A Duality Theorem for Convex Programs*

1. Introduction

Linear programming is concerned with minimizing (or
maximizing) a linear function of n variables subject to
linear constraints on the variables. The constraints may
be in the form of either equations or inequalities or both.
Such mathematical problems arise in a variety of con-
texts both in the engineering sciences and in the business
sciences.

For any linear program which has a finite solution
there exists a companion problem called its dual. The
dual problem also has a finite solution, and moreover,
certain properties of the solution of the dual problem
may be deduced immediately from the solution of the
original program. This duality relationship has both
theoretical and computational significance and has pro-
vided a valuable tool for investigators in this field.

In a recent paper! a duality relationship was estab-
lished for a class of quadratic programs in which one
wishes to minimize some quadratic function of n varia-
bles subject to linear constraints.

In what follows, this concept will be extended further
to include minimization of a general convex function
subject to linear constraints. The development, to some
extent, parallels that given in the quadratic case. The
notion of duality for this class of programs has also
been discussed previously by Dennis.2 The relationship
of the present development to that of Dennis will be
considered in Section 7.

2. Notation

Matrix notation will be used in this paper. Lower case
letters x, y, . . . will denote column vectors and capital
letters A, C, . . . will be matrices. The operator Vv is the
gradient operator and .V f(x) is a vector composed of the
first partial derivatives of the scalar function f(x).
m was supported by the AEC Computing and Applied

Mathematics Center, Institute of Mathematical Sciences, New York

University, under Contract No. AT(30-1)-1480 with the U. S.
Atomic Energy Commission. The work was done at NYU.

Abstract: A proof is given for a duality theorem
for a class of convex programs, i.e., constrained
minimization of convex functions. A simple exam-

ple is included.

Prime denotes transpose, so that x’,y’, . . . are rTow vec-
tors. The product x’y is the inner product of the vectors
x and y. A vector inequality will apply to each compo-
nent of the vector, i.e., x>0 implies that each component
of x is non-negative.

3. Convex functions

A scalar function, f, of an n-dimensional vector, x, is
convex if linear interpolation does not underestimate the
value of the function, i.e.,

Fx1+k(xg—x1) 1= (1) HRIf(x5) —f(x)] (3.1)
for 0=k=1. For convex functions a local minimum is
also a global minimum.

For the proofs in the succeeding sections the following
lemma regarding convex functions is required.

o Lemma

If f(x) is convex and continuously differentiable, then
for any vectors y and x

) —Hx) =2 (y—x)"vi(x). (3.2)

o Proof

From the assumption of convexity
flx+k(y—x)I=f(x) +kIf(y) —f(x)]

for all k such that 0=k==1. Rearranging terms

kI (y) =) 1Zflx+k(y—x)]1—f(x).

From the differential mean value theorem,
flx+k(y—x)]1—f(x) =k(y—x)"Vf(x+x,),

where x,=60k(y—x) for some # such that 0=6§=1.

Using this in the right-hand member of (3.3),
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) =1 Z2(—x)'vf(x+x,).
Letting k approach zero, the inequality (3.2) results.

4. Dudlity in linear programming

The linear programming problem may be posed as
follows: To minimize the linear form p’x over all n-
dimensional vectors x satisfying the constraints

Ax>=b (4.1)
x>0, (4.2)

where p is a nX1 vector, b is a mx 1 vector and A is an
mXn matrix.

The dual problem to the above is to maximize b’v
over all m-dimensional vectors v satisfying

Av=p (4.3)
v>>0. (4.4)

The duality theorem? states that if a solution to either
problem exists and is finite, then a solution to the other
problem also exists and indeed

Minimum p’x=Maximum b’v. 4.5)

The constraints (4.1), (4.2) in the primal problem may
take on other forms with corresponding changes in the
dual constraints (4.3), (4.4). One form which will be
of particular interest is given here. Let the vector x be
partitioned as (xy,x,) and consider the problem of
minimizing py’x;+py’x, subject to

Aix+Azxe=2b (4.6)
x,20, (4.7)

where p and A have been similarly partitioned. Note
that x, is not required to be non-negative. These con-
straints can be put into the form of (4.1) and (4.2) by
the substitution

Xo=2—Y,

where 7220, y=0. All variables x;, z and y are now non-
negative.
The dual problem is then, from (4.3) and (4.4),

Maximize b'v (4.8)
subject to

C Av=p,y (4.9)
ASv=p, (4.10)
V0. (4.11)

5. A class of convex programs and its duval

Consider the following class of nonlinear programming
problems:

Minimize: f(x) (5.1)

subject to
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Ax>=b (5.2)
x>0, (5.3)

where f(x) is a convex scalar function of the vector x
and possesses continuous first partial derivatives with
respect to each component of x. The vectors p, b, and x
and the matrix 4 are the same as in Section 3. Denote
this as Problem 1. Let R; be the region defined in
Euclidian n-space, E,, by the vectors x satisfying the
constraints (5.2) and (5.3). The function f(x) is re-
quired to be convex in R;.

A dual problem to Problem I is

Maximize g(u,v) =f(u) —uw'vf(u)+bv (5.4)
subject to

Av—vf(u)=0 (5.5)
v=20. (5.6)

Denote this as Problem I1. Let R;; be the region defined
in E, by the vectors u satisfying the constraints (5.5)
and (5.6). The function f(u) will be required to be
convex in R;;. Problems I and II are related through the
theorem in the next section.

6. A duality theorem for convex programs
o Theorem*

(1) If there exists a vector x, which minimizes f(x) in
Problem I, then there also exist vectors u—=x,, v=V,
which maximize g(u,v) in Problem II.

(ii) Conversely, if u,, v, are vectors which maximize
g(u,v) in Problem II, then x=u, minimizes f(x) in Prob-
lem 1. In either case

Minimum f(x)=Maximum g(u,v).
e Proof

(i) Let x, be a solution to Problem I, then

F(x)=f(x). (6.1)

Consider the following linear programming problem:
Minimize F(x)=—F(x,) +x'Vf(x,) 6.2)
Ax=b (6.3)
x=0. (6.4)

Call this Problem I'. Note that x, is a feasible solution
to Problem I’ in the sense that it satisfies the constraints
(6.3) and (6.4). Suppose there exists another feasible
solution x* to Problem I’ with the property that

F(x*) <F(x,),

ie.,

(x*—x,)"9f(x,) <O. (6.5)
It is easily verified that

xX1=x,+k(x*—x,), 0=k=1




is also a feasible solution to both Problem I and Prob-
lem I
From the mean value theorem

Flx1) —f(x0) = (x1—x,) " {Vflx,— 0 (x1—x,) 1}
=k(x*—x,) {g/lx,— 0k (x*—x )]}
=k{(x*—x,){Vflx,— 0k (x*—x,) 1=V (x,) }
+ (% —x,) [Vf(x,)]} .

The last term in the bold-faced brackets is negative by
virtue of the assumption (6.5). Moreover, this term is
independent of k. However, since Vf(x) is continuous,
for k sufficiently small the first term in the bold-faced
brackets may be arbitrarily small. In particular £ may
be chosen so that

[ (x* —x,) {Vflx,— 0k (x* —x,)1— Vf(x,) }]
<[ (x*—x,) [vF(x,)1].

It follows then from the inequality (6.5) that
1(xy) —f(x,) <O0.

But this is in contradiction to (6.1). Therefore, x, must
be the minimizing solution of Problem I’. This argument
is essentially that given by Kuhn and Tucker® to con-
struct a linear problem whose solution coincides with
that of a convex problem. From the duality theorem of
linear programming a solution also exists to the dual to
Problem V. This dual linear problem is from (4.3) and
(4.4):

0=0=1

Maximize G (v)=—f(x,) +b'v (6.6)
Av=yf(x,) (6.7)
v2=20. (6.8)

Call this Problem II'. Denote the vector v which maxi-
mizes Problem II by v,. Then the duality theorem of
linear programming, (4.5), requires that

XV (x,) =bv,. (6.9)

Notice now that u=x, v=v, comprises a feasible
solution to Problem II. To show that it also provides a
maximal solution consider

8(x4v,) —g(u,v) =f(x,) —x,/Vf(x,) +b'v,
—f(u) +wf(u)—bv.
From (6.9)
8(x,v,) —g(u,v) =f(x,) —flu) +w'vi(u) —b'v,
and from the lemma, since f(u) is convex in Ry,
8(xo,v,) —g(uv) = (x,—u)’vf(u) +u' v f(u) —b7v
=x,/[Vf(u)]—=b'v. (6.10)
Now from (5.2) and (5.6)

—bvz=—x/Av

xo/vf(u) EXO,A,V.
Substituting these last two inequalities in (6.10),
g(x,v,) —g(u,v)=x/A'v—x/Av=0.

Thus (x,,v,) is a maximizing solution for Problem Il
Finally from (5.4) and (6.9)

g(xmvo) :f(xo) "_xo’Vj(xo) +b,vo:f(xo) s

which verifies the equality of the objective functions.
This completes the proof of part (i).

The proof of the converse, part (ii), does not follow
directly from the above proof since the constraints in
Problem II are nonlinear. The proof, however, follows
the same general outline as the proof of part (i).

Now recall that R;; denotes the range of values of u
in Euclidian n-space, E,, for which

Av—vf(u)=0

v=0.

Let D denote the domain of values of y in E, for which
Av—y=0.

v=20.

It is clear that R;, is mapped onto D by

y=v/i(u),

and that given a point y in D there exists a point u
(not necessarily unique) in R;; satisfying the last equa-
tion above. That is to say, there exists a function which
maps D onto Ry;. It will be assumed that this function is
once differentiable,b and moreover that in the neighbor-
hood of the maximum the mapping is one-to-one.

Now let (u,,v,,y,) be a maximizing solution of Prob-
lem II rephrased as:

Maximize ¢ (u,v,y) =f(u) —w'y+b'v (6.11)
Av—y=0 (6.12)
y=vi(u) (6.13)
v=0. (6.14)
Thus

P (Uo,v0¥o) 2 (1,v,¥) (6.15)

for all u,v,y satisfying the constraints.
Consider the related linear problem:
Maximize G (v,y) =f(u,) —u,y+bv
Av—y=0

v=0.

Denote this as Problem II*.

Notice that v=v,, y=y, is a feasible solution to Prob-
lem II*. Suppose there exists v*, y* satisfying (6.12)

and from (5.3) and (5.5) and (6.14) such that 409
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G(V*’y*) >G(vo’yo)’

ie.,

—u, (¥*=y,) +b' (v —v,) >0. (6.16)
Define vectors v;,y; to be

vi=vot+k(v¥—v,) (6.17)
Y1=Yotk(¥*—y,) (6.18)

for 0<k=1. Then v,,y; is also a feasible solution to
Problem II*. Since y, is in D there exists a vector u, in
R;; such that

y1:Vf(u1), (6.19)
and thus u,,v;,y, is a feasible solution to Problem II.
Consider

Y(u,vy1) =9 (U5,v40,3,)
=F(uy) —uyy3 H vy — () + 'y~ b'v,.
From the mean value theorem
Y(upviy1) —¢(Ueve.¥,)
= (uy—u,) v flug— 6 (uy—u,)]
—uyituy, 8 (vi—v,)  0=f=1
and using Eq. (6.19)
P viy1) =9 (Uevey,)
=(uy—u,){V fluy—0(uy—u,)]
—Vf(u1) }—u(y1~6) + ' (vi—v,). (6.20)

Since by assumption u possesses first derivatives with
respect to y, where y=Vf(u), it follows from the mean

value theorem that
o=yn=l,

(ul—uo),: (yl—'yo)’M(yo_"?[yl'—yo])s

where M(y) is a matrix whose i,j element is the partial
derivative of the jth component of u with respect to the

- ith component of y. Using this and Eqs. (6.17) and
(6.18), Eq. (6.20) becomes

Y (uy,v191) — ¥ (10,v0,5,) =k{ (y*_ya),M[yo_ﬂk(y*_yo)]
{ Vfu—0k(u* —u)1=vF(u,)}
_u’o(y*_yo)+'b,(V*'_vo)]}-

Now if k is sufficiently small, the following inequality
can be satisfied

[(*—=,) " My, —nk (y* =) KV fluy— 0k (u*—u,)]
= Vi) } <|—u/(y*—y,) +b'(v*—v,) |,

(6.21)

since Vf(u) is continuous and the term on the right is
independent of k.

From the assumption (6.16), the term inside the ab-
solute value signs on the right of the above inequality is
positive. Thus the term in bold-faced brackets in Eq.

410 (6.21) may be made positive by a sufficiently small
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choice of k. This implies that
¢(u1!v1’y1) _S[/(up’vo»yo) >0

and contradicts the hypothesis (6.15) that u,,v,y, is a
maximizing solution of Problem II. It follows that
vy, Mmaximizes Problem II1*.

Problem II* is a linear problem of the second type
mentioned in Section 4, Equations (4.6) and (4.7),
and its dual problem according to (4.8) to (4.11) is:

Minimize F(x)=f(u,) (6.22)
Axz=b (6.23)
x=u, (6.24)
x=0. (6.25)

This will be referred to as Problem I*. The duality
theorem of linear programming assures the existence of
a solution to this problem. By virtue of (6.24) u, must
be that solution. The duality theorem, (4.5), then pro-
vides that:

Maximum G(v,y) =Minimum F(x)
or
—u,y,+b'v,=0. (6.26)

Now u,, since it satisfies (6.23) and (6.25), is a feasible
solution to Problem I. Let x be any other feasible solu-
tion to Problem 1. From the lemma again, since f(x) is
convex in R;,

f(x) —f(u,) = (x—u,) [vf(u,)]
Now from (6.13) and (6.26)

(6.27)

—u/ TV (u,) 1= —u,y=—b'v,
and from (5.2) and (5.6)
—bv,=—x'Av,,

80

—u/[Vf(up) |2 —x'A"v,
From (5.3) and (5.5)
*[Vf(u,) 12X A'v,. (6.29)

Substituting (6.28) and (6.29) into the right-hand mem-
ber of (6.27) it follows that

F(x) —FHu,) Zx A'vy—x A’vy=0.

(6.28)

Thus u, minimizes Problem I.
From (6.26) and (5.4)

FQuo) =f(uo) —u,' VI (U,) +bv,=g(upv,).
Notice that Problem II may have the constraints?
u=0 (6.30)

added to it without altering any of the foregoing argu-
ments, since this constraint is always satisfied at the
optimum.




7. Remarks

It has already been pointed out that the theorem pre-
sented here is similar to one previously given by Dennis.2
There are, however, some basic differences in the
theorems.

Dennis has cast the dual problem (Problem II) in
terms of variables y, and y; which are related to the
variables u and v used here through

Yo=Vf(u)
Yr="V.

The objective function g then is written in terms of the
Legendre transformation of the function f(u). Dennis
has shown that the objective function g is a concave®
function of the variables y,, y; provided f is a strictly
convex function, i.e., strict inequality holds in (3.1).
This allows the use of the Kuhn-Tucker theorem? to
complete the proof of both parts of the theorem.

In general, g(u,v) as defined in (5.4) is not a con-
cave function of u and v. As an example consider
f(x)=—sin x where x=m—¢ for £>0 and sufficiently
small. Then f’(z—e)>0 and f is strictly convex. But
g(u,v)=sin u—u cos u+>b'v and 92g/ou?=—u cos u—
sin u so for u==—¢, 82g/0u?==—2¢>0. Thus g is not
concave. The Kuhn-Tucker theorem cannot be utilized,
therefore, in the second part of the theorem given here.

The function f(x) in the present theorem is not re-
quired to be strictly convex. The first part of the
theorem is proved under the weaker assumption that
f(x) is convex with no additional requirements. To
prove the second part of the theorem requires in ad-
dition that the inverse gradient of the function f has a
derivative, i.e., the matrix M consisting of the second
partial derivatives of u with respect to y exists.? If f(x)
is assumed to possess continuous second derivatives then

f(x) =F(x*) + (x—x*)"Vf(x*)
+(x—x*)M—1(§) (x—x*),
where
E=x*40(x—x*), 0=0=1.
From the lemma, then
(x—x*)’M=1(§) (x—x*) 20,
and strict inequality holds if f is strictly convex. Strict
convexity, therefore, implies that M—1 is positive, defi-
nite and thus that its inverse M exists.

The converse is not true as may be seen from the
following example.

—x343x2—-2x+1, x=1
x , x=1

Minimize f(x)= {

subject to x=>0.

The function f is convex but not strictly convex and
takes on its minimum value, 1—2\/3/9, at x=1 ——\/3/3.
The inverse of the relationship y=#(x) possesses a de-

rivative with respect to y everywhere. The dual prob-
lem can be written

.. 2ud—3u2+1, u=1
Maximize g(u) _{ 0 ’ u>1
subject to
u=1-13/3.

The function g is neither convex nor concave but takes
on its maximum value, 1—2 \/;/9, at u:l—\/3/3 as
was to be expected.

The assumption that M exists is then also weaker than
Dennis’ assumption of strict convexity.

Finally Dennis has not specified the regions in n-space
over which the function f should be required to be con-
vex. The proof here is valid when f(x) is convex over
the regions R; defined by (5.2) and (5.3) and Rj; de-
fined by (5.5) and (5.6).

It is clear that f must be convex over R; for other-
wise a solution to Problem I may not exist. That it is
also necessary that f be convex over R;; may be seen
by considering the following example.

Minimize f(x{,xo) =—sin x, —sin xp
where

—X—X,=—7/3

x, 20

X220,

The function f is convex over the domain defined by the
constraints and takes on its minimum value, —1, at
X;=x,=m/6. The dual problem is:

Maximize g— —sin u;—Ssin uy+u; €OS u;+us COS Uy

T

-3 v,
where

—v+-cos u; =0 (7.1)
—v-+cos uy;=0 (7.2)
v=0. (7.3)

Now notice that u; =uy=2k7w+7/6 and v:\/?/Z com-
prise a feasible solution to the dual problem for any
k=1,2, 3, ....But for these values of the variables

g=2\3kx—1,

which is unbounded as k becomes large. Thus the solu-
tion of the dual problem does not exist. The difficulty is,
of course, that f(u,,u,) is not convex over the region Ry
defined by (7.1), (7.2), (7.3) above.

The proof of Section 6 provides a method for com-
puting the dual variables v, once the primal variables x,
have been obtained. Indeed, v, is the solution of the fol-
lowing linear programming problem:

Maximize b’'v

141
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subject to
AV=VF(x,)
v=0.

The constraints of the primal problem (Problem I)
may be formulated in other ways with corresponding
changes in the dual constraints. Some of these are tabu-
lated below. In all cases the functionals to be optimized
are the same as those in Section 5.

Type Problem I Problem 11

1 AxZ=b Av—vf(u)=0
x=0 v=0

1I Ax=b Av—vf(u)=0

v=0

II1 Ax=b Av—v f(u)=0
x=0

v Ax=b Av—vf(u) =0

8. Example

As a simple example of the theorem of Section 6, con-
sider the problem of minimizing

f(x1,x5) = —log x, —log x, (8.1)
subject to

— X —Xo=—2 (8.2)
x,20 (8.3)
x,220. (8.4)
Figure 1 Example of convex program.

1 (2,0)

Xy —
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The admissible values of x;,x, lie in the triangle OAB
of Fig. 1. The contours of constant values of f are also
shown with f decreasing as the contours recede from the
origin.

The optimal value is f=0 for x;=x,=1.
The dual problem is:
Maximize g(uq,Us,v) = —log u; —log u,+2—2v, (8.5)

where

—vt _l_éo (8.6)
U

vt = (8.7)
Uy

v=0

u; 220 (8.8)

u2>0.

The last two inequalities are added in order that
g(uq,uy,v) may be defined over the constraint set. The
addition of these constraints is permissible in view of the
remark at the close of Section 6. (See Eq. (6.30).)

From the symmetry of the dual it is clear that when g
is a maximum, #, =u,. The admissible values of u; and v
are those above the hyperbola CD in Fig. 2. The con-
tours of constant g are shown as dotted curves with g
increasing as the contours approach the origin. The
maximum value of g is associated with the contour
which is tangent to the hyperbola CD at u;=u,=v=1.
For these values of the variables g(1, 1, 1) =0.

Figure 2 Example of dual convex program.

—_—

Hy —




Note that f(x;,x,) is convex in the regions R; and Ry,

defined by the constraints (8.2), (8.3), (8.4) and (8.6),
(8.7), (8.8).
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