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414 Figure I A noiseless load-sharing matrix switch.
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Letter to the Editor

R.T. Chien

A Class of Optimal Noiseless
Load-Sharing Matrix Switches

A load-sharing matrix switch with noise-cancelling fea-
tures was proposed recently. Another paper? suggests
that for some cases the number of input wires may be
reduced with an improved scheme. The purpose of this
nofte is to report a further improvement over the schemes
mentioned. The method to be described requires a mini-
mum number of input wires.

The main body of the paper consists of a mathematical
interpretation of the functions of a load-sharing matrix
switch in terms of a winding matrix and its identification
with a special class of orthogonal matrices. The results
obtained by Paley® on the construction of orthogonal
matrices are then used to advantage in the logical design.
It is also shown that the method discussed requires a
minimum number of input drivers.

The winding matrix and orthogonality

The features that we wish to incorporate into a noiseless
load-sharing matrix switch such as the one shown in
Fig. 1 may be summarized in the following conditions:

(1) Half of the input drivers are excited each time for
any input pattern.

(2) For each excitation only one output wire is excited,
and the excitation should utilize all input power. In all
other output wires the net excitation is zero.

If we restrict our attention to the core switches, these
requirements may be translated to the requirement on the
winding patterns, since the logical structure of a core
switch is fixed by the winding patterns of the cores.

The winding pattern of the magnetic cores may be
represented by a winding matrix. Each row gives the
winding pattern for a core, each column gives the wind-
ing pattern for an input driver. The entries are either
ONES or MINUSs ONES. The matrix entry is ONE if the input
wire passes through the core in the reference direction;
it is MINUS ONE if the wire passes through the core in the
reverse direction. Conditions (1) and (2) can then be
restated in terms of the winding matrix as:

(1w) Each row must have as many ONES as MINUS
ONES.*

(2w) Take any two rows i and k from the matrix, the
sum of the values of the entries of row k& must be zero for
the columns where row i has entry oNE. Same must be
true for the columns where row i has MINUS ONE entries.

1 -1 1-1 1 1 1-1-1-1 1—1
1 -1-1 1-1 1 1 1 -1-1-1 1

1 -1 1 -1 —1 1 -1 1 1 i -1 —1
1 -1 -1 1 -1 -1 1 ~1 1 1 1 —1
1 -1 -1 —1 1 -1 —1 1 -1 1 1 1

1 1 1 -1 -1 -1 1 -1 -1 1 -1 1
1 1 1 1 -1 -1-1 1-1 -1 1 —1
1 -1 1 1 1 -1 -1-1 1-1 -1 1
1 1 -1 1 i1 1t -1 -1 -1 1 -1 -1

Figure 2 Winding matrix of the switch shown in
Fig. 1.

For instance, the winding matrix of the switch in Fig. 1
is shown in Fig. 2. It is seen that the winding matrix satis-
fies conditions (1w) and (2w). The computation of the
matrix of Fig. 2 is illustrated in the two sections that
follow.

If one compares the conditions above with the defini-
tions of an orthogonal matrix, it is seen that the rows of
the winding matrix satisfy the orthogonality conditions,
namely,

n-1 n i=k
]20 i = {o iEk

However, an orthogonal matrix does not necessarily sat-
isfy (1w) and (2w).

Given an orthogonal matrix of m rows, it is always
possible to construct a winding matrix of m—1 rows. To
accomplish this, a number of columns in the given matrix
are complemented to make the first row consist of ONE
entries exclusively.’ The remaining m—1 rows will then
satisfy condition (1w) and (2w).

Construction of orthogonal matrices

Methods for constructing orthogonal matrices have been
studied by mathematicians as long ago as 1867 by Syl-
vester.® But the results obtained by Paley seem to be
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more complete. The Paley theory is summarized here
without proof. In the following lemmas, m denotes the
number of columns in the matrix.

Lemma 0. If m5=1, 2, then m is divisible by 4.

Lemma 1. If we have a U-matrix” of order my and a
U-matrix of order m, then we may construct a U-matrix
of order mym,. The construction is accomplished by
substituting Uy, for each “+1” in Uy, and the comple-
ment of U,,, for each “—1” in U,,.

Lemma 2. Let m be of the form p+1, where p, =3
(mod 4), is prime.® Then we can construct a U-matrix of
order m. Let L(n) denote the Legendre symbol (n/p).
We write

aij=+1 (l=0 0ri=0)
a;,;j=L(j—1i) (1<i<p, 1<j<p, iF]),
a,i=—1 (1<€i<p).

Lemma 3. Let m be divisible by 4 and of the form
28(p+1), where p is prime. Then we can construct a
U-matrix of order m. If p=2, or if p=3(mod 4), the
result follows at once from Lemmas 1 and 2. We may
thus assume that p=1(mod 4), k=1.

We write

azi, 0 =dz2i,1=40d2i41,0

=—dgi1,1=1 (1<igp),

Ao, 2i =dg,2i;1=0a41,2;

=—ay,21=1 (1<i<p),

A2i, 2§ ==A2i, 2j41= 02441, 2§

=azi, 2 = (j—1) (I<i<p, IKj<p, i#]),

azi, 2i =0a2i,2i41= —A2i,1,2i
(0<i<p).

Lemma 4. Let m be divisible by 4 and of the form
2¥(p"+1) where p is an odd prime. Then we can con-
struct a U-matrix of order m.

We may repeat the argument of the last two lemmas
instead of quadratic residues (mod p) we consider quad-
ratic residues in the Galois field® of polynomials (mod p,
mod P) where P(x) is an irreducible polynomial of
degree h.

=—az.1,2a=1

Table2 Computation of Legendre functions for GF(37).

Tablel Computation of Legendre functions for

p=11.
n 1 23 4 5 6 7 8 9 10
n? 1 49 16 25 36 49 64 81 100
nmodp) 1 49 5 3 3 5 9 4 1
L(n) 1 -11 1 1 -1 -1-1 1 —1

Thus, for instance, if p*=3 (mod 4), k=0, we write

a,;=+1 (i=0o0rj=0)
a;,j=L(E;—Ei) (I<i<ph, 1<j<ph, i#)),
ai,i=—1 (1<I<Ph),

where E,, E», . .., Ep» denote the members of the field
arranged in any order.

Evaluation of the Legendre functions

The Legendre symbols (n) /p denoted by L(n) is defined
as one (minus one) is n is a quadratic residue (nonresi-
due) of prime p. It is easiest to evaluate all L(n) for
n< p at the same time.

We shall use an example to illustrate this: Take p=11.
First list all integers less than p as in row 1 of Table 1.
Then list the squares of these numbers in row 2. Divide
the numbers in row 2 by p and list the remainders in row
3. The 4th row exhibits the Legendre function. The entry
is ONE if the number at the top of this column appears
somewhere in row 3, MINUS ONE otherwise.

In general, there will be (p—1) /2 quadratic residues
for each prime, so half the numbers will have a value
oNE for the Legendre function. This serves as a nice
check on the result. The process for any prime p is the
same as is shown in the example.

To evaluate the Legendre functions in Galois fields,
the same process may be used with a slight modification.
In Galois fields of p™ the numbers used are the totality
of all polynomials of order less than m with coefficients
consisting of integers less than p. For instance, for
GF(32) there are eight nonzero members, namely, the
members in the first row of Table 2. The second row con-
tains the squares of the first row entries. They are reduced

g 1 2 X 2x x+1 2x+1 x+2 2x+2
g 1 4 x2 4x? x24-2x+1 4x24+4x+1 x2+4x+4 4x%+4-8x+4
g*(mod P) 1 x+1 x+4 3x+2 8x+5 5x+5 12x+8
gzgxgg 5)) 1 1 x4+l x+41 2 2x+2 2x+2 2
L(g) 1 1 —1 —1 1 —1 —1 1
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to polynomials of order less than m by employing the
defining identity P of GF(32)

X2=x+1. (See Footnote 12)

Then the fourth row is obtained by reducing the coeffi-
cient to numbers less than p by dividing the numbers by p
and keeping the remainder.

Discussion

Using the different lemmas in combination, Paley has ob-
tained most orthogonal matrices of order 200 or less. The
design schemes are summarized in the Appendix. This
range seems to be sufficient for most applications in the
design of matrix switches.

The fact that there exist no better design methods can
be seen from the connection between the orthogonal
matrices and the theory of error-correcting codes. For
any orthogonal matrix each row may be considered as a
sequence of binary variables. Together with their com-
plement sequences we have a code of size 8k for 4k bits
with a distance of 2k. Plotkin'® has proved that

A(4k, 2k) <8k,

which means there can be at most 4k orthogonal se-
quences of 4k bits. Thus, for any number of outputs
desired, the best one can do is to go to the next multiple
of 4 where an orthogonal matrix is possible.

As an illustration, the number of inputs required,
using the present approach, are calculated for several
cases of interest and compared with what is required if
other known methods are used in the design. The results
of comparison are shown in Table 3.

Table 3 A comparison of the methods known.

Number of Inputs Required

Number of Method Using
Outputs  Constantine Marcus Orthogonal
Required Matrix
5 16 8 8
8 16 16 12
16 32 32 20
32 64 64 36
36 128 64 40
64 128 128 68
72 256 128 76
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Appendix: Decomposition of orthogonal matrices of

order up to 200

m=4=722
m=_8=23
m=12=11+1
m=16=2¢
m=20=19+1
m=24=2(11+1)
m=28=3341
m=32=25
m==36=2(17+1)
m=40=2(19+1)
m=44=43+1
m=48=22(11+4+1)
m=>52==2(52+1)
m=56=2(33+1)
m=60=59+1
m=64=26
m=68=67+1
m=72=22(17+1)
m=76=2(37+1)
m=80=22(19+1)
m=84=83+1
m=88=2(43-+1)
m=92
m=96=23(11+1)
m=100=2(72+1)

m=104=22(5%241)
m=108=107+41
m=112=22(33+1)
m=116
m=120=2(59+1)
m=124=2(61+1)
m=128=27
m=132=131+1
m=136=2(67-+1)
m=140=139+1
m=144=23(17+1)
m=148=2(73+1)
m=152=22(37+1)
m=156
m=160=23(19+1)
m=164=163-+1
m=168=2(83+1)
m=172
m=176=22(43+1)
m=180=2(89+1)
m=184

m=188
m=192=24(11+1)
m=196=2(97+1)
m=200==22(72+1)
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