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Traces, Term Ranks, Widths and Heights”

Abstract: The notions of widths and heights of (0, 1)-matrices are discussed in the general sefting of known
results concerning traces and term ranks. Proofs are omitted throughout.

1. The (0, 1)-matrix

Let A be a matrix of m rows and n columns and let
the entries of A4 be the integers 0 and 1. Such a
matrix is called a (0, 1)-matriz of size m by n. For a
specified size m by n there are 2™ such matrices.
This finite subset of the set of all m by n matrices
with real elements is of fundamental importance
in eombinatorial investigations. One of the main
reasons for this is the following. Let X,, X5, -+ , X
be m subsets of a set X of n elements x,, Tz, -+ , Tpe
Let a;; = 1if 2; is a member of X, and let a;; = 0
if z; is not a member of X,. In this way we may
define a (0, 1)-matrix A = [a.;] of size m by n. This
matrix is called the incidence mairiz for the subsets
X,, Xs, -+, X of X. The I’s in row ¢ of A desig-
nate the elements that occur in set X, and the s
in column j of A designate the sets that contain
element z;. Thus A characterizes these m subsets
of X. A (0, 1)-matrix of size m by n may also be
regarded as a punched card having m rows and n
columns. The 1’s in the matrix correspond to punches
and the 0’s to blanks, or vice versa. From this very
concrete viewpoint it is evident that the (0, 1)-
matrix is a convenient device for the systematic
storage of information.

With each (0, 1)-matrix 4, one may associate in
various ways integers that give insight into the
combinatorial structure of A. Examples of such
integers are the trace and the term rank of A. The
authors have described the width and the height of
A [7). The purpose of the present paper is to con-
sider these two new concepts in the general setting
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of the previously studied theory for traces and term
ranks. We omit proofs but supply references to the
literature.

2. Traces and term ranks

Let 4 be a (0, 1)-matrix of size m by n. The irace o
of A is defined by

t
o = Ea“,

i=1

t = min (m, n). 2.1)

This quantity is certainly elementary and causes
no computational difficulties. If A is the incidence
matrix for the subsets X, X,, -+ , X,, of X, then
the trace ¢ counts the number of times that z; is a
memberof X; ( = 1,2, -+, ).

The term rank p of A is the maximal trace obtained
from A under arbitrary permutations of the rows
and of the columns of A [18]. In other words, the
term rank of 4 is the maximal number of 1’s that
may be chosen in A with no two in the same row or
column. It is evident from the definition that the
term rank of 4 is invariant under arbitrary permu-
tations of the rows and of the columns of A. Combi-
natorially this means that for incidence matrices
the term rank is independent of the particular
labelling of elements z;, z,, -+ - , Z, and subsets X,
X,, -+, X, of X. Indeed, the term rank is the
maximal integer p for which there exists a labelling
of elements 2}, x4, + -+ , x, and subsets X{, X7, .-+,
X! such that 2/ is a member of X! fori = 1,2, ---,
p. No discussion of term rank would be complete
without mentioning the classical theorem in the
subject [13]. It asserts that the term rank p equals
the minimal number of rows and columns that
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contain all 1’s of 4. Thus if

0011
4=]0 100

1000

1000

then both quantities are equal to 3. The problem
of evaluating the term rank p of a (0, 1)-matrix A
can be viewed either as a maximal network flow
problem or an optimal assignment problem. Conse-
quently efficient computational methods are avail-
able for determining term rank [1, 3, 14]. The special
case that occurs when p = m deserves mention.
Then the subsets X;, X,, -+ , X, are said to
possess a system of distinct representatives. This topie
has an extensive literature, See, for example, [4, 10,
11, 12, 15, 16, 17].

3. Widths and heights

Let A be a (0, 1)-matrix of size m by n. Let the sum
of row ¢ of A be denoted by r; and let the sum of
column j of A be denoted by s;. We call B =
(ry, T2, *++ , 7, the row sum vector and S = (s,
$2, * ', S,) the column sum vector of A.

Suppose that

12T > 21, >0 3.1
312322"28n>0. (3-2)

Then we call A normalized. Henceforth we take A
normalized. This restriction is frequently a con-
venience rather than a necessity.

Let « be an integer in the interval

1€alm, (8.3)
and let e be an integer in the interval
1< e n. (3.4

Suppose that the normalized A has an m by e
submatrix E*, each of whose row sums is at least a.
Then the e columns of E* are said to form an a-set
of representatives for the matrix A. Let e(a) be the
minimal number of columns of A that form an a-set
of representatives for A. Such a column set is called
a minamal a-set of representatives for A and e(a) is
called the a-width of A. The integer o and the matrix
A uniquely determine ¢(a). We note that the
a-width e(e) of A is invariant under arbitrary
permutations of the rows and of the columns of A.
However, the o-width of the transpose of A may
differ drastically from that of A. This is not the case
for the trace and term rank of A, both of which
remain unchanged under transposition.
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Let E* be a submatrix of 4 of size m by e(«) that
yvields a minimal a-set of representatives for A.
Let E be the submatrix of £* composed of all of the
rows of £* that contain o 1’s and e(a) — a 0’s. The
matrix F is called a critical c-submatriz of A. Note
that F cannot be empty since if all row sums of E*
exceed o, then deletion of a column of E* yields an
a-set of representatives for A, contradicting the
minimality of e(a). It follows without difficulty that
the normalized matriz A has an a-width e(a) for each
o the inferval 1 < a < 7. A critical a-submatriz
E of A contains no zero columns.

Fach of the critical o-submatrices £ of A must
contain e(a) columns. But the number of rows in
the various critical a-submatrices need not be fixed.
Let E be a critical «-submatrix containing the
minimal number of rows §(«). The positive integer
§(a) is called the a-height of A. Both e(a) and
d(a) are basic invariants of 4. Evidently

(1) < e < -0 < elrn) 3.5
and
3(1) = (D). (3.6)
Thus if

1100
4 = 1100 ,

0 011

0011

then ¢(1) = 2, €(2) = 4, §(1) = 4, 5(2) = 4.

The preceding discussion has an important set
theoretic interpretation. Let A be the incidence
matrix for the subsets X,;, X,, --- , X,, of X. No
loss is entailed by regarding 4 as normalized. A
minimal o-set of representatives for A yields a
subset X* of ¢(a) elements of X. X* has the property
that each X, M X* contains at least « elements
(1=1,2, ---,m). No subset of X containing fewer
than e(a) elements possesses this property. At least
3(a) of the sets X; M X* contain exactly « elements.
If « = 1, then X* has the property that each
X, M X* is nonempty, and no subset of X contain-
ing fewer than (1) elements possesses this property.

For a concrete example, consider the problem
of determining the fewest number of nodes or junc-
tion points in a network that touch all links of the
network. Here we may regard X as the set of all
nodes, & link as a subset of two nodes (its ends) of
X. Then the problem is to find the fewest number
of nodes that “l-represent’’ all the links, that is,
the 1-width of the incidence matrix A of links vs.
nodes. The famous ‘“eight queens” chess board




problem is of this type. Here one forms a network
by connecting two cells of the chess board if a queen
can move from one to the other. Then the comple-
ment of a minimal system of cells that touch all
links are positions in which the maximal number of
gueens can be placed so that no two attack each
other.

Very little is known concerning good compu-
tational methods for determining widths and
heights of (0, 1)-matrices. Efficient algorithms in
this domain would be of great interest.

4. The class @ (B, S)

Let A be a normalized (0, 1)-matrix of size m by n
with row sum vector B = (r, rs, -+- , r,) and
column sum vector S8 = (s;, 85, - - -, 8,). The vectors
R and 8 determine a class

e = aR, S 4.1)

congisting of all (0, 1)-matrices of size m by n, with
row sum vector B and column sum vector S. Simple
necessary and sufficient conditions on R and S are
available in order that the class @ be nonempty
[8, 19]. We always take @ nonempty and refer to @
as the normalized class GQ(R, S).

Let A be in the normalized class @ and consider the
2 by 2 submatrices of 4 of the types

A1=[l O] and A2=[O l:l.
0 1 1 0

An interchange is a transformation of the elements
of A that changes a minor of type A, into A,, or
vice versa, and leaves all other elements of A
unaltered. An interchange is in a sense the most
elementary operation that may be applied to 4 to
yield a new matrix within the class @(E, S). The
interchange theorem [19] asserts that if A and A’
belong to @&(R, S), then A is transformable into A’
by interchanges. This theorem is a very useful one
for the study of the class G(R, S).

Let A be in the normalized class Q(R, S) and
write

A= [W X] (1.9)
Y z

where Wis of size e by f(0 < e < m; 0 < f < n).
For an arbitrary (0, 1)-matrix €, let No(Q) denote
the number of 0’s in @, and N,(Q) the number of
1’s in Q. Let

tr = No(W) + N«(Z)
(e=0,1,---,m;f=0,1,~-,n) 4.3)

and define
T = [te!] _
(e=0J1:"':m;f=0;17""n)- (44)

T is called the structure matriz of the class @ [21].
It follows at once from (4.3) that

tef =ef+(re+1 +re+2+ et +Tm)
— Gt st sy
(e=0717"';m;f=0:1}"';n)° (45)

Thus the structure matrix is independent of the
particular choice of 4 in Q.

The structure matrix contains a wealth of in-
formation concerning the class G(R, S), as will be
evident in succeeding sections. Here we mention
only the following fact. If », > r, 2 -+ 2 1,
8 > 8, > cv > 8, With D, 7 = 2; 85, and if
t.; is defined by (4.5), then a necessary and sufficient
condition that @ be nonempty is that ¢,, > 0 for
all ¢, f. This can either be seen directly from the
max-flow min-cut theorem for network flows
[3, 4] or can be deduced from the conditions stated
in [8, 19]. Since we are dealing throughout with a
nonempty class and have defined T by (4.3) rather
than (4.5), its entries are of course nonnegative
integers. It may also be seen that T satisfies the
equation

A N

B, " J BT =:T. (4.6)

— T

Here E, is the triangular matrix of order k 4 1
with 1’s on and below the main diagonal. E7 is
its transpose, J is the m by n matrix with all entries
1, and 7 is the total number of 1’s in a matrix 4
of the normalized @(R, S) [21].

5. The fundamental formulas

We now discuss traces, term ranks, widths and
heights for the matrices in the normalized class
@(R, S). We begin with the trace. Each matrix
A in @(R, S) has a trace ¢. Let ¢ be the minimal and
let ¢ be the maximal trace for the matrices in the
normalized class @(R, S). It is natural to attempt
to determine the integers ¢ and & explicitly. Un-
usually simple formulas are available in terms of the
elements of the structure matrix T, namely

& = max [min (¢, /) — &,] (5.1)
e, f
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& = min [¢{,; + max (e, f)]
e, f

(e=0,1,---,m;f=0,1,---,n). (52)

Formulas (5.1) and (5.2) are derived in [21].

Each matrix A in the normalized class Q(R, S)
has a term rank p. Let 5 be the minimal and let p
be the maximal term rank for the matrices in @(R, S).
A remarkable formula is available for p [20]

p= mifn [tr + (e + D]

(e=0,1,---,m;f=0,1,---,n). (53)

The derivation of (5.3) is not simple. However,
p appears to be an even more elusive and difficult
quantity to handle. Haber has investigated 5
carefully and devised an effective algorithm for its
evaluation [9].

We next discuss the recent investigation by the
authors involving widths and heights [7]. Let
1 < a < r,. Then each A in the normalized class
@(R, S) determines an o-width (o) and an a-height
6(a). For each o let the minimum of these e(a)’s
over all 4 in @(R, S) be denoted by

¢ = ). (5.4

We call ¢ = &(a) the minimal a-width of the class
@(R, S). Let

3 = 3(a) (5.5)

equal the minimum of the a-heights 8(a) over all
matrices 4, of a-width é(a) in Q(R, S).
Now let

Nie,e,f) =ty + (i + 8+ -+ +5) —ee, (5.6

where ¢, ¢, f are integer parameters such that

0<e<m, 6.7
0<e< m, (5.8
e < f<n (5.9)

One may deduce the following [7]:

Theorem 5.1

The minimal a-width €(a) equals the first nonnegative
integer ¢ such that

N(e,e, ) > alm — e (5.10)

for all integer parameters e¢ and f resiricted by
0<e<mand e < f < n.Let

Y= mlfn (N — 1,e,f) + ae], (5.11)

where 0 < e <mand e — 1 < f < n. Then
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) = (@ + )m — 5 — s;. (5.12)

For each a let the maximum of the o-widths
¢(a) over all matrices 4 in @(R, S) be denoted by

& = éa). (5.13)

We call ¢ = é(a) the maximal a-width of the class
@(R, S). Almost nothing is known about &) but
it seems certain that its behavior is decidedly more
intricate than that of &(a).

A direct application of the interchange theorem
allows us to prove that if ¢ is an integer in the
interval

o) < e < &), (5.14)

then there exists a matrix 4, in G@(R, 8) of a-width
¢ {7]. The analogous result for term ranks is also
valid [20]. Traces for matrices in the normalized
class @(R, S) usually take on all integer values in
the interval ¢ < ¢ < &, but certain classes exclude
& 4+ 1 and others exclude ¢ — 1 [21].

Concluding remarks

In this section we give a brief discussion concerning
the proofs of the combinatorial formulas described
in Section 5. Formulas (5.1), (5.2), (5.3), and
Theorem 5.1 have all been derived by first con-
structing a kind of canonical matrix in the class
@(R, S). By this we merely mean that the existence
of a matrix A is established with certain very
special properties. These properties are such that
they make the combinatorial formula more or less
apparent. The canonical matrix is constructed by
whatever techniques are available. Here the efficient
use of interchanges is frequently a very powerful tool.
We illustrate by stating the following theorem [7]:

Theorem 6.1

Let ¢ = &(a) be the minimal a-width of the normalized
class GQ(R, S) and let § = () be the minimum of
the a-heights 6(c) over all matrices A; of a-width &
in Q(R, S). Then there exists a matriz A; of a-width
¢in G(R, S) of the form

MiJ\*
A =|F | , |0l (6.1)
B

Here E is a critical submatriz of A, of size & by e.
M is a matrix of size e by & with a + 1 or more 1’s
in each row. F is a maitriz of sizem — (e + 8) by &
with exactly a+1 1’s in each row. J is a matriz of
size e by f — & consisting entirely of 1’s, and 0 is a
zero matrix. Each of the first & columns of A, contains




more than m — & 1’s. The degenerate cases ¢ = 0,
e+ & =m,f=¢andf = narenot excluded.

Theorem 6.1 makes the derivation of Theorem
5.1 a relatively easy task, once one has succeeded
in “guessing’”’ the appropriate formula (5.10). Of
course the existence of canonical matrices of the
form (6.1) is of interest in its own right and gives us
considerable insight into the structure of the class
G(R, 8S).

Recently certain combinatorial results have been
derived by the use of network flows [3, 4, 5, 6, 8, 12].
This approach has been on the whole very successful.
Network flows are effective in dealing with problems
involving the trace [6]. Theorem 5.1 may also be
derived by flow theory. But the use of flows appears

to be ineffective in dealing with maximal and
minimal term rank, or maximal width. For example,
no flow derivation has been obtained for the 3
formula (5.3) although several attempts have been
made in this direction. Perhaps the most attractive
feature about using flows to derive combinatorial
results is that, if one is successful in obtaining a flow
formulation of the problem, usually little subsequent
guesswork is involved. For instance, a flow formu-
lation of the minimal width problem leads one
rather directly to the conclusion that (5.10) is the
appropriate formula for &(a). At the present, how-
ever, there appears to be no truly systematic way
of dealing with combinatorial problems of the kind
we have discussed.
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