  is an automorphism of X, namely, 
that a, maps  triples of X onto triples. This is trivial 
for every  triple  through 1. Hence consider a triple, 
say 2, 4,  6 not  through 1. Let 3, 5, 7 be the  third 
points of the triples  cont,aining 1, 2; 1, 4; 1, 6 respec- 
tively. Thus we have 

1, 2, 3 2,  4, 6 

194, 5 
1, 6, 7. (3.11) 

By hypothesis the triangle 1, 2, 4 generates an S(9) 
whose points are 1, . , 7 as above  and  two  further 
points 8, 9. Thus 1, 8, 9 is  a  triple. If 2, 5, 7 were a 
triple  then we would have to  have 2, 8 ,  9 as a  triple 
and 8, 9 mould appear  in  two triples, a conflict. 

Hence 2, 5 is in  a  triple  with one of 8,  9, say 8. 
The remaining  triple with 2 must be 2,  7, 9. This 
gives  triples 

1, 2, 3 2, 4, 6 

1, 4, 5 2,  5, 8 

1, 6,  7 2, 7, 9 

1 ,  8, 9.  (3.12) 

We easily find t,hat  tmhe  only possible way to  com- 
plete (3.12) to   an S(9) is to  add  the  further triples 
which appear  in (3.9). Thus  with a ,  = (1) (2, 3) 
(4, 5) (6, 7) ( 8 ,  9) we find (2 ,  4, B)u, = 3, 5, 7 and 
3, 5 ,  7 is indeed a triple.  This proves that a ,  is an 
automorphism of S and  the proof of our  theorem 
is  complete. 

There  is  a second theorem  much  like the first, 
though  it does not  contain  the converse (which is 
indeed  false). [6] 

e Theorem 3.2 
Let S be a Steiner  triple  system  and  suppose  that for 
each  triple of S there i s   an   involu lwn whose  $xed 
points are precisely the  three points of the triple. 
Then  every triangle of X generates a n  S(7) or a n  S(9). 

Proof. Let 1, 2 ,  4 be  a  triangle  and 1, 2,  3 the 
triple containing 1, 2. Let a = (1) (2) (3) (4,5) be 
an involution fixing the  points 1, 2, 3 and no  others. 
Then 4, 5, x is a triple  with x = 1, 2,  or 3 and re- 
numbering,  suppose x = 1. This renumbering  does 
not  alter  what we need to  prove  since 1, 2, 4; 1, 463 
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THEOREM 3 . 2  

1 . 2 . 1 . 1  1 . 2 . 1 . 2   1 . 2 . 1 . 3  

Figure 1 Case diagram for Theorem 3.2. 

Case 6. Triple 3, 6, 7 

1 ,2 ,  3 2, 4, 6 3, 6, 7 
1 , 4 ,  5 2, 5 )  7 

a = (1)  (2) (3) (4, 5)  (6, 7). (3.18) 

Here we must  have  further  triples 1, 6, 8 and if 
a = (8 ,  9) then also (1, 6, 8)a  = 1, 7, 9. Thu,  our 
basis for Case 2 is the  array 

Case 2 

1, 2, 3 2, 4, 6 3,  6, 7 
1) 4,  5 2, 5 ,  7 

1, 6, 8 

1, 7, 9 

a = (1) (2) (3) (4, 5)  (6, 7) (8 ,  9). (3.19) 
Here  in  the  triple x, 8 ,  9 we must  have x = 1, 2, 
or 3. 1, 8,  9 is inconsistent. We have  two cases. 
Case 2.1 Triple 2, 8,  9. Case 2.2 Triple 3, 8,  9. We 
shall show that Case 2.1 leads to  an X(9) and that 
Case 2.2 leads to conflicts. 

I Case 6.1 

1, 2, 3 2, 4, 6 3, 6, 7 

1) 4, 5 2, 5 ,  7 

1, 6, 8 2, 8, 9 

1 ,7 ,  9 

a = (1) (2) (3) (4, 5)  (6, 7) (8 ,  9). (3.20) 
This we must  subdivide into cases according to 

2 . 1 . 3 .  1 2 . 1 . 3 . 2  

the value of x in b = (1) (6) (8 )  (2, x), since the 
pair 2, x is in a triple  with one of 1, 6, or 8. 

Case 2.1.1 b = (I) (6) (8)  ( 2 ,  3), 

Case 2.1.2 b = (1) (6) (8) (2, 4), 

Case 2.1.3 b = (1) (6) (8) (2, 9). 

In Case 2.1.1, b = (1) (6) (8) (2, 3) 

( 2 ,  6, 4)b = (3, 6, y) = 3, 6, 7 
and b = (4, 7). 

In  the triple 4, 7, z ;  z = 1, 6, or 8, of which only 
z = 8 is consistent  with (3.20).  Hence 4, 7, 8 is a 
triple  and also (4, 7, 8)a = 5, 6, 9. Here b = (1) (6) 
(8) (2, 3) (4, 7) (9, t )  with 9, t in a triple  with 1, 6, 
or 8. Thus t = 7, 5, or 2 of which only 2 = 5 is 
possible. Then (2,  5 ,  7)b = 3, 4, 9 and (2, 8,  9)b = 
3, 8 ,  5 yielding the complete X(9). 

1 , 2 , 3   2 , 4 , 6   3 , 6 , 7   4 , 7 , 8   5 , 6 , 9  

1, 4) 5 2, 5 )  7 3, 4) 9 

1, 6, 8 2, 8, 9 3, 5 ,  8 

1 ,7 ,  9 

a = (1)  (2)  (3) (4, 5)  (6, 7) (8 ,  9) t 

b = (1)  (6) (8) (2, 3)  (4, 7) (5 ,  9). (3.21) 
Case 6.1.6. b = (1) (6) (8)  ( 2 ,  4). 

Here (1, 2, 3)b = 1, 4, x = 1, 4, 5 and b = (3, 5) 
and  in  the triple 3 ,  5, y of the values y = 1, 6, 8 
only y = 8 is consistent  with (3.20). Hence we have 
the t,riple 3, 5, 8 and also (3, 5, 8)a = 3, 4, 9. At 
this  stage we have 465 
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Case 2.1.2 

1, 2, 3 2,  4, 6 3, 6, 7 

1, 4, 5 2,  5, 7 3, 5 ,  8 

1, 6, 8 2, 8, 9 3, 4, 9 

1,7, 9 

a = (1) (2)  (3) (4, 5) (6, 7) (81 9), 

b = (1) (6) (8) (2, 4) (3, 5) .  (3.22) 
Here (2,5,7)b = (4 ,3,  y) = 4,3 ,9  whence b = (7,9). 
Then (2, 8, 9)b = 4, 8, 7 and (4, 8, 7)a = 5, 6, 9. 
This completes (3.22) to  an S(9) and indeed the 
S(9) identical with that of (3.21). 

Case 2.1.3 b = (1) (6) (8) (2, 9) 

Here (1, 2, 3)b = (1, 9, x) = (1, 9, 7) and b = (3,7), 
b = (1) (6) (8) (2, 9) (3, 7). In this case consider 
an involution c = (2) (8) (9) (1, y). Here y = 3, 6, 
or 7. If c1 = (2) (8) (9) (1, 3) then bc,b = c2 = 
(2) (8) (9) (1,7) and  the two cases y = 3 and y = 7 
go together. Thus we need subdivide into only two 
cases. Case 2.1.3.1, c = (2) (8) (9) (1, 6) and Case 
2.1.3.2, c1 = (2) (8) (9) (1, 3) and c2 = (2) (8) (9) 
(1, 7). 
Case 2.1 3.1 

1 ,  2, 3 2, 4, 6 3, 6, 7 
1 , 4 ,  5 2, 5, 7 

1 ,  6, 8 2, 8, 9 

1, 7, 9 

a = (1) @) (3) (4, 5)  (6, 7) (8, 91, 

b = (1) (6) (8) (2, 9) (3, 71, 

c = (2) (8) (9) (1, 6). (3.23) 
Here (1, 2, 3)c = (6, 2, x) = (6, 2, 4) and c = (3,4). 
Also (3, 6, 7)c = 4, 1, y = 4, 1, 5 and c = (5, 7). 
Thus c = (2) (8) (9) (1, 6) (3, 4) (5, 7), (1, 7, 9)c = 
6 ,5 ,  9and (5, 6,9)a = 4,7 ,8 .  (4,7,8)c = 3 , 5 , 8 ,  
a.nd (3, 5, 8)a = 3, 4, 9. These triples complete 
(3.23) to  the same S(9) as (3.21). 

As our final case under 2.1 consider Case 2.1.3.2 
with c, = (2) (8) (9) (1, 3) and also c, = (2) (8) 
(9) (17 7). 
Case 2.1.3.2 

1, 2, 3 2, 4,  6 3, 6, 7 

1, 4, 5 2, 5 ,  7 

1, 6, 8 2, 8, 9 

466 1 ,  7 , 9  (3.24) 
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a = (1) (2) (3) (4, 5) (6, 7) (8, 91, 

b = (1) (6) (8) (2, 9) (3, 7) ? 

c1 = (2) (8) (9) (1, 31, 
bc,b = cZ = (2) (8) (9) (1, 7). 
Here 
(1, 2, 3)c2 = 7, 2, x = 7, 2, 5 and cz = (3, 5), 

(3, 6, 7>c2 = 5, y, 1 = 5, 4, 1 and c2 = (4, 6). 

Thus 

cz = (2) (8) (9) (1, 7) (3, 5) (4, 61, 

(1, 6, 8)c2 = 7, 4, 8 and (7, 4, 8)a = 6, 5, 9, 

( 5 ,  6, 9)c2 = 3, 4, 9 and (3, 4, 9)a = 3, 5 ,  8. 

This completes (3.24) to  the same S(9) as (3.21). 
We  not,e that all subcases of Case 2.1 lead to  the 
same X(9). 

We  now consider Case 2.2. 

Case 2.2 

1, 2 , 3  2, 4, 6 3, 6, 7 
1, 4, 5 2, 5, 7 3, 8, 9 

1, 6, 8 

1 ,  7, 9 

a = (1) (2)  (3) (4, 5) (6, 7) (8, 9). (3.25) 
We  shall  show that  this always leads to a conflict. 
We consider the involution b = (3) (6) (7) (1, x), 
and  this divides into subcases 

Case 2.6.1 b = (3) (6) (7) (1, 2) 

Case 2.2.2 b = (3) (6) (7) (1, 8) 
Case 2.6.3 b = (3) (6) (7) (1, 9). 

First we treat Case 2.2.1. Here 

(1, 6, 8)b  = 2, 6, y = 2, 6, 4 and b = (4, 8). 

Here in the triple 4, 8, x ;  z = 3, 6, or 7 of which 
only x = 7 is consistent with (3.25), and 4, 7, 8 
is a triple.  Then (4, 7, 8)a = 5, 6, 9. Also 
(1, 7, 9)b = 2, 7, f = 2, 7, 5 and b = (5.  9). But 
then (3, 8, 9)b = 3, 4, 5, a conflict. This eliminates 
Case 2.2.1. 

Case 2.2.2 b = (3) (6) (7) (1, 8). 

Here (1, 2, 3)b = 8, 2, 3 = 8, 9, 3 and b = (2,  9). 
But  then in the triple 2, 9, y we have y = 3, 6, or 7. 
All three of these conflict with (2.25). Thus Case 
2.2.2 leads to a conflict. 

Case 2.2.3 b = (3) (6) (7) (1, 9). 



Here (1, 2, 3)b = 9, x, 3 = 9, 8, 3 and b = (2, 8). 
But  then in the triple  2, 8, y we have y = 3, 6, or 7. 
All three of these conflict with (3.25). Thus all 
subcases of Case 2.2 lead to conflicts. 

This completes the proof of Theorem 3.2 The 
only consistent subcase of Case 1 leads to  an S(7). 
All consistent subcases of Case 2 lead to  the same 
S(9). 

4. Steiner triple systems with a Jordan 
group of automorphisms 

We investigate here the structure of Steiner  triple 
systems  with  a  Jordan group of automorphisms. 
Our first theorem will require less, namely that  the 
Steiner  triple  system S possess a group of auto- 
morphisms doubly transitive on the points of S. 

Theorem 4.1 
Suppose a Sdeiner triple  system S with  more  than 
3 points  has a group of automorphism G which i s  
doubly  transitive  on the points of S. Then  S possesses 
a subsystem  which i s  a n  S(7) or a n  S(9). 

Proof. Since G is doubly transitive  it is of even 
order. Since N ,  the number of points of S is odd, G 
is of order N(N - l )m,  m being the order of a sub- 
group of G fixing two points. Then N - 1 is even 
and  P(2), a Sylow 2-subgroup of G, will not be of 
an order dividing m. Thus P(2)  fixes exactly one 
point and displaces the rest. If m is odd, then 
every element of P(2) except the  identity, fixes 
exactly one point, and in particular  there is an 
involution with exactly one  fixed point.  By  transi- 
tibity of G there is for each point of S an involution 
fixing exactly this point. We may now apply Theorem 
3.1 and conclude that every triangle of S generates 
and S(9), and our theorem is proved. 

Let us now suppose that m is even. Then a sub- 
group H fixing two  points ai ,  ai (and hence the 
three  points ai ,  a;, ak of a  triple) is of even order 
and  has a Sylow 2-subgroup Q(2). It is 1- mown 
[I ,  p. 681 that N,(Q(2)) is doubly transitive on the 
points fixed by Q(2) .  If x, y are two  points fixed 
by Q(2) then Q(2) must also fix the  third point 
z of t.he triple x, y ,  x containing x and y. Hence 
if Q(2)  fixes more than  the  three points ai, a;, ah, 
then Q(2) fkes a proper  Steiner  system S* containing 
fewer points than X, and N,[Q(2)] restricted to X* 
is a doubly  transitive  automorphism group of X*. 
By induction on the number of points we may 
assume the theorem  true for S*, which therefore 
contains an S(7)  or an S(9). 

There  remains to be considered the case in which 
Q(2) fixes exactly the three  points ai, ai, ah fixed 
by H. Then, since G is  doubly  transitive,  there is 

consider the family F of all 2-subgroups of G, 
including the identity as a 2-subgroup. Let U be a 
2-subgroup of G fixing more than  three points such 
that  any larger 2-subgroup fixes a t  most 3 points. 
Here the  identity fixes more than three  points  and 
so such a 2-subgroup must exist. The  third point 
of a triple  containing  two  points fixed by U must 
also be a fixed point of U and so the fixed points 
of U form a  proper  Steiner  system S* (we may 
have S* = S if U = 1). Let x, y, z be  any  triple 
of S*. Then U is contained  in a Sylow 2-subgroup 
Q*(2) of the subgroup H* fixing x, y ,  z and Q*(2) 
is conjugate to Q(2) .  Q*(2)  fixes precisely the three 
points x, y, z. Let U C V E &*(2)  where [V : U ]  = 2. 
By  the choice of U ,  V fixes a t  most three points, 
whence V fixes exactly the three  points x, y, z. If 
V = U + Ut, then U d V and t2 E U whence 1' 
fixes the points of X*. A point of S* fixed by t is 
fixed by all of V ,  whence t fixes exactly the three 
points x, y ,  z. Thus t restricted to S* is an involution 
fixing exactly the  three  points x, y ,  z. But we chose 
x, y ,  x as  an  arbitrary  triple of S*. Hence for  every 
triple of S* there is an involution of S* fixing 
exactly the  three points of the triple. Hence Theorem 
3.2 applies to S* and so X*, and therefore 8, contains 
an S(7) or an X(9). This completes the proof of 
Theorem 4.1. 

We can now  proceed to our main theorem. 

Theorem 4.2 
The  following  two  properties of a permutation  group 
G are  equivalent: 1) G is a Jordan  group  with a sub- 
group H fixing three  letters and  transitioe  on  the 
remaining  letters; 2) G i s  an automorphism  group 
of a Steiner  triple  system S ,  and G permutes the 
triangles of S transitively.  There are two main  types 
for X: Type  1: Every  triangle of S generates a n  S(7); 
Type  2: Every  triangle of S generates a n  S(9). A 
Steiner  triple  system of Type  1 i s  a projective geometry 
over GF(2). lf in Type  2 we  further  assume  that G 
i s  transitive  on  independent  sets  of  four  points  (Le., 
four  points  not in a n  S(9)), then S i s   an   a f ine  geometry 
over GF (3). 

Proof. By Theorem 2.1 a Jordan group G with a 
subgroup H fixing three  letters  and  transitive on 
the rest may be regarded as an automorphism 
group of an incomplete balanced block design with 
k = 3, X = 1. These designs are the Steiner  triple 
systems S. Then G is doubly  transitive  and so a 
permutation fixing two  points of S will  fix the  third 
point of the triple  containing  them, and  the group 
of such permutations will be transitive on all  others. 467 
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Hence G will  be transitive  on the triangles of S. 
Conversely a group G of automorphisms of S transi- 
tive on the triangles of S is a Jordan group with 
k = 3. This proves the equivalence of the  two 
properties of the group G as  stated in the theorem. 

By Theorem 4.1, S contains an S(7) or an S(9). 
Since G is transitive on triangles there will be two 
types for S: 

Type I. Every  triangle of S generates an S(7). 

Type 2. Every  triangle of S generates an S(9). 

This information is sufficient to determine the 
Type 1 Steiner  triple  systems completely, but  not 
those of Type 2. 

The well known axioms for projective geometry 

x of order 2, and  suppose that for every u E K ,  
( x u - l ~ u ) ~  = 1. The representation  of K as a permuta- 
tion  group  on the cosets of C = C ( x ) ,  the  centralizer 
of x  represents a conjugate of x ,  say u"xu by a permu- 
tation ai jixing  exactly one letter i. For every i and 
every transposition ( j ,  k )  of ai let i, j ,  k be a triple 
of a system S. Then S i s  a Steiner  triple  system 
in which every triangle generates a n  S(9). 

Proof of Lemma. Let us first suppose that S is 
a Steiner  triple  system in which every  triangle 
generates an S(9). Then  by Theorem 3.1 for each 
point i of S there is an involutory  automorphism 
ai of X, ai = (i) - ( j ,  k )  - which  fixes only the 
point i and  interchanges j and k if and only if 
i, j ,  k is a triple of X. We note that a ,  is the unique 

are  the following: involution of S fixing only the point i, since an = 
PG.l There is one and only one line joining two 
distinct points. 
PG.2 If A ,  B, C are  three  points  not on a line, and 
if D # C is a point on AC, and if E # C is a  point 
on BC, then  there exists a  point F on DE and also 
on AB. 
PG.3 Every line contains at  least  three  points. 

Taking  the blocks of a  Steiner  triple  system as 
lines, the axioms PG.l and PG.3 are  always satisfied. 
If every  triangle of a Steiner  system  generates an 
S(7) then we readily verify that PG.2 is also satisfied. 
Thus a  Steiner  system of Type 1 is a  projective 
geometry over GF(2) ,  since an S(7) is a  projective 
plane over GF(2)  and by classical procedures the 
plane coordinates  may be extended to  the entire 
projective space. This  settles  the  statements of the 
theorem about  Steiner  systems of Type 1. 

The  treatment of systems of Type 2 is far more 
difficult. An S(9) is an affine plane over GF(3), 
but  it is not  true  that a Steiner  triple  system in 
which every  triangle  generates an S(9) is necessarily 
an affine geometry over GF(3). 

We may use the converse part of Theorem 3.1 
to describe Steiner  triple  systems  in which every 
triangle  generates an S(9): 

Lemma 4.1 
Let S be a Steiner  triple  system in which every triangle 
generates an X(9). For each point i of S let a ,  be the 
involutory  automorphism of S which  fixes i and 
interchanges j and k if i, j ,  k i s  a triple. For each 
lriple r ,  s, t  we have a,asa, = a , ,   ( a , ~ . ) ~  = 1 and 
corresponding relations obtained by permuting r, s, 2. 
The group K generated by  the ai's i s  transitive.  The 
element ai permutes  with every automorphism  fixing 

468 i. Conversely let K be a group  containing a n  element 
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involution interchanging x and y must fix the  third 
point x of the triple x ,  y, x containing x and y. Hence 
if r ,  s, t is a  triple of S then a, = (r)  (s, t )  - , 
a, = ( s )  ( r ,  t )  ' , and a,  = (1) (r, s) . . , are  the 
corresponding involutions fixing only one letter. 
But  then aea,an = a t ,  and similarly a,a,a, = a, 
But  then (a,aJ3 = (a,a,a,) (a,a,a,) = a; = 1. And 
of course similar relations hold if r ,  s, t are permuted. 
Since for any pair s, t there is a  triple r ,  s, t and 
a.7 = ( r ) ( s ,  1) - it follows that k = { a i )  is transi- 
tive. And since we have observed that ai is the 
unique involution fixing the point i and no other, 
it follows that ai is in the center of the subgroup 
fixing i. This completes the direct part of the lemma. 

Conversely let K be a group cont,aining an element 
x, with x' = 1 and suppose that for u E K we have 
( 2 ~ - ' 5 u ) ~  = 1. Let C = C(x)  be the centralizer of 
x and  let us represent K as a  permutation group 
on the left cosets of C. 
K = C + Cy, + * + Cy,. (4.1) 
Here the representation of x is the  permutation 
a, = (C) 0 . .  (Cyi,  Cy,) 0 .  where Cy,x = Cyj. 
The  permutation a, fixes C, but no other coset. 
For if Cyx = Cy, then yxy" = h E C, whence 
xyxy" = yxy-'x. But we have 1 = ( ~ y x y " ) ~  = 
~~(yxy-')~ = x3yx3y-l = xyxy-',  whence yxy-I = x 
and so y E C and hence Cy = C. It follows that a, 
and its n conjugates all * , a, are  involutions 
where ai fixes the  letter i and no other,  and ai is in 
the center of the subgroup fixing i. With a, the 
permutation representing x and  any conjugate ai 
representing u-'xu, from ( X U - ~ X U ) ~  = 1 we conclude 
that (alai)' = 1. By taking  conjugates of this 
relation we conclude more generally that for any 
ai ,  a, we have (aia,J3 = 1. If ai = (i) . ( j ,  k )  . a , 
then aiaiai is the conjugate of a, fixing IC and so 
aiaiai = ab, and conversely this relation implies 



and since  also ai = &aka, and aiakai = aka,@< we " ' " ' '" "' 
have ak = ( k )  (i, j )  . . . . This shows that  if  we ( a ,  b ,  a) = 1 ,  (a ,  b,   b)  = 1. (4.11 
take  the  letters 1, . . . , n as points of a system X 
and select  triples of points  taking i, j, k as a triple 
if a,  = (i) 9 .  - ( j ,  IC) . . . then we obtain  the  same 
triple  from ai = ( j )  . + (i, k )  e e and  from 
ak = ( k )  . - (i, j) . . Thus a selected triple  is 
determined  uniquely  by any  two of its points. 
Furthermore,  any  pair i, j does occur in one  triple, 
namely, i, j ,  IC if a, = (i) . - ( j ,  k )  . . . , since a,  
displaces  every letter except i. Thus  the system X 
of triples is a Steiner  triple  system, since every 
pair of points occurs in a unique  triple.  And  since 
aialaz,  aiazai, . . , u,u,a, are  the same as a,, e - , a, 

The  argument  above proves  a little more, namely 
that in  a  group K if u3 = v3 = 1 and xu2 = u-l, 
zvx = v-l, then (u, v} is  a  group of exponent 3 
and order a t  most 27. 

When K is generated by  four  independent involu- 
tions, a,, a,, a4, a,,, let us put x = a,, a = ala,, 
b = ala4, c = ala,,. Then  each of the groups ( a ,  b } ,  
{a ,  c}, ( b ,  c} is of exponent 3 and order a t  most 27. 
Let us write U, = (a,  b ) ,  uz = (b ,  c ) ,  Ua = (c, a ) ,  
v1 = (a,  b, c), v 2  = (a, b, c-'), us = (b,  C, a ) ,  
214 = (b, c, a-1), 2)s = (C, a, b ) ,  216 = (c, a, b-'). 

in some  order, it follows that a,  is an automorphism  Then we find 
of X. Hence  Theorem 3.1 is applicable to  X and so 
every  triangle of X generates an X(9). This completes 
the proof of Lemma 4.1. u"v,a = a"(a, b ,  c)a = a"(a, ~)-'c-'(u, b)ca 

Lemma 4.1 shows that  the construction of Steiner 
triple  systems  in which  every  triangle  generates an 
S(9) is precisely equivalent to  the construction of = (a ,  b)"(a, c)c"(u, b)C(C,  a) 

a"u,a = ~ " ( 6 ,  c)a = a-'a(b, c)(b,  C, U) = ~ ~ 1 1 3 .  

= (a ,  b)-lu-lc-lm-la-l(a, ~ ) ~ - ' U " C U  

groups K generated by a set of elements ai of order 
2 in which ( u , u ~ ) ~  = 1. 

In  general K is  generated  by r involutions (ai 1. = u1 UR ~ l V l ~ 3 .  (4 .2) -1 -1 

The subgroup K ,  of K generated by products aia, 
will be of index 2, and since aiai = aia,alai = 

~ . ~.~ 

a-1v3a = a"@, c ,  u)a = a"(b, c)"a"(b, c)aa 

(alai)-l(alai) it follows that K ,  is  generated  by = [a"(b, c ) a ] - l ~ ( b ,  c)a-l 
the elements ala,, i # 1. Thus K = K ,  + Klal, 
with [K : K,] = 2. Indeed  the homomorphism = 0 ,  c)(b, c ,  4 1 - v ,  C, a-1) 
ai + a,, i = 1 . . r of K has K ,  as  its kernel.  We = ( b ,  C, a)-'@, C, a") 
shall  consider the cases r = 2, 3,  4. 

If r = 2 and K is generated by a,, a, then K ,  
- 1  

= v3 vq. 

is cyclic of order 3 generated  by a = alaz and K 
is of the order 6. Here  put a3 = a,a,al = azaIaz. In  this way we construct  the  transformation  table: 

Here K corresponds  somewhat trivially  to  the 
Steiner  system  consisting of a single triple 1, 2,  3. z a"za b"z b c- 'XC 

If r = 3, let K be  generated by a,, a,, a+ where 
a3 = a,azal = a,a,a,. If we write a = ala,, b = 

and x = a,  then a3 = 1, b3 = 1, xax = a,(aIa2) a,  = uz u2v3 UZ uz 
a,a, = a-', and similarly xbx = b-'. In  the relation 
(~u-~xu)~ = 1 let us take u = a"b", and so u3 u3 u3v6 u3 

(xb~za-lb-~)~ = 1 or (b"~-'a"b")~ = 1 or v, u;1u~1u1vlu3 u;'u2u1v1ug1 v;'v2 

u1 u1 u1 UlVl 

= 1 or = 1 or (ab)3 = 1.  Similarly 
using: u = a"b we find ( b ~ " a - ' b ) ~  = 1 whence v, u;1u3u1v,u;1 u;1u;1u,v2u2 v;l 
( -1 3 ab ) = 1. These  relations  show that K ,  = {a ,  b j v3 v3'v4 -1 -1 u, u1 U2V3U1 u;1u3u2v3u;1 
is the group of exponent 3 with two  generators  and -1  

K ,  is of order 27. The corresponding  Steiner triple v4 v3 u;1u;1u2v4u;1 Ug1U;1Uzv4U3 

system  is S(9) since x(a,  b)x = (a-', b-') = (a,  b)  v5 u;~u ,u~o~u;~  2)i12)6 u;1u;1u3v&2 
and  the  commutator (a,  b )  is in C, the centralizer 
of x, and so [K : C]  = 9, the  number of conjugates V 6  u3 u, U3VeU1 vi" ?&1?&u3v6ui1. (4.3) 

of a, = x. The following well known  relations hold In  the same  way we find the effect of the replace- 
in K ,  as  may easily be verified. ments a + a-', b + b-' and c -+ c-l. 469 

-1 -1 

IBM JOURNAL NOVEMBER 1960 



UZ uz U;' U;' 

u3 u;' u3 U,' 

v1 uIv;lu;l ulv;lu;l V Z  

v2 ulv,'u;' u1v; 'u; 0 1  

v3 v4 u2v;'u,' u2v;1uz1 

v4 213 u2v;1u;1 u2v;1u;' 

v5 u3v;1u;1 v6 u3v;1u;1 

v6 u3vi1ui1 v5 U3v6 u3 - (4.4) -1  -1 

The relations (4.3) show that  the u's and the v's 
generate a normal  subgroup of K ,  containing (a, b),  
(b ,  c), and (c, a) .  This  must therefore  be the derived 
group K:. Note  that  the group K subject  only to 
the relations of the lemma has  as automorphisms 
permutations of the generators  and  replacement of 
a generator  by its inverse. 

Since z(aba)x = a-lb-la-l = (aba)" and 
xcx = c-I then (aba, c }  is of exponent  3  and  in 
particular (c  ab^)^ = 1. We shall apply  the collecting 
process to  this using the rule RS = SR(R, X) 
repeatedly. We shall put a bar over the  letter  to 
be collected in  the next stage: 

c aba c Ca ba caba = 1 

c a b a" C(C, a) b 6 c aba = 1 

c ab c (c, a)2 b(b, a) c Ca ba = 1 

c a" b(b,  U )  c b ( b ,  a)' C(C, a) b 6 = 1 

c b (b ,  C(C, a) b C(C, b(b, a) = 1 

c(n, b) bc(c, a)  bc(a, C) b(b, a) = 1 

c u l  b c u 3  ~ c u , '  buy' = 1 

c u1 b c b ~3 C u;' b u;' = 1 

c u1 bc  bc US u;'  u,' u3 v5 u2 u3 b UT' = 1 

c u1 bcbc u;' u3 21, u2 u,' 6 UT' = 1 

C u1 bc bc b u,' us us vi' v6 u2 vi' u;' u;' = 1 

-1 

and also 

(cvJ3 = 1 

CUI cv, c v1 = 1 

c v 1  c-l c-' v, c 0 1  = 1 

v, v1 vz V I  = 1. 

Hence by automorphisms of K 

-1 -1 
(4 -7) 

v: = 1 i = 1, e . .  , 6 

( V I ,  Vz) = 1, (V3, V 4 )  = 1, ( V 5 ,  v6) = 1. (4.8) 

Transform (4.6) by c-l, obtaining 
-1 vz v1 u;' u3 u,,' u,' u3 2)6 uz 

'UZ uz v;' u;l u;' u3 u,' = 1, (4.9) 
whence 

-1 v, 2)' = u2 u3 v5 v,' u3 uz . -1 -1 (4.10) 

In  (4.10) replace c by c-l, giving 

0;' vz = u,' u;' (u3 vi' U;')(u3 v6 u;l)u, UZ 
-1 -1 = uz 21s v6 uz. (4.11) 

Take  the inverse of (4.11) and use (4.8) 
-1 

01 = uz v6 215 uz = u,' v5 v i 1  UZ -1 -1 (4.12) 

Comparing (4.10) and (4.12) we find that v6v i1  
and u;'u2 permute, or 

(v5 vi1,  u,' uz) = 1. (4.13) 

(V6,  vi' u;' uz) = 1, (4.14) 

Transform (4.13) by b and we find 

whence using (4.8) and (4.13) 

(v6, u;' u2) = 1 , (v5, u;' u2) = 1. (4.15) 

In (4.15) replace b by b-', giving 

(v5)  u;' u,,') = 1 ( U S ,  u,' u,') = 1. (4.16) 

But since u.;' = ( u3 -' uz -' ) -' u, -' uz, (4.15) and (4.16) 
together give 

c u1 c-' u,' u3 v, uz v i 1  u;'  u;' = 1. (4.5) (u5, u,) = 1 (us, u,) = 1 

cup-' = c-Yc-'ulc)c = c-l(ulvJc = u1vlv;1v2 = U]VZ, In  (us ,  u,) = 1 interchange c and a,  giving 

If we now use the rule (v6, UZ) = 1 (216, 243) = 1. (4.17) 

then (4.5) transformed by u1 gives ( U , V ; ~ Z L ; ~ ,  u;') = 1, or (u;', u;') = 1, 

1 ) ~ ~ ~ '  u3 216 us vi' u;' = 1. (4 4 whence 

Since (a,  b)"c(a, b)  and c are of order  3 and (v5, u1> = 1. (4.18) 

470 transformed  into  their inverses by x, they generate  Making  appropriate  substitutions in (4.17) and 
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(4.18) we find 

(vi, ui) = 1 i = 1 ,  . * .  6, j = 1 ,  2,  3. (4.19) 

The equation (4.11) now takes  the form 
-1 v;' v 2  = v 5  0 6 1  (4.20) 

and permuting the generators, gives 
-1 - I  -1 

92  = v3 v4 = v 5  v6. (4.21) 

Using (4.19),  (4.6) now  becomes 

UT' u3 uz u;' = 215 08 212 
-1  -1 (4.22) 

and  substituting  in  this from (4.21) we have 

Ui1 u3 u2 u;l = 21, v2 V z  = 01 v2. 
-1 -1 (4.23) 

From  the transformation  table (4.3) and (4.19) we 
see that  the left-hand side of (4.23) is unchanged 
by transformation  by a,  b, c and therefore vlv2 is 
in the center of K,. Let us write w ,  = vlv, and 
similarly w2 = v3v4, w3 = v&, where wl,  w2,  w3 are 
in  the center of K,. Since (a-', b-') = (a,  b)xvlx = v2, 
xv,x = vl and  as v, and v 2  permute  by (4.8) it follows 
that xwlx = wl. Thus w1 is in the center of K and 
similarly wz and w3. We may now  use (4.21) to 
express the v's in  terms of v1 and  the w's. 

21, = v1 w1 -1 

v 3  = v1 w1  w;' 

214 = v1 w1 wz -1  -1 -1  

vs = V I  PU, w,' 
-1  "1 

v6 = v;' w1  w3 (4.24) 

We can now write relations for K in the following 
form, applying  automorphisms of K to (4.23): 

I 3 3  x2 = 1 ,  a 3 =  6 = c  = 1 ,  u ; = u , " = u , " = l  

v; = w; = w; = w; = 1 

u1 = (a ,  b) ,  uz = ( b ,  c ) ,  u3 = (c ,  a) 

v1 = ( a ,  b ,  c ) ,  ui v1 ui = v1 -1 

(u, , G ' )  = (UZ' ,  u3) = (uz , us)-l 

(u3 , UT1) = ( G I ,  U l )  = (u3 , u1)-l 

(Ul 1 u,') = (u;l, u,) = (Ul , U J l  

= (u;', u;l)-l = w1 

= ( U i l )  u ; y l  = w2 

= (u;', u;I)-l = w3 

a"ula = u l ,  b"ulb = ul ,  c-'ulc = ulv, 

a-'u2a = uzvlwlw;l, b"u,b = up,  c-1u2c = uz 

a-'u3a = us, b"u3b = u3v1w1w~ ' ,  c-lu3c = u3 

a"vla = v1w2, b"vlb = v,w3 C-'V,C = vlwl 

a-'wia = wi b"wib = wi c-'wic = wi 

x  ax = a-' ,  x bx = b-', x c x  = c-', 

x ui x = ui, x V I  x = v;' w1, x wi x = wi. 
(4.25) 

Further calculations, which  will not be given here, 
show that  the relations of (4.25) define a group K 
of order 2.3*' and  that for every x e K ,  ( x z - ~ z z ) ~  = 1. 
This  may  be done by  taking an elementary Abelian 
3-group generated by vll  w l ,   w l ,  w3 and extending 
this group by adjoining us,  u2, ul,  c, b, and a in 
succession, using the appropriate  relations from 
(4.25) to define the extensions, and  then checking 
( x x - ' x z ) ~  = 1 for representative values of x ,  observing 
that if h E C ( x )  then x(hx)"z(hx) = xz-lxz. 

What  sort of Steiner triple  system S corresponds 
to  the group K defined by  the relations (4.25)? 
Here ul ,  u2, u3, wl ,  w2, w, e C(x) .  For g e G we have 

g = ae' be' ceJ v: h ,  h e C(x) .  (4.26) 

We find 

g x g-1 = x(xgx)g-' 
- - x a - e ~  b-"' c-ca v-f wi v;f cCes b-"" a-"' 

= x * k ( g ) .  (4.27) 

The number of conjugates of x is the number of 
values of k(g)  and  this is in  turn  the number of 
points of S. Thus  the group K defines a Steiner 
triple  system  with 81 points, and S(81). 

We must also consider Steiner  triple  systems 
defined by homomorphic images of K,  if we are to 
find all  systems generated by four  independent 
points, where every triangle  generates on S(9). 
We  see that 

k(g) = a'' be' ce' (mod K;).  (4.28) 

Here if S has fewer than 81 points then S corresponds 
to a factor group K I T  where the kernel T is deter- 
mined by  the identification of different values of 
k(g )  in (4.27). If k(g l )k (g2) -*  e T and k(gl) r k(g2) 
mod K:, then K,/T is generated by at most  two 
elements, and we have an S(3) or S(9). Hence 
suppose k(gl) = k ( g 2 )  mod K:, but k(gl) # k(g2). 
From (4.27) we  see that  this shows that vlwl e T 
and by transformation that v,, wl, w2,  w, e T. Then 
in K,/T  we have  relations vi = 1, i = 1, - e - , 6. 

We state these  results  in  a lemma which  now 
leads to  the proof of our theorem. 

Lemma 4.2 
If S i s  a Steiner  triple  system in which every triangle 471 
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a n  X(81) the group K associated with S satisjies 
the relations (4.25). If they generate a n  S(27) the 
associated group K satisfies  the further  relalions 
vi = 1, i  = 1, ... 

1 6. 

We now observe that if four independent  points, 
1, 2, 4, 10 generate an S(81), then  this S(81) con- 
tains an X(27), corresponding to  the subgroup K" 
of K generated  by a,  = x, a = alaz, b = ala4 and v,. 
For we easily verify that  in K* all elements are 
products of x, a, b, u,, v,, w,, w2, w3 in this order 
with appropriate exponents and that in K" there 
are exactly 27 conjugates of x, this corresponding 
t o  an S(27) generated by points 1 ,2 ,4 ,  t ,  a ,  = v;'xv,. 

We now have  everything needed to complete 
the proof of Theorem 4.2. Lemma 4.2 shows that 
if X has  the  property that every  triangle  generates 
an X(9), then if S has more than 9  points  there 
exist four  independent  points  generating an S(27). 
As we are assuming that our group G of auto- 
morphisms of X is transitive on sets of four inde- 
pendent  points, it follows that every  set of four 
independent  points generates an S(27). Now  con- 
sider the group K associated with X, and suppose 
K generated by involutions a,  = x, a,, - * , a,. If we 
write ala2 = b, ,  ala3 = b, . . . ala, = bVTl then 

permutes  with every b as well as with x and so 
is in the center of K.  Rut K as a  permutation group 
is represented on the cosets of C(x) .  In  this repre- 
sentation  every  commutator (bi, b,) is represented 
by the  identity. Hence we obtain  the same  Steiner 
system if  we take every  commutator (bi, b, )  to be 
the identity, i.e., if K ,  is simply an elementary 
Abelian 3-group A and x as an involution which 
transforms  every element of A into its inverse. By 
Lemma 4.1 we can now construct X explicitly. Let 
b, = 1, bl, - , b, be the  distinct elements of A ,  
where of course n = 3' for some r.  Then x = a,, 
a, = b;'xb,, - , a, = bilxb, are  the involutions of 
K. The triples of S are i, j ,  5, if ai = (i) * . - ( j ,  k )  . - . 
Here C(x)  contains the two elements 1, x = a ,  and 
the point i is associated with the coset C(z)bi whose 
two elements are bi  and xbi. Here ai = b;'xbi = xb;'. 
Then i, j ,  k is a triple of S if and only if C(x)biai = 
C(x)b,. But  this gives b, = br'b;'. Hence i, j, k is 
a  triple if and only if b,b,b, = 1 in A.  If we write 
A as  the  additive group of r dimensional vectors 
over GF(3) a relation Pi + Pi + P, = 0 holds if 
and only if the points Pi, P,,  P ,  lie  on a line. Thus 
S may be regarded as  the affine geometry of dimen- 
sion r over GF(3).  This completes the proof of 
Theorem 4.2. 
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(61 In a projective geometry of dimension n over GF(2) ,  
every triangle generates an S(7) and the points may be 
regarded as the elements of an elementary Abelian 
2-group A of order a+' with the identity excluded. If F 
is the subgroup of A fixed pointwise by an involution, it 
can be shown that [F : 11 2 [A : F ] .  Thus, if n 2 4, any 
involution of A fixes a subgroup F of order at least 8 
and hence fixes at least 7 points in the corresponding 
Steiner triple system. 
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