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Shock Waves in Nonlinear Transmission Lines
and Their Effect on Parametric Amplification

Abstract: The propagation of a periodic signal on a transmission line with a nonlinearity in the distributed

capacitance is examined. The signal is deformed during its propagation and electromagnetic shock waves

are generated. It is pointed out that the shock wave will form in a distance which is short for any parametric

amplification purposes. The subsequent growth of the shock and its decay, due to the inevitable dissipation

associated with a shock, are analyzed assuming that the capacitance variations are small compared to the

total capacitance. The propagation of a small deviation from a signal which is perfectly periodic in time

is also examined, and it is shown that the small deviation may spread out in time but cannot be changed in

its sign. This result was invoked in an earlier paper demonstrating the impossibility of parametric amplifica-

tion on dispersionless nonlinear lines,

1. Introduction

An earlier paper' pointed out that a large-amplitude
signal moving along a nonlinear transmission line was
subject to deformation, since various portions of the
signal move with different velocities. The present note is
intended to describe this deformation in more detail,
particularly with regard to the formation of shock waves
and their effect on parametric amplification. The defor-
mation process is of some interest in itself, as a method
of harmonic generation and as a method by which one
end of a pulse can be sharpened at the expense of the
other. This paper will be entirely concerned with the
behavior of traveling waves. A separate note? has pointed
out that some interesting parametric amplification effects
are obtainable with standing waves.

Our considerations on this subject were largely moti-
vated by the possibility of constructing transmission lines
with a ferroelectric material just above its Curie point.
In a short temperature range, just above the temperature
at which ferroelectric materials lose their spontaneous
polarization, they are strongly nonlinear dielectrics.®*
The details of the theory developed below, however, are
not tailored particularly to the ferroelectric case. First of
all, ferroelectrics are not the only possible embodiment
for a nonlinear electromagnetic medium. Secondly, ferro-
electrics have special properties which would consider-
ably complicate the analysis but probably would not
affect the relevant phenomena very greatly.

Of the special properties of ferroelectrics that we have
in mind we may list first the dispersion at low frequen-

cies, which is due to electromechanical effects. At low
frequencies, the lattice distorts mechanically as induced
polarization is developed. At high frequencies the me-
chanical inertia of the lattice prevents this distortion and
results in a different D-vs-E relationship. This dispersion
does not show up in the dielectric constant measured at
D=E=0. It does, however affect the nonlinear be-
havior.? If we assume that all the frequency components
of the electrical signal are well above the important
mechanical transverse resonance of the structure, and if
furthermore the velocity of electromagnetic waves along
the structure is high compared to that of sound waves,
then this source of dispersion will be unimportant. This
condition will certainly be well satisfied in the microwave
range. A second property of ferroelectrics that will be
ignored, but only in part, is a high-frequency dispersion.
There will, in actuality, be deviations from a simple
capacitive D-vs-E relationship at frequencies which are
high enough so that the particles which move to establish
the polarization are moved sufficiently fast to be subject
to damping and/or inertial effects. This is presumably
the source of the high loss factor measured near the Curie
point in BaTiO; by Benedict and Durand.®* We will not
ignore the existence of this dispersion but will assume
that it occurs at very high frequencies, so that it is rele-
vant only in determining the width of electromagnetic
shock waves. Our theory is thus based upon a simple,
frequency-independent D-E relationship. It is unlikely
that there will be any nonlinear reactance, electric or

391

IBM JOURNAL * OCTOBER 1960




392

magnetic, which really meets such specifications. This
theory must then be regarded as a limiting case, which
can be approached in varying degrees by practical sys-
tems. The phenomena of wave distortion and shock wave
formation will presumably show up, in a watered-down
way, even in such systems as a linear transmission line,
periodically loaded with nonlinear p-n junction capaci-
tances.

It is interesting to note that the connection between the
nonlinear electromagnetic problem and the older hydro-
dynamics problems was first pointed out by Salinger® in
1923. Salinger treats the deformation process much as we
will and also recognizes the fact that there must be shock
wave formation. He, however, requires a propagating
shock to be a nondissipative phenomenon. This inconsist-
ency leads to erroneous conclusions about the conditions
under which shocks form, and completely eliminates the
signal decay caused by the shock formation.

Our treatment is intended, at least in principle, to be
readable without a previous knowledge of shock wave
theory, but the arguments are likely to be much more
transparent to the reader who is familiar with the general
notions of shock wave treatments.

2. General shock wave behavior

In this section we will describe the general behavior of a
propagating periodic pump signal on a nonlinear line.
We will state results here, without much justifiication,
leaving the detailed arguments to the subsequent sections.
In this section as well as in all subsequent ones, the non-
linear characteristic we have in mind is sketched in Fig. 1.
The relevant point is that d?q/dv? <0. The treatment of
the case where d?q/dv?>0 is a trivial variation on the
one we shall discuss, and does not require separate com-
ments at each stage. Wherever the case d2q/dv? <0 leads
to a sharpening of wave fronts, the case d?q/dv?>0 leads
to a spreading out, and vice versa. The characteristic
shown in Fig. 2, which is typical of an unbiased ferro-
electric, leads to a somewhat more complicated analysis.
For a signal which includes both positive and negative
voltages, d?q/dv? changes sign at g=v=0. The modifica-
tions to our basic theory, necessary for the description of
such a signal, are indicated in Section 7.

Figure 3 is a typical sketch of a propagating pump
signal on a transmission line with the kind of capacitance
characteristic shown in Fig. 1. The significant point in
the analysis of the signal is that each value of voltage
moves with its own characteristic value of velocity,
1/+/Ic, where c is the differential capacitance dq/dv
determined by that voltage. Near the beginning of the
line the signal is still close to its initial sinusoidal form.
Point 4, however, moves faster than Point B. In the cycle
which has progressed farther down the line this has
caused Point C to close in on the preceding minimum,
Point D, and to move away from the succeeding one,
Point B. Eventually the wave form becomes infinitely
steep, and a shock wave starts to form. FG denotes a
shock which has not yet grown very large. The shock has
a velocity which is intermediate between the velocities
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Figure I Capacitive characteristic used in most of
the discussion in this paper. The symbol
q is the charge per unit length of line and
v the voltage across the line. The capaci-
tance is a monotonically decreasing func-
tion of the voltage.

Figure 2 Capacitive characteristic typical of an un-
biased ferroelectric line. The capacitance
has its maximum value in the absence of
d signal.

characteristic of its end points. The shock FG will, there-
fore, move faster than the point H, and as the shock
catches up with portions of GH, the shock will grow.
Similarly the wave between E and F will move faster than
the shock and, as it catches up with the shock, the shock
also grows in that direction. The shock reaches a maxi-
mum amplitude, somewhere near the stage shown at JK
in Fig. 3. Subsequently it will diminish. The point I will
move faster than the shock, and by the time it has caught
up with the shock, the upper end of the shock will be
reduced to the voltage of . Similarly the shock JK moves
faster than the point L, and as it catches up with L, the
lower end of the shock will be raised the voltage of level
L. Eventually all portions of the wave move into the
shock, or are caught by the shock, and the shock deterio-
rates asymptotically to the vanishing point.

The general description we have given is, in part, the
result of an approximation whose nature will be pointed
out in the subsequent discussion.




3. Criterion for shock formation

If ] is the inductance per unit length of our line, c¢(v) =

dq/dv, the differential capacitance per unit length, and

if i/, q, and » denote respectively the transmission line

current, charge per unit length and voltage, then the

basic equations are

; ol ov (3.1)
ot oz '

oi aq ) oY (3.2)
—_— = —=—c(v) —. .
0z ot o1

These equations have a set of particularly simple solu-
tions, corresponding to the traveling waves for a strictly
linear transmission line. These “simple waves”® have the
property that in the (z, t) plane the lines of constant v
are straight lines with a slope

dz 1

@ Ve G

Every portion of the wave has a velocity characteristic
of the voltage at that portion of the wave. The correct-

. 1 .
ness of these solutions, v=v (z— —_— t) can be veri-

Vie(v)

fied by direct substitution in the wave equation, resulting
from (3.1) and (3.2)

02v ] ] () ov 0 (3.4)
— - c{v) — =0, .
072 ot ot

or else by the more physical method of reasoning, em-
ployed in the earlier paper.! The difference in velocities
produces a distortion in the moving wave. Voltages asso-
ciated with a low capacitance, c(v), move fast and will
tend to catch up with earlier slower portions of the wave
which are associated with high values of c¢(v). Figure 4
shows four successive stages of deformation in the history
of a pulse moving to the right. The deformation, as
shown, is a result of the nonlinearity displayed in Fig. 1.
Initially, in Fig. 4a, the pulse is symmetrical. Subse-
quently Point B comes closer to 4, and moves away from

Figure 3 Voltage as a function of distunce along the line, due to a periodic voltage applied at z=0. FG is a
shock wave that has just formed. The shock wave JL is near its maximum amplitude. MN is a shock
wave decreasing in amplitude.

Figure 4 Four successive stages in the deformation of a propagating pulse. 0v/0z becomes infinite at point a,
which is the point where the shock formation starts.

DIRECTION OF WAVE MOTION —

B

v
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C. Eventually voltages launched at slightly different
times, will catch up with each other, and 9v/9z becomes
infinite, as at point « in Fig. 4c. Subsequent voltages,
between « and B, will tend to catch up with this steep
portion of the wave front, while the steep portion of the
wave front catches up with voltages ahead of it, between
a and A. This results in the growth of the shock wave, as
shown in 4d. The motion and growth of the shock wave
will be treated in subsequent sections. In this section we
will be concerned with the first onset of the shock, as
shown in Fig. 4c.

The propagation of a given value of v along the line is
given by Eq. (3.3) or equivalently

z=(t—t)u(v), (3.5)

where u=1/+/Ic and where ¢ is the moment when the
voltage v started down the line. The shock wave onset in
Fig. 4c corresponds to

(9z/0:):=0. (3.6)
Applying the condition of Eq. (3.6) to Eq. (3.5) yields
t—ti=u(t) /u'(t;) . 3.7

Let us now consider the special case relevant to the
propagation of the pump signal in parametric amplifica-
tion. Consider a pump signal which causes a sinusoidal
capacitance variation at the input end of the line

c=co(1+¢sin ot;) . 3.8)
Then
d 1 1 1 d
W)= (e - ——— . (3.9)
dti \/lC(ti) 2'\/1(‘ 4 dt,'
From Eq. (3.8) we have
C et t 3.10
—dTimcomCOSwi. (3.10)

Substituting (3.10) in (3.9) yields

u'(t,-):—-:_gw cos of;/ (1+£ sin of;) . (3.11)

For analytical simplicity we will now specialize to the
case of small £. This permits us to replace the denomina-
tor on the right-hand side of Eq. (3.11) by unity. Using
this simplified form in turn in Eq. (3.7) gives

t—ti=—2/(fo cos ot;) , (3.12)
or
2
t=ti— —— (3.13)
£w cos of;

Adjacent trajectories of the form (3.5) cross whenever
(3.13) is satisfied, and there is a continuum of such
situations.

We are interested in the earliest time, #(#;), permitted
by (3.13). Differentiating gives
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dt 2
=1

- ——  wsino4=0, 3.14
dt; £w cos? of; ¢ “ ( )

which has its only real solution

sin ot =(\/1+&—1)/=¢/2. (3.15)

To first order in £ therefore, cos ot;=—1, and u=1~/lc,
at the formation of the shock. The distance from the
input end, at the time of the first shock formation is

1
z=u(t;)(t— e)=T (t—1), (3.16)

where for (t—t;) we can use Eq. (3.12), resulting in

-~ 1 -2 _ 2 (3.17)
= \/K(fmCOSa)li>— \/E(;fm ) )

The question now arises, how much parametric amplifi-
cation is available in this distance? The most optimistic
treatment for parametric transmission line amplification
is that of Tien and Suhl.® According to their theory a sig-
nal can grow along the line as e** where a=2%(£28182)'/%
Here £ is the same nonlinearity parameter we introduced
in Eq. (3.8). For the dispersionless line being presently
considered the propagation constants 8; and S, equal
w1/uo and wz/uy respectively, where oy is the frequency
being amplified and oy is the idling frequency. uo=
1/+/Ico is the propagation velocity along the unpumped
line. The maximum value of « occurs when o; and o, are
approximately equal, and close to one-half of the pump
frequency (if »; and o2 are exactly equal to one-half the
pump frequency, the amplification depends on the signal
phase, and the Tien and Suhl treatment does not apply).
This case gives a=2%£w/uo. The gain obtainable in a
length of line short enough to prevent the formation of
shock waves must then be less than e, where the value
of z given by Eq. (3.17) is relevant. The maximum gain
then is:

1 ¢o

T Ve &)) exp(1/2) . (3.18)
We see therefore that the deformation which leads to
shock wave formation becomes effective before very
much parametric amplification is available. Actually, of
course, no parametric gain at all is available on a dis-
persionless line,! and the preceding exercise only shows
that if we have two lines, one dispersionless, and one to
which the Tien and Suhl theory is really applicable, and
if the capacitance variation at the input is the same for
both lines, then the dispersionless line will develop shock
waves in a length of line in which the amplifying line
cannot amplify by more than exp(1/2).

exp(az) =exp (

4, Shock wave motion

If we were to continue to apply Eqgs. (3.1) and (3.2) to
a simple wave, after it has reached the stage depicted in
Fig. 4c, the solution would become multiple-valued, as
shown in Fig. 5, since the trajectories of the type of Eq.
(3.5) will overlap. This is clearly not a physically signifi-




cant solution. On the other hand there is no reason for
the wave front to become less steep again. The only way
out of this dilemma is to assume that a discontinuity, as
shown in Fig. 4d, will be formed, and that at this discon-
tinuity the g— v relationship of Fig. 1 becomes inapplica-
ble. This is not unreasonable, since a very steep wave
front implies very rapid charge changes, and if the charge
motions are sufficiently rapid the D-E relationship must
break down and show a dispersion. We therefore assume
that in actuality some effect, such as a finite relaxation
time for the ferroelectric when changing its polarization,
will really prevent the wave front from ever actually
achieving infinite slope, but that the relaxation time is
short enough, so that the wave front can become very
steep. The motion of such a steep wave front can be
treated without taking into account the detailed behavior
of the relaxation (or other dispersion mechanism). A
treatment of the shock front, calculating its thickness as
a function of the dispersion behavior, can be given” but is
not relevant to our present purposes.
Consider the two relationships

2i 2

1 2o (4.1)
ot 0z

oq % (4.2)

ot z )

They can be assumed to be accurately valid, even in the
region where g and v are changing very rapidly. Now
consider two planes, such as 1 and 2 in Fig. 6. Plane 2 is
assumed to be just ahead of the steep portion of the wave
front, while Plane 1 is just behind it. Assume that the
wave front has a velocity of motion u. Now let us inte-
grate equations (1) between the two planes. This gives

0 %2
’”a?/ dz——[v(z2) —v(z0)], (4.3)
o [* . .
? qdz=—[t(22)—z(zl)] . (4.4)

Now if z; and z. are sufficiently close to the steep region,
then the integrals involved in Egs. (4.3) and (4.4) have
a time derivative only because of the motion of the steep
portion, and the slower changes due to the motion of the
parts of the wave with moderate slope can be neglected.
If the steep wave front moves with velocity u, then the
integrals change because in a time dt a section of line udt
in length and within the range of integration has values
i(z2) and q(zz) replaced by i(z1) and g(z1). Egs. (4.3)
and (4.4) therefore become:

lli(1)~i(2)]1=—[v(2) —v(1)], (4.5)
ulg(1)—q(2)1=—[i(2)—-i(1)]. (4.6)
Eliminating [i(2) —i(1)] from Egs. (4.5) and (4.6) we
find

. 1 »(2)—v(1) B 1

T o

DIRECTION OF MOTION —

Figure 5 Multivalued potential function, which re-
sults from invoking Eqs. (3.1) and (3.2)
or Eq. (3.5) after the propagating wave
reaches the stage shown in Fig. 4c.

DIRECTION OF MOTION |

—-

Figure 6 Shock wave moving to the right. Lines z,
and z; are positions of planes close to the
shock.

where c; is the average capacitance between z, and z;,
i.e., the slope of the straight line, as shown in Fig. 7. We
can immediately see from Fig. 7 that u(2)<<u<<u(l).
Therefore the parts of the wave following the shock move
faster than the shock, and will catch up with it and en-
large the shock. Similarly the shock will catch up with
the slower-moving wave ahead of it, and this will also
enlarge the shock. Actually when a portion of a signal
merges with the shock, reflections are generated. These
are, however, weak if the capacitance variation between
the end points of the shock is small compared to the
capacitances. This is the case which we will consider
hereafter. The motion of a shock is inevitably accom-
panied by the dissipation of energy, and the dissipation is
essentially independent of how narrow the shock is, once
the wave front has already become steep compared to
the rest of the wave shape and is limited from further
steepening by the dielectric relaxation time. This energy
dissipation can be evaluated by taking the energy flow
across the plane at z; subtracting from it the energy flow
across the plane at z» and also subtracting the rate at
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which the shock, in causing a change from State 2 to
State 1, leaves stored energy in its wake. The result of
this consideration is that a shock, in passing through a
unit length of line, dissipates an amount of energy equal
to the cross-hatched area of Fig. 7.

This dissipation actually causes the entropy of the final
State “1” to be different from that of the initial State “2”.
Since Fig. 7 represents an adiabatic g-v characteristic,
the two states involved cannot really be on the same
curve, as drawn in Fig. 7. It can be shown, however, that
for typical ferroelectric nonlinearities, the correction in-
volved is negligible.”

5. Signal attenuvation by shock waves

In this section we will be concerned with determining the
behavior of the pump signal, once shock waves have
formed and caused energy loss. In its complete generality
this is a rather formidable problem, and we have been
able to handle it only by confining ourselves to the case
where the capacitance variation is a small fraction of
the capacitance. In this case the reflections formed when
part of the continuous wave merges with a shock can be
neglected. As a consequence the continuous portions of
the wave are unaffected by the shock formation until they
actually merge with the shock. This method is taken from
the literature on fluid flow problems,'© but a brief inde-
pendent justification of it is given in Appendix A.

The shock waves first form at the position given by
Eq. (3.17). They will grow subsequently, reach a maxi-
mum, and then deteriorate, as shown in Fig. 3. We shall
describe the growth and attenuation of the shock wave,

Figure 7 Point 2 is the initial state of a line, just
before being reached by a shock wave,
and corresponds to the location z; in Fig.
6. Point 1 corresponds to z, and gives the
charge and voltage after shock passage.
The slope of the dotted straight line is ¢,
the shock capacitance. The cross-hatched
area between curve and straight line is
the dissipation, per unit length of line,
caused by the shock passage.
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using the approximation described above, which permits
us to use trajectories as given by Eq. (3.5) to describe the
propagation of those parts of the signal which have not
yet merged with the shock. We shall also assume that at
the input end Eq. (3.8) applies, with £<1.

This problem becomes very simple if we assume that
the shock has the velocity uo=1/+/Ic; at all times. Is this
reasonable? When the shock first forms, u=u,, neglecting
second-order terms in £2; this was pointed out in Section
3. The shock forms at a voltage halfway between the
maximum and minimum pump voltages. What happens
in its subsequent growth? The voltage associated with a
velocity uo+ 8 and the voltage associated with the velocity
uo— 8 will merge with the shock, at the same time (neg-
lecting again, second-order effects in £) as long as the
shock retains its velocity uo. As long as the shock remains
symmetrical about the halfway voltage, however, its
velocity will stay at uo, to second order in £. Hence the
shock velocity can remain at uy. The argument just given
shows that there is a solution which has a shock velocity
which remains at uy (to first order in £). Is this a stable
equilibrium? If for some reason the shock should sud-
denly grow faster on the low-voltage side than on the
high-voltage side, the shock velocity would be depressed
below u,. Thereafter the high-voltage wave form would
catch up with the shock more rapidly than before, while
the shock would catch the low-voltage wave form less
rapidly. As a result the shock would be accelerated,
showing that the solution with fixed velocity ug is, in
fact, stable.

Equation (3.8) leads to

1t = 1—5' t; 5.1
U= \/F—uo( TSlnuu), (5.1)

and this variation is depicted in Fig. 8. Let us consider
two points on this curve, corresponding to of;— = 6. These
two points will join the shock wave at the same time. If
this joining occurs at a distance z from the initial end of
the line, then we must have:

z z 24
= +—, (5.2)
©

Uo (1——j—sin 0) Uo <1+—§—sin 6)

where the final term, 260/w, represents the time delay
with which the faster speed is launched on the line, as
compared to the slower speed. Eq. (5.2) yields

_ 2u0 0
z fo sinf

The shock first forms for values of # near zero. This cor-
responds to the minimum value of z=2u,/éo, in agree-
ment with the earlier results of Eq. (3.17). The shock
reaches its peak amplitude for § == /2, giving z=7uo/éo.
Thus the shock develops to its maximum amplitude, in
about half the additional distance that it took the shock
to form in the first place. The shock decays when ¢
becomes greater than «/2. Its asymptotic decay corre-
sponds to § =7 —¢ where ¢<Z 7. This yields

(5.3)




z=2muo/bwe , (5.4)

so that eventually the shock amplitude decreases inversely
as the distance along the line.

6. lLocalized deviation

In this section we will be concerned with a signal which
deviates from the periodic pump signal by a small
amount. The deviation will be assumed highly localized
in space and time. As has been pointed out in the earlier
paper,® all other signals can be considered as combina-
tions of such localized signals. The earlier paper consid-
ered deviations of the form shown in Fig. 9. Points P and
Q follow their unperturbed trajectories. The intermediate
points, for both the original signal and the perturbed
signal, have intermediate velocities. The localized small
signal will be compressed, or expanded depending on the
relationship of u(P) to u(Q). The extra charge associ-
ated with the deviation must, however, be conserved.

The development of the signal outside of the range PQ
is unaffected by the small deviation, as long as the range
PQ has not merged with a shock. What happens after PQ
merges with a shock? After this time the continuous
portions of both the pure pump signal and of the per-
turbed signal consist of voltages whose trajectories were
undisturbed by the small signal between P and Q. This,
of course, assumes the approximation of Section 5, which
neglects reflections. The two waves under consideration,
the perturbed and the pure pump signal, must differ,
however, since charge is conserved. To see how they can
differ, even though their continuous portions are defined
by the same trajectories, consider these trajectories in the
immediate vicinity of a shock. As is apparent from Fig. §,
a shock forms after the continuous solution, predicted by
the method of trajectories, becomes multivalued. The
shock represents a transition from one branch of the
multivalued function to another. The multivalued func-
tion, by itself, does not determine the position of the
shock, except that it limits the shock to the region in
which the function has three branches. Hence two solu-
tions can correspond to the same trajectories as far as
their continuous portions are concerned, but can differ
in the position of the shock.

After PQ has merged with the shock, the two waves
must then be as shown in Fig. 10. The extent to which
the two shocks are separated is determined by the condi-
tion of charge conservation. We thus see that a localized
charge remains localized, even after it merges with the
shock. This is the basic fact which was already invoked
in the earlier paper? to show that parametric transmission
line amplification was impossible.

1t is interesting to note, however, that in a very special
way, a nonlinear transmission line can provide amplifica-
tion. Consider a small signal of the form shown in Fig. 9.
If it is situated on a line where u(P)>u(Q), the small
signal will be contracted in time as it travels down the
line. Charge conservation then requires the local voltage
disturbance v, due to the small signal, to be inversely
proportional to the length of time T of the small signal.

Figure 8 Variation of wave velocity, as a function
of time, af the initial end of the line. The
portion of the wave launched at ot; =40
will merge with the shock at the same
fime as the portion of the wave launched
at ot; = —-4.

Figure 9 The solid line is a portion of the periodic
pump signal. The dotted line indicates a
small, highly localized deviation.

Figure 10 The solid curve and the dotted curves
represent two signals whose constant
voltage trajectories in the (z, #} plane are
identical, but whose shock positions
differ.
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Figure 11 o) Shows a symmetrical capacitance characteristic, with Q and P as the states, respectively, before
and after shock passage. b) Shows the same shock after it has grown. Line PQ is tangent to the
q-v curve at Q.

Since the small-signal impedance level does not change
as the signal propagates, the energy, which is proportional
to [v2dt, varies as 1/7. Hence a small signal, riding on a
portion of a wave which is contracting in time, will have
its frequencies raised and its energy content raised pro-
portionately. The simple blob shown in Fig. 9 is not
essential to this argument—the small signal can be oscil-
latory. A small signal can, of course, also be attenuated
by being placed on the line during a time when the small-
signal capacitance at the input end is being increased.
Quite aside from the energy changes involved, when a
small signal travels down the nonlinear line together with
a large signal, the small signal has its transit time con-
trolled by the large signal. Such a line could therefore be
vsed for frequency and phase modulation.

The earlier paper' dealt separately with the case in
which the small-signal frequency was a multiple of ex-

Figure 12 line PQ represents a shock with a tan-
gency at Q so that ¢;=c(Q). Subse-
quently a higher voltage P’ catches up
with the shock. This permits the shock to
grow at its lower end to the new point
of tangency Q'.
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actly one-half the pump frequency. Consider the most
important case, in which the signal frequency is exactly
half the pump frequency. If suitably synchronized with
the pump signal, then each positive half-cycle of the
small signal charge can merge with one shock wave, and
the succeeding negative half-cycle with the next shock
wave. Thus each half wave of the small signal charge is
compressed to a Dirac §-function, This kind of compres-
sion was considered in the earlier paper, and it was
pointed out that it corresponds to an increase in the fun-
damental component, by a factor 4/x. In the earlier
paper, however, this was put forth only as an upper limit
for the possible gain, and it was not shown to be actually
achievable.

At the other exceptional frequencies, the higher multi-
ples of one-half the pump frequency, several half cycles
of the signal will coalesce with one shock. If the number
of half cycles is even, the signal will disappear completely.
If the number of half cycles is odd, the signal will not
disappear, but the component at the fundamental fre-
quency will always be reduced.

In the preceding discussion of the behavior at the ex-
ceptional frequencies we have assumed a ¢-v character-
istic and a pump signal wave form leading to one shock
wave per pump cycle. One can conceive cases which lead
to more than one shock per pump cycle. It can, however,
be shown that even in these cases 4/ is a limit on the
possible gain.

7. Symmetrical line

We will briefly indicate here the modifications involved
if we are concerned with a g-v relationship of the type
shown in Fig. 2. First of all, it is clear that a single cycle
of the pump can take us through two high-capacitance
and two low-capacitance portions of the wave, and that
therefore each cycle of the pump signal will lead to two
shock waves instead of one.

A more subtle difference arises after shock wave for-
mation. Figure 11a shows the terminal points for a shock
which has not yet developed very far. In its growth it will




eventually reach the stage shown in Fig. 11b. Here P and
Q are the terminal points of a shock. The straight line
which connects P to Q is tangent to the curve at A. Hence
the shock capacitance, c¢;, equals the capacitance of the
line immediately ahead of the shock and is larger than
the line capacitance some distance ahead of the shock.
Therefore the lower end of the shock will not continue to
grow, if P remains fixed. If P is not yet the maximum
voltage in the cycle, the shock can still grow at this end.
This will decrease the shock capacitance and simultane-
ously permit the lower end of the shock to catch up with
the continuous portions of the wave until the condition
of tangency is restored. This sequence is shown in Fig.
12. Once P has reached the maximum voltage in the
cycle, it must decrease subsequently, causing the shock
velocity to be decreased. As a result some portions of the
shock, at its lower end, are free to travel faster than the

shock and will peel off, restoring the condition of tan-
gency. The portions that peel off one shock will eventu-
ally reach the preceding shock and merge with it.

How does this affect the behavior of the small signal?
Fig. 13a shows a pure pump signal, with a shock wave,
and also shows the deviation due to a highly localized
small signal. When the small signal has reached the shock,
we can expect an immediate effect, as in Section 6 and as
illustrated in Fig. 13b. Since the shock, in this case, gen-
erates a continuous signal ahead of itself we must expect
at some later time a situation as shown in Fig. 13c, where
the effects of the small signal are not localized to the
immediate shock vicinity any more. What we wish to
show specifically is that the situation must be as repre-
sented in Fig. 13c rather than in Fig. 13d.

Assume for the moment that Fig. 13d represents a
possible situation. The portions 4B and AC represent

Figure 13 The solid line is the periodic pump signal, the dotted line indicates the history of a small deviation.
Part a) is before the deviation merges with the shock; b) is just after the deviation catches up with
the shock; ¢} is a still later state; and d) is not possible.
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Figure 14 In a) a small voltage increment is catching up with a shock. In b) it has caught up with the shock,
produced a modified shock and a reflected wave.

voltages whose trajectories of the form (3.5) are unaf-
fected by the small signal. The trajectories all belong to
the same branch of the same continuous solution of Eqs.
(3.1) and (3.2). The difference between the two signals
occurs only in the location of the shock, i.e., in the time
and location where the signal departs from this branch.
The two signals have the same value of voltage at D and
therefore also the same velocity. The two signals thus
have identical trajectories associated with the identical
voltages at D. Since the two shock positions BE and CF
are separated in space, the trajectory of D, followed
backwards in time, must intersect the two shock positions
at different times. The intersection of the trajectory of D
with a shock, represents the moment when D “peeled off”
the shock. This is the situation that was illustrated in
Fig. 11b; at the moment when D “peels off,” it must have
the velocity of the shock. The velocity of the voltage at
point D is, however, time-independent. Therefore when
D peeled off the shock which subsequently becomes CF,
it must have had the same velocity as when it peeled off
the shock which subsequently becomes BE. Both shocks
at the time of “peel off” have the same lower end voltage,
namely the voltage later found at D. The two shocks can
only have had the same velocity, i.e., the velocity of D, if
they also had the same upper end (terminal) voltage, at
their respective “peel off” moments. Hence the trajectory
of D must intersect the trajectory of this upper shock end
voltage in two points. The upper shock end corresponds,
however, to a higher velocity than the shock and its lower
end, and therefore the two trajectories can cross in only
one point.

Since the situation shown in Fig. 13d is ruled out, the
small signal retains its original sign, even though it does
spread out ahead of the shock. It will retain its original
sign, even when portions of it catch up with the preceding
shock wave and “peel off” again from this preceding
shock. It is this lack of sign change which was invoked in
the earlier paper to show that parametric transmission
line amplification did not exist.
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Conclusion

The main conclusion has already been reached in the
earlier paper,! i.e., parametric amplification cannot be
achieved on transmission lines which are relatively dis-
persionless. For harmonic generation, for wave shaping,
for intermittent amplification accompanied by a signal
compression in time, or for the control of transit time
through transmission systems these lines do have possi-
bilities.

Appendix: Reflections can be ignored
for weak shocks

Consider the situation shown in Fig. 14a, which is in-
tended to depict a situation on a transmission line with a
charge-voltage relationship as shown in Fig. 1. The large
voltage drop is a shock wave, and a small voltage incre-
ment is catching up with it. After the two steps coalesce,
the shock may be modified. No transmitted signal can
appear ahead of the modified shock, since the velocity of
the shock is higher than that of a small signal propagating
on the line in its initial state. There can, however, be a
reflected wave as shown in Fig. 14b. Let Z,, be the im-
pedance of the upper end of the shock, that is, the ratio
of change in shock voltage to change in current discon-
tinuity as the initial state of the shock is kept unchanged,
but the final state of the shock is changed slightly. Fur-
thermore let Z’ be the characteristic impedance of the
line in its final state, after shock passage. Then the bal-
ances of currents and voltages that determine the strength
of the reflected wave are exactly the same as for the
problem in which a voltage wave on a line of impedance
Z' is incident on a termination of impedance Z,,. Hence
the ratio of reflected voltage to incident voltage is

v, Zw—2Z'

—_——— ., A.l
Vi Zgu+Z, ( )
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Figure I5 Here a shock catches up with a small voltage increment, again causing a modified shock and a

reflection,

A straightforward auxiliary calculation shows

Zsu= /—1 26 >
Ve et

where c¢; is as defined in Eq. (4.7) and ¢’ is the capaci-
tance associated with the final state. Somewhat similar
considerations for the initial case of Fig. 15a, resulting in
a final configuration shown in Fig. 15b, yield

(A.2)

Uy Y”—Ysl
" (A.3)
Vi Ysu+ Yl

where the admittances are reciprocals of the previously

defined impedances. Y” characterizes the initial state of

the line, ahead of the shock. Y, is an admittance defined

for the shock when its initial state is changed and its final

state kept fixed. The admittance Y, is given by:

Y= | St (A.4)
l 2¢,

It is clear that v,/v; for both (A.1) and (A.3) is a
fraction of the relative capacitance change associated
with the shock wave. Hence if the latter is small, the
reflections are small.

We could leave the argument at this point, if we were
concerned with a fixed length of line. In most practical
parametric amplifier schemes, however, as the strength
of the nonlinearity is decreased, the length of time during
which interaction occurs must be increased, which in the
transmission line case means an increase in line length.
As the line is increased, the number of shocks on it is
increased and the number of reflections reaching a given
point, but arising from different shocks, also increases.
It is not clear, therefore, that as the line is made less non-
linear, but simultaneously longer, that the total of the
reflections actually decreases and goes to zero as the
linear case is approached.

It is clear, however, that as the line is made more
linear, the wave following the shock takes longer to move

into the shock. The reflections that are generated, there-
fore, are stretched out more, as the line becomes more
linear. Within any one pump cycle on a mildly nonlinear
line, therefore, the reflections due to shock waves ahead
of it at best affect the dc level, rather than the detailed
wave form, and its rate of distortion (unless the degree or
sign of the nounlinearity is very critically dependent on dc
bias level). It can, in fact, be shown that the approximate
method of Section 6, which neglects reflections, can give
somewhat incorrect values for the dc levels. For most
purposes, however, this is not likely to be a serious error.
The degree of error can generally be recognized, since
Eqgs. (3.1) and (3.2) require that the exact solution have
the same time average value of v and i all along the line.
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