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414 Figure 1 A noiseless load-sharing  matrix switch. 
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A load-sharing matrix switch with noise-cancelling fea- 
tures was  proposed recent1y.l Another  paper2 suggests 
that  for some cases the  number of input wires  may be 
reduced  with an improved  scheme. The purpose of this 
note is to  report a further improvement over  the schemes 
mentioned. The method to be  described  requires  a mini- 
mum  number of input wires. 

The main  body of the  paper consists of a  mathematical 
interpretation of the  functions of a  load-sharing matrix 
switch  in  terms of a  winding matrix  and its identification 
with a special class of orthogonal matrices. The results 
obtained by Paley3 on  the construction of orthogonal 
matrices are  then used to advantage  in  the logical design. 
It is also shown that  the  method discussed requires a 
minimum  number of input drivers. 

The winding matrix and orthogonality 

The  features  that we wish to incorporate  into a noiseless 
load-sharing matrix switch such as the  one  shown in 
Fig. 1 may  be  summarized  in the following  conditions: 

( 1) Half of the  input drivers are excited each  time  for 
any input  pattern. 

(2)  For  each excitation  only one  output wire is excited, 
and  the excitation  should  utilize  all input power. In all 
other  output wires the net excitation is zero. 

If we restrict our  attention  to  the  core switches, these 
requirements  may be translated to  the  requirement  on  the 
winding patterns, since the logical structure of a core 
switch is fixed by the winding patterns of the cores. 

The winding pattern of the magnetic  cores may be 
represented by a winding matrix. Each  row gives the 
winding pattern  for a  core,  each column gives the wind- 
ing pattern  for  an  input driver. The entries are either 
ONES or MINUS  ONES. The  matrix entry is ONE if the  input 
wire passes through  the  core in the  reference  direction; 
it is MINUS ONE if the wire passes through  the  core in the 
reverse  direction.  Conditions ( 1) and (2) can  then be 
restated in  terms  of  the winding  matrix as: 

( 1w) Each  row  must  have as many ONES as MINUS 
ONES.* 

(2w)  Take  any two  rows i and k from  the matrix, the 
sum of the values of the  entries of row k must be zero  for 
the columns where  row i has entry ONE. Same must  be 
true  for  the columns  where row i has MINUS ONE entries. 
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Figure2 Winding  matrix of the switch shown in 
Fig. 1. 

For instance, the winding matrix of the switch  in  Fig. 1 
is shown in Fig. 2. It is seen that  the winding matrix satis- 
fies conditions ( l w )  and  (2w).  The  computation of the 
matrix of Fig.  2 is illustrated in  the two  sections that 
follow. 

If one  compares  the conditions  above  with the defini- 
tions of an orthogonal  matrix, it is seen that  the rows of 
the winding matrix satisfy the orthogonality  conditions, 
namely, 

However, an orthogonal matrix does not necessarily sat- 
isfy ( l w )  and  (2w). 

Given  an  orthogonal  matrix of m rows, it is always 
possible to  construct a  winding matrix of m- 1 rows. To 
accomplish this, a number of columns  in  the given matrix 
are complemented to  make  the first row consist of ONE 
entries excl~sively.~  The remaining m- 1 rows will then 
satisfy  condition ( lw)  and  (2w). 

Construction of orthogonal matrices 

Methods for constructing orthogonal matrices have been 
studied by mathematicians  as  long  ago  as 1867 by Syl- 
vester.6 But the results obtained by Paley seem to be 41 5 
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more complete. The Paley  theory is summarized here 
without  proof. In  the following lemmas, m denotes the 
number of columns in  the matrix. 

Lemma 0. If nzf 1, 2,  then m is divisible by  4. 
Lemma 1 .  If we have a U-matrix? of order ml and a 

U-matrix of order mz then we may construct  a U-matrix 
of order mIm2. The construction is accomplished by 
substituting U,, for each "+ 1" in Urn, and the comple- 
ment of Urn, for each "- 1" in Urn. 

Lemma 2. Let m be of the form p+ 1, where p, E 3 
(mod 4), is prime.8 Then we can  construct a U-matrix of 
order m. Let L ( n )  denote  the Legendre symbol (n/p). 
We write 

aij= + 1 ( i = O  or j = O )  

ai, j=L(j-i)  ( l < i < p ,   l < j < p , i # j ) ,  
a. .- - 1 t , t -  (1 < i < p ) .  

Lemma 3 .  Let m be divisible by 4  and of the form 
2"p+l), where p is prime. Then we can construct  a 
U-matrix of order m. If p=2,  or if p r 3 ( m o d   4 ) ,  the 
result follows at once from Lemmas 1 and 2.  We may 
thusassumethatprl(mod4),k=l. 

We write 

m i ,  0 = azi, 1 = &i+l, 0 

=-azi+l , l= l   ( l< i<p) ,  

a0,zi =ao,zi+1=a1,zi 
- _  - al,zi+l=l ( l < i < p ) ,  

&i, ~ j = & i ,  ~ j + l = U ~ i + l ,  ~j 

=azi+~,~j+l=(j - i )   ( l< i<p,  l<j<p, i f i ) )  
azi,  2i =azi, 2i+1= -a2 i+1 ,2 i  

=-u2i+1,2i+1=1 (O<i<p). 

Lemma 4. Let m be divisible by 4 and of the form 
2k( ph+ 1) where p is an odd prime. Then we can con- 
struct a U-matrix of order m. 

We may repeat the argument of the last  two  lemmas 
instead of quadratic residues (mod  p) we consider quad- 
ratic residues in  the Galois field9 of polynomials (mod p, 
mod P) where P ( x )  is an irreducible polynomial of 
degree h. 

Table 2 Computation of Legendre functions for GF(3Z). 

Table I Computation of Legendre functions for 
p = l l .  

n 1 2 3 4 5  6 7 8 9 1 0  

nz 1 4 9 16 25 36 49 64 81 100 

n2(modp) 1 4 9 5 3 3 5 9 4 1 

L ( n )  1  -1  1 1 1 - 1  - 1  -1 1 -1 

Thus,  for instance, if p h E  3 (mod 4), k=O, we write 

ai, j =  + 1 ( i = O  or j = O )  

ai,i=L(Ei-Ei) ( l<i<ph,  l<j<ph, i # j ) ,  

a. . = - I  

where El,   E2,  . . . , E p h  denote  the members of the field 
arranged in any  order. 

Evaluation of the Legendre functions 

The Legendre symbols (n) /p denoted by L( n) is defined 
as one (minus  one) is n is a quadratic residue  (nonresi- 
due) of prime p. It is easiest to evaluate all L ( n )  for 
n < p  at the  same time. 

We shall use an example to illustrate this: Take p = l l .  
First list all integers less than p as in row 1 of Table 1. 
Then list the squares of these numbers in row 2. Divide 
the numbers in row 2 by p and list the remainders in row 
3. The  4th row exhibits the Legendre  function. The  entry 
is ONE if the  number  at the  top of this column appears 
somewhere in row 3, MINUS ONE otherwise. 

In general, there will be (p- 1) /2 quadratic residues 
for  each prime, so half the numbers will have a  value 
ONE for  the Legendre  function.  This serves as  a nice 
check on  the result. The process for  any  prime p is the 
same  as is shown in the  example. 

To evaluate the Legendre  functions in Galois fields, 
the same process may be used with a slight modification. 
In Galois fields of p m  the numbers used are  the totality 
of all polynomials of order less than m with coefficients 
consisting of integers less than p .  For instance, for 
GF(32)  there  are eight nonzero members, namely, the 
members in  the first row of Table 2. The second row  con- 
tains the squares of the first row entries. They  are reduced 

1, t ( l<i<ph),  

g 1 2 X 2x  x + l  2x+ 1 x+2 2x+2 

g2 1 4 X2 4x2 x2+2x+ 1 4x2+4x+1 x2+4x+4 4x2+ 8 x  + 4 

gz(mod P) 1 4 x + l  x+4 3x+2 8x+5 5x+5  12xf8 

2 2x+2 2x+2 2 

41 6 L ( g )  1 1 - 1  - 1  1 -1 -1 1 
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to polynomials of order less than m by employing the 
defining identity P of GF( 3 2 )  

x 2 = x +  1 . (See Footnote  12) 

Then  the  fourth  row is obtained by reducing the coeffi- 
cient to  numbers less than p by dividing the  numbers by p 
and keeping the remainder. 

Discussion 

Using the different lemmas  in combination,  Paley has ob- 
tained  most  orthogonal  matrices of order 200 or less. The 
design schemes are summarized in  the Appendix. This 
range seems to be sufficient for most  applications in  the 
design of matrix switches. 

The  fact  that  there exist no better design methods can 
be seen from  the connection between the orthogonal 
matrices and  the theory of error-correcting codes. For 
any orthogonal matrix  each row may be  considered  as  a 
sequence of binary  variables. Together with their  com- 
plement  sequences we have a  code of size 8k for 4k bits 
with  a  distance of 2k. Plotkinl3 has proved that 

A (4k,  2k) < 8k , 
which means  there  can be at most  4k orthogonal se- 
quences of 4k bits. Thus,  for  any  number of outputs 
desired, the best one  can  do is to go  to  the next multiple 
of 4 where  an orthogonal matrix is possible. 

As an illustration, the  number of inputs  required, 
using the present approach,  are calculated for several 
cases of interest and  compared with what is required if 
other known  methods are used in the design. The results 
of comparison are shown  in Table 3 .  

Table3 A comparison of the methods known. 

Number of Inputs Required 

Number of Method Using 
Outputs Constantine Marcus Orthogonal 

Required Matrix 

5 16 8 8 
8 16 16  12 

16 32 32 20 
32 64 64 36 
36 128 64 40  
64 128 128 68 
7 2  256 128 76  
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Appendix: Decomposition of  orthogonal matrices of 
aider up to 200 . 

m=4=22 
m=8=23 
m=12=11+1 
m=16=24 
m=20=19+1 
m=24=2(11+1)  
m=28=33+l  
m=32=25 
m=36=2(  17+ 1 )  
m=40=2(  19+ 1 )  
m=44=43+1 
m=48=22(11+1)  

m=56=2(33+1)  
m=60=59+1 
m=64=26 
m=68=67+1 
rn=72=2q  17+1) 

m=80=22(19+1)  
m=84=83+1 
m=88=2(43+1)  
m=92 
m=96=23(11+1) 
m=100=2(72+1)  

m=52=2(5’+1)  

m=76=2(37+1)  

m=104=22(52+1)  
m= 108=  107+ 1 
m=112=22(33+1)  
m= 116 

m=124=2(61+1)  
m = 1 2 8 ~ 2 ~  
m=132=131+1 
m=136=2(67+1)  

m=  144=23( 17+ 1 )  
m=148=2(73+1)  
m=152=22(37+1)  
m =  156 
m=  160=23( 19+ 1) 
m=164=163+1 
m=168=2(83+1)  
m= 172 
m=176=22(43+1)  
m=180=2(89+1)  
m=184 
m=188 
m=192=24(11+1) 
m=196=2(97+1)  
m=200=22(72+l )  

m=120=2(59+1)  

m= 140=  139+ 1 
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