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On the Switching Time of Subharmonic Oscillators

There exists at present a great interest in variable-
reactance devices. One of the possible uses of such vari-
able reactances is as parametric subharmonic oscillators,
which have potential applications in computer technol-
ogy.:+2 These applications depend upon the fact that the
subharmonic oscillations can occur at one of two phases
differing by 180°. The value of the phase (0° or 180°)
can form the basis of a binary arithmetical system.

In such an application, three of the important prop-
erties of the subharmonic oscillations are the time it
would take to switch the oscillator from one phase to the
other, the pump power necessary for satisfactory oscilla-

-tion, and the efficiency of subharmonic production. Since

these properties all depend on the same parameters, it is
not possible to optimize each one individually. This paper
will discuss the switching time of the subharmonic oscil-
lator and will then briefly discuss the interrelationships
between this time and the pump power and efficiency.

The circuit to be analyzed is shown in Fig. 1 and is
similar to that given by Bloom and Chang.® ¢ The approx-
imations used will also be similar but may be somewhat
less applicable in a real situation, since the level of the
pump will be greater for the subharmonic oscillator than
for the parametric amplifier. Here L is the variable
reactor,® where the flux ¢ is given by

d—Lol—LI2. (1)

This equation does not necessarily represent the exact
behavior of any real inductor, since it is only the first two
terms of a Taylor expansion. However, it is the first ap-
proximation to the behavior of a biased core.® The same
approximation has been used previously.? Power from the
pump at frequency o; is sent through the circuit composed
of C; (where Cy is chosen such that wz=1/~/CsLo) and
the variable inductor. This power is in part absorbed by
the resistance of the variable inductor, R, and in part

Abstract: The time necessary to change the phase of
an idealized subharmonic parametric oscillator from
one value to a value differing by 180° is calculated
for various values of pump power and switching
power. Several conclusions are drawn from the
results.

converted to the subharmonic frequency, wi=ws/2. A
part of this latter power appears as useful output in the
load resistor, R;. Again, C; is chosen such that w;=
1/~/LoCy. Tt will be assumed that the resonant circuits
or cavities are lossless, the only resistances involved being
those of the variable inductor and of the output circuit.
Also, it will be assumed that the circuit Q’s are high
enough that the voltages developed at all other frequen-
cies by the nonlinear element are negligible.

The equations connecting the currents and voitages of
the two circuits subject to the above assumptions are

I3 (Ry+Ry) —jor LIl * =0 (2a)
IR, —josL112/2=V>, (2b)

where ordinary complex notation is used. These equa-
tions are found from the relation for the voltage across
the reactor

V=d¢/dt. 3)
This is most easily shown by writing the current 7 as
1= (Liefost +-I¥e-iont) /2

+ (Izeiost + I e 0ty /2,

where I, and I3 may be complex to allow for possible
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Figure 1 Schematic representation of subharmonic
oscillator.




phase differences. This expression is substituted into (1)
to get ¢, which in turn is substituted in (3). Voltage and
current terms of the same frequency are then collected
and the net potential around both loops is equated to
zero. The terms of major interest are given by

2d(L12) /dt=— jon L (I,2e7 9t — ] *2e-T05t
_1113*¢jw1t+11*136im1t) .

In expressions (2) only the positive exponential terms

are included. More detail on setting up the equations has

been given previously.? However, this reference does not

specifically treat the present case of the subharmonic os-

scillator, where the pump power is greater than threshold.
From Eq. (2), if we let Rr=R,1+R;,,,

RT I]_ 1 L 11
L= ——— = —| — |- (4)
jor . I1* oL\ L L*
and
RrR Vsjor £ Ir*
AR R A (5)
m12£2 RLRT 11

Since I11,* must be real and positive, it is seen that
I*/1; = —j. This can only be true for subharmonic phases
of =/4 and 57/4, which of course differ by = radians.
Thus the undriven subharmonic oscillation occurs at one
of two phases which differ by 180°. It is seen that the
small reactance terms introduced by the nonlinearity, and
which are present for the degenerate parametric ampli-
fier,® are not present for the steady state oscillations of the
subharmonic oscillator (with pump power greater than
threshold). It is interesting to note that the pump current
I; remains constant at the value Ry/w £ once the thresh-
old pump power for oscillation is exceeded.
If we define « as

nlV; 1*V5 P, )
RTRL B ISIB*RL Pc

(where P, is the pump power and P, the threshold power
for oscillation), the equilibrium value of /1/:* attained is

R:R
Ll*= T£z (a—1)

(1)12

_ R 1 L)Z( —1 7
= Ry Q12<—? 2 ). (7)

Also,

R, Rg?
2 o282

1 Lo\? 1
- (= . (8)
20:0:% \ £ Loows
For a low threshold power, a high Q is especially im-
portant.

The efficiency of conversion of pump power to sub-
harmonic power is

c

IRy
Vsls*
R, ILi1I*

= . . 9
Ry LI*+(Rp/Rr) (1/Q:%) (L/£)* @

Thus, the efficiency increases to a value of Ri/Ry for
very large I11;* (which implies a very large pump power,

Pp).
There are several methods by which the subharmonic

oscillator could be switched to its state of opposite phase. -

For example, to reduce the energy storage at the un-
wanted pre-existing phase, the pump power could in-
stantaneously be reduced or turned off, or the bias could
instantaneously be made very positive. Other methods
are also possible. The method that will be discussed here
is the introduction of a signal of opposite phase at the
subharmonic frequency and which is large enough to
override the pre-existing subharmonic output. It is as-
sumed that the pump power remains constant at a given
level (above threshold). In what follows, we will assume
that this switching generator is of the constant-voltage
type, so that the power supplied is proportional to the
voltage of the generator, V4, times the current in the
circuit, I1. Use of a different switching generator (for
example, a constant-power generator) would influence
the results somewhat, but the qualitative conclusions
would be unchanged. X
Equation (7) for the steady state of the subharmonic
oscillator can be written in the alternative form

aRrl2(1-1,%/iy®) —Rp112=0, (10)

where iy2=aRsRL/o12L2=aP./Rr and the currents are
magnitudes only (which may, however, be plus or minus
to denote the two possible values of phase differing by
180°). This expression correctly gives the various steady
state properties of the undriven subharmonic oscillator.
The first term in Eq. (10) is twice the power produced by
the subharmonic action and the second, twice the power
lost in Joule heating.

When the transient switching behavior is considered,
the power generated by the external switching generator,
1V1l1, must be added, as well as the rate of change of
stored energy, Lol1dl,/dt. It is assumed that V', is exactly
of the same or opposite phase to I;. Thus, the rate of
change of stored energy is equal to the balance of the
power generated by the subharmonic action, the Joule
losses, and the power supplied by the external switching
generator:

2L011d11/dt=aRTI12(l—112/1'02) F‘RTllz‘;‘V]I]. (11)

It can be noted that Eq. (11) reduces to the expected
result for various special cases. For the steady state un-
driven oscillation (V1=0, dI;/dt=0), it reduces to Eq.
(7). It also correctly predicts the time for a small signal
to increase by a factor “e”. Eq. (11) reads for this case
2Lodli/dt=(a--1)Rsly, or In Ii=(a—1)Rst/2Ly—
(a— 1) ot/20,. Therefore the exponential build-up time,
7', is just (2Q1/m) - [1/(a—1)], as has been previously
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Figure 2 Switching voltage and subharmonic cur-
rent versus time.
A change in the sign of the current corre-
sponds to a phase change of 180°.

shown.” With the saturation term (I12/ix?) included,
Eq. (11) could be integrated to give this same build-up
time with saturation included. Eq. (11) in its steady state
form (2Lol1dl,/dt=0) can also be derived directly from
Egs. (2a) and (2b) if Vi is substituted for the zero in
the left side of Eq. (2a). It should be noted that Eq. (11)
predicts considerable limiting action, since the power
developed by the subharmonic action decreases abruptly
when I; becomes comparable to i.

The main use to be made here of Eq. (11) will be to
calculate the time necessary to change the phase of an
established current, Iy, by 180° by the application of a
large enough signal, V1, of phase exactly opposite to that
of 1. The time taken to change the current from an
initial value —Ir to a final value I, (a change in the sign
of I is equivalent to a phase change of 180°) is given
from the above by

f—t 2L, /[o dl,
T Ry )y alhi(1—12/ig?) — 11+ V1 /Ry

20 /50 dg.
w1 J-gp adi(1—9:2)—g1+c

where ¢c=V1/Rrip and 91=1I/iy. A similar analysis has
been made?® for the case of the subharmonic klystron.
However, in that case the integral could not be written in
analytic form.

The question remains as to what limits should be
chosen for the integration. Figure 2 shows the type of
operation that might be expected in a computer. The
switching signals are shown as the dashed curve and the
subharmonic output as the solid curve. The time con-
stant that will be computed is r, the time it takes the
current to change from the state *=Ir to the state FIo,
where the initial value is chosen to be the equilibrium
current with switch on and the final value that with switch
off. This is a somewhat conservative measure which takes
a longer time than, for example, =1, to FI,. The time
would not be shortened very much if a fraction of Fl/o,
such as F1y/2, were chosen as the final state. The value
of the final state is given by do=1Iy/io=1/(a—1) /a. The
initial state, —dp=—1Ip/iy, is determined by both the
values of « and of ¢, where c is proportional to the switch-
ing voltage V. It is found by solution of the equation
adpr(1—9p2)—9dr=c.

(12)
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The integral in Eq. (12) can either be integrated by
parts or can be solved numerically for various values of
¢ and a. The results are expressed in Fig. 3 as the time
for switching in units 2Q; /w; versus a=P,/P, for various
values of g, which depends in turn on the amplitude of
the switching voltage, V1. It is seen that times shorter
than the passive decay time (70=2Q1/w1) are obtained
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Figure 3 The switching time of the subharmonic
oscillator.
This time is plotted against the pump power
with the parameter being the normalized
steady-state subharmonic current when driven
by the switching generator. This parameter
increases as the switching voltage increases.




if 9p>1.125, but that the switching time rises very rap-
idly if the switching power is less than that which corre-
sponds to dr=1.125. The results shown in Fig. 3 are, of
course, equally applicable for both nonlinear inductors
and nonlinear capacitors.

These results can also be plotted with 95/ do=1r/I, as
the switching parameter. This is shown in Fig. 4. It is
seen here that, for small values of «, large values of Ir/I,
are necessary for rapid switching and vice versa. Very
roughly, it would appear that the pump power should be
at least several times the threshold power in order for the
switching to be reasonably fast without excessive switch-
ing power.

This is also a requirement for reasonable efficiency of
operation, as can be seen from Eq. (9). However, fast
switching times and low threshold power are mutually
exclusive. The first demands a low Q and the second a
high Q. The scale of the ordinates in Fig. 4 is propor-
tional to the Q and, even though the scale of the abscissae
is proportional to @3 for constant pumping power, the
ordinates take precedence except at the left side of the
figure. Therefore, the switching time rises for an increase
in Q except for small pumping power, where the times
are long in any event.

These times can be compared with the time necessary
for a small signal to be amplified by a factor “e”. This
time is given by the expression

204 1
= . 13
w1 <a——l ) (13)

This time is shown as the dashed curve in Fig. 4 and is
comparable to the switching time for reasonably large
switching signals (Ir/Io~1.7).

It can be shown that it is possible for one subharmonic
oscillator to switch another identical subharmonic oscil-
lator, but with an increase in switching time to approxi-
mately 10Q;/w (=5 in Fig. 4).° Several simplifications
will be made. First it will be assumed that an isolator or
some other one-way device prevents power from flowing
from Oscillator 2 to Oscillator 1. Second, it will be as-
sumed that power from Oscillator 1 flows only into the
reactor of Oscillator 2 and not into its load or into any
other subsequent circuitry. There is a certain imprecision
in setting up the constant-voltage generator required in
Eq. (12). It will be assumed that the voltage, V1, induced
in Circuit 2 is equal to the current supplied by Circuit 1,
Iy, multiplied by the reactor resistance R,=Rr/2, or
Vi=I4Rr/2. The power delivered is thus I,/;Rr/4, where
I, varies from a value —Ip to +I,. Over the range of I;
from —Ir to —I,, the power delivered is greater than the
power available. However, the time spent in traversing
the region —Ir to —1I is only a small part of the total
switching time, and in any event the result of such a
calculation will set a lower limit on the switching time
subject to the constant-voltage assumption.

From the denominator of Eq. (12) it can be seen that,
for switching to occur,

Vl/RT=10/2>a11(1—112/1'02)—11 (14)

for all values of ;. The right side of the equation has its
maximum value for §;=1I1/ipv=1/(a—1)/3a. Substitu-
tion of this value into Eq. (14) leads to the condition that
a=P,/P.<2.25 for switching to occur. For values of
a<2.25, the value of ¢ to be used in Eq. (12) is c=
9o/2=1/{a—1)/4a. A table of the calculated values of
the time in units 2Q, /w, and of Ir/I, are given in Table 1
for the possible switching of one oscillator by another.

Although it is possible to switch one oscillator by an-
other, the times are quite long and operation would be in
a region where rather poor efficiency in conversion of
pump power to subharmonic power would be obtained.

In this paper, the compromises inherent in trying to
simultaneously minimize pump power, switching power,
and switching time have been considered for the case
where a subharmonic oscillator has impressed upon it a
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Figure 4 The switching time of the subharmonic
oscillator.
This time is plotted against the pump power
with the parameter being the ratio of the
steady-state subharmonic current when driven
by the switching generator to that when not
driven.
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switching signal of opposite phase. The method followed
should also be of use in the treatment of more compli-
cated engineering situations.

It is a pleasure to acknowledge helpful discussions with

1. Palocz and Prof. N. M. Kroll, and the encouragement
and comments of Dr. W. V. Smith.
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