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Automorphisms of Steiner Triple Systems

Abstract: This paper treats the following problem in combinatorial analysis: Find an incomplete balanced
block design D with parameters b, v, r, k, and . = 1, possessing an automorphism group G which is doubly
transitive on the elements of D and such that the subgroup H of G fixing all the elements of a block is transi-
tive on the remaining elements. Also find transitive extensions of such groups G. If the block design is « finite
projective plane, the plane is necessarily Desarguesian. Thus, these properties of the automorphism group
may be considered as a “Desarguesian” property of the designs.

This paper considers the case in which D is a Steiner triple system. The main result is that a “Desarguesian”
Steiner triple system is either 1) a projective geomeiry over GF(2) or 2) an affine geometry over GF(3). Two
intermediate results are of interest: 1) A Steiner triple system has for each element an involution fixing only
this element, if and only if every triangle generates an S(9), a Steiner triple system with 9 elements; 2) if
Steiner triple system has for each triple an involution fixing only the elements of this triple, then every trian-

gle generates an S(7) or an S(9).

1. Introduction

It is a classical result that the validity of the
Theorem of Desargues in a projective plane is
equivalent to the existence of a certain family of
collineations [1, p. 352]. And recently Ostrom and
Wagner [2] have shown that a finite projective
plane is Desarguesian if it has a group of collinea-
tions doubly transitive on its points. Thus a natural
generalization of the Desarguesian property to block
designs is the property of having a highly transitive
group of automorphisms. And conversely a family
of permutation groups originally investigated by
Jordan [3] leads in a very natural way to block
designs. These are doubly but not triply transitive
permutation groups in which a subgroup exists
fixing &k > 3 letters and transitive on the remaining
letters. These groups and their relationship to
block designs are considered in Section 2.

The Steiner triple systems are the block designs
with £ = 3 and A = 1, i.e., systems with blocks of
three elements (the elements are called points in
this paper) in which every pair of distinct elements
occurs together in exactly one block. Two theorems
in Section 3 relate combinatorial properties of
Steiner triple systems to the existence of certain
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automorphisms. First, if for every point of a triple
system S there is an involution fixing only that
point, then every triangle (three points of S not
in a block) lies in a system S(9) with exactly 9
points and conversely if all triangles lie in subsystems
S(9), then S has the corresponding family of involu-
tions. Second, if for every triple of S there is an
involution fixing exactly the points of this triple,
then every triangle lies in an S(7) or S(9). The
converse of the second theorem is false.

The final section uses the results of the previous
sections to characterize Steiner triple systems which
have highly transitive automorphism groups. If S
has automorphisms transitive on triangles, then
there are two types:

Type 1. Every triangle of S generates an S(7).
Type 2. Every triangle of S generates an S(9).

The systems of Type 1 are precisely the projective
geometries over GF(2). In Type 2 it is necessary to
take the stronger hypothesis that the automorphisms
are transitive on sets of 4 independent points (4
points not in an S(9)) to conclude that S is the




affine geometry over GF(3). This stronger hypothesis
is probably not necessary, but is needed for the
present proof. Indeed, it is conceivable that the
entire conclusion holds if we ask only that the
automorphism group be doubly transitive.

Much remains to be done. The nature of the
doubly transitive groups of the Steiner triple systems
needs investigation. And of course analogous
questions can be studied for block designs other
than Steiner triple systems.

2. On a class of groups related to block designs

The following theorem is due originally to Jordan [3]
and the proof may be found in Burnside [4, p. 207]
or in Hall [1, p. 66]. The properties of block designs
needed here may be found in Mann {5, pp. 83-129].

s Theorem of Jordan

Let @ be a permutation group on n letters which s
primitive, and let H be o fransttive subgroup of G
on m letters, fixing the remaining n—m letters,
2 < m < n. Then (1) +f H ¢s primative, Gisn — m + 1
fold transitive; (2) in any event G is doubly transitive.

We are here interested in the second alternative,
where with2 < m < n — 3,Gisnotn —m+ 1
fold transitive. Suppose that @ is {-ply transitive, but
not ¢ + 1-ply transitive where 2 < ¢ <n — m — 1.
We note that if G is n — m fold transitive, it is also
n — m + 1 fold transitive, since H fixes n — m
letters and is transitive on the remaining letters.
Then the subgroup G* of G fixing ¢ — 2 of the letters
fixed by H will be doubly but not triply transitive,
and either G = G* (if ¢ = 2) or G is a transitive
extension of G*. For example, the Mathieu group
M,; quadruply transitive on 23 letters contains a
subgroup H fixing 7 letters and transitive on the
remaining 16 letters. A subgroup G* of M,; fixing
two of the fixed letters of H is doubly but not
triply transitive on 21 letters and contains H.
Group M, is a transitive extension of G*.

Let us call a group G a Jordan group if

1) G is doubly but not triply transitive on n letters;
2) @ has a subgroup H fixing k > 3 letters and transi-
tive on the m = n — k letters which it moves

o Theorem 2.1

Let G be a Jordan group on n letters and suppose the
subgroup H as large as possible, namely (1) H is not
contained in a subgroup H' fixing k' letters 3 < k' < k
and transitive on the remaining n — k' letters, and
(i) H contains all permutations of G fixing the k
letters which H fixes. Then the sets of k letters fixed by
H and its conjugates tn G form the blocks of an
incomplete balanced block design D with param-

etersv =n, b=nn — D/kk — 1), k =k r=
(n—1)/(k — 1),\ = 1. The group G may be regarded
as an automorphism group of D which is doubly
transitive on the letters of D. The subgroup H fixes
the letters of a block of D and s transitive on the
remaining letters. Conversely if D is a block design
with paramelers v, b, r, k, and X = 1 which has an
automorphism group G doubly transitive on the lelters
of D in which the subgroup H fixing the lelters of a
block is tramsitive on the remaining letiers, then G
is a Jordan group on the v letters of D and H is the
subgroup of G fixzing k lelters and fransitive on the
remazining letters.

Proof. The proof of this theorem is not much
longer than the statement. Suppose G is a Jordan
group and H as large as possible. First we show
that m = n — k > n/2. Since G is primitive there
exist conjugates H,, H, of H displacing some letters
in common but not all. Then H, \U H, is transitive
on the letters it displaces. By the maximality of H,
H, \U H, is transitive on n — 1 or n letters. But
H, \U H, displaces at most 2m — 1 letters. Hence
2m — 1 > n — 1land m > n/2. If m = n/2 and
H, \U H, displaces exactly n — 1 letters, a third
conjugate H; will be such that either H, \U H; or
H, \U H, is transitive on more than n/2 letters
and on at most 3n/4. Here 3n/4 < n — 1 since
n > 6 for all but trivial cases. Thus we must have
m > n/2 for H with the maximal properties of the
theorem. Hence any two conjugates of H, say H,
and H,, displaces some letters in common and
H, \U H, is transitive. By the maximal property of
H this means that H, \J H, is transitive on n or
n — 1 letters. This is equivalent to saying that the
k letters fixed by H, and the & letters fixed by H,
have no letters or exactly one letter in common.

Consider the array D of the sets of & letters fixed
by conjugates of H. A pair of distinet letters a,, a;
oceurs together in one of these sets at most once,
since we have shown that two such sets have at
most one letter in common. But since G is doubly
transitive, a pair a;, a; will occur together in one
set. If there are b conjugates of H, D has b blocks
each consisting of % letters, there being n letters
in all. Each unordered pair a,, a; oceurs together
exactly once in a block. This says that D is an in-
complete balanced block design whose parameters
v, b, 7, k,Nincludev = n, k = k,and A = 1. But it
is well known that the parameters satisfy bk = vr,
r(k — 1) = Mv — 1) whencer = (n — 1)/(k — 1),
b = n(n — 1)/k(k — 1). Clearly G permutes the
conjugates of H among themselves and so G may
be considered as an automorphism group of D,
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being doubly transitive on the letters of D, and
having a subgroup H which fixes the letters of a
block and is transitive on the remaining letters.
This completes the proof of the direct part of the
theorem.

The converse part of the theorem is essentially
obvious. Let D be a block design with parameters
b,v,r,k,\, where k > 3 and A = 1, and let G be a
group of automorphisms of D, doubly transitive
on the letters of D and having a subgroup H fixing
the letters of a block and transitive on the remaining
letters. The group @ cannot be triply transitive, for
if 4, j, ¢ are letters of a block B, and if s is a letter
not in B,, then @ does not contain a permutation
mapping ¢, j, { onto 7, j, s. Hence G is doubly but
not triply transitive and contains a subgroup H
fixing k > 3 letters, and transitive on the remaining
letters. Thus G is a Jordan group and the converse
of the theorem is proved.

In the Mathieu group M,; mentioned above, the
group G* is doubly but not triply transitive on 21
letters with a subgroup H transitive on 16 letters
and fixing the rest. In G* a conjugate of H fixes
k = 5 letters and we haven = v = 21, A = 1 for the
block design D. Here for D,

r=mn-—1/k—1)=20/4=5
and
b=nn—-D/kE—-1) =21-20/5-4 = 21.

Thus D is the finite projective plane of order
k — 1 = 4. The group G* is the group of unimodular
collineations of the plane. M, is, of course, a transi-
tive extension of G*.

In this paper we investigate Jordan groups with
k = 3. The corresponding design is, of course, a
Steiner triple system. An automorphism o of a
Steiner triple system which fixes two distinct points,
say z, y, will fix the triple, say z, y, 2, containing
these two points and therefore will also fix the
third point z of the triple. Hence the subgroup H
fixing a triple is just the subgroup fixing two points.
Thus if G is a group of automorphisms of a Steiner
triple system S which is doubly transitive on the
points of 8, and if the subgroup H, fixing a triple,
is transitive on the remaining points, this is equiva-
lent to saying that @ is transitive on triangles of S,
meaning by a triangle an ordered set of three points
not in a triple.

3. Combinatorial theorems

In this section we establish two theorems which
relate the structure of a Steiner triple system to
the existence of a family of involutions of certain
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types. We note that an involution of a Steiner system
S which interchanges two points z, ¥ necessarily
fixes the third point of the triple containing them.
For if « is the involution, (z)a = ¥, (¥)a = z, the
triple (z, ¥, 2)a = y, z, (2)a = y, 2, zwhence 2z = (2)a.
By a triangle of a Steiner triple system we shall
mean three points not in a triple. An S(v) is a
Steiner triple system with exactly v points.

& Theorem 8.1

Let 8 be a Sleiner triple system in which, for every
point x, there 1s an involution « of S which has x as
its only fized point. Then every triangle of S generates
an S(9). Conversely suppose that S is a Steiner
triple system in which triangle generates an S(9).
Then for every point x of S there is an tnvolution o
of 8 which has x as its only fixed point.

Proof. Suppose S has a family of involutions such
that for every point x of S there is an involution «
which has z as its only fixed point. By the remark
above, if r is a point and (F)a = s, (o = r, 2, 7, §
is a triple of 8, and conversely if z, r, s is a triple,
then, since z, », (r)a is a triple, (r)a = sand (s)a = r.
Let 1, 2, 4 be a triangle of S. Then the following
triples are determined:

1, 2, 3 2, 4, 6

1, 4, 5

1, 6, 7. (3.1)
Here we have involutions «a,, a,

a, = (1) (2,8 4,5 6,7

a; = (2) (1,3) (4, 6). 3.2)

Applying a, to 2, 4, 6 we have (2, 4, 6)a, = 3, 5, 7,
a new triple. Thus 2, 5, 7 is not a triple, and a, does
not interchange 5 and 7 but must interchange 5
with a further point 8, there being a triple 2, 5, 8,
and let 9 be the third point of the triple 1, 8, 9.
We now have triples

1, 2,3 2, 4 6 3, 5 7
1, 4, 5 2, 5, 8

1, 6, 7

1, 8, 9 (3.3)

and also involutions
a;=(1)(2,34,5®6,7@®,9
a = (2 (1, 3) 4,6 (5 8)

a; =3 (1,2 5,7

as = (4) (1, 5) (2, 6)




We now find further triples by applying the involu-
tions

@5 8a =3,4,9
(1,2,3)as = 4,8, 7

4,8, 7a, = 5,6, 9. 3.5
This adds to our information, giving triples

1,2,3 2,46 3,4,9 4,7,8 5,6,9
1,4,5 2,5,8 3,5,7

1,6,7

1,8,9 (3.6)

and involutions

a = (1)(2,3 (4,5 (6,7 (8,9
a: = (2 (1,3) (4,6 (5,8
a=(3)1,24,96,7

a. = (4)(1,5)(2,6) (3,9 (7,8

a; = (5 (1,4 2,8 3,7 (6,9). 3.7
We now find

1,4, 5a =2,9,7

2,9, Na, = 3,8, 6. (3.8
This yields the triples of a complete S(9)

1,2,3 2,4,6 3,4,9 4,7,8 5,6,9
1,4,5 2,5,8 3,5,7

1,6,7 2,7,9 3,6,8

1,8,9 (3.9

and the nine involutions

a = (1)(2,3) 4,5 (6,7) 8,9

a = (2)(1,3) (4,6) (5,8 (7,9
a=@)1,2)4,965,7)6,8)
a,=4)(1,5)(2,6) (3,9 (7,8

as = (5) (1,4 (2,8 (3,7 (6,9

as = (6)(1,7) (2,4 3,8 (5,9

a = (7)(1,6) (2,9 (3,5 4,8

as = (8) (1,9 (2,5) 3,6 (4,7

a, = (9 (1,8(2,7 (3,4 (5, 6). (3.10)

This completes the proof of the first part of the
theorem, since we have shown that given the involu-

tions the triangle 1, 2, 4 generates the S(9) of (3.9).

For the converse part of the theorem suppose
that S is a Steiner triple system in which every
triangle generates an S(9). Let 1 be a point of S
and let a, be the permutation which fixes 1 and inter-
changes r and y if 1, z, y, is a triple of S. We must
prove that a, is an automorphism of S, namely,
that a, maps triples of S onto triples. This is trivial
for every triple through 1. Hence consider a triple,
say 2, 4, 6 not through 1. Let 3, 5, 7 be the third
points of the triples containing 1, 2; 1, 4; 1, 6 respec-
tively. Thus we have

1,2,3 2,4,6

1,4,5

1,6,7. (3.11)
By hypothesis the triangle 1, 2, 4 generates an S(9)
whose points are 1, - - -, 7 as above and two further

points 8, 9. Thus 1, 8, 9 is a triple. If 2, 5, 7 were a
triple then we would have to have 2, 8, 9 as a triple
and 8, 9 would appear in two triples, a conflict.

Hence 2, 5 is in a triple with one of 8, 9, say 8.
The remaining triple with 2 must be 2, 7, 9. This
gives triples

1,2,3  2,4,6
1,4,5 2,58
1,6,7 2,7,9
1,8,09. (3.12)

We easily find that the only possible way to com-
plete (3.12) to an S(9) is to add the further triples
which appear in (3.9). Thus with a, = (1) (2, 3)
(4, 5) (6,7) (8,9) we find (2, 4, 8)a, = 3, 5, 7 and
3, 5, 7 is indeed a triple. This proves that a, is an
automorphism of S and the proof of our theorem
is complete.

There is a second theorem much like the first,
though it does not contain the converse (which is
indeed false). [6]

o Theorem 3.2

Let S be a Steiner triple system and suppose that for
each triple of S there is an involution whose fixed
potnts are precisely the three points of the triple.
Then every triangle of S generates an S(7) or an S(9).

Proof. Let 1, 2, 4 be a triangle and 1, 2, 3 the
triple containing 1, 2. Let @« = (1) (2) (3) (4,5) be
an involution fixing the points 1, 2, 3 and no others.
Then 4, 5, x is a triple with z = 1, 2, or 3 and re-
numbering, suppose x = 1. This renumbering does
not alter what we need to prove since 1, 2, 4; 1,
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3, 4; and 2, 3, 4 all generate the same Steiner sub-
system. Thus we have the triple 1, 4, 5. The third
points u, v of the triples 2, 4, u and 2, 5, » will be
new points which we shall number © = 6, » = 7
giving triples 2, 4, 6 and 2, 5, 7. Here (2, 4, 6)a =
2,5,twhencet = 7and a = (1) (2) (3) (4, 5) (6, 7).
At this stage we have

1,2,3  2,4,6
1,4,5 2,57
a=(1)(2 (3) @4, 5)®6,7). (38.13)

The triple 6, 7, y is fixed by a and so y = 1, 2, or 3.
The triple 2, 6, 7 is impossible and so there are two
cases: Case 1,y = 1, Case 2, y = 3. We shall show
that Case 1 is possible only when the triangle
1, 2, 4 generates an S(7), while Case 2 is possible
only when 1, 2, 4 generates an S(9). The cases are
shown in Fig. 1.

Case 1.
1,2,3 2,4,6
1,4,5 2,5,7
1,6,7.
a=(1(2® 4567 G3,14)

Here in a triple 3, 4, z we find that z = 1, 2,3,4,5,6.
Hence we have two possibilities: Case 1.1 z = 7,
Case 1.2 2 = 8 a new point. In Case 1.1 we have
(3,4, Na = 3, 5, 6 giving the S(7)

1,2,3  2,4,6 3,4,7
1,4,5 2,57 3,56
1,6,7. (3.15)

We shall show that Case 1.2 is in fact impossible.
In Case 1.2 we have 3, 4, 8 as a triple and if ¢ = (8, 9)
then (3, 4, 8)a = 3, 5, 9. Hence in Case 1.2 we have:

Case 1.2

1,2,3 2,4,6 3,4,8
1,4,5 2,5,7 3,5,9
1,6,7
a=(1)(2,3)4,5) (6,7 (8,9). (3.16)

Let b be an involution fixing exactly 1 @ ).
Then if b = (1) (4) (5) (2, %), either 1, 2, z; 4, 2, x;
or 5, 2, z is a triple, whence z = 3, 6, or 7. We
subdivide into cases:

Case 1.2.1 b= (1) (4) (5) (2, 3),
Case 1.2.2 b = (1) (4) (5) (2, 6),
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Case 1.28 b = (1) (4) () (2, 7).

In Case 1.2.1, (2,4, 6)b = (3,4, f) = (3, 4, 8) and
b= (6,8). Also (2,5, )b = (3,5,1) = (3,5, 9) and
b= (7,9). Thusb = (1) (4) (5) (2, 3) (6, 8) 7,9
and (1,6, 7)b = 1, 8, 9 is a triple.

From the transpositions (6, 8) and (7, 9) of b we
must have one of the triples 1, 6, 8; 4, 6, 8; or 5,6,8;
and also one of 1, 7,9;4, 7, 9; 5, 7, 9. Of these only
5, 6, 8 and 4, 7, 9 are consistent with (3.16), and
S0 we have

Case 1.2.1
1,2,3 2,4,6 3,4,8 4,7,9
1,4,5 2,5,7 3,59 5,6,8
1,6,7
1,8,9

a=(1)(2)@3) ¢ 5 6,7 (,9,

b= (1) 4 ®5)(23) (6,8 (7,9. (3.17)

Here for the involution ¢ = (2) (4) (6) (1, z) we
have three possibilities

Case 1.2.1.1 ¢ = (2) (4) (6) (1, 3),
Case 1.2.1.2 ¢ = (2) (4) (6) (1, 5),
Case1.2.1.3 ¢ = (2) (4) (6) (1, 7).
All three lead to conflicts.

In Case 1.2.1.1, (1, 4, 5)c = 3,4,y = 3, 4, 8 and
¢=(58). Then (1,8,9)c = 3,5,¢ = 3, 5,9 whence
¢ fixes a fourth letter (9), a conflict. In Case 1.2.1.2,
1,2,3)c=5,2,y=25,2 7and ¢ = 3, 7). But
then (1, 6, 7)c = 5, 6, 3 conflicting with 3, 5,9 in
3.17). In Case 1.2.1.3,(1,2,38)c = 7,2, 2 = 7,2, 5
and ¢ = (3, 5), whence (1,4, 5)c = 7, 4, 3 conflicting
with 3, 4, 8. Thus Case 1.2.1 leads to conflicts in
every case.

In Case 1.2.2, b = (1) (4) (5) (2, 6) and, referring
to (3.16), (1, 2, 3)b = 1, 6, x = 1, 6, 7 whence
b = (3, 7). But then in the triple 3, 7, y; y is a fixed
point of b, y = 1, 4, or 5. But no one of the triples
1,3,7,3,7, 4; or 3, 7, 5 is consistent with (8.16).
Hence Case 1.2.2 leads to conflicts.

In Case 1.23, b = (1) @) () 2, 7) and
(1,2,3b=1,7,z =1,7, 6, whence b = (3, 6).
Then in the triple 3, 6, y; v is one of 1, 4, or 5.
Again the triples 3, 6, 1; 3, 6, 4; and 3, 6, 5 all con-
flict with (3.16). Thus Case 1.2.3 also leads to con-
flicts and so all alternatives under Case 1.2 lead to
conflicts. Thus in Case 1, the only possible consistent
alternative is the Steiner system S(7) arising in
Case 1.1.




THEOREM 3.2

CASE 1

1.2.1.1 1.2.1.2 1.2.1.3

Figure 1 Case diagram for Theorem 3.2.

Case 2. Triple 3, 6,7

1,2,3 2,4,6 3,6,7
1? 47 5 2; 5; 7
a=(1)(2) @3 4b?56,7. (3.18)

Here we must have further triples 1, 6, 8 and if
a = (8, 9) then also (1, 6, 8)a = 1, 7, 9. Thus our
basis for Case 2 is the array

Case 2
1,2,3 2,4,6 3,6,7
1,4,5 2,5,7
1,6,8
1, 7,9
a=(1)(2) 3 4,5 6,7 (8,9. (3.19)

Here in the triple z, 8, 9 we must have z = 1, 2,
or 3. 1, 8 9 is inconsistent. We have two cases.
Case 2.1 Triple 2, 8, 9. Case 2.2 Triple 3, 8, 9. We
shall show that Case 2.1 leads to an S(9) and that
Case 2.2 leads to conflicts.

Case 2.1
1,2,3 2,4,6 3,6,7
1,4,5 2,5,7
1,6,8 2,8,9
1,7,9
a=(1)(2) (3 4,5 ®6,7@8,9. (3.20)

This we must subdivide into cases according to

CASE 2
2.1 2.2
2.1.2 2.1.3 2.2.1 2.2.2 2.2.3
2.1.3.1 2.1.3.2

the value of z in b = (1) (6) (8) (2, x), since the
pair 2, x is in a triple with one of 1, 6, or 8.

Case 2.1.1 b = (1) (6) (8) (2, 3),
Case 2.1.2 b = (1) (6) (8) (2, 4),
Case 2.1.3 b = (1) (6) (8) (2,9).

In Case 2.1.1, b = (1) (6) (8) (2, 3)

(2,6,4)b = 3,6,y =3,6,7
and b = (4, 7).

In the triple 4, 7, z; 2 = 1, 6, or 8, of which only
2z = 8 is consistent with (3.20). Hence 4, 7, 8 is a
triple and also (4,7, 8)a = 5,6, 9. Here b = (1) (6)
(8) (2,3) (4,7) (9, f) with 9, ¢ in a triple with 1, 6,
or 8 Thus £ = 7, 5, or 2 of which only { = 5 is
possible. Then (2, 5, 7)b = 3, 4, 9 and (2, 8, 9)b =
3, 8, 5 yielding the complete S(9).

1,2,3 2,4,6 3,6,7 4,7,8 56,9
1,4,5 2,57 3,4,9
1,6,8 2,89 3,58
1,7,9

a=(1)(2)3)45)(6,7) 8,9,

b= ()6 ® 23 &7 G,9. (3.21)

Case 2.1.2. b= (1) (6) (8) (2, 4).

Here (1,2,3)b = 1,4,2 =1,4,5and b = (3, 5)
and in the triple 3, 5, ¥ of the values y = 1, 6, 8
only ¥ = 8 is consistent with (3.20). Hence we have
the triple 3, 5, 8 and also (3, 3, 8)a = 3, 4, 9. At
this stage we have
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Case 2.1.2

1,2,3 2,4,6 3,6,7
1,4,5 2,5,7 3,5,8
1,6,8 2,8,9 3,4,9
1,7,9

a=(D(2E 5 ®67G,9),
b=(1)©6@® 249 G,5). (3.22)

Here (2,5,7)b = (4,3,y) = 4, 3,9 whenceb = (7,9).
Then (2, 8, 9)b = 4, 8,7 and (4, 8, T)a = 5, 6, 9.
This completes (3.22) to an S(9) and indeed the
S(9) identical with that of (3.21).

Case 2.1.3 b= (1) (6) (B) (2,9

Here (1,2,3)b = (1,9,2) = (1,9,7) and b = (3, 7),
b = (1) (6) (8) (2,9) 3, 7). In this case consider
an involution ¢ = (2) (8) (9) (1, y). Here y = 3, 6,
or 7. If ¢, = (2) (8) (9) (1, 3) then beyb = ¢, =
(2) 8) 9 (1,7) and the two casesy = 3andy = 7
go together. Thus we need subdivide into only two
cases. Case 2.1.3.1, ¢ = (2) (8) (9) (1, 6) and Case
2.1.32,¢, = (2) (8) (9 (1, 3) and ¢, = (2) (8) (9)

1, 7).
Case 2.1.3.1
1,2,3 2,4,6 3,6,7
1,4,5 2,5,7
1,6,8 2,8,9
1,7,9

a=(1(@ B 45(E67®,9),
b=D®® (2967,

c=2®9,e6.

Here (1, 2, 3)c = (6,2,2) = (6,2,4) and ¢ = (3, 4).
Also (3,6, 7)c = 4,1,y 4,1, 5and ¢ = (5, 7).
Thusec = (2) (8) (9) (1,6) (3,4) (5,7), (1,7, 9ec =
6,5,9and (5,6,9a =4,7,8.(4,7,8)¢c = 3,5, 8,
and (3, 5, 8)a = 3, 4, 9. These triples complete
(3.23) to the same S(9) as (3.21).

As our final case under 2.1 consider Case 2.1.3.2
with ¢, = (2) (8) (9) (1, 3) and also ¢, = (2) (8)

(3.23)

@ @D,
Case 2.1.3.2
1,2,3 2,4,6 3,6,7
1,4,5 2,5,7
1,6,8 2,8,9
466 1,7,9 (3.24)
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a=1 2@ 456,789,
b=1(® ® 2,967,
a=(2® O3,
beb=¢=2)® @O 1A,7.
Here
(1,2,3). = 7,2,2 = 7,2,5and ¢; = (3, 5),
(3,6, 7)c; = 5,y,1 =5,4,1and ¢, = (4, 6).
Thus
c;=(2)(8) (9 (1,7 (3,5) 46),
(1,6,8)c, = 7,4,8and (7, 4, 8)a = 6, 5, 9,
(5,6, 9)c, = 3,4,9and (3, 4, 9a = 3,5, 8.

This completes (3.24) to the same S(9) as (3.21).
We note that all subcases of Case 2.1 lead to the
same S(9).

We now consider Case 2.2.

Case 2.2
1,2,3
1,4, 5
1,6,8
1,7,9

a=(1)(2@3) 4,5)(®6,7) 8,9. (3.25)

We shall show that this always leads to a conflict.

We consider the involution b = (3) (6) (7) (1, z),

and this divides into subcases

Case 2.2.1 b= (3) (6) (7) (1, 2)

Case 2.2.2 b= (3) (6) (7) (1, 8)

Case 2.2.3 b = (3) (6) (7) (1,9).

First we treat Case 2.2.1. Here

(1,6,8)b =2,6,y = 2,6,4and b = (4, 8).

Here in the triple 4, 8, 2; 2 = 3, 6, or 7 of which
only 2 = 7 is consistent with (3.25), and 4, 7, 8
is a triple. Then (4, 7, 8)a = 5, 6, 9. Also
1,7,9 =2,7, ¢t =2,7,5and b = (5. 9). But
then (3, 8, 9)b = 3, 4, 5, a conflict. This eliminates
Cage 2.2.1.

Case 2.2.2 b = (3) (6) (7) (L, 8).

Here (1, 2,3)b = 8,z,3 = 8,9, 3and b = (2, 9).
But then in the triple 2, 9, y we have y = 3, 6, or 7.
All three of these conflict with (2.25). Thus Case
2.2.2 leads to a conflict.

Case 223 b = (3) (6) (7) (1, 9).

I

2,4, 6
2,5,7

3,6,7
3,8,9




Here (1,2,3)b = 9, 2,3 = 9,8, 3and b = (2, 8).
But then in the triple 2, 8, y we have y = 3, 6, or 7.
All three of these conflict with (3.25). Thus all
subcases of Case 2.2 lead to conflicts.

This completes the proof of Theorem 3.2 The
only consistent subcase of Case 1 leads to an S(7).
All consistent subcases of Case 2 lead to the same
S(9).

4. Steiner triple systems with a Jordan
group of automorphisms

We investigate here the structure of Steiner triple
systems with a Jordan group of automorphisms.
Our first theorem will require less, namely that the
Steiner triple system S possess a group of auto-
morphisms doubly transitive en the points of S.

o Theorem 4.1

Suppose a Steiner triple system S with more than
3 poinis has a group of aulomorphisms G which is
doubly transitive on the points of S. Then S possesses
a subsystem which is an S(7) or an S(9).

Proof. Since G is doubly transitive it is of even
order. Since N, the number of points of S is odd, G
is of order N(N — 1)m, m being the order of a sub-
group of @ fixing two points. Then N — 1 is even
and P(2), a Sylow 2-subgroup of ¢, will not be of
an order dividing m. Thus P(2) fixes exactly one
point and displaces the rest. If m is odd, then
every element of P(2) except the identity, fixes
exactly one point, and in particular there is an
involution with exactly one fixed point. By transi-
tibity of G there is for each point of S an involution
fixing exactly this point. We may now apply Theorem
3.1 and conclude that every triangle of S generates
and S(9), and our theorem is proved.

Let us now suppose that m is even. Then a sub-
group H fixing two points a@;, a; (and hence the
three points a,, a;, a, of a triple) is of even order
and has a Sylow 2-subgroup Q(2). It is known
[1, p. 68] that N ¢(Q(2)) is doubly transitive on the
points fixed by @Q(2). If z, y are two points fixed
by Q(2) then Q(2) must also fix the third point
z of the triple z, y, z containing z and y. Hence
if @(2) fixes more than the three points a;, a;, ay,
then @(2) fixes a proper Steiner system S* containing
fewer points than 8, and N¢{Q(2)] restricted to S*
is a doubly transitive automorphism group of S*.
By induction on the number of points we may
assume the theorem true for S* which therefore
contains an S(7) or an S(9).

There remains to be considered the case in which
Q(2) fixes exactly the three points a:, @;, @ fixed
by H. Then, since @ is doubly transitive, there is

a conjugate of @(2) which has as its fixed points
the three points of any specified triple of S. Now
consider the family F of all 2-subgroups of @,
ineluding the identity as a 2-subgroup. Let U be a
2-subgroup of @ fixing more than three points such
that any larger 2-subgroup fixes at most 3 points.
Here the identity fixes more than three points and
so such a 2-subgroup must exist. The third point
of a triple containing two points fixed by U must
also be a fixed point of U and so the fixed points
of U form a proper Steiner system S* (we may
have 8* = Sif U = 1). Let z, y, z be any triple
of 8*. Then U is contained in a Sylow 2-subgroup
Q*(2) of the subgroup H* fixing z, ¥, 2 and Q*(2)
is conjugate to Q(2). Q*(2) fixes precisely the three
pointsz,y, 2. Let U C V C Q*(2) where [V : U] = 2.
By the choice of U, V fixes at most three points,
whence V fixes exactly the three points z, y, z. If
V = U + Ut, then U < V and £ ¢ U whence
fixes the points of S*. A point of S* fixed by ¢ is
fixed by all of V, whence ¢ fixes exactly the three
points z, y, z. Thus { restricted to S* is an involution
fixing exactly the three points x, y, z. But we chose
z, ¥, £ as an arbitrary triple of S*. Hence for every
triple of S* there is an involution of S* fixing
exactly the three points of the triple. Hence Theorem
3.2 applies to S* and so S8*, and therefore S, contains
an S(7) or an S(9). This completes the proof of
Theorem 4.1.
We can now proceed to our main theorem.

o Theorem 4.2

The following two properties of a permutation group
G are equivalent: 1) G ¢s a Jordan group with a sub-
group H fixzing three lelters and transilive on the
remaining letters; 2) G is an automorphism group
of a Steiner triple system S, and G permutes the
iriangles of S transitively. There are two main types
for 8: Type 1: Every triangle of S generates an S(7);
Type 2: Every triangle of S generates an S(9). A
Stetner triple system of Type 1 is a projective geometry
over GF(2). If in Type 2 we further assume that G
18 transttive on tndependent sets of four points (i.e.,
four points not in an S(9)), then S is an affine geometry
over GF(3).

Proof. By Theorem 2.1 a Jordan group G with a
subgroup H fixing three letters and transitive on
the rest may be regarded as an automorphism
group of an incomplete balanced block design with
k = 3, X = 1. These designs are the Steiner triple
systems S. Then G is doubly transitive and so a
permutation fixing two points of S will fix the third
point of the triple containing them, and the group
of such permutations will be transitive on all others.

467
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Hence G will be transitive on the triangles of S.
Conversely a group G of automorphisms of S transi-
tive on the triangles of S is a Jordan group with
k = 3. This proves the equivalence of the two
properties of the group @ as stated in the theorem.

By Theorem 4.1, S contains an 8(7) or an S(9).
Since @ is transitive on triangles there will be two
types for S:

Type 1. Every triangle of S generates an S(7).
Type 2. Every triangle of S generates an S(9).

This information is sufficient to determine the
Type 1 Steiner triple systems completely, but not
those of Type 2.

The well known axioms for projective geometry
are the following:

PG.1 There is one and only one line joining two
distinct points.

PG.2 If A, B, C are three points not on a line, and
if D # Cis a point on AC, and if £ # C is a point
on B(, then there exists a point F on DE and also
on AB.

PG.3 Every line contains at least three points.

Taking the blocks of a Steiner triple system as
lines, the axioms PG.1 and PG.3 are always satisfied.
Ii every triangle of a Steiner system generates an
S(7) then we readily verify that PG.2 is also satisfied.
Thus a Steiner system of Type 1 is a projective
geometry over GF(2), since an S(7) is a projective
plane over GF(2) and by classical procedures the
plane coordinates may be extended to the entire
projective space. This settles the statements of the
theorem about Steiner systems of Type 1.

The treatment of systems of Type 2 is far more
difficult. An S(9) is an affine plane over GF(3),
but it is not true that a Steiner triple system in
which every triangle generates an S(9) is necessarily
an affine geometry over GF(3).

We may use the converse part of Theorem 3.1
to describe Steiner triple systems in which every
triangle generates an S(9):

o Lemma 4.1

Let S be a Steiner triple sysltem in which every triangle
generates an S(9). For each poinl 7 of S let a, be the
snvolutory automorphism of S which fizes © and
interchanges j and k if ¢, j, k is a triple. For each
triple r, s, t we have a,a.a, = a,, {(a,a,)° = 1 and
corresponding relations obtained by permuting r, s, {.
The group K generated by the a;’s is transitive. The
element a; permutes with every aqutomorphism fixing
1. Conversely let K be a group containing an element
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x of order 2, and suppose that for every u e K,
(xu"'2u)® = 1. The representation of K as a permuta-
tion group on the cosels of C = C(z), the centralizer
of x represents a conjugate of x, say u” 'z by a permu-
lation a; fizing exaclly one letler 7. For every 1 and
every transposition (4, k) of a; let 7, j, k be a triple
of a system S. Then S is a Sieiner triple system
in which every iriangle generates an S(9).

Proof of Lemma. Let us first suppose that S is
a Steiner triple system in which every triangle
generates an S(9). Then by Theorem 3.1 for each
point 7 of S there is an involutory automorphism
a; of S, a;, = (4) -+ (j§, k) -+ - which fixes only the
point ¢ and interchanges j and % if and only if
1, J, k is a triple of S. We note that a, is the unique
involution of S fixing only the point ¢, since an
involution interchanging z and ¥ must fix the third
point z of the triple z, ¥, 2 containing z and y. Hence
if r, s, ¢is a triple of 8 then a, = (r) (s, 8) -+,

a, = () (r,8) -+ ,and a, = (t) (r,8) ---, are the
corresponding involutions fixing only one letter.
But then q,a,a, = a,, and similarly a,a,0, = a,

But then (a,a,)° = (a,a.a,)(a.a,a,) = ¢ = 1. And
of course similar relations hold if r, s, { are permuted.
Since for any pair s, { there is a triple », s, ¢ and
a, = (r)(s, t) -+ it follows that k = {a,} is transi-
tive. And since we have observed that a; is the
unique involution fixing the point ¢ and no other,
it follows that a; is in the center of the subgroup
fixing 7. This completes the direct part of the lemma.
Conversely let K be a group containing an element
z, with 2 = 1 and suppose that for « ¢ K we have
(zu"'zu)® = 1. Let C = C(z) be the centralizer of
x and let us represent K as a permutation group
on the left cosets of C.
K=C+Cy,+ -+ + Cyn. (4.1)
Here the representation of z is the permutation
a, = (C) -+ (Cys, Cy;) --- where Cy.x = Cy,.
The permutation @, fixes C, but no other coset.
For if Cyz = Cy, then yay™' = h ¢ C, whence
ayxy™t = yay 'r. But we have 1 = (zyay™)® =
P yry™")® = 2*y2’y™' = ayry™’, whence yay~' = z
and so ¥ ¢ C and hence Cy = C. It follows that a,
and its n conjugates a,, --- , @, are involutions
where a; fixes the letter 7 and no other, and a; is in
the center of the subgroup fixing ¢. With a, the
permutation representing xz and any conjugate a,
representing %~ 'zu, from (zu"'zru)® = 1 we conclude
that (a,a:)® = 1. By taking conjugates of this
relation we conclude more generally that for any
a;, a, we have (0;0,)* = 1.Ifa; = &) --- G, k) -+,
then a;0;e; is the conjugate of ¢, fixing k& and so
a;a;0; = a; and conversely this relation implies




that a; = (1) -+ (j, k) --- . But as (a.a,)* = 1 we

have a, = a;a,a; = a;a;a; whence a; = () --- (4, k),
and since also @; = a,a.a, and a.a.0; = o,a,a; we
have a, = (k) -+« (4, ) --- . This shows that if we

take the letters 1, --- , n as points of a system S
and select triples of points taking 7, j, k as a triple
ifa; = () --- (4, k) --- then we obtain the same
triple from a; = (j) (7, k) and from
ap = (k) +-- (4, §j) --- . Thus a selected triple is
determined uniquely by any two of its points.
Furthermore, any pair 7, 7 does occur in one triple,
namely, 7, 7, kifa;, = () --- (5, k) --- , since a;,
displaces every letter except 7. Thus the system S
of triples is a Steiner triple system, since every
pair of points occurs in a unique triple. And since
0,05, GiGaly, ** * , B;0,0; are the same as a,, -« - , a,
in some order, it follows that a; is an automorphism
of S. Hence Theorem 3.1 is applicable to S and so
every triangle of S generates an S(9). This completes
the proof of Lemma 4.1.

Lemma 4.1 shows that the construction of Steiner
triple systems in which every triangle generates an
S(9) is precisely equivalent to the construction of
groups K generated by a set of elements a; of order
2 in which (a.a;)® = 1.

In general K is generated by r involutions {a.}.
The subgroup K, of K generated by products aa;
will be of index 2, and since a;a; = a;q;010; =
(a,0;) *(awa;) it follows that K, is generated by
the elements a,a;, 7 # 1. Thus K = K, + K,a,,
with [K : K,] = 2. Indeed the homomorphism
a; > a;,1=1---rof Khas K, as its kernel. We
shall consider the cases r = 2, 3, 4.

If r = 2 and K is generated by a,, a, then K,
is cyclic of order 3 generated by ¢ = a,a, and K
is of the order 6. Here put a; = 0,0,0; = ,0:0,.
Here K corresponds somewhat trivially to the
Steiner system consisting of a single triple 1, 2, 3.

If r = 3, let K be generated by a,, a,, a, where
s = 4,00, = Ax0,05. If we write a = a,10,, b = a,0,,
and xz = a, thena® = 1,b° = 1, zax = a,(0,a5) @, =
axa, = a ', and similarly bz = b™". In the relation
(zu~'zu)® = 1 let us take u = a”’b", and so
(xbaza™d™)® = 1 or (' 'a”’b™)® = 1 or
(b7 'ab™)® = 1or (ab™®)?® = 1 or (ab)® = 1. Similarly
using v = a”'b we find (ba”'a”'b)® = 1 whence
(ab™")*® = 1. These relations show that K, = {a, b}
is the group of exponent 3 with two generators and
K, is of order 27. The corresponding Steiner triple
system is S(9) since z(a, b)x = (a™', b™") = (a, b)
and the commutator (a, ) is in C, the centralizer
of z, and so [K : C] = 9, the number of conjugates
of a;, = z. The following well known relations hold
in K, as may easily be verified.

(a: b)s = 17 (a_ly b) = (a: b—l) = (a) b)-l
@', b)) = (a,b),
(@¢,b,a) =1, (a,b,b) =1. (4.1)

The argument above proves a little more, namely
that in a group K if «* = »* = 1 and 2ux = ™,

zvx = v~', then {u, v} is a group of exponent 3
and order at most 27.

When K is generated by four independent involu-
tions, a,, @z, @4, G109, let us put ¢ = ay, @ = a,a,,
b = a,a4, ¢ = aya50. Then each of the groups {a, b},
{a, ¢}, {b, ¢} is of exponent 3 and order at most 27.
Let us write u, = (a, b), us = (b, ¢), us = (¢, @),
v = (a, b, ¢), v, = (a, b c_l)’ vs = (b, ¢, @),
ve = (b, ¢, a_l); vs = (¢, @, b), vg = (e, a, b_l)-

Then we find
a ua = a'(b, Q)a = a"*a(b, ¢)(b, ¢, @) = ;.
a v = a'(a, b,d)a = a (a, b)) 'c(a, bca
= (a, b)'a ¢ 'acc 'a" (a, blacc'a 'ca
= (a, b)) '(a, o¢ '(a, b, a)
= (a, &) Xa, ¢)(a, b)(a, b, c)(c, a)
= u; Uy U (4.2
a'va = a”'(b, ¢, d)a = a” (b, 0) 'a"'(b, Qaa
= [a"}(b, )a] ‘a(b, c)a™’
= [(b, ¢)(b, ¢, @)]7(b, (b, c,a™")
= (b,c,a)"'(b,c,a”™")

= 13 ',.

In this way we construct the transformation table:

2z aza b~ 'zb ¢ e
Uy Uy U U
U Ugls Uz Us

Us Uz UsVs Ug

-1, ~1 -1 -1 ~1
Ui U Uz UshUs  Up UsliUz Uy g

- -1 -1, ~1 -1
Vs Uy UsUaDsU3 ' U U UDU U

—1 -1, -1 -1 -1
Vs Uz U4 Uz Uy UV3Uy Uy UzU2V3U3

-1 -1, -1 -1 -1, -1
Uy U3 Us U UsValn Up Uz UgVaUs

- - -1 -1, -1

Us Uz UUgbsUi Vs Vg U Uy UsVsls
-1 =1 -1 -1 -1

Ve Uz UL Uslelly Us Uz UUVUs . (4.3)

In the same way we find the effect of the replace-
mentsa —a”',b— b landc—c . 469
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a—a' b—ob' c¢—ct
w o ur’ urt w
Uy Uy uz! uz'!
us Uzt Us uz
oA uw; 'yt wwyur v,
v, w; Uy uw; uy? v
Vs Vs Ul Uz Usz Uz
Vs s w7 Uz Uy ug
Vs Uty ug’ Ve U3 Uz
Vg Uy Uz Vs Ualz U3 . (4.4)

The relations (4.3) show that the u’s and the ¢’s
generate a normal subgroup of K, containing (a, b),
(b, ¢), and (c, a). This must therefore be the derived
group K{. Note that the group K subject only to
the relations of the lemma has as automorphisms
permutations of the generators and replacement of
a generator by its inverse.

Since z(@ba)r = a 'v'a™' = (aba)”' and
xcx = ¢ ' then {aba, ¢} is of exponent 3 and in
particular (¢ aba)® = 1. We shall apply the collecting
process to this using the rule RS = SR(R, S)
repeatedly. We shall put a bar over the letter to
be collected in the next stage:

cabacabacaba = 1

Yele,a) bacaba = 1

caba
cabe(c,a)’ b(b,a)caba =1
ca'bb,a)cb(b,a)cl,a)ba=1
cb(b,a)’cl,a) bel, a)’ b(b,a) =1
c(a, b) bele, a) be(a, ¢) b(b,a) = 1
cuybcusbeus' buy' =1
curbebusvséus'bul =1
curbebeusus ' wy Uz vsus uz buyt = 1
cu bebewy us vsup uz byt = 1
cuy bebe bugt us vs 05 v Up v Us upt = 1
Cuy ¢ U U Vs U s s Uy = 1. (4.5)
If we now use the rule
cue™t = ¢ e ue)e = ¢ Nuw)e = upwy Ve = uws,
then (4.5) transformed by u, gives

1

Daus s Vg Up U5 U = 1. (4.6)

Since (a, b)"'c(a, b) and ¢ are of order 3 and
transformed into their inverses by z, they generate
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a group of exponent 3. In particular
R =[a, b 'cHa,b)c’ =1

and also

()’ =1

cven e =1

-1 -
cY; C clvlcl}l:l

v o e, = 1. 4.7
Hence by automorphisms of K

=1 {=1,---,6

(v, 00 =1, (5,00 = 1, (ws,ve) = 1. (4.8

Transform (4.6) by ¢~', obtaining
vol v Uz U Uz Us U Vg Un
Uy U U5 U T UF Uz us L = 1, (4.9)

whence
D30 = Uy Us Vs 5 Uz U (4.10)
In (4.10) replace ¢ by ¢ ™', giving
o7 vy = ugtust (us vyt us ) (s Ve Us DUs Us

= ;" 05" Ve Us. (4.11)
Take the inverse of (4.11) and use (4.8)
VRt = upt Ut vs U = Up Us V5 Us (4.12)

Comparing (4.10) and (4.12) we find that vmw;’
and 3 'u, permute, or

(s 06", us ' us) = 1. (4.13)
Transform (4.13) by b and we find

ey 05" Uz Us) = 1, (4.14)
whence using (4.8) and (4.13)

oy us ' uz) = 1,  (vs,us uy) = 1. (4.15)
In (4.15) replace b by b™', giving

s, us us") =1 (v, Uz uz") = 1. (4.16)

But since u;' = (u3'u;") 'uz'us, (4.15) and (4.16)
together give

(s, u2) = 1 (s, us) = 1

o, u) =1 (vs,us) = 1. (4.17)
In (5, u,) = 1 interchange ¢ and a, giving
(usvz'uz’, ui') = 1,0r (7', u7") = 1,

whence

(vsy ur) = 1. (4.18)

Making appropriate substitutions in (4.17) and




(4.18) we find

(viyui) =1 1= 17 6:] = 1)2;3' (4]9)

The equation (4.11) now takes the form

vt v, =5 v, (4.20)
and permuting the generators, gives

oo, = 05 0 = 05 Ve, (4.21)
Using (4.19), (4.6) now becomes

up' Us Us Uz = V5 V5 Vg (4.22)
and substituting in this from (4.21) we have

B T e A (4.23)

From the transformation table (4.3) and (4.19) we
see that the left-hand side of (4.23) is unchanged
by transformation by a, b, ¢ and therefore v,v, is
in the center of K,. Let us write w;, = »v; and
similarly w, = vgv,, ws = vs6, Where w,, w,, w; are
in the center of K. Since (@™, b™") = (a, b)av,x = v,,
av,z = v; and as v, and v, permute by (4.8) it follows
that zw,z = w,. Thus w, is in the center of K and
similarly w, and w;. We may now use (4.21) to
express the ¢’s in terms of v, and the w’s.

-1
v, = V] W

-1
Vg = 01 W; We

-1 -1 -1
Uy = 1)11 wy W,

-1

Vs = ¥, W; W;

1 -1 -1
v = U, w; Wi . (4.24)

We can now write relations for K in the following
form, applying automorphisms of K to (4.23):

3 3 3 3
=1, a=0V==1, d=u=u=1

3 3 3 3
R=wl=uwl=uw=1

U = (a’ b): U = (b) C)) Us = (C, a)

v, = (a, b, ¢), uit e, U = v

(e, uz) = (ug', us) = (up , ug) "
= (uz',uz")" = w,

(us yul_l) = (u;ly ) = (us 7ul)_1
= (U;I;ufl)_l = Ws

(i, ;uz_l) = (ui_l, ) = (uy ;uz)_l
- 1y -1
= @ihuz) = ws

-1 - -
o wa = uy, b 'uh = uy, ¢ e = um

-1 -1 - -1
e M0 = U wws b 'usb = us, e UL = Uy

i

-1 -1 - ~1
¢ e = us, b upb = ugwaws’, ¢ use = uy

- . _
a’'va = vw,, b7'vb = v, ¢ v = vyw,

_ - —1
o 'wia = w; b lwb = w, ¢ we = w;

- - -1
zar=a', wxbr=08", zex=c,

TU; T = U, T T =00 W, TW X = W

(4.25)

Further calculations, which will not be given here,
show that the relations of (4.25) define a group K
of order 2-3' and that for every z e K, (xz"'22)° = 1.
This may be done by taking an elementary Abelian
3-group generated by v,, w,, w;, ws and extending
this group by adjoining us, u,, i, ¢, b, and @ in
succession, using the appropriate relations from
(4.25) to define the extensions, and then checking
(zz 'x2)® = 1 for representative values of 2, observing
that if & e C(z) then z(he) '2(hz) = 22" 'z2.

What sort of Steiner triple system S corresponds
to the group K defined by the relations (4.25)?
Here ., u,, ug, Wy, W, w; € C(x). For g ¢ G we have

g=a"b*cvih, heC). (4.26)
We find
gz g = alzgr)g™

e pTes ¢ v—f ,w{ v]—/ e et b—ez a

—3

= za
= z-k(g). (4.27)

The number of conjugates of = is the number of
values of k(g) and this is in turn the number of
points of S. Thus the group K defines a Steiner
triple system with 81 points, and S(81).

We must also consider Steiner triple systems
defined by homomorphic images of K, if we are to
find all systems generated by four independent
points, where every triangle generates on S(9).
We see that

k(g) = a’* b ¢ (mod KJ). (4.28)

Here if S has fewer than 81 points then S corresponds
to a factor group K/T where the kernel T is deter-
mined by the identification of different values of
k(g) in (4.27). If k(g.)k(g2) " € T and k(g,) = k(gs)
mod K/, then K,/T is generated by at most two
elements, and we have an S(3) or S8(9). Hence
suppose k(g:) = k(g.) mod K{, but k(g:) # k(g2).
From (4.27) we see that this shows that v,w, ¢ T
and by transformation that »,, w,, ws, w3 € T. Then
in K,/T we have relations v, = 1,7 = 1, -+- , 6.

We state these results in a lemma which now
leads to the proof of our theorem.

o Lemma 4.2

If 8 is a Steiner triple system in which every triangle
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generates an 8(9), then four independent poinis
generate either an S(81) or an S(27). If they generate
an S(81) the group K associated with S satisfies
the relations (4.25). If they generate an S(27) the
associaled group K satisfies the further relalions
v, =1,7=1,---,86.

We now observe that if four independent points,
1, 2, 4, 10 generate an S(81), then this S(81) con-
tains an S(27), corresponding to the subgroup K*
of K generated by a, = z, a = a,a5, b = a,a4 and v,.
For we easily verify that in K* all elements are
products of z, a, b, u,, vy, Wy, Ws, w; in this order
with appropriate exponents and that in K* there
are exactly 27 conjugates of z, this corresponding
to an 8(27) generated by points 1, 2, 4, ¢, a, = vy xv,.

We now have everything needed to complete
the proof of Theorem 4.2. Lemma 4.2 shows that
if S has the property that every triangle generates
an S(9), then if S has more than 9 points there
exist four independent points generating an S(27).
As we are assuming that our group G of auto-
morphisms of S is transitive on sets of four inde-
pendent points, it follows that every set of four
independent points generates an S(27). Now con-
sider the group K associated with S, and suppose
K generated by involutions a, = z, a,, -+, a,. If we
write aya, = by, a3 = by -+ @ma, = b,y then

reference to Lemma 4.2 tells us that (5,, b;, b,) = 1
in every instance. Hence every commutator (b;, b,)
permutes with every b as well as with z and so
is in the center of K. But K as a permutation group
is represented on the cosets of C'(z). In this repre-
sentation every commutator (b;, b,) is represented
by the identity. Hence we obtain the same Steiner
system if we take every commutator (b;, b,) to be
the identity, i.e., if K, is simply an elementary
Abelian 3-group 4 and z as an involution which
transforms every element of A into its inverse. By
Lemma 4.1 we can now construct S explicitly. Let
by = 1, by, --+ , b, be the distinct elements of A,
where of course n = 3" for some r. Then z = a,,
a; = b3'xby, --- , a, = b 'wh, are the involutions of
K. Thetriplesof Saret, 4, k,ifa; = (@) --- (4,k) -+~ .
Here C(z) contains the two elements 1, + = @, and
the point ¢ is associated with the coset C(x)b; whose
two elements are b; and zb;. Here a; = b;'wb, = 2b7".
Then 7, 7, k is a triple of S if and only if C(z)b;a; =
C(z)b,. But this gives b, = b7'b;". Hence 1, j, k is
a triple if and only if b,b;b, = 1 in A. If we write
A as the additive group of r dimensional vectors
over GF(3) a relation P; + P; + P, = 0 holds if
and only if the points P,, P,, P, lie on a line. Thus
S may be regarded as the affine geometry of dimen-
sion r over GF(3). This completes the proof of
Theorem 4.2,
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