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A Duality  Theorem for Convex  Programs* 

Abstract: A proof is given for a  duality theorem 

for a class  of  convex programs,  i.e.,  constrained 
minimization of convex  functions. A simple exam- 

ple is  included. 

1. Introduction 

Linear  programming is concerned  with minimizing (or 
maximizing)  a  linear function of n variables  subject to 
linear  constraints on  the variables. The constraints  may 
be in the  form of either equations  or inequalities or both. 
Such  mathematical  problems  arise  in  a  variety of con- 
texts  both  in  the  engineering sciences and in the business 
sciences. 

For  any linear program which has a finite solution 
there exists a  companion  problem called its dual. The 
dual problem also has  a finite solution, and moreover, 
certain properties of the solution of the  dual problem 
may be deduced  immediately from  the solution of the 
original program.  This duality  relationship has  both 
theoretical and  computational significance and  has  pro- 
vided a  valuable tool  for investigators in  this field. 

In a recent paper1  a  duality  relationship was estab- 
lished for a class of quadratic programs  in  which one 
wishes to minimize  some quadratic  function of n varia- 
bles subject to linear  constraints. 

In what follows, this  concept will be extended further 
to include  minimization of a general  convex function 
subject to linear  constraints. The development, to some 
extent,  parallels that given in the  quadratic case. The 
notion of duality for this class of programs has also 
been discussed previously by Dennis.2 The relationship 
of the present  development to  that of Dennis will be 
considered in Section 7. 

2. Notation 

Matrix  notation will be used in  this  paper.  Lower  case 
letters x, y ,  . . . will denote column  vectors and capital 
letters A ,  C ,  . . . will be matrices. The  operator v is the 
gradient operator  and .v f(x) is a  vector  composed of the 
first partial derivatives of the scalar function f (x) .  
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University, under Contract No. AT(30-1)-1480 with the U .  S. 
Atomic Energy Commission. The  work was done at NYU. 

Prime denotes transpose, so that x',y', . . . are  row vec- 
tors. The  product x'y is the  inner  product of the vectors 
x and y .  A vector  inequality will apply to  each compo- 
nent of the vector, i.e., x20 implies that  each  component 
of x is non-negative. 

3. Convex  functions 

A scalar function, f, of an n-dimensional  vector, x, is 
convex if linear  interpolation  does not underestimate the 
value of the  function, i.e., 

f[Xx,+k(x,"x,)lLf(xl)+kV(x,)-f(xl)l (3 .1)  

for O G k L l .  For convex functions a  local  minimum is 
also  a  global  minimum. 

For  the  proofs  in  the succeeding sections the following 
lemma regarding  convex functions is required. 

0 Lemma 

If f ( x )  is convex and continuously  differentiable, then 
for any  vectors y and x 

f(Y)-f(X)~(Y--x)'~'f(X). (3.2) 

0 Proof 

From  the assumption of convexity 

f [ x + k ( y - - x ) I L f ( x ) + k V ( y )  -!(x)] 

for all k such  that O L k G l .  Rearranging  terms 

k V ( Y ) - - f ( x ) I ~ f [ n + k ( Y " n ) l - - f ( x ) .  (3 .3)  

From  the differential mean value theorem, 

f[x+k(Y-x)l-f(x)=k(Y-x)'vf(x+x,), 

where x , = O k ( y " x )  for some O such that O L O L 1 .  

Using this in the right-hand  member of (3 .3 ) ,  407 
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f ( Y  1 - f  ( x )  3 (Y -x>’v f  ( x + x , )  * 

Letting k approach zero, the inequality (3.2) results. 

4. Duality in linear programming 

The linear programming problem  may  be posed as 
follows: To minimize the linear form p’x over all n- 
dimensional  vectors x satisfying the constraints 

A x 3 b  (4.1) 

x30, (4.2) 

where p is a n X  1 vector, b is a mx 1 vector and A is an 
m X n matrix. 

The  dual problem to  the above is to maximize b’v 
over all m-dimensional  vectors v satisfying 

A’vLp (4.3) 

v>o. (4.4) 

The duality  theorem3 states  that if a  solution to either 
problem exists and is finite, then  a  solution to  the  other 
problem also exists and indeed 

Minimum p’x=Maximum b’v. (4.5) 

The  constraints (4.1), (4.2) in the primal problem may 
take  on  other  forms with  corresponding  changes in the 
dual  constraints (4.3),  (4.4). One form which will be 
of particular interest is given here. Let  the vector x be 
partitioned  as ( x l , x , )  and consider the problem of 
minimizing p{x,+p2’x, subject to 

A1x,+A,x&b (4.6) 

x ,>o ,  (4.7) 

where  p and A have been similarly partitioned. Note 
that x2 is not  required  to be non-negative. These con- 
straints can be put  into  the  form of (4.1) and (4.2) by 
the substitution 

x2=z-y,  

where 2 3 0 ,  y>O. All  variables xl,  z and y are now non- 
negative. 
The  dual problem is then,  from (4.3) and (4.4), 

Maximize b’v (4.8) 

subject to 

A { v L p ,  (4.9) 

A2’v = p 2  (4.10) 

v>o. (4.11) 

5. A class  of  convex programs and its dual 

Consider the following class of nonlinear  programming 
problems: 

Minimize: f ( x )  (5.1) 

subject to 

Ax>b (5.2) 

x309 (5.3) 

where f ( x )  is a  convex  scalar function of the vector x 
and possesses continuous first partial derivatives  with 
respect to  each  component of x .  The vectors p ,  b, and x 
and  the  matrix A are  the  same as in Section 3. Denote 
this  as Problem I .  Let R,  be the region defined in 
Euclidian n-space, E,, by the vectors x satisfying the 
constraints (5.2) and (5.3). The  function f ( x )  is re- 
quired  to be convex in R,. 
A dual problem to Problem I is 

Maximize g ( u , v )   = f ( u )   - u ’ v f ( u )  +b’v (5.4) 

subject to 

A ’ v - v f ( u ) ~ O  ( 5 . 5 )  

v>o. (5.6) 

Denote this  as Problem I I .  Let R,, be the region defined 
in E,  by the vectors u satisfying the  constraints (5.5) 
and (5.6). The  function f ( u )  will be required  to be 
convex in RII. Problems I and I1 are related through  the 
theorem in the next section. 

6. A duality theorem  for convex programs 

0 Theorem4 

(i) If there exists a  vector x ,  which  minimizes f ( x )  in 
Problem I ,  then there also exist vectors u=x,, V = V ,  

which  maximize g(u,v) in Problem 11. 

(ii) Conversely, if u,, v ,  are vectors which  maximize 
g(u,v) in Problem I I ,  then x=u, minimizes f ( x )  in Prob- 
lem I .  In either case 

Minimum  f(x)=Maximurn  g(u,v). 

0 Proof 

(i)  Let x ,  be a  solution to  Problem  I, then 

f ( x , )  Lf ( x ) .  (6.1 1 
Consider the following linear  programming problem: 

Minimize F ( x )  = - f ( x , )  + x ’ v f ( x , )  (6.2) 

Ax> b (6.3) 

x>o .  (6.4) 

Call  this Problem Z’. Note  that x, is a  feasible  solution 
to Problem I’ in the sense that it satisfies the constraints 
(6.3) and (6.4). Suppose there exists another feasible 
solution x* to  Problem I’ with the  property  that 

F(x* 1 <F(x , )  9 

1.e., 

(X*”X,)’.Vf(X,) <o. (6.5) 

It is easily verified that 

X1=X,+k(X*-x,), O 5 t l l  



is also  a  feasible  solution to  both Problem  I and  Prob- x , , ’ ~ f ( u )  &,’A’v. 
lem 1‘. 

From  the mean  value  theorem 

f(xd -f(x,)= ( x l - x , ) ’ ~ v f [ ~ , - ~ ( x , - ~ o ) l ~  O + E 1  

- - k ( x * - x , ) ’ { ~ f [ x o - ~ k ( x ~ ~ - x , ) ] }  

= k { ( X ” - x o ) ’ { v f [ x , - B k ( x ~ ~ - x , ) ] - v f ( x , ) }  

+ (x”-x , ) ’ [v f (x , ) l }  . 
The last term in the bold-faced brackets is negative by 
virtue of the assumption (6.5). Moreover,  this term is 
independent of k .  However,  since vf(x)  is continuous, 
for k sufficiently small the first term in the  bold-faced 
brackets may be arbitrarily small. In  particular k may 
be chosen so that 

~ ~ x ~ ~ - - X , ) ’ ~ V ~ ~ X , - ~ B ~ ~ ~ ~ ~ - - ~ , ) I - ~ J ~ ( ~ , ) ~ ~  

< i ( x ” - x , ) ’ [ v f ( x , ) ] l .  

Substituting these last  two  inequalities  in (6.10), 

g(x,,v,) - ~ ( ~ , V ) ~ X , ’ A ’ V - X , ’ A ’ V = O .  

Thus (x,,vo) is a  maximizing solution for Problem 11. 
Finally from  (5.4)  and  (6.9) 

g(xo,v,) =!(x , )  - x , l v f ( x , )  +b’v,=f(x,), 

which verifies the equality of the objective  functions. 
This completes the proof of part  (i). 

The proof of the converse, part  (ii), does not follow 
directly from  the above  proof  since the  constraints in 
Problem I1 are nonlinear. The  proof, however, follows 
the same  general  outline as  the proof of part  (i). 

Now recall that R,, denotes the  range of values of u 
in  Euclidian n-space, E,, for which 

A ’ v - v f ( u ) L O  

It follows then from  the inequality (6.5)  that v 2 0 .  

-f(x,) <o. Let D denote the  domain of values of y in E, for which 

But this is in contradiction to (6.1).  Therefore, x ,  must 
be the minimizing solution of Problem 1’. This  argument 
is essentially that given by Kuhn  and Tucker5 to con- 
struct a  linear problem whose solution  coincides  with 
that of a  convex  problem. From  the duality  theorem of 
linear programming a  solution also exists to  the  dual  to 
Problem 1’. This dual linear  problem is from  (4.3)  and 
(4.4) : 

Maximize G ( v )  =-f(x,) +b’v (6.6) 

A’VLvf(xo) (6.7) 

v>o. (6.8) 

Call  this Problem IZ’. Denote  the vector v which  maxi- 
mizes Problem 11’ by v,. Then  the duality theorem of 
linear  programming, (4.5), requires that 

x , ’ v f (x , )  =b’v,. (6.9) 

Notice now  that u=x,,  v=v, comprises  a  feasible 
solution to Problem 11. To show that it also provides  a 
maximal solution  consider 

A’v-YLO. 

v 2 0 .  

It is clear that RII is mapped onto D by 

Y =  vf(u), 
and  that given a point y in D there exists a point u 
(not necessarily unique) in R,, satisfying the last equa- 
tion above. That is to say, there exists a function which 
maps D onto RII .  It will be assumed that this function is 
once differentiable,G and moreover that  in  the neighbor- 
hood of the maximum the mapping is one-to-one. 

Now let (uo,vo,yo) be a maximizing solution of Prob- 
lem I1 rephrased as: 

Maximize I) (u ,v ,y)  = f ( u )  -u’y+b’v (6.11) 

A’v-yLO (6.12) 

y = v f ( u )  (6.13) 

v a o .  (6.14) 

Thus 
g(x,,v,)  -g(u,v) =f(x,) -x , ’ v f (x , )  +h’v, #(u,,V,,Yo)>#(u,v,Y) (6.15) 

-f(u)+u’vf(u)”’v. for all u,v,y satisfying the constraints. 

I From  (6.9) 
Consider the related  linear problem: 

Now  from ( 5 . 2 )  and ( 5 . 6 )  
Denote this as Problem I I * .  

- b’v> - x,,’A’v 

and  from  (5.3)  and ( 5 . 5 )  

Notice that v=v,, y=yo is a  feasible  solution to Prob- 
lem II*. Suppose there exists v*,  y* satisfying (6.12) 
and  (6.14)  such  that 409 
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I G ( v * , ~ * ) > G ( v , , y , ) ,  choice of k. This implies that 

l.e., 

- U , ’ ( Y * - ~ ~ ) + ~ ‘ ( V * ” V , ) > ~ .  (6.16) 

Define vectors v,,y, to be 

v l = v , + k ( v * - ~ , )  (6.17) 

Yl=Yo+k(Y*-Yo) (6.18) 

for O < k d l .  Then v,,y, is also a feasible solution to 
Problem 11”. Since y 1  is in D there exists a vector u1 in 
R, such that 

Y l = V f ( u l ) ,  (6.19) 

and  thus ul,vl,yl is a feasible solution to Problem 11. 
Consider 

# ( ~ l , V 1 3 Y l )  -#(uo.vo,Yo) 

=f(u,)  --u,’yl+b’vl--f(u,)  +u,,’Y,-~’v,. 

From the  mean value theorem 

#(u,,vl,Yl) - - # ( ~ O , V 0 > Y O )  

= ~ ~ l ” u , ~ ’ V f ~ ~ , - - ~ ~ l - ~ , ~ l  

-~,‘yl+u,’Y,+b’(vl-v,) O L B g l  

and using Eq. (6.19) 

# ( ~ l , V l ? Y l )  -#(Uorvo,Yo) 

= ~ ~ l ” u , ~ ’ ~ V f ~ u 1 - - 8 ~ u , - ~ , ~ l  

-Vf(ul)}-ud(Yl-Yo)   +b’(v1-V,) .  (6.20) 

Since by assumption u possesses first derivatives with 
respect to y ,  where y = . ~ f ( u ) ,  it follows from the mean 
value theorem that 

~ ~ 1 - ~ O ~ ’ = ~ Y 1 - Y o ~ ’ ~ ~ Y o - 9 1 y 1 - Y o l ~ ,  o d v L 1 ,  

where M ( y )  is a  matrix whose i,j element is the partial 
derivative of the  jth component of u with respect to  the 
ith  component of y .  Using this and Eqs. (6.17) and 
(6.18), Eq. (6.20) becomes 

q(ul ,v l ,Yl)  “ q ~ ~ o , ~ o , Y o ~  = k {  (Y*-Yo)’Mb,-~k(Y*-Y,) l  

{ V ~ ~ ~ , - - B ~ ~ ~ * - - ~ , ~ I - - O ~ ~ ~ , ~ ~  
-u’,(y”- Y O ) +  b’(v*--v , ) l } .  (6.21) 

Now if k is sufficiently small, the following inequality 
can be satisfied 

I ( ~ * ” ~ o ) ’ M 1 y , - - . r l k ( ~ * - ~ , ) l { V f [ u l - - k  (u*-u , ) l  

- Vf(~,)~j<I--u,’(Y*-Y,)+b’(v*-v,)~, 

since V f ( u )  is continuous  and the  term  on  the right is 
independent of k.  

From the assumption (6.16), the  term inside the ab- 
solute value signs on  the right of the above inequality is 
positive. Thus the  term in bold-faced brackets in Eq. 

410 (6.21) may be made positive by a sufficiently small 

# ( ~ I , V l , Y 1 )  -#(uo,vo?Yo) >o 
and contradicts the hypothesis (6.15) that uo,vo,yo is a 
maximizing solution of Problem 11. It follows that 
v,,y, maximizes Problem II*. 

Problem 11* is a  linear problem of the second type 
mentioned in Section 4, Equations (4.6) and (4.7), 
and its dual problem according to (4.8) to (4.1 1 )  is: 

Minimize F ( x )  =f(u,) (6.22) 

Ax>b (6.23) 

x=u,  (6.24) 

x>o. (6.25) 

This will be referred to as Problem I * .  The duality 
theorem of linear programming assures the existence of 
a solution to this problem. By virtue of (6.24) u, must 
be that solution. The duality theorem, (4.5), then pro- 
vides that: 

Maximum G (v , y  ) =Minimum F ( x )  

or 

-U,’Y,+b’vo=O. (6.26) 

Now u,, since it satisfies (6.23) and (6.25), is a feasible 
solution to Problem I. Let x be any other feasible solu- 
tion to Problem I. From  the lemma again, since f ( x )  is 
convex in R,, 

f(x)-f(~,)~(X--U,)’[Vf(~,)l. (6.27) 

Now from (6.13) and (6.26) 

-u,’[ Vf(u,)]=“u,’y=-b’v, ,  

and from (5.2) and (5.6) 

- b’vo> -x’A’v, , 
so 

--u,’[V~(U,)]>-X’A’V,. (6.28) 

From (5.3) and ( 5 . 5 )  

x’[vf(u,) lbx‘A’v, .  (6.29) 

Substituting (6.28) and (6.29) into the right-hand mem- 
ber of (6.27) it follows that 

f ( x )  - ~ ( U ~ ) ~ X ’ A ’ V ~ - . X ’ A ’ V , , = O .  

Thus u, minimizes Problem I. 
From (6.26) and (5.4) 

f ( u , )  =f (uo> -u,lvf(u,) +b’V,=g(U,,Vo) 

Notice  that  Problem I1 may have the constraints7 

u>o (6.30) 

added to it without altering any of the foregoing argu- 
ments, since this constraint is always satisfied at the 
optimum. 
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7. Remarks rivative  with  respect to y  everywhere. The  dual  prob- 

It  has already been pointed out  that  the  theorem pre- lem can be written 

sented here is similar to one previously given by Dennis.2 
There  are, however,  some basic differences in the 
theorems. 

Dennis  has cast the  dual problem (Problem 11) in 
terms of variables yc  and yL which are  related  to  the 
variables u and v used here  through 

Yo= Vf(U) 

yL=v. 

The objective function g then is written  in  terms of the 
Legendre transformation of the  function f (u) .  Dennis 
has  shown that  the objective function g is a concaves 
function of the variables yc, y L  provided  f is a  strictly 
convex function, i.e., strict inequality  holds in  (3.1). 
This allows the use of the  Kuhn-Tucker theorem5 to 
complete the proof of both  parts of the theorem. 

In general, g(u,v) as defined in (5.4) is not a con- 
cave function of u and v. As an example  consider 
f(x)=-sin x where X = X - E  for E > O  and sufficiently 
small. Then Y(T-E)  > O  and f is strictly convex. But 
g(u,v)=sin u - u  cos u+b'v  and  Pg/i3uz=-u  cos u- 
sin u so for U = X - E ,  8 2 g / W = ~ - 2 ~ > 0 .  Thus g is not 
concave. The Kuhn-Tucker theorem  cannot  be utilized, 
therefore,  in the second part of the theorem given here. 

The  function  f(x) in the present theorem is not re- 
quired to be  strictly convex. The first part of the 
theorem is proved under  the weaker  assumption that 
f(x) is convex  with no additional  requirements. To 
prove the second part of the  theorem  requires in ad- 
dition that  the inverse gradient of the  function f has a 
derivative, i.e., the  matrix M consisting of the second 
partial derivatives of u with  respect to y  exist^.^ If f(x) 
is assumed to possess continuous  second  derivatives then 

f ( n ) = f ( X * ) + ( X - x * ) " V f ( X * )  

+ (x-x*)"-l(t) ( x - x * ) ,  

where 

Maximize g( u )  = i 2 u 3 - Y + 1 :  

U S 1  

u> 1 

subject to 

u>l - l j5 /3 .  

The  function g is neither  convex nor concave buttakes 
on its maximum  value, 1-2 */9, at u=l-  1/3/3  as 
was to be  expected. 

The assumption that M exists is then also weaker than 
Dennis'  assumption of strict convexity. 

Finally  Dennis has not specified the regions  in n-space 
over which the  function f  should  be required  to be  con- 
vex. The proof here is valid when f(x) is convex  over 
the regions RI defined by (5.2)  and (5.3) and RII de- 
fined by (5.5) and (5.6). 

It is clear that f must  be  convex  over RI for other- 
wise a  solution to  Problem I may not exist. That  it is 
also necessary that f  be  convex  over R I I  may  be seen 
by considering the following example. 

Minimize f ( x l , x 2 )  ="sin x,-sin x2 

where 

- x 1 " x 2 ~ " x / 3  

x120 

x,>o. 

The  function f is convex over  the  domain defined by the 
constraints  and takes on its  minimum  value, -1, at 
x1=x2= , /6 .  The  dual problem  is: 

Maximize g=-sin u,-sin u2+ul cos ul+u2 cos u2 

-_ x 

3 V ,  

where 

-v+cos U , L O  

t = ~ * + ~ ( x - - x * ) ,  o s 4 1 .  - v + cos u 2 g o  (7.2) 

From  the  lemma,  then v>o. (7.3 1 
( x - x * ) ' M - l ( ~ ) ( x - - x * ) > O ,  

and strict  inequality  holds if f is strictly convex. Strict 
convexity,  therefore, implies that M - l  is positive, defi- 
nite and  thus  that its inverse M exists. 

The converse is not  true as may be seen from  the 
following example. 

Minimize f ( x )  = { " x 3 + 3 ~ - 2 x + l ,  9 

x 4 1  
x>l 

subject to x>O. 

The  function f is convex but not  strictly  convex_and 
takes on its  minimum value, 1-221319, at  x=1-1/3/3. 
The inverse of the  relationship y=j'(x) possesses a de- 

Now notice that  u1=u2=2kx+~/6 and v = q / 2  com- 
prise  a  feasible  solution to  the  dual problem for any 
k= 1, 2, 3, . . . . But for these  values of the variables 

g = 2 ' @ k x - l ,  

which is unbounded as k becomes  large. Thus the solu- 
tion of the  dual  problem does not exist. The difficulty is, 
of course, that f (u1 ,u2)  is not convex over  the region R ,  
defined by (7.1),  (7.2),  (7.3) above. 

The proof of Section  6  provides  a method  for com- 
puting the  dual variables v, once  the  primal variables x,  
have been obtained. Indeed, v, is the solution of the fol- 
lowing linear programming problem: 

Maximize b'v 41 1 

I IBM JOURNAL OCTOBER 1960 



1 

t 
X 
N 

412 

subject to 

A ’ v G ~ f ( x , )  

v>o. 

The constraints of the  primal problem (Problem I )  
may be formulated in other ways with  corresponding 
changes in  the  dual constraints.  Some of these are  tabu- 
lated below. In all cases the  functionals  to be  optimized 
are  the  same as  those  in  Section 5. 

Type  Problem I Problem I1 
I A x b b  A ’ v - V f ( u ) L O  

I1 Ax> b A’v-Vf(u)=O 

I11 Ax= b A ’ v - V f ( u ) L O  

IV Ax= b A ’ v - v f ( u ) = O  

8. Example 

As a simple example of the theorem of Section 6, con- 
sider the problem of minimizing 

x20 v>o 

v>o 

x 2 0  

f (x , ,x , )  =-log x,-log x, (‘8.1) 

subject to 

- x 1 - x , ~ ” 2   ( 8 . 2 )  

x120 (8.3) 

x,>o. (8.4) 

Figure I Example of convex program. 

The admissible values of x1,x2 lie  in the triangle OAB 
of Fig. 1. The  contours of constant values of f are also 
shown with f decreasing  as the  contours recede from  the 
origin. 

The  optimal value is f =O for x,=+= 1. 

The  dual problem  is: 

Maximize g(u,,u,,v)=-log u,-log u2+2-2v,  (8.5) 

where 

- v +  - 4 0  
1 

u1 

1 
u2 

- v +  “ L O  

v>o 

u , a  

u,>o. 

The last  two  inequalities are  added in order  that 
g(u,,u,,v) may  be defined over the  constraint set. The 
addition of these  constraints is permissible in view of the 
remark  at  the close of Section 6 .  (See Eq. (6.30).) 

From  the symmetry of the  dual it is clear that when g 
is a  maximum, u1=u2. The admissible values of u1 and v 
are those  above the hyperbola CD in  Fig. 2. The con- 
tours of constant g are shown  as  dotted  curves  with g 
increasing  as the  contours  approach  the origin. The 
maximum  value of g is associated with the  contour 
which is tangent to  the hyperbola CD at ul= u2=v= 1. 
For these values of the variables g (  1, 1, 1) =O. 

Figure 2 Example of dual convex program. 
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Note  that f (x , ,x , )  is  convex  in  the  regions RI and RII 
defined  by  the  constraints (8.2), (8.3), (8.4) and (8.6),  
(8.7), (8.8). 
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6. Note  that this assumption was not required for  the proof 
of the first part of the theorem. 

7. The constraints A u 2  b are also satisfied by the optimum 
vector u. 

8. That is to say, its negative is convex. 
9. See Section 6 immediately following Eq. (6.20). 
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