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Shock Waves  in  Nonlinear  Transmission Lines 
and Their  Effect on Parametric Amplification 

Abstract:  The propagation of a periodic signal on a transmission line  with a nonlinearity in the distributed 

capacitance is  examined. The signal is  deformed during its propagation and electromagnetic shock waves 

are generated. It i s  pointed out that the shock wave  will form in  a distance which i s  short for any parametric 

amplification purposes. The subsequent growth of the shock and its decay, due to the inevitable dissipation 

associated with a shock, are  analyzed assuming that the capacitance variations are small compared to the 

total capacitance. The propagation of a small deviation from a signal which is perfectly periodic in time 

i s  also examined, and  it is  shown that the small deviation may spread out in time but cannot be changed in 

its  sign. This result was invoked in  an earlier paper demonstrating the impossibility of parametric amplifica- 

tion on dispersionless nonlinear lines. 

1. Introduction 

An earlier  paper1  pointed out  that a  large-amplitude 
signal moving along a  nonlinear  transmission  line  was 
subject to  deformation, since various  portions of the 
signal move  with  different velocities. The present note is 
intended to describe  this deformation in more detail, 
particularly with regard to  the  formation of shock waves 
and their effect on  parametric amplification. The  defor- 
mation  process is of some  interest  in itself, as  a  method 
of harmonic generation and as a method by which one 
end of a  pulse  can be sharpened at  the expense of the 
other.  This  paper will be entirely  concerned  with the 
behavior of traveling waves. A separate  note2  has pointed 
out that some  interesting parametric amplification effects 
are obtainable  with  standing waves. 

Our considerations on this  subject  were  largely  moti- 
vated by the possibility of constructing  transmission lines 
with a ferroelectric  material just above  its Curie point. 
In a short  temperature  range, just  above the  temperature 
at which  ferroelectric  materials lose their spontaneous 
polarization,  they are strongly  nonlinear  dielectric^.^^ 
The details of the theory developed below, however, are 
not  tailored  particularly to the ferroelectric case. First of 
all,  ferroelectrics are  not  the only possible embodiment 
for a  nonlinear  electromagnetic  medium.  Secondly, ferro- 
electrics have special properties  which  would  consider- 
ably  complicate the analysis but probably would not 
affect the relevant phenomena very greatly. 

Of the special properties of ferroelectrics that we have 
in mind we may list first the dispersion at low frequen- 

cies, which is due to electromechanical effects. At low 
frequencies, the  lattice distorts  mechanically as induced 
polarization is developed. At high frequencies the me- 
chanical  inertia of the lattice  prevents  this  distortion and 
results  in  a different D-vs-E relationship. This dispersion 
does  not show up in the dielectric  constant  measured at 
D = E = O .  It does,  however affect the nonlinear be- 
h a ~ i o r . ~  If we assume that all the frequency  components 
of the electrical signal are well above the  important 
mechanical  transverse  resonance of the  structure,  and if 
furthermore  the velocity of electromagnetic waves along 
the  structure is high compared  to  that of sound waves, 
then  this  source of dispersion will be unimportant.  This 
condition will certainly be well satisfied in the microwave 
range.  A  second property of ferroelectrics that will be 
ignored, but only  in part, is a high-frequency dispersion. 
There will, in  actuality, be deviations from a  simple 
capacitive  D-vs-E  relationship at frequencies  which are 
high  enough so that  the particles which move to establish 
the polarization are moved sufficiently fast to be subject 
to  damping  and/or inertial effects. This is presumably 
the  source of the high loss factor measured near  the  Curie 
point  in BaTiOa by Benedict and D ~ r a n d . ~  We will not 
ignore the existence of this  dispersion but will assume 
that  it  occurs  at very  high  frequencies, so that  it is rele- 
vant only in determining the  width of electromagnetic 
shock waves. Our  theory is thus based upon a  simple, 
frequency-independent D-E relationship. It is unlikely 
that  there will be any nonlinear  reactance,  electric or 391 
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shock to be a  nondissipative  phenomenon. This inconsist- Figure I Capacitive characteristic used in most of 
ency leads to  erroneous conclusions about  the conditions the discussion in this paper. The symbol 
under which  shocks form,  and completely  eliminates the g is  the charge per  unit  length of line and 
signal decay caused by the shock formation. v the voltage across the  line. The capaci- 

Our treatment is intended, at least  in  principle, to be tance is  a monotonically decreasing func- 
readable without a  previous  knowledge of shock wave tion of the  voltage. 
theory, but  the arguments are likely to be much  more 
transparent  to  the  reader  who is familiar with the general 
notions of shock wave treatments. 

2. General shock wave  behavior 

In this section we  will describe the general  behavior of a 
propagating  periodic pump signal on a  nonlinear  line. 
We will state results  here,  without much justifiication, 
leaving the detailed arguments  to  the subsequent sections. 
In this  section  as well as  in all subsequent  ones, the  non- 
linear characteristic we have  in mind is sketched  in  Fig. 1. 
The relevant  point is that d2q/dv2<0.  The  treatment of 
the case  where d2q/dv2>0 is a trivial  variation on  the 
one we shall discuss, and does not  require  separate  com- 
ments at  each stage. Wherever the case d2q/dv2  < 0 leads 
to a  sharpening of wave fronts,  the case d2q/dvz  > 0 leads 
to a  spreading out,  and vice versa. The characteristic 
shown  in Fig. 2,  which is typical of an unbiased ferro- 
electric,  leads to a  somewhat more complicated analysis. 
For a signal which  includes  both positive and negative 
voltages, dzq/dv* changes  sign at q=v =O. The modifica- 
tions to  our basic theory, necessary for  the description of 
such  a signal, are indicated  in  Section 7. 

Figure 3 is a  typical  sketch of a  propagating pump 
signal on a  transmission  line with the kind of capacitance 
characteristic  shown in Fig. 1. The significant point  in 
the analysis of the signal is that  each value of voltage 
moves with  its  own  characteristic  value of velocity, 
l/vF, where c is the differential capacitance dq/dv  
determined by that voltage. Near  the beginning of the 
line the signal is still close to its initial sinusoidal form. 
Point A ,  however, moves faster  than  Point B.  In  the cycle 
which has progressed farther down the line  this has 
caused Point C to close in on  the preceding minimum, 
Point D ,  and  to move  away from  the succeeding one, 
Point B.  Eventually the wave form becomes infinitely 
steep, and a  shock wave starts  to  form. F G  denotes  a 
shock  which has  not  yet grown  very  large. The shock has 

392  a velocity which is intermediate between the velocities 
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Figure 2 Capacitive characteristic typical of an un- 
biased ferroelectric line. The capacitance 
has its maximum  value  in the absence of 
a signal. 

characteristic of its end  points. The shock FG will, there- 
fore, move faster  than  the point H ,  and as the shock 
catches up with  portions of G H ,  the shock will grow. 
Similarly the wave between E and F will move faster than 
the shock and, as it catches up with the shock, the shock 
also grows in that direction. The shock  reaches  a  maxi- 
mum amplitude,  somewhere near  the stage  shown at JK 
in  Fig. 3. Subsequently it will diminish. The point I will 
move faster  than  the shock, and by the time it has caught 
up with the shock, the  upper  end of the shock will be 
reduced to  the voltage of I .  Similarly the shock JK moves 
faster  than  the point L, and as it catches up with L, the 
lower end of the shock will be raised the voltage of level 
L. Eventually all portions of the wave move into  the 
shock, or are  caught by the shock, and  the shock  deterio- 
rates asymptotically to  the vanishing  point. 

The general  description we have given is, in part, the 
result of an  approximation whose nature will be pointed 
out in the subsequent discussion. 



3. Criterion for shock formation 

If 1 is the  inductance  per unit length of our line, c ( v )  = 

dq/dv, the differential capacitance per unit  length,  and 
if i, q, and v denote respectively the transmission  line 
current,  charge  per unit  length and voltage, then  the 
basic equations are 

These  equations  have  a  set of particularly  simple  solu- 
tions, corresponding to  the traveling waves for a strictly 
linear  transmission  line.  These “simple waves”s have  the 
property  that in the ( z ,  t )  plane the lines of constant v 
are straight lines with  a  slope 

(3 .3 )  

Every  portion of the wave has a velocity characteristic 
of the voltage at  that  portion of the wave. The  correct- 

ness of these solutions, v=v 

fied by direct substitution  in the wave equation, resulting 
from (3 .1 )  and (3 .2 )  

a2v 
- az2 at ” [  3 -I- c(v)- = o ,  (3.4) 

or else by the  more physical method of reasoning,  em- 
ployed in the earlier  paper.l The difference in velocities 
produces  a  distortion in the moving wave. Voltages asso- 
ciated  with  a low capacitance, c(v), move  fast and will 
tend  to  catch  up with  earlier slower portions of the wave 
which are associated with  high values of c(  v) . Figure 4 
shows four successive stages of deformation in the history 
of a pulse  moving to  the right. The  deformation, as 
shown, is a  result of the  nonlinearity displayed in  Fig. 1. 
Initially, in Fig. 4a,  the pulse is symmetrical. Subse- 
quently Point B comes closer to A ,  and moves away from 

Figure 3 Voltage a s  a function of distance along the line, due to a periodic voltage applied  at z=O. FG is  a 
shock wave that has just formed. The  shock wave JL is near i ts  maximum amplitude. MN is  a shock 
wave decreasing in amplitude. 

Figure 4 Four  successive stages in the  deformation of a propagating pulse. av/az becomes infinite at point a, 
which is  the point where the shock formation starts. 

393 
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C. Eventually voltages launched  at slightly different 
times, will catch up with each  other, and av/az becomes 
infinite, as at point a in Fig. 4c. Subsequent voltages, 
between a and B, will tend to catch up with this steep 
portion of the wave front, while the  steep  portion of the 
wave front catches up with voltages ahead of it, between 
(Y and A .  This results in the growth of the shock wave, as 
shown in 4d. The motion  and  growth of the shock wave 
will be treated in subsequent sections. In this section we 
will be concerned with the first onset of the shock,  as 
shown in Fig. 4c. 

The propagation of a given value of v along  the line is 
given by Eq. (3.3)  or equivalently 

where u = l/dx and where ti is the  moment when the 
voltage v started down the line. The shock wave onset in 
Fig. 4c corresponds to 

(az/ati) ,=o. (3.6) 

Applying the condition of Eq.  (3.6)  to  Eq.  (3.5) yields 

t - t i=u( t i ) /u ’ ( t i ) .  (3.7) 

Let us now consider the special case relevant to  the 
propagation of the  pump signal in parametric Smplifica- 
tion. Consider  a pump signal which causes a sinusoidal 
capacitance  variation at the input end of the line 

Then 

From  Eq.  (3.8) we have 

dc - =co& cos oti . 
dti 

(3.10) 

Substituting (3.10) in (3.9) yields 

u’( t i)  = - - &O cos of{/( 1 +( sin oti) . (3.11) 
U 

2 

For analytical simplicity we will now specialize to  the 
case of small [. This  permits us to replace  the  denomina- 
tor  on  the right-hand side of Eq. (3.11 ) by unity. Using 
this simplified form  in  turn in Eq. (3.7) gives 

t ” t i = - 2 / ( &  cos Uti) , (3.12) 

or 

(3.13) 

Adjacent  trajectories of  the  form (3.5) cross whenever 
(3.13) is satisfied, and  there is a continuum of such 
situations. 

We  are interested in the earliest time, t ( t i ) ,  permitted 
394 by ( 3.13) . Differentiating gives 

dt 2 - - -1- o sin oti=0 , (3.14) 
d ti f w  cos2 wti 

which has its only real solution 

sin Uti  = ( d m -  1) / t  $/2 . (3.15) 

To first order  in 6 therefore, COS wti=  - 1, and = 1 fi 
at  the  formation of the shock. The distance from  the 
input end, at  the time of the first shock formation is 

z=u(ts) ( t-  
1 

tJ = - ( t -  ti) , 4 IC0 
(3.16) 

where for ( t-ti) we can use Eq.  (3.12), resulting in 

(3.17) 

The question now arises, how much  parametric amplifi- 
cation is available in this distance? The most  optimistic 
treatment for  parametric transmission line amplification 
is that of Tien and Suhl.9 According to their theory a sig- 
nal can grow along  the  line  as ea3 where a= 4 (e,&,&) lI2. 
Here f is the  same nonlinearity parameter we introduced 
in Eq. (3.8).  For the dispersionless line being presently 
considered the  propagation  constants and ,& equal 
O I / U O  and w z / u 0  respectively, where 01 is the frequency 
being amplified and 02 is the idling frequency. UQ= 
l /dz  is the propagation velocity along the unpumped 
line. The maximum  value of (Y occurs when 01 and 02 are 
approximately  equal, and close to one-half of the pump 
frequency (if o1 and o2 are exactly equal  to one-half the 
pump frequency, the amplification depends on the signal 
phase, and the Tien  and Suhl treatment does not  apply). 
This  case gives C W = $ & J / U ~ .  The gain obtainable in a 
length of line short enough to prevent the  formation  of 
shock waves must  then be less than eaz, where the value 
of z given by Eq. (3.17) is relevant. The maximum gain 
then is: 

exp(az)  =exp (Lk - =exp(l/2) . (3.18) 
4 UrJ qzfo 

We see therefore that  the deformation  which  leads to 
shock wave formation becomes effective before very 
much  parametric amplification is available. Actually, of 
course, no parametric gain at all is available on a dis- 
persionless line,l and  the preceding exercise only shows 
that if we have two lines, one dispersionless, and  one  to 
which the Tien  and Suhl theory is really applicable, and 
if the capacitance  variation at  the  input is the  same  for 
both lines, then the dispersionless line will develop shock 
waves in a  length of line in which the amplifying  line 
cannot amplify by more  than  exp(  1/2). 

4. Shock wave motion 

If we were to continue to apply Eqs. (3.1)  and  (3.2)  to 
a simple wave, after it has reached the stage depicted in 
Fig.  4c, the solution would become multiple-valued, as 
shown in Fig. 5, since the trajectories of the type of Eq. 
(3.5) will overlap.  This is clearly not a physically signifi- 
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cant solution. On  the  other  hand  there is no reason for 
the wave front  to become less steep  again. The only  way 
out of this  dilemma is to assume that a discontinuity,  as 
shown  in Fig. 4d, will be formed,  and  that  at this discon- 
tinuity the q- w relationship of Fig. 1 becomes inapplica- 
ble. This is not unreasonable,  since  a  very  steep wave 
front implies  very rapid  charge changes, and if the  charge 
motions are sufficiently rapid  the D-E relationship must 
break  down  and show  a  dispersion. We  therefore assume 
that  in actuality  some effect, such as  a  finite relaxation 
time for  the  ferroelectric  when changing its polarization, 
will really prevent  the wave front  from ever  actually 
achieving infinite slope, but  that  the relaxation time is 
short  enough, so that  the wave front  can become  very 
steep. The  motion of such a steep  wave front  can be 
treated  without taking into  account  the detailed  behavior 
of the relaxation (or other dispersion mechanism). A 
treatment of the shock front, calculating  its  thickness as 
a function of the dispersion  behavior, can be given? but is 
not relevant to our present  purposes. 

Consider the two relationships 

They  can be  assumed to be  accurately  valid,  even in  the 
region where q and v are changing  very  rapidly. Now 
consider two planes, such as 1 and 2 in Fig. 6. Plane 2 is 
assumed to  be just ahead of the steep portion of the wave 
front, while Plane 1 is just  behind  it.  Assume that  the 
wave front  has a velocity of motion 11. Now  let us inte- 
grate  equations ( 1) between the two  planes. This gives 

(4.3) 

(4.4) 

Now if z1 and z z  are sufficiently close to  the steep  region, 
then  the integrals involved in  Eqs. (4.3) and (4.4) have 
a time derivative  only  because of the  motion of the steep 
portion,  and  the slower changes due  to  the  motion of the 
parts of the wave with moderate slope can be neglected. 
If the steep wave front moves with velocity u, then the 
integrals change because  in  a time dt a  section of line udt 
in  length  and within the  range of integration has values 
i(z2) and q(z2) replaced by i (z1)  and q(z1) .  Eqs. (4.3) 
and (4.4) therefore become: 

(4.7) 

Figure 5 Multivalued potential function, which re- 
sults from invoking Eqs. (3.1) and (3.21 
or Eq. (3.51 after the propagating  wave 
reaches the stage shown in Fig.  4c. 

Figure 6 Shock wave moving to the right. lines z, 
and z2 are positions of planes close  to the 
shock. 

where cs is the average capacitance between z z  and z l ,  
i.e., the slope of the straight  line,  as  shown in Fig. 7. We 
can immediately  see from Fig. 7 that u(2) <u<u(  1 ) .  
Therefore the parts of the wave following the shock move 
faster  than the  shock, and will catch  up with it  and  en- 
large the shock.  Similarly the shock will catch  up with 
the slower-moving wave ahead of it, and this will also 
enlarge the shock.  Actually  when  a portion of a signal 
merges with the shock, reflections are generated. These 
are, however, weak if the  capacitance variation between 
the  end points of  the shock is small compared to  the 
capacitances. This is the case  which we will consider 
hereafter.  The  motion of a  shock is inevitably  accom- 
panied by the dissipation of energy, and  the dissipation is 
essentially  independent of how  narrow the  shock is, once 
the wave front  has already  become  steep compared to 
the rest of the wave shape  and is limited from  further 
steepening  by the dielectric  relaxation  time. This energy 
dissipation can be  evaluated by taking  the energy flow 
across the plane at z1 subtracting  from  it  the energy flow 
across the plane at z z  and also subtracting  the  rate  at 
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which the shock,  in  causing  a change  from  State 2 to 
State 1, leaves stored  energy  in  its  wake. The result of 
this consideration is that a  shock, in passing through a 
unit  length of line, dissipates an  amount of energy equal 
to  the cross-hatched area of Fig.  7. 

This dissipation  actually causes the  entropy of the final 
State “1” to be different from  that of the initial State “2”. 
Since  Fig.  7  represents an adiabatic q-w characteristic, 
the two  states involved cannot really be on  the  same 
curve,  as drawn in  Fig. 7. I t  can  be  shown,  however, that 
for typical  ferroelectric  nonlinearities, the correction in- 
volved is  negligible.’ 

5. Signal  attenuation by  shock waves 

In this section we will be concerned  with  determining the 
behavior of the  pump signal, once shock waves have 
formed  and caused  energy loss. In its  complete  generality 
this is a rather  formidable  problem,  and we have been 
able to  handle  it only by confining ourselves to  the case 
where the capacitance  variation is a  small fraction of 
the capacitance. In this case the reflections formed when 
part of the  continuous wave merges with  a shock  can be 
neglected. As  a  consequence the  continuous  portions of 
the wave are unaffected by the shock formation until  they 
actually  merge with the shock.  This  method is taken  from 
the  literature  on fluid flow problems,lo but a brief inde- 
pendent justification of it is given in  Appendix A. 

The shock waves first form  at  the position given by 
Eq.  (3.17).  They will grow  subsequently, reach a  maxi- 
mum,  and  then  deteriorate,  as shown in  Fig. 3. We shall 
describe the growth and  attenuation  of  the shock wave, 

Figure 7 Point 2 is the  initial state of a line, just 
before being reached by a shock wave, 
and corresponds to the  location z2 in Fig. 
6. Point 1 corresponds  to z, and gives the 
charge and voltage after shock passage. 
The slope of the  dotted  straight  line  is cs ,  
the shock capacitance. The cross-hatched 
area between curve and straight line is 
the dissipation, per unit length  of line, 
caused by the shock passage. 

using the  approximation described  above,  which  permits 
us  to use  trajectories as given by Eq.  (3.5)  to describe the 
propagation of those parts of the signal which have  not 
yet  merged  with the shock.  We  shall also assume that  at 
the  input  end  Eq.  (3.8) applies, with #<< 1. 

This  problem becomes  very  simple if we assume that 
the shock has  the velocity uo= l/dFo at all times. Is  this 
reasonable? When  the shock first forms, u =uo, neglecting 
second-order terms in t2; this was pointed out  in Section 
3. The  shock  forms at  a  voltage  halfway  between the 
maximum and  minimum  pump voltages. What  happens 
in its subsequent  growth? The voltage associated  with  a 
velocity uo+ S and  the voltage associated with the velocity 
UO- S will merge  with  the  shock,  at  the  same  time  (neg- 
lecting  again,  second-order effects in #) as long as the 
shock  retains  its velocity uo. As long  as the shock remains 
symmetrical about  the halfway  voltage,  however,  its 
velocity will stay at uo, to second order  in [. Hence  the 
shock velocity can  remain  at uo. The  argument just given 
shows that  there is a  solution  which has a  shock velocity 
which remains  at uo (to first order  in [) . Is this  a  stable 
equilibrium? If for  some reason the shock should  sud- 
denly  grow faster  on  the low-voltage side than  on  the 
high-voltage side, the shock velocity would be depressed 
below uo. Thereafter  the high-voltage wave form would 
catch  up with the shock more rapidly than before,  while 
the shock would catch the low-voltage wave form less 
rapidly. As a  result the shock  would  be  accelerated, 
showing that  the solution  with fixed velocity uo is, in 
fact, stable. 

Equation  (3.8) leads to 

and this  variation is depicted in Fig.  8. Let us consider 
two points on this  curve,  corresponding to uti = f 0. These 
two points will join the shock wave at the  same time. If 
this  joining occurs  at a  distance z from  the initial end of 
the line, then we must have: 
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where  the final term, 2 0 / ~ ,  represents the  time delay 
with which the  faster speed is launched  on  the line,  as 
compared  to  the slower speed. Eq. (5.2) yields 

The shock first forms  for values of 0 near zero. This cor- 
responds to  the  minimum value of z=2uo/#0, in agree- 
ment with the earlier  results of Eq.  (3.17).  The shock 
reaches  its peak  amplitude  for 0 = n/2,  giving z =TUO/(O.  

Thus  the shock develops to  its maximum  amplitude,  in 
about half the additional  distance that  it  took  the shock 
to form in the first place. The shock  decays  when 0 
becomes  greater than ~ / 2 .  Its  asymptotic decay corre- 
sponds to 0 = X -  E where E << X .  This yields 



z = 2?ruo/.50e , (5.4) 

SO that eventually the shock amplitude decreases inversely 
as the distance along the line. 

6. localized deviation 

In this section we will be concerned with a signal which 
deviates from  the periodic pump signal by a  small 
amount.  The deviation will be assumed highly localized 
in space  and time.  As has been  pointed out in the earlier 
paper,* all other signals can be considered as combina- 
tions of such localized signals. The earlier paper consid- 
ered  deviations of the  form shown in Fig. 9. Points P and 
Q follow  their unperturbed trajectories. The intermediate 
points, for  both the  original signal and  the  perturbed 
signal, have  intermediate velocities. The localized small 
signal will be  compressed, or expanded  depending on  the 
relationship of u ( P )  to u ( Q )  . The  extra charge associ- 
ated with the deviation  must, however, be conserved. 

The development of the signal  outside of the  range PQ 
is unaffected by the small deviation, as long  as the  range 
PQ has  not merged with a  shock. What happens after PQ 
merges with a  shock? After this  time the  continuous 
portions of both  the  pure  pump signal and of the  per- 
turbed signal consist of voltages whose trajectories  were 
undisturbed by the small signal between P and Q. This, 
of course, assumes the  approximation of Section 5, which 
neglects reflections. The two waves under consideration, 
the  perturbed  and  the  pure  pump signal,  must differ, 
however,  since charge is conserved. To see how  they  can 
differ, even though their  continuous  portions are defined 
by the  same trajectories,  consider  these  trajectories  in the 
immediate vicinity of a  shock.  As is apparent  from Fig. 5, 
a shock forms  after  the  continuous solution,  predicted by 
the  method of trajectories, becomes rnultivalued. The 
shock  represents  a  transition from  one  branch of the 
multivalued function  to  another.  The multivalued func- 
tion, by itself, does not  determine  the position of the 
shock,  except that  it limits the shock to  the region  in 
which the  function  has  three branches. Hence two solu- 
tions can correspond to the  same trajectories  as far as 
their  continuous portions are concerned, but  can differ 
in the position of the shock. 

After P Q  has merged  with the shock, the two waves 
must  then be as  shown  in Fig. 10. The extent to which 
the two  shocks are  separated is determined by the condi- 
tion of charge conservation. We  thus see that a localized 
charge  remains localized, even after  it merges with the 
shock. This is the basic fact which was already  invoked 
in the earlier  paper* to show  that  parametric transmission 
line amplification was impossible. 

I t  is interesting to note,  however, that  in a  very  special 
way, a nonlinear  transmission line can  provide amplifica- 
tion.  Consider  a small signal of the  form shown in Fig. 9. 
If it is situated on a  line where u ( P )  > u(  Q ) ,  the small 
signal will be  contracted in  time  as it travels down  the 
line. Charge conservation then requires the local  voltage 
disturbance v, due to the small signal, to be inversely 
proportional  to  the length of time T of the small signal. 

Figure 8 Variation of wave velocity, as a function 
of time, at the initial  end of  the  line. The 
portion of the wave launched at d i =  +6' 
will merge with the shock at the same 
time a s  the portion of the wave launched 
at  di= -8 .  

Figure9  The solid line is  a portion of the periodic 
pump signal. The dotted  line indicates a 
small, highly  localized  deviation. 

Figure 10 The solid curve and the  dotted curves 
represent two signals whose constant 
voltage trajectories in the (z, f) plane  are 
identical,  but  whose shock positions 
differ. 397 

IBM JOURNAL OCTOBER 1960 



Figure ZZ a) Shows a symmetrical capacitance characteristic, with Q and P as the  states,  respectively, before 
and after shock passage. b) Shows the  same shock after it has grown. line PQ i s  tangent to the 
q-v curve at 9. 

Since the small-signal impedance level  does not change 
as the signal  propagates, the energy,  which  is proportional 
to Iv2dt, varies  as 1/T. Hence a small  signal, riding on a 
portion of a wave  which  is contracting in time,  will have 
its frequencies raised and its  energy content raised pro- 
portionately. The simple  blob  shown in Fig. 9 is not 
essential to this argument-the  small  signal can be  oscil- 
latory. A small  signal can, of course, also  be attenuated 
by being  placed on the line during a time when the small- 
signal capacitance at the input end is  being  increased. 
Quite aside from the energy  changes  involved,  when a 
small  signal  travels  down the nonlinear line together  with 
a large signal, the small  signal  has  its transit time  con- 
trolled by the large signal. Such a line  could therefore be 
used for frequency and phase modulation. 

The earlier paper1 dealt separately with the case in 
which the small-signal frequency was a multiple of ex- 

Figure 1.2 line PQ represents a shock with a tan- 
gency at Q so that c,=c(Q). Subse- 
quently a higher voltage P' catches up 
with the shock. This permits the shock to 
grow at its lower end to the new point 
of tangency 0'. 
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actly one-half the pump frequency. Consider the most 
important case, in which the signal frequency is  exactly 
half the pump frequency. If suitably synchronized with 
the pump signal, then each positive half-cycle of the 
small  signal charge can merge  with one shock wave, and 
the succeeding  negative  half-cycle  with the next shock 
wave. Thus each half wave of the small  signal charge is 
compressed to a Dirac &function. This kind of compres- 
sion was considered  in the earlier paper, and it was 
pointed out that  it corresponds to an increase in the fun- 
damental component, by a factor 4/~. In the earlier 
paper, however,  this was put  forth only as an upper limit 
for the possible  gain, and it was not  shown to be actually 
achievable. 

At the other exceptional frequencies, the higher  multi- 
ples of one-half the pump frequency, several  half  cycles 
of the signal  will  coalesce  with one shock. If the number 
of half  cycles is even, the signal  will disappear completely. 
If the number of half  cycles is odd, the signal will not 
disappear, but the component at the fundamental fre- 
quency will always  be reduced. 

In the preceding discussion  of the behavior at the ex- 
ceptional frequencies we have  assumed a q-v character- 
istic and a pump signal  wave form leading to one shock 
wave per pump cycle.  One can conceive  cases  which  lead 
to more than one shock per pump cycle. It can,  however, 
be  shown that even  in these cases 4/n is a limit on the 
possible gain. 

7. Symmetrical line 

We  will  briefly indicate here the modifications  involved 
if we are concerned with a q-v relationship of the type 
shown in Fig. 2. First of all,  it  is clear that a single  cycle 
of the pump can take us through two high-capacitance 
and two  low-capacitance portions of the wave, and that 
therefore each cycle of the pump signal  will lead to two 
shock waves  instead of one. 

A more subtle difference  arises after shock wave for- 
mation. Figure 1 la  shows the terminal points for a shock 
which  has not yet  developed  very far.  In its growth it will 



eventually reach  the stage shown in Fig. 1 lb.  Here P and 
Q are  the terminal  points of a  shock. The straight line 
which connects P to Q is tangent to the  curve at A .  Hence 
the  shock  capacitance, cg, equals the capacitance of  the 
line immediately ahead of the shock  and is larger than 
the line  capacitance  some distance ahead of the shock. 
Therefore  the lower end of the shock will not continue to 
grow, if P remains fixed, If P is not yet the maximum 
voltage in  the cycle, the shock can still grow at this end. 
This will decrease the shock  capacitance  and  simultane- 
ously permit the lower end of the shock to catch up with 
the  continuous  portions of the wave until the condition 
of tangency is restored.  This  sequence is shown in Fig. 
12. Once P has  reached the maximum voltage in the 
cycle, it  must  decrease subsequently, causing the shock 
velocity to  be decreased. As a  result  some  portions of the 
shock, at its lower end, are free to travel faster than the 

shock and will peel off, restoring the condition of tan- 
gency. The portions that peel off one  shock will eventu- 
ally reach the preceding  shock and merge with  it. 

How does this affect the  behavior of the small signal? 
Fig. 13a shows a pure  pump signal, with a  shock wave, 
and also shows the deviation due  to a highly localized 
small signal. When the small signal has  reached  the shock, 
we can expect an immediate effect, as in Section 6 and as 
illustrated in Fig.  13b.  Since the shock, in this case, gen- 
erates  a  continuous signal ahead of itself  we must expect 
at some later time  a  situation as shown in Fig. 13c,  where 
the effects of  the small signal are  not localized to the 
immediate  shock vicinity any more. What we wish to 
show specifically is that  the situation  must be as  repre- 
sented in Fig. 13c  rather than in Fig. 13d. 

Assume for  the moment that Fig.  13d  represents a 
possible situation. The portions AB and AC represent 

Figure 13 The solid line is the periodic pump signal, the dotted  line indicates the history of a small deviation. 
Part a) is  before the deviation merges with the shock; b) i s  just after the deviation catches up with 
the shock; c l  i s  a still later state; and dl i s  not possible. 
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Figure 14 In a) a small  voltage increment is  catching up with a shock. In bl  it has caught up with the shock, 
produced a modified shock and a reflected wave. 

voltages whose trajectories of the  form  (3.5)  are  unaf- 
fected by the small signal. The trajectories all belong to 
the  same  branch of the  same continuous  solution of Eqs. 
(3.1)  and (3.2). The difference between the two signals 
occurs only  in the location of the shock, Le., in  the time 
and location  where the signal departs  from this branch. 
The two signals have the  same  value of voltage at D and 
therefore also the  same velocity. The two signals thus 
have  identical  trajectories  associated  with the identical 
voltages at D. Since the two  shock  positions BE and C F  
are  separated  in space, the trajectory of D ,  followed 
backwards  in  time,  must  intersect the two  shock positions 
at different times. The intersection of the  trajectory of D 
with  a  shock,  represents the  moment when D “peeled off’ 
the shock. This is the situation that was illustrated  in 
Fig. 1 lb;  at  the  moment when D “peels off,” it must  have 
the velocity of the shock. The velocity of the voltage at 
point D is, however,  time-independent. Therefore when 
D peeled off the shock  which  subsequently becomes CF,  
it must  have had  the  same velocity as when it peeled off 
the shock  which  subsequently becomes BE. Both shocks 
at  the  time of “peel off’ have the  same lower end voltage, 
namely the voltage later  found  at  D.  The two shocks can 
only have  had  the  same velocity, i.e., the velocity of D ,  if 
they  also had  the  same  upper end (terminal) voltage, at 
their  respective  “peel off’ moments. Hence  the  trajectory 
of D must intersect the trajectory of this upper shock end 
voltage in  two points. The  upper shock end corresponds, 
however, to a  higher velocity than  the shock and its  lower 
end,  and  therefore  the two trajectories can cross in only 
one point. 

Since the situation  shown in Fig. 13d is ruled out,  the 
small signal retains its original sign, even though  it does 
spread  out  ahead of the shock. It will retain its original 
sign, even  when portions of it catch up with the preceding 
shock wave and “peel off’ again from this  preceding 
shock. It is this lack of sign change which was invoked in 
the earlier paper  to show that  parametric transmission 
line amplification did not exist. 

Conclusion 

The  main conclusion has already been reached  in the 
earlier paper,I i.e., parametric amplification cannot be 
achieved on transmission lines which are relatively dis- 
persionless. For  harmonic generation, for wave shaping, 
for intermittent amplification accompanied  by  a signal 
compression  in  time, or  for  the control of transit time 
through transmission systems these lines do  have possi- 
bilities. 

Appendix: Reflections can be ignored 
for weak shocks 

Consider the situation  shown in  Fig.  14a, which is in- 
tended to depict  a  situation on a  transmission line with a 
charge-voltage  relationship  as  shown in Fig. 1. The  large 
voltage drop is a  shock wave, and a  small  voltage  incre- 
ment is catching up with it. After  the two steps coalesce, 
the shock may be modified. No transmitted signal can 
appear  ahead of the modified shock,  since the velocity of 
the shock is higher than  that of a  small signal propagating 
on  the  line in  its  initial  state. There can,  however, be a 
reflected wave as shown  in  Fig.  14b. Let Z,, be the im- 
pedance of the  upper end of the shock, that is, the  ratio 
of change  in shock voltage to  change in current discon- 
tinuity as the initial state of the shock is kept unchanged, 
but the final state of the  shock is changed slightly. Fur- 
thermore let Z’ be  the characteristic  impedance of the 
line in its final state,  after  shock passage. Then  the bal- 
ances of currents  and voltages that  determine  the strength 
of the reflected wave are exactly the  same as for  the 
problem in which  a voltage wave on a line of impedance 
Z’ is incident on a termination of impedance ZaU. Hence 
the  ratio of reflected voltage to incident voltage is 

v, Z,,-Z‘ 
vi z,, “2 ”~ 
- (A.1) 
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Figure I5 Here a shock  catches up with a small voltage increment, again causing a modified shock and a 
reflection. 

A straightforward auxiliary  calculation shows into the shock. The reflections that  are generated,  there- 
fore,  are stretched out more, as the line becomes more - 

1 2c, z,,= I" ( ~ . 2 )  linear.  Within any  one  pump cycle on a mildly nonlinear 
y c8 CS'rC' ' line, therefore, the reflections due  to shock waves ahead 

where cs is as defined in Eq. (4.7) and c~ is the  capaci- of it at best affect  the  dc level, rather  than  the detailed 
tance associated with the final state, somewhat similar wave form,  and its rate of distortion  (unless the degree or 
considerations for the  initial of ~ i ~ .  l sa ,  resulting  in sign of the nonlinearity is very  critically dependent  on  dc 
a final configuration  shown  in Fig. 15b, yield bias level).  It  can, in fact, be  shown that  the  approximate 

method of Section 6, which neglects reflections, can give 
somewhat incorrect values for  the  dc levels. For most vr Y'" Y,l 

-= 
vi Y,,+Y' ' (A'3) purposes,  however,  this is not likely to be a  serious error. 

where the admittances are Of the previously  Eqs. (3 .1 )  and (3.2) require that  the exact solution have 
The degree of error  can generally be recognized,  since 

the  same time  average  value of v and i all along the line. defined impedances. Y" characterizes the initial state of 
the line, ahead of the  shock. Y,l is an  admittance defined 
for  the shock when its initial state is changed  and its final 
state kept fixed. The  admittance YSl is given by: Acknowledgments 

- 
c, C,+C" The  author is indebted to L. H. Thomas of Watson Lab- 

Yd= JTT. (A.4) oratory, who  introduced  him to  the basic concepts con- 
cerning electromagnetic  shock waves. A conversation 

It is clear that v r / v i  for both (A.1) and (A.3) is a with E. T. Jaynes of Stanford University also stimulated 
fraction of the relative capacitance  change associated interest in this field. 
with the  shock wave. Hence if the  latter is small, the 
reflections are small. 
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linear, but simultaneously  longer, that  the total of the Shock Waves, Interscience  Publishers,  Inc., New York, 
reflections actually  decreases and goes to  zero as the 1948. 
linear  case is approached. 9. P. K.  Tien  and H. Suhl, Proc.  IRE, 46, 700  (1958). 

linear, the wave following the shock takes  longer to move Received  October 7, I959 

References 

Rev., 98, 1010 (1955). 

4, 424  (1959). 

It is clear, however, that as the  line is made more 10. Courant and Friedrichs, op.  cit., Sec. 74, p. 161. 

IBM JOURNAL. 


