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results  concerning  traces and term ranks.  Proofs are omitted  throughout. 

1. The (0, 1)-matrix 

Let A be a  matrix of m rows and n columns and  let 
the entries of A be the integers 0 and 1. Such a 
matrix  is called a (0, 1)-matrix of size m by n. For a 
specified  size m by n there  are 2“” such matrices. 
This finite subset of the  set of all m by n matrices 
with real elements is of fundamental importance 
in combinatorial investigations. One of the main 
reasons for this  is the following. Let X , ,  X, ,  - * , X ,  
be m subsets of a  set X of n elements xl, xz, * . - , x,,. 
Let ai = 1 if x i  is a member of Xi and  let aii  = 0 
if x i  is not a member of X i .  In  this way we may 
define a (0, 1)-matrix A = [aii] of size m by n. This 
matrix is called the incidence matrix for the subsets 
X, ,  X,, - . , X, of X .  The 1’s in  row i of A desig- 
nate  the elements that occur  in set Xi and  the 1’s 
in column j of A designate the  sets  that contain 
element x,. Thus A characterizes these m subsets 
of X .  A (0, 1)-matrix of size m by n may  also be 
regarded as a punched card having m rows and n 
columns. The 1’s in the matrix correspond to punches 
and  the 0’s to blanks, or vice versa. From this  very 
concrete viewpoint it is evident that  the (0, 1)- 
matrix is a convenient device for the systematic 
storage of information. 

With each (0, 1)-matrix A ,  one may associate in 
various ways integers that give insight into  the 
combinatorial structure of A. Examples of such 
integers are  the  trace  and  the  term  rank of A .  The 
authors  have described the width and  the height of 
A 171. The purpose of the present paper is to con- 
sider these two new concepts in the general setting 
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of the previously studied theory for traces  and  term 
ranks. We omit proofs but supply references to  the 
literature. 

2. Traces and term ranks 

Let A be a (0, 1)-matrix of size m by n. The lrace (T 

of A is defined by 

cr = uti ,  t = min (m, n). (2.11 

This quantity is certainly elementary and causes 
no computational difficulties. If A is the incidence 
matrix for the subsets X, ,   X , ,  * , X ,  of X ,  then 
the  trace u counts the number of times that x i  is a 
member of Xi (i = 1, 2, . . , t ) .  

The term  rank p of A is the maximal trace obtained 
from A under arbitrary  permutations of the rows 
and of the columns of A [lS]. In  other words, the 
term  rank of A is the maximal number of 1’s that 
may be chosen in A with no two in the same row or 
column. It is evident from the definition that  the 
term  rank of A is invariant under arbitrary permu- 
tations of the rows and of the columns of A. Combi- 
natorially this means that for incidence matrices 
the  term  rank is independent of the particular 
labelling of elements xl, x,, - , x,  and subsets X , ,  

maximal integer p for which there exists a labelling 
of elements z:, x;, . , x; and subsets X:, X i ,  * - , 
X :  such that x: is a member of XI for i = 1,2, - . - , 
p .  No discussion of term  rank would be complete 
without mentioning the classical theorem in the 
subject [13]. It asserts that  the  term rank p equals 
the minimal number of rows and columns that 455 

t 

i = 1  

x,, . * -  , X ,  of X .  Indeed, the term  rank is the 
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contain  all 1’s of A. Thus if 

0 0 1 1  

A = [ ;  p, 
then both  quantities  are  equal to 3. The problem 
of evaluating the term  rank p of a (0, 1)-matrix A 
can be viewed either as a maximal network flow 
problem or an optimal assignment problem. Conse- 
quently efficient computational  methods are avail- 
able for determining  term  rank [l, 3, 141. The special 
case that occurs when p = m deserves mention. 
Then the subsets X, ,  X,, . - X ,  are said to 
possess a system of distinct  representatives. This topic 
has an extensive literature. See, for example, [4, 10, 
11, 12, 15, 16, 171. 

3. Widths and heights 

Let A be a (0, 1)-matrix of size m by n. Let  the  sum 
of row i of A be denoted by ri and  let  the sum of 
column j of A be denoted  by s i .  We call R = 

(TI, rz ,  - - - , r,) the row sum vector and X = (sl, 
sz, , s,) the column  sum vector of A ,  
Suppose that 

rl 2 r z  2 > r ,  > 0 (3.1) 

s1 2 sz 2 e . .  1 s, > 0. (3.2) 

Then we call A normalized. Henceforth we take A 
normalized. This  restriction is frequently a con- 
venience rather  than  a necessity. 

Let a be an integer in the  interval 

l < a S r ,  (3.3) 

and let E be an integer in the  interval 

l I ~ _ < n .  (3 *4) 
Suppose that  the normalized A has  an m by E 

submatrix E*, each of whose  row sums is a t  least a. 
Then the E columns of E” are said to form an a-set 
of representatives for the matrix A. Let €(a) be the 
minimal number of columns of A that form an a-set 
of representatives  for A. Such a column set is called 
a minimal a-set of representatives for A and €(a) is 
called the a-width of A. The integer a and  the  matrix 
A uniquely determine €(a).  We note that  the 
a-width €(a) of A is invariant  under  arbitrary 
permutations of the rows and of the columns of A.  
However, the a-width of the transpose of A may 
differ drastically from that of A. This is not  the case 
for the  trace  and  term  rank of A,  both of which 

456 remain unchanged under  transposition. 
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Let E* be a  submatrix of A of size m by €(a)  that 
yields a minimal a-set of representatives  for A. 
Let E be the submat-rix of E* composed of all of the 
rows of E* that contain a 1’s and €(a)  - a 0’s. The 
matrix E is called a critical  a-submatrix of A. Note 
that E cannot be empty since if all row sums of E* 
exceed a, then deletion of a column of E” yields an 
a-set of representatives  for A ,  contradicting the 
minimality of €(a).  It follows without difficulty that 
the  normalized  matrix A has  an  a-width €(a) for each 
a in the interval 1 5 a 5 r,. A critical  a-submatrix 
E of A contains  no zero columns. 

Each of the critical  a-submatrices E of A must 
contain €(a)  columns. But  the number of rows in 
the various  critical  a-submatrices need not be  fixed. 
Let E be a  critical  a-submatrix  containing the 
minimal number of rows &(a). The positive integer 
&(a) is called the a-height of A. Both e(a) and 
6(a) are basic invariants of A .  Evidently 

e(1) < 4 2 )  < * * - < e@,) (3.5) 

6(1) 2 40. (3 -6) 

and 

Thus if 

p 1 o 01 
A = / o  0 1 1 / ’  

1 1 0 0  

Lo 0 1 11 
then e(1) = 2, 4 2 )  = 4, 6(1) = 4, 6(2) = 4. 

The preceding discussion has an important  set 
theoretic  interpretation.  Let A be the incidence 
matrix  for the subsets X,, X,, . - .  , X, of X .  No 
loss is entailed by regarding A as normalized. A 
minimal a-set of representatives  for A yields a 
subset X* of €(a) elements of X .  X*  has  the  property 
that each Xi fl X* contains at least a elements 
(i = 1, 2, - - , m). No subset of X containing fewer 
than €(a)  elements possesses this  property.  At  least 
&(a) of the sets Xi A X* contain  exactly a elements. 
If a = 1, then X* has  the property that each 
X i  A X* is nonempty, and no subset of X contain- 
ing fewer than e(1) elements possesses this  property. 

For a concrete example, consider the problem 
of determining the fewest number of nodes or junc- 
tion  points  in  a network that touch  all  links of the 
network. Here we may regard X as  the  set of all 
nodes, a link as a subset of two nodes (its ends) of 
X .  Then the problem is to find the fewest number 
of nodes that “l-represent”  all the links, that is, 
the 1-width of the incidence matrix A of links vs. 
nodes. The famous “eight queens” chess board 



problem is of this  type. Here one forms  a  network 
by connecting two cells of the chess board if a queen 
can  move  from  one to  the other. Then  the comple- 
ment of a minimal  system of cells that touch  all 
links are positions in which the maximal number of 
queens  can be placed so that no  two attack each 
other. 

Very little is known concerning good compu- 
tational  methods  for  determining  widths  and 
heights of (0, 1)-matrices. Efficient algorithms in 
this  domain would be of great  interest. 

4. The class a (R,  AS) 

Let A be  a normalized (0, 1)-matrix of size m by n 
with row sum  vector R = (r,,  rz, . , r,) and 
column sum  vector X = (sl, s,, - , s,,). The vect’ors 
R and X determine  a class 

a = a(R, s) (4.1) 

consisting of all (0, 1)-matrices of size m by n, with 
row sum  vector R and column sum  vector X. Simple 
necessary and sufficient conditions on R and X are 
available  in order that  the class a be nonempty 
[S, 191. We always take a nonempty and refer to  a 
as  the normalized class a(R, S ) .  

Let A be in  the normalized class a and consider the 
2 by 2  submatrices of A of the  types 

A, = [i 3 and A ,  = [, 0 1  J. 
An interchange is a  transformation of the elements 
of A that changes a minor of type A ,  into A,, or 
vice versa,  and leaves all other  elements of A 
unaltered. An interchange is in  a sense the most 
elementary  operation that  may be applied to A to 
yield a new matrix  within the class a(R, S ) .  The 
interchange  theorem [19] asserts that if A and A’ 
belong to a(R, X), then A is transformable  into A’ 
by interchanges. This theorem is a  very useful one 
for the  study of the class a(R, S ) .  

Let A be in the normalized class a(R, X) and 
write 

A = [; 3 .  
where W is of size e by f(0 5 e 5 m; 0 5 f 5 n). 
For an  arbitrary (0, 1)-matrix Q, let No(&) denote 
the number of 0’s in Q, and N , ( & )  the number of 
1’s in Q. Let 

fer = No(W + N,(Z)  
(e = 0,  1, - - -  , m ; f  = 0,  1, ,n) (4.3) 

and define 

T = [ t e t l  

(e = 0, 1, , m ; f  = 0 ,  1, ,n).  (4.4) 

T is called the structure matrix of the class a [21]. 
It follows a t  once from (4.3) that 

t,, = ef + (re+l + re+,  + * + rm> 

- (SI + sz + * * + s,) 

(e = 0, 1, , m;f = 0, 1, ,n). (4.5) 

Thus  the  structure  matrix  is independent of the 
particular choice of A in a. 

The  structure  matrix contains  a wealth of in- 
formation concerning the class a(R,  s), as will be 
evident  in succeeding sections. Here we mention 
only the following fact. If rl 2 r2 2 2 rml 
s, 2 s2 2 2 s,, with ci ri = xi si, and if 
t,, is defined by (4.5), then a necessary and sufficient 
condition that a be nonempty is that t,, 2 0 for 
all e, f .  This can  either  be seen directly from the 
max-flow min-cut  theorem  for  network flows 
[3, 41 or can be deduced from the conditions stated 
in [S, 191. Since we are dealing throughout with a 
nonempty class and  have defined T by (4.3) rather 
than (4.5), its entries are of course nonnegative 
integers. It may also be seen that T satisfies the 
equation 

-s1 .. - 

J E: =;T.  

Here E, is the  triangular  matrix of order IC + 1 
with 1’s on and below the main diagonal. E: is 
its transpose, J is the m by n matrix  with  all  entries 
1, and T is the  total number of 1’s in a matrix A 
of the normalized a(R, X) [21]. 

5. The fundamental  formulas 

We now discuss traces, term ranks,  widths and 
heights  for the matrices in the normalized class 
a(R, X). We begin with the trace. Each  matrix 
A in @(R, X) has  a  trace u. Let 6 be the minimal and 
let a be the maximal trace for the matrices in the 
normalized class a(R, S) .  I t  is natural t o  attempt 
to  determine the integers 6 and ~r explicitly. Un- 
usually simple formulas are available in terms of the 
elements of the  structure  matrix T,  namely 

; = max [min (e,  f) - t.,] 
e.! 

(5.1) 457 
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I , m ; J  = 0, 1, ,n).  (52) 
Formulas (5.1) and (5.2) are derived in [21]. 

has a term  rank p. Let 6 be the minimal and  let p 
be the maximal term  rank  for  the matrices in a(R, S) .  
A remarkable formula is available for p [20] 

I Each  matrix A in the normalized class a(R, S )  

~ 

I P = min [tot + (e + f ) ]  
a > f  

I (e = 0 ,  1, , m ; f  = 0,  1, ,n).  (5.3) 

The derivation of (5.3) is not simple. However, 
I 6 appears to be an even more elusive and difficult 

quantity  to handle. Haber  has investigated 6 
I carefully and devised an effective algorithm for its 

evaluation [9]. 
We next discuss the recent  investigation by  the 

authors involving widths  and  heights [7]. Let 
1 5 a 5 r,. Then each A in the normalized class 
a(R, S )  determines an a-width €(a)  and  an a-height 
6(a). For each a let  the minimum of these e(a)’s 
over all A in a(R,  S )  be denoted  by 

l 
e = E(a). (5.4) 

I We call e = $(a) the minimal  a-width of the class 
a(R, X). Let - 
6 = :(a) (5.5) 

equal the minimum of the a-heights 6(a) over all 
matrices A ,  of a-width e(a) in a(R, X). 

Now let 

N ( E ,  e ,  f )  = t,f + (sl + sz + - - + SJ - eel (5.6) 

where E ,  e, f are integer parameters  such that 

O i e i n ,  (5.7) 

I O l e 5 m ,  (5.8) 

e i f i n .  (5.9) 

One may deduce the following [7]: 

Theorem 5.1 

The minimal  a-width e(a> equals the jirst nonnegative 
integer E such  that 

N E ,  e ,  f )  2 d m  - e) (5.10) 
f o r  all integer parameters e and f restricted by 
0 5 e 5 m a n d  e 5 f _< n. Let 

7 = min [N(e  - 1, e ,  f )  + ae],  (5.11) 

~ 

e , f  

458 where 0 _< e _< m and E - 1 _< f 5 n. Then 
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€(a) over all  matrices A in a(R, S) be denoted  by 

z = ;(a). (5.13) 

We  call e = ;(a) the maximal  a-width of the class 
a(R, 8). Almost nothing is known about ;(a) but 
it seems certain that its behavior is decidedly more 
intricate than  that of a(a). 

A  direct  application of the interchange theorem 
allows us to prove that if e is an integer in  the 
interval 

e(a) I E I :(a), (5.14) 

then  there exists a  matrix A ,  in a(R, X) of a-width 
E [7]. The analogous result for term  ranks is also 
valid [20]. Traces  for  matrices  in the normalized 
class a(R, S )  usually take on all integer values in 
the interval 5 5 u 5 5, but certain classes exclude 
5 + 1 and  others exclude 5 - 1 [21]. 

Concluding remarks 

In this section we give a brief discussion concerning 
the proofs of the combinatorial formulas described 
in Section 5. Formulas (5.1), (5.2), (5.3), and 
Theorem 5.1 have  all been derived by first con- 
structing  a kind of canonical matrix  in the class 
a(R, S) .  By this we merely mean that  the existence 
of a matrix A is established with certain very 
special properties. These  properties are such that 
they  make the combinatorial formula more or less 
apparent.  The canonical matrix is constructed  by 
whatever techniques are available. Here the efficient 
use of interchanges is frequently a very powerful tool. 
We illustrate by  stating  the following theorem [7]: 

Theorem 6.1 

Let e = e(a) be the minimal  a-width of the normalized 
class a(R,  S )  and let 8 = 8(a) be the minimum of 
the a-heights 6(a) over all matrices A ,  of a-width e 
in a(R, X). Then there exists a matrix A i  of a-width 
e in a(R, X) of the form 

(6.1) 

Here E i s  a critical  submatrix of A :  of size 8 by E .  
M i s  a matrix of size  e  by E wilh a + 1 or more 1’s 
in each row. F i s  a matrix of size m - ( e  + 8) by e 
with exactly a+l  1’s in each row. J i s  a matrix of 
size  e by f - e consisting  entirely of l’s, and 0 i s  a 
zero matrix.  Each of the first e columns of A ,  contains 



more than m - 8 1’s. The degenerate cases e = 0, 
e + 8 = m, f = 6 ,  and f = n are not excluded. 

Theorem 6.1 makes the derivation of Theorem 
5.1 a relatively easy task, once  one has succeeded 
in  “guessing” the appropriate formuIa (5.10). Of 
course the existence of canonical matrices of the 
form (6.1) is of interest  in its own right  and gives us 
considerable insight into the  structure of the class 

Recently certain combinatorial results have been 
derived by the use of network flows [3, 4, 5, 6 ,8 ,  121. 
This approach has been  on the whole very successful. 
Network flows are effective in dealing with problems 
involving the  trace [6]. Theorem 5.1 may also be 
derived by flow theory. But  the use of flows appears 

N R ,  8). 

to be  ineffective in dealing with maximal and 
minimal term  rank, or maximal width. For example, 
no flow derivation has been obtained for the p 
formula (5.3) although several attempts have been 
made in this direction. Perhaps the most  attractive 
feature  about using  flows to derive combinatorial 
results is that, if one is successful in obtaining a flow 
formulation of the problem, usually little subsequent 
guesswork  is involved. For instance, a flow formu- 
lation of the minimal  width  problem leads one 
rather directly to  the conclusion that (5.10) is the 
appropriate formula for z((Y). At the present, how- 
ever, there  appears to be no truly systematic way 
of dealing with combinatorial problems of the kind 
we have discussed. 
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