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On the  Switching  Time of Subharmonic Oscillators 

Abstract: The time necessary  to change the phase of 

an idealized subharmonic parametric oscillator from 

one value to a value differing by 180’ is  calculated 

for various values of  pump  power and switching 

power. Several conclusions are  drawn from the 

results. 

There exists at present  a great interest in variable- 
reactance devices. One of the possible uses of such vari- 
able reactances is as parametric  subharmonic oscillators, 
which have potential  applications  in computer technol- 
ogy.1,2 These applications  depend upon  the  fact  that  the 
subharmonic oscillations  can occur  at  one of two  phases 
differing by 180”.  The  value of the phase (0” or  180”) 
can  form  the basis of a  binary  arithmetical system. 

In  such  an application, three of the important  prop- 
erties of the  subharmonic oscillations are  the time it 
would take  to switch the oscillator from  one  phase to the 
other,  the  pump power necessary for satisfactory oscilla- 
tion, and  the efficiency of subharmonic production.  Since 
these properties all depend on  the  same parameters, it is 
not possible to optimize  each one individually. This  paper 
will discuss the switching  time of the  subharmonic oscil- 
lator  and will then briefly discuss the interrelationships 
between this time  and  the  pump power and efficiency. 

The circuit to be  analyzed is shown in  Fig. 1 and is 
similar to  that given by Bloom and  Chang.3>  The  approx- 
imations used will also be similar but  may be  somewhat 
less applicable  in a real situation,  since the level of the 
pump will be greater for the  subharmonic oscillator than 
for  the  parametric amplifier. Here L is the variable 
r e a ~ t o r , ~  where the flux b, is given by 

b,=LoI-S12. (1) 

This  equation does not necessarily represent  the exact 
behavior of  any  real  inductor, since it is only the first two 
terms of a Taylor expansion.  However, it is the first  ap- 
proximation to  the behavior of a biased core.6 The  same 
approximation  has been used previ~us ly .~  Power from  the 
pump  at  frequency a3 is sent through  the circuit  composed 
of C3 (where CB is chosen such  that 0 3  = 1 /qC,Lo)  and 
the variable inductor.  This power is in part absorbed by 

402 the resistance of  the variable inductor, RL, and in part 

converted to the  subharmonic  frequency, o1=o3/2. A 
part of this latter power appears as useful output in the 
load resistor, R1. Again, C1 is chosen such  that wl= l / v m .  It will be assumed that  the  resonant circuits 
or cavities are lossless, the only resistances involved being 
those of the variable  inductor and of the  output circuit. 
Also, it will be assumed that  the circuit Q’s are high 
enough that  the voltages developed at all other frequen- 
cies by the nonlinear  element are negligible. 

The  equations connecting the  currents  and voltages of 
the two circuits  subject to  the above  assumptions are 

where ordinary complex  notation is used. These equa- 
tions are  found  from  the relation for  the voltage across 
the  reactor 

V=db,/dt  . ( 3 )  

This is most easily shown by writing  the current I as 

I =  (Ilej%t+11*cjwlt)/2 

+ (13ejost +13*e-ia3t) / 2  , 

where Il and I s  may be  complex to allow for possible 

r+cl 

Figure 1 Schematic representation of subharmonic 
oscillator. 
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phase differences. This expression is substituted into (1) 
to get +, which in  turn is substituted in ( 3 ) .  Voltage and 
current  terms of the  same frequency are  then collected 
and  the  net potential around  both loops is equated  to 
zero. The  terms of major interest are given by 

2d(d:Zz)/dt=-iold:(Z12ej03t-11*ze-jwst 

-11Z3*ei01t+Zl*13ej01t) . 

In expressions ( 2 )  only  the positive exponential  terms 
are included. More detail on setting up  the  equations  has 
been given previ~us ly .~  However,  this  reference  does not 
specifically treat  the present  case of the  subharmonic os- 
scillator,  where the  pump power is greater than threshold. 

From  Eq. ( 2 ) ,  if we let RT=R1+RL, 

and 

Thus,  the efficiency increases to a value of R ~ / R T  for 
very  large 4 Z 1 *  (which implies a  very large  pump power, 
P P ) .  

There  are several methods by which the  subharmonic 
oscillator  could be switched to its state of opposite  phase. 
For example, to  reduce  the energy  storage at  the  un- 
wanted pre-existing phase, the  pump power  could in- 
stantaneously be reduced or  turned off, or  the bias could 
instantaneously  be made very positive. Other  methods 
are also possible. The  method  that will be discussed here 
is the  introduction of a signal of opposite phase  at  the 
subharmonic  frequency  and which is large  enough to 
override the pre-existing subharmonic  output.  It is as- 
sumed  that  the  pump power  remains constant  at a given 

Since ZIZ1* must be real and positive, it is seen that 
Z1*/Z1 = - j .  This can only be true  for  subharmonic phases 
of ~ / 4  and h / 4 ,  which of course differ by X radians. 
Thus  the undriven subharmonic oscillation occurs  at one 
of two phases  which differ by 180". It is seen that  the 
small reactance  terms introduced by the nonlinearity, and 
which are present for  the degenerate parametric ampli- 
fier,3 are  not present for  the steady state oscillations of the 
subharmonic oscillator  (with pump power  greater than 
threshold). It is interesting to  note  that the pump  current 
Z3 remains  constant at  the value R T / o ~ ~ :  once  the thresh- 
old pump power for oscillation is exceeded. 

If we define (Y as 

(where Pp is the  pump power and PC the threshold  power 
for  oscillation),  the equilibrium  value of ZIZ1* attained is 

level (above  threshold).  In  what follows, we will assume 
( 5 )  that this switching generator is of the constant-voltage 

type, so that  the power  supplied is proportional  to  the 

Also, 

voltage of the generator, V l ,  times the  current in the 
circuit, I t .  Use of a  different switching generator (for 
example,  a  constant-power generator) would influence 
the results  somewhat, but  the qualitative  conclusions 
would be unchanged. 

Equation (7)  for  the steady state of the  subharmonic 
oscillator can be written  in the alternative form 

(YRTZ~'( 1 - 1 1 2 / i o 2 )  - R T I ~ ' = O ,  (10)  

where io2 = ( Y R ~ R ~ , / ~ ~ ~ ~ : ~ = ( Y P ~ / R T  and  the  currents  are 
magnitudes  only (which  may, however, be plus or minus 
to denote the two possible values of phase differing by 
180"). This expression correctly gives the various  steady 
state properties of the undriven subharmonic oscillator. 
The first term  in Eq. (10) is twice the power produced by 
the  subharmonic action and  the second,  twice the power 
lost in  Joule  heating. 

When the transient switching behavior is considered, 
the power  generated  by the external switching generator, 
&VIZl, must be added, as well as the rate of change of 
stored  energy, LoZldZl/dt. It is assumed that V I  is exactly 
of the  same  or opposite  phase to Zl. Thus,  the  rate of 
change of stored  energy is equal to  the  balance of the 
power  generated by the  subharmonic  action,  the  Joule 
losses, and  the power supplied  by the external switching 
generator: 

RL R T ~  
2 o12d:' 

p-" e -  2LoIldZ~/dt=(~R~Z1~(1"11~/i0~)-R~Z1~+~lI~. ( 1 1 )  
It  can be  noted that  Eq. ( 11) reduces to  the expected 

result for various special cases. For  the steady state  un- 
driven  oscillation ( V1=O,  dZl/dt=O), it reduces to  Eq. 
(7 ) .  It also  correctly  predicts the time for a  small signal 

For a low  threshold  power,  a  high Q is especially im- to increase  by  a factor "e". Eq. (1  1) reads for this  case 
portant. 2LodZl/dt= (a-- 1)RTZ1, or In Z ~ = ( ( Y -  1 ) R ~ t / 2 L , =  

The efficiency of conversion of pump power to sub- ( (Y- 1) wlt/2Ql.  Therefore  the exponential  build-up time, 
harmonic power is T', is just ( 2Q1/01) [ l/(oc- 1 ) 1, as has been previously 403 

- ( 3  L0I3 * 

- 
2Q3Qi2 
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The integral  in Eq. (12) can either be integrated by 
parts or  can be solved numerically for various  values of 
c and a. The results are expressed in  Fig. 3 as  the  time 
for switching in  units 2Q1/w1 versus a= Pp/P ,  for various 
values of g p ,  which  depends  in turn  on  the  amplitude of 
the switching voltage, VI. It is seen that times shorter 
than  the passive decay  time ( T O = ~ Q , / W ~ )  are obtained 

Figure2 Switching voltage and subharmonic cur- 
rent versus time. 
A change in the sign of the current corre- 
sponds to  a phase change of 180". 

With  the  saturation  term (Zl2/iO2) included, 
Eq. ( 1 1 )  could be integrated to give this same build-up 
time with saturation included. Eq. ( 1  1) in its steady state 
form (2LoZ,dZ,/dt=0) can also be derived  directly from 
Eqs. (2a) and (2b) if V1 is substituted for  the  zero in 
the  left side of Eq. (2a).  It should be noted that Eq. ( 11) 
predicts  considerable  limiting  action,  since the power 
developed by the  subharmonic action  decreases abruptly 
when Zl becomes comparable to i o .  

The main  use to be made  here of Eq. ( 11 ) will be to 
calculate the  time necessary to change the phase of an 
established current, Zl, by 180" by the application of a 
large  enough  signal, V1, of phase exactly opposite to  that 
of Zl. The time taken to change  the  current  from  an 
initial value - I F  to a final value ZO (a change in the sign 
of Z is equivalent to a  phase change of 180") is given 
from  the above by 

2Q1 go dg1 
= d g p  afl1(1-912)"1+c 

' (12) 

where c=V1/Rrio and g l=Zl / io .  A similar analysis has 
been  made* for  the case of  the  subharmonic klystron. 
However, in  that case the integral  could not be  written  in 
analytic form. 

The question  remains  as to  what limits  should  be 
chosen for  the integration. Figure 2 shows the  type of 
operation  that might be expected in a computer.  The 
switching signals are shown  as the dashed curve  and  the 
subharmonic  output as the solid curve. The  time con- 
stant  that will be  computed is T ,  the  time it takes the 
current  to  change  from  the  state *ZF to  the  state 710, 
where  the initial  value is chosen to be the equilibrium 
current with  switch on  and  the final value that with  switch 
off. This is a  somewhat  conservative  measure  which  takes 
a  longer time  than,  for example, k Z o  to + l o .  The time 
would not be shortened very much if a fraction of TZO,  
such as r 1 0 / 2 ,  were  chosen  as the final state. The value 
of  the final state is given by go =Zo/ io  = d m  The 
initial state, - B F = - Z F / i O ,  is determined by both  the 
values of a and of c, where c is proportional  to  the switch- 
ing voltage VI. It is found by solution of the  equation 

404 (ugp(1-gF2)-dgP=c. 

f 
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Figure3 The swYching time of the subharmonic 
oscillator. 
This time is plotted against the pump  power 
with  the  parameter  being the normalized 
steady-state subharmonic current when  driven 
by the switching  generator.  This  parameter 
increases as the switching  voltage increases. 
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if g,>  1.125, but that  the switching time rises very rap- 
idly if the switching power is  less than  that which corre- 
sponds  to g,= 1.125. The results  shown in Fig. 3 are, of 
course,  equally  applicable for both  nonlinear inductors 
and nonlinear  capacitors. 

These  results can also be  plotted  with g , / g o = Z F / I 0  as 
the switching parameter.  This is shown in Fig. 4. It is 
seen here that,  for small values of a, large values of IF/&, 
are necessary for  rapid switching and vice versa. Very 
roughly, it would appear  that  the  pump power should be 
at least several times the threshold  power  in order for the 
switching to be  reasonably fast  without excessive switch- 
ing power. 

This is also  a requirement  for reasonable efficiency of 
operation,  as  can be seen from  Eq. (9 ) .  However, fast 
switching times and low  threshold  power are mutually 
exclusive. The first demands a  low Q and  the second  a 
high Q.  The scale of the  ordinates in  Fig. 4 is propor- 
tional to  the Q and, even though  the scale of the abscissae 
is proportional  to Q3 for constant  pumping  power, the 
ordinates  take precedence  except at  the  left side of the 
figure. Therefore,  the switching time rises for  an increase 
in Q except for small pumping  power,  where the times 
are long  in  any event. 

These times can be compared with the time necessary 
for a  small signal to be amplified by a factor "e". This 
time is given by the  expression 

r=-(-). , ~ Q I  1 ( 1 3 )  

This time is shown  as the dashed curve in Fig. 4 and is 
comparable to the switching time for reasonably large 
switching signals ( I F / &  N 1.7). 

It  can be shown that  it is possible for  one  subharmonic 
oscillator to switch another identical subharmonic oscil- 
lator, but  with an increase  in switching time to approxi- 
mately l0Ql/wl ( T 5 in Fig. 4 )  .g Several simplifications 
will be  made. First  it will be assumed that  an isolator or 
some other one-way device  prevents  power from flowing 
from Oscillator 2 to Oscillator 1 .  Second, it will be as- 
sumed  that power from Oscillator 1 flows only into  the 
reactor of Oscillator 2 and  not  into its load  or  into any 
other subsequent  circuitry. There is a certain imprecision 
in setting up  the constant-voltage generator  required  in 
Eq. (12). It will be assumed that  the voltage, VI, induced 
in Circuit 2 is equal  to  the  current supplied by Circuit 1, 
I O ,  multiplied by the  reactor resistance & = R T / ~ ,  or 
VI=IORT/~. The power delivered is thus IOIIRT/~, where 
I I  varies from a  value - IF to + I O .  Over the  range of I1  

from - Z F  to "lo, the power delivered is greater than  the 
power  available.  However, the time  spent  in  traversing 
the region - I F  to -IO is only  a  small part of the  total 
switching time, and  in  any event the result of such a 
calculation will set a lower  limit on  the switching time 
subject to  the constant-voltage  assumption. 

From  the  denominator of Eq. (12) it can be seen that, 
for switching to occur, 

V1/RT=Z0/2>a11( 1 - Z ~ 2 / i o 2 )  -Il (14) 

0 1  a-1 

for all values of ZI. The right  side of the  equation has  its 
maximum value  for g1 = I l / i o  = (a- 1 )  /3a. Substitu- 
tion of this value into  Eq. ( 14) leads to  the  condition  that 
a=Pp/P,<2.25 for switching to occur. For values of 
a<2.25, the value of c to be used in Eq. (12) is c= 
90/2= (a- 1 )/4a. A table of the calculated values of 
the  time in  units 2Ql/~1  and of IF/&, are given in  Table 1 
for the possible switching of one oscillator  by another. 

Although it is possible to switch one oscillator by an- 
other,  the times are  quite long and  operation would  be in 
a region  where rather poor efficiency in conversion of 
pump power to  subharmonic power would be  obtained. 

In this paper,  the compromises inherent in  trying to 
simultaneously  minimize pump power, switching power, 
and switching time  have been considered for  the case 
where  a subharmonic oscillator has impressed upon  it a 

""" 
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Figure4 The switching time of the subharmonic 
oscillator. 
This  time is plotted against the  pump  power 
with  the  parameter being  the ratio of the 
steady-state  subharmonic current when  driven 
by the switching generator to that when not 
driven. 405 
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switching  signal of opposite  phase. The method  followed 
should  also  be of use in  the  treatment of more  compli- 
cated  engineering  situations. 

I t  is a pleasure  to  acknowledge  helpful  discussions  with 
I. Palocz  and  Prof. N. M. Kroll,  and  the  encouragement 
and  comments of Dr. W. V. Smith. 
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