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Fourier Analysis of the  Motion 
of a Hydraulically  Controlled  Piston 

Abstract:  The problem is  considered of  the motion of a free piston in a finite pipe  filled  with a compressible 

liquid  and subject  to a step in pressure introduced from the two ends. The treatment is in one dimension using 

the linearized  wave equation  for  the density disturbance and the linearized boundary conditions. A  general- 

ized Fourier series expansion  leads to the solution of the problem. The mathematical analysis i s  complicated 

first by the presence of the interior boundary conditions which lead to a system of discontinuous eigen- 

functions, and second, by the step  pressure input which results in reflected discontinuities. By studying the 

properties of the eigenfunctions from a variational characterization, the formal expansions used are estab- 

lished rigorously. The motion of the piston i s  determined a s  a function of the  input  parameters, and the max- 

imum piston excursion and the associated time are  tabulated numerically over the ranges of interest of 

these parameters. 
0 

1. Introduction 

Pressure pulses in hydraulic lines can be used to drive or 
position  pistons  with  high  speed and precision. In a vari- 
ety of applications, such mechanisms are  superior  to 
direct  linkage drives. The usual  hydraulic analysis of the 
motion of the piston  ignores wave motion  in  the fluid, 
relating  pressures  directly to volume  changes. The  pur- 
pose of the present paper is to give a  complete linear 
treatment of the  motion of a  coupled fluid-piston-fluid- 
system. 

The system to be considered consists of a free piston 
in a finite pipe filled with  hydraulic oil, with  pressures 
introduced  from  the  two ends. The oil will be treated  as a 
compressible, inviscid liquid and  the  problem will be 
restricted to  one dimension,  thereby neglecting the influ- 
ence of the wall of the tube. The disturbances will be 
assumed to be  small so that linear equations  for  the wave 
motion  and  the  boundary conditions  result. 

The solution of the linearized problem is accomplished 
by a generalized Fourier series expansion  in  which each 
term is a particular solution  in product  form of the  re- 
duced  homogeneous  problem. 

While  the  approach is classical, there  are  two aspects 
of the  problem which lift  it  above  the  ordinary  and com- 
plicate the analysis. The first is due  to  the presence of the 
piston in  the  interior of the interval,  leading to two inte- 
rior  “boundary conditions”  in addition  to  those  at  the 
ends of the tube. This leads to a system of discontinuous 

378 eigenfunctions, the discontinuity  resulting from  the pres- 

sure discontinuity  across the piston. In  Appendix  A,  the 
properties of these  eigenfunctions are discussed, in  par- 
ticular  the orthogonality and completeness  relations upon 
which the series expansions are based. These properties 
are derived from a  variational characterization of the 
eigenfunctions and eigenvalues. 

The second inherent complication lies in the  fact  that 
the pressure input  at  the ends of the  tube introduces dis- 
continuous waves at  the initial time. Assuming  small 
disturbances,  these waves travel at  sonic speed toward the 
piston, are reflected, and  thereafter  continue  to  bounce 
back  and  forth between the piston and  the  ends of the 
tube. Because of these  discontinuities, the  problem admits 
only of a so-called “weak solution.” One  cannot, there- 
fore, directly  establish that  the  formal series  expansion 
for  the density  variation is actually the solution of the 
wave equation subject to  the various boundary  and initial 
conditions. Appendix B, however, establishes the validity 
of the expansion for  the time  integral of this  function. 

The final step  in  the solution is to  determine  the motion 
of the piston from  the  pressure variation on its  two sides. 
Since the series  obtained is rapidly convergent, good 
numerical  results may be  obtained. 

In Section 7 the numerical  calculations are first carried 
through explicitly for a  special  case where  the eigenvalues 
and  the  Fourier coefficients may  be found simply from 
asymptotic formulas.  This is followed by the results, 
shown  in Figs. 5-8, of a complete  IBM 704 study deter- 
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mining maximum piston  excursion and corresponding 
time  required  over  a range of the basic nondimensional 
physical parameters specifying mass and geometry. 

2. Equations of motion of the fluid 

We  consider the flow of a  compressible fluid in  one 
dimension,  assuming no viscosity. The continuity equa- 
tion expressing conservation of mass states that 

where x denotes the space  variable, t the time and  both p ,  
the density (mass per unit  volume),  and u, the fluid 
velocity in the x direction, are functions of x and t. A 
second equation is a statement of Newton’s law of mo- 
tion, or conservation of linear  momentum, given by 

where p is the pressure (force per  unit area), a function 
of x and t and D/Dt  stands  for  the  Eulerian or material 
derivative 

A third  equation is given by a  pressure-density  relation 
of the form1 

P = P ( P ) .  (2.4) 

Letting PO denote  the  constant undisturbed  density of the 
fluid at  atmospheric  pressure and  ambient  temperature, 
we write the  total density p(x,  t )  as 

p = p o + p ’ ,  (2.5) 

where p’(x, t )  is assumed to be small compared  to P O .  
Substituting (2.5) into (2.1) and (2.2) and discarding 
products of u and p‘ and their  derivatives as being of 
higher order gives the equations 

au a p J  
PO - + - =o 

ax at 

and 

au a p  
at ax 

po- + - = o .  

From (2.4), 

or to  the first order, 

where 

From (2.7) and (2.8) 

(2.10) 

Eliminating p’ first and then u from  the  pair of equations 
(2.6) and (2.10) gives the second-order equations 

(2.11) 

(2.12) 

for  the functions p’(x, t )  and u ( x ,  t ) .  These are  the well- 
known  linear wave equations of acoustics, and  the solu- 
tion of either  equation  can be expressed as the  sum of a 
function of ( x - G t )  and a function of (x+aot ) ;  these 
functions represent  advancing and receding waves of 
velocity ao. Thus  the constant appears in  this  theory 
as the velocity of sound, i.e., small disturbances,  in the 
fluid at density po. 

3. Statement of the problem 

We  consider  one-dimensional motion of a fluid-piston- 
fluid system as shown in Fig. 1. Distance x is measured 
from  the left end of the tube. The piston, of mass M per 
unit cross-sectional area of the tube, is assumed at t=O 
to be at rest at a  distance Zl from  the  left end of the  tube 
and Zz from the  right  end.  (Since the piston is treated as a 
rigid body, the  actual length of the piston does not enter. 
For convenience we shall assign it zero length and locate 
it in its entirety by a single coordinate.) Also at  the initial 
time the fluid is assumed to be at rest throughout  the  tube 
at  the undisturbed  density po. At  the boundaries of the 
tube,  overpressures are assumed to be  introduced at  the 
initial  instant and then  maintained. The  problem is to 
determine the  ensuing  motion of the piston. 

The conditions so far described  may be expressed in 
terms of the density variation p’(x, t )  as follows. For 
convenience we denote Il the interval 0 <x<Zl and by 
IZ the interval Zl <x < ZI + Zz. 

Initial  conditions for x in II and I 2  

p’ (x ,  0 )  =pt’(x, 0 )  =o ; (3 .1 )  

Boundary  conditions at tube  ends  for t > 0 

P’(0, t )  =p1’, p’(Z1+Z*, t )  =p2‘,  (3.2) 

where the subscript t denotes partial differentiation  with 
respect to time and pl’ and pz‘ are prescribed positive 
constants. 

Figure I Configuration of the piston and tube at 
initial time. 379 
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Still to be formulated is the condition at  the piston- 
fluid interfaces. Let  the variable [ = < ( t )  denote  the posi- 
tion of the piston at time t ,  measured from  the initial 
position at x = l l .  Then 

t ( 0 )  = i ( O )  =o , (3.3) 

where the  dot denotes total  differentiation with  respect to 
t .  The density of the fluid adjacent to  the piston on  the 
left  at  time t is po+p-’, where p-‘ denotes the limit of 
p’(x, t )  as x approaches I l+[( t )  from  the left.  Similarly, 
the density on  the right-hand  side is denoted by po + p+‘. 
Using the linear terms in the  Taylor expansion of the 
pressure p = p ( p )  as  a function of density, we can there- 
fore find the resultant force  on  the piston and write  the 
equation of motion as 

reflections of these  characteristics from  the boundaries. 
Consequently we require  that p’(x, t )  satisfy the wave 
equation (2.11) for x in Zl and Z2 with t > O  except at 
most  along  certain lines in the x-t plane across  which 
p’(x, t )  may be discontinuous. (These discontinuities are 
subject to conditions of conservation, but  it will not be 
necessary to  formulate these explicitly for this discus- 
sion.) From  the  function p’(x, t ) ,  the displacement [(t) 
of the piston can  be obtained from (3.4) by two  time 
integrations  subject to (3.3). 

4. Reduction of the problem 

Before  proceeding, we shall introduce nondimensional 
variables into  our preceding  equations and restate the 
problem  in terms of these variables. Let 

M<=p”p+=ao2(p~”pp,’), (3.4) - XX 
x=  - 7=  ~ 

aoxt 

I1 + 12 taking into  account (2.9). 11+12 ’ 

the unknown  position [ ( t )  of  the piston,  this  equation 
leads to  an inherently  nonlinear  condition.  Consistent ‘P’(xy l ) / p o  * (4.2) 
with the assumption of small disturbances and a linear Denoting  the reduced  total  density by p = p / p o  we have 
theory, however, we may  assume [( t )  small and evaluate 
p-‘ and p+‘ at  the original interface location [=O. Thus in ? = I  +P’ (4.3) 
the following we denote 

p i =  lim p’(x, t )  . 

By continuity of the fluid, the piston velocity and  the fluid a+ ax2 

velocity immediately adjacent  to  the piston must be the  over  the ranges 0 < f < O X ,   O X  < X < x, where 
same, so that  to a  linear  approximation 

(4.1) 

Since the right  side of (3.4) contains  in the arguments and 

The wave equation becomes 

X-*Z1?0 a2pt - a2pr 
”- (4.4) 

x+ I l-o 
lim u(x, t ) =  lim u(x, t ) = [ ( t )  

x++o 

Upon  differentiation we have 

(4.5) 

and R=& is the initial  position of the piston.  Similarly 
as  before we let fl and 1, denote  the intervals of 2 to  the 

(3.5) left and right of the piston respectively. 
The initial  conditions  become 

where the subscripts - and + denote left- and right-hand p’(n, 0 )  =pT’(x, 0) =o (4.6) 
limits at x=ll  as  before. From  Eq. (2.10) we have 

for x in I, and i2, and  the  boundary conditions at  the ends a ut ao2 aptt (3.6) of the  tube  are,  for T > O ,  
at  ax 

Combining (3.4),  (3.5) and (3.6) 
where 

(3.7) p1’=p1’/po, p2’=p2’/po - 
constituting two additional boundary conditions to be 
satisfied for all t > O  at x=ll. These conditions state  that 
the left- and right-hand  derivatives of p ’ ( x ,  t )  at x = l ~  
should be equal and  have  the value ( p o / M )  times the 
jump in p’(x, t ) .  

The problem  stated  in  terms of the fluid is to  determine 
a  solution p’(x, t )  of (2.1 1 )  satisfying the initial  condi- 
tions (3.1) and  the  boundaryconditions (3.2) and (3.7). 
Because of the initial  density  discontinuities at  the ends 
of the  tube,  the solution p’(x, t )  will be  expected to  have 
discontinuities  along the characteristics of the wave 

380 equation issuing from these  points and  the subsequent 

At  the piston, %=Ox, the condition (3.7) becomes 

(4.7) 

(4.9) 

where 

h= (4.10) 
PO(ll+Z2) 

MiT 

and left- and right-hand  limits  refer to this  value of f. 
We proceed  now to  reduce  the  problem  to  one with 

homogeneous boundary conditions  replacing (4.7), by 
introducing a particular solution f of the wave equation 
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which satisfies the given boundary conditions. We then 
express the desired  solution p‘ as the difference between 
f and a function r(X,  T )  to be determined. It follows that 
r satisfies homogeneous boundary conditions, but since f 
turns  out  to satisfy one  but not both initial conditions, 
r will be required  to satisfy one nonhomogeneous  initial 
condition in order  to compensate for this.  Consider the 
function 

,h+l 

+PI’, X E L ,  

+ pz ’+xhp1’  

a h + l  ’ 
(4.11) 

This function consists of two  linear  segments  in P and 
does  not involve T ,  and  thus trivially satisfies the wave 
equation.  The slopes and intercepts have been chosen to 
satisfy the  four  boundary conditions (4.7) and (4.9) 
written for f, as may  be  checked  directly. The  graph of 
f ( X )  is shown in Fig. 2. If we now define r ( 2 ,  T )  by the 
equation 

p‘=f-r (4.12) 

it follows by the  linear character  of  the problem that 
r must satisfy the following conditions: 

(4.13) 

(excepting  discontinuity  lines of the function r ( Z ,  T )  

r ( 0 ,  T )  = r ( r ,  T )  =0, T > O  , (4.14) 

r ( n , O ) = f ( X )  - - - 
X E l l U l 2  

rT(X,  0 )  = O  

- = - =h[r+-r-] . ar- ar, - 
a2 an 

t (4.15) 

(4.16) 

5. The formal Fourier solution 

We begin by seeking particular solutions of the wave 
equation (4.13) subject to the boundary conditions 
(4.14) and (4.16) in the  form  of a product of a function 
of X by a function of T ,  say X ( X )  T ( T ) .  Substituting  this 
expression in (4.13) we find in the usual way that 

I i e x  
IX  

I 
Figure 2 Graph of f(Z) for p2’>p1’. 

x“+h-?x=o,Xcilui2 (5.1) 

T”+h2T=0 ,  T > O ,  (5.2) 

where X‘ is a constant. 
Ordinarily, (5.1) is subject merely to two end condi- 

tions leading to a specification of functions X and  corre- 
sponding X values. In  the present problem there  are  four 
conditions to be satisfied in (4.14) and (4.16). This is 
handled by allowing X ( Z )  to be a different combination 
of sin X2 and cos An in  each of  the intervals 1, and r2. The 
coefficients of these combinations are determined by im- 
posing the  conditions 

X ( 0 )  =X(,)  =o (5.3) 

ax- ax+ - =K[X+-X-]  . (5.4) 
a% an 
”- 

In  order  for  there to be a nontrivial  solution to  the 
homogeneous  equations, the  determinant must  vanish, 
yielding the “frequency equation”  to be satisfied by X. 
The corresponding coefficients and the  functions X are 
then determined.  Proceeding  in  this way one finds 

X=-k[tanXB,+tanhx(l-B)] ( 5 . 5 )  

and 

sin X Z ,  X E i1 
(cos XI9x)sin X ( Z - T ) / C O S  X(l-O)x, X€T,, (5 .6)  

where for  each positive X, the corresponding function X 
is determined to within a  multiplicative  constant. 

The  equation ( 5 . 5 )  defines an infinite sequence of 
positive roots h which we denote in order  of increasing 
size by XI, ha,  . . . . This statement, and  the  fact  that  the 
numbers X, approach infinity with  increasing n, are  read- 
ily deduced from consideration of the graphical interpre- 
tation of the roots of ( 5 . 5 ) ,  h being a positive number. 
(An illustration for  the case I9= 1/3  is furnished by 
Fig. 3 . )  To each X,, termed  an eigenvalue of the problem 
defined by (5.1),  ( 5 . 3 )  and (5.4),  there corresponds an 
eigenfunction X , ( % ) .  

At  the same  time,  there  corresponds to  each X, a solu- 
tion of (5.2) which is a  combination of sin X,T and 
cos X,,T. Bearing in mind that  the derivative  with  respect 
to T is to vanish at T = O ,  from (4.15) in the final solution, 
we shall  assume the solution for T ( T )  to be simply 

x- { 

COS XnT.  

This then gives an infinity of particular solutions 

X n ( n ) c o S  XnT,  n = l ,   2 , .  . . , (5.7) 

of (4.13),  (4.14),  (4.16) and  the second of conditions 
(4.15). Following the usual Fourier  procedure we now 
satisfy the initial condition r ( n ,  0 )  =f(x)  by choosing for 
r ( Z ,  T )  the infinite series 

m 
r ( Z ,  T )  = 2 anXn(X)coS X n T  , ( 5 . 8 )  

n=1 

where un is the  Fourier coefficient of f ( Z )  with respect to 
X ,  in the expansion 381 
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a, = , n = 1 , 2 , .  . . . (5.10) 
I T X n 2 d X  

In  Appendix A it is shown  that  the eigenfunctions X, 
may  be  characterized by a  variational  principle from 
which it follows that they  satisfy the orthogonality 
relation 

lTXr, ,XndX=O, m#n , (5.11) 

and possess the  property of completeness. While it  can 
be  shown that certain classes of functions  can be ex- 
panded  in pointwise  convergent series in  the  functions 
X, ,  it is not necessary to prove the validity of (5.8)  to 
obtain  the final expression for  the piston  motion. This is 
shown  in  Appendix B. In essence, the “time”  integral of 
r(X, T )  rather  than r ( f ,  T )  is expanded  in the correspond- 
ing  generalized Fourier series. 

The solution for  the reduced  density  variation function 
is then  found  from  (4.12)  to be 

$(x, T )  = f  ( f )  - x UnX,(%)cos h,T . 
n d  

W 

(5.12) 

y = t a n  A Z  t t a n  
3 

Figure3 Graph of frequency equation for case 
382 e =  1/24. 

denote the  reduced piston  displacement. Then in terms 
of nondimensional  variables, the  equation of motion 
(3.4) of the piston becomes 

d2g 

dT2 
- =h[p”-p+’] 

where is as  before. The right-hand side of (6.2) is 
determined from  (5.12)  and  (4.11) evaluating the right- 
and  left-hand limits of p’ and f( X) at X = 87.  This gives 

where X,’= lim X,(?). From  the  jump condition (5.4) 

and  the definition of X ,  from  (5.6), 
6 + e a + o  

h(Xn+-Xn-) =An  COS An87  

so that 

Integrating  this function  and making use of the initial 
conditions 

m an -=x cos h n T  cos h,Ox. (6.4) 

In Appendix B, this formally obtained  expansion is shown 
to represent a true solution for  the motion of the piston. 

We  proceed  next to evaluate the coefficients a, appear- 
ing above through  Eq.  (5.10) , where f ( f )  is given by 
(4.11)  and X ,  by (5.6) with X replaced by A,. Carrying 
out  the integrations gives 

n=l 

and 

- - (xhp1’Spz’) , An 
B n  1 

where for convenience we set 

A,=COS Anex, Bn=COS A n r (  1-0) . (6.7) 

The  frequency  equation (5.5) for An can  then be written 
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x, = 
- h sin hnx 

A nBn 

The  Fourier coefficients of f ( Z )  with respect to X ,  are 
therefore given by 

2hB, 
a, = 

An( 1 + x h )  

[pl’Bn( 1 + ~ h )  +AnBnhx(pl“ ~ 2 ’ )  -An(Thpl’+pz’) I 
[B,’ Oxh+A,’ B,’+hx(l-B)AnzI 

, 
(6.9) 

which completes  the  determination of the solution r( 7). 

7. Numerical results 

Of particular interest is the case  where the  end pressures 
are  equal so that pl’=pz’. In this case motion of the piston 
occurs if and only if the piston is initially positioned off 
center  in the tube so that Zl #12. By symmetry then  one 
need  only  consider the cases for which 0 < B < 1 /2. 

The  Fourier coefficient simplifies to 

2hp1’ Bn(Bn”A*) 
h,[B,’ Oxh+A,’ B,’+Kx(l-O)An’] 

a, = (7.1) 

and 

- 
=2hp1’ 2 

m A,Bn(B,“An)  COS X,T)  

XnZ[B,’Bxh+An2 Bn2+hx(l-O)Anz] ’ 
(7.2) 

As will be seen shortly, the terms  in the series (7.2) are 

0 - as n+co due to  the presence of the  factor X,-’, so 

that  the convergence is rapid. 
As an example, prior  to discussing the general numeri- 

cal results, we take the case  where 1z=2l1 so that 19 = 1/3.  
This  can be carried  through  quite explicitly and illumi- 
nates the numerical  aspects of the problem. The  fre- 
quency equation becomes 

(3 

(7.3) 

The eigenvalues X, are determined  as the intersections 
x 

of the line y = --and the  curve y = tan X-+ tan X- 

in the X-y plane  as  shown  in Fig. 3, where one period 
O<h<3, is graphed. These intersections will occur in the 

neighborhood of the asymptotes of the functions tan An- 
3 

and  tan X, - and only there. As n increases, the inter- 

sections will approach  the values of X corresponding to 

these asymptotes. The asymptotes are  at  and 

[ 3  h 2x1 3 
x 

x 

27 
3 

3(2k-1) 
2 

3(2k-1) 
4 

, k =  1 ,2 ,  . . . , and if we denote  the  amount by 

which these numbers differ from  the actual eigenvalues 
by ek’ and ek” respectively, we define two sequences of 
eigenvalues 

3(2k-1) 
2 

Xk’ = + Ek’ 

and 

x ’” 3(2k-1) 
4 

k -  +E*“  . (7.4) 

The  actual sequence of eigenvalues XI, hz, As,. . . , is 
obtained by ordering  the hk’  and Xk” into a single se- 
quence of monotone increasing  members. 

Substituting for X< from (7.4) in (7.3) and retaining 
terms in the expansions of the trigonometric terms 

leads to  the  error estimate 

2h 
E k  = 

(2k-1)x ’ 

so that  the relative error in  replacing hk’ by 

is 

3(2k- 1 )  
2 

4h 
3(2k-1)2 

Similarly one  can show that  the relative error corre- 
sponding to is 

1 
( (2k-1 ) ’ )  

In  order  to  obtain explicit expressions to illustrate the 

present discussion we will take Xk‘= and 

. These  approximations are clearly  gocd 

for  larger k, but  may be used for all k =  1 , 2 , 3 ,  . . . , if we 
suppose h small (the physical significance of h is seen 
later). 

The eigenvalues X, n= 1 ,  2, . . . , are  the successive 
numbers 3/4,  3/2,  9/4,  15/4,  9/2,  21/4,  27/4,  15/2, 
. . . . , in which for n=2, 5 ,  8, 11,  . . . , the entries are 
successive members of the Xk’ sequence, while the entries 
for n= 1 ,  3, 4, 6, 7, 9, 10, . . . are successive members of 
the h k “  sequence. In  order  to  compute  the  Fourier coeffi- 
cients  which enter  into (7.2) it is necessary to evaluate 

for  each X, the corresponding values of An=cos - and 

3(2k-1) 
. 2  

3(2k-  1) 
4 

1” k -  

Xnx 
3 

h,2x 
3 

B,=COS - . From  the  frequency  equation (7.3) it is 

possible to find explicit formulas  for these quantities in 
terms of n and h to  the  same  order of approximation  as 
the values of X,. 

Two sets of approximation  formulas  are obtained 
arising from  the two  subsequences of X,. We note  that 
corresponding to  the sequence Xk‘, A ,  will be near zero, 
whereas for  the Xk” it is B,, which is near zero. Specifically 383 
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Figure 4 Profile of piston  displacement $ vs T for I9= 1 /3 (asymptotic  approximation  for h small). 

'Ti 2h(-1)7c 2Tr noted that  no  motion takes  place  until T = T / 3 ,  this being 
cos Ah" - = , COSAk" = - 1  

3 3 ( 2 k - 1 )  3 the  reduced  time  required for the first wave to reach the 
( 7 . 5 )  piston at X = ~ r / 3 ,  the reduced velocity of sound being 

- j/T 2n 4( - l ) l c h  unity. 
cos Ah)' - = rf. - , c3s Ah.!' - = 

3 2 3 3 ( 2 k - 1 )  We return  now to a  numerical  study of the piston 
motion  in the case of equal  end  pressures pI'= p ~ ' .  

Substituting in ( 7 . 2 )  we obtain finally the displace- The motion of the piston is given by Equation ( 7 . 2 ) .  
ment of the piston in the  form  Therein  the end  pressure appears only  in the multiplica- 

tive factor pl'. The parameters affecting the series are 0 - 16hpI' 

[ &Yr) = - 4 ( 1 - c 0 ~ 3 ~ / 4 ) - ( 1 - ~ 0 ~ 3 ~ / 2 )  and h, which appear explicitly and also serve to determine 9;: the eigenvalues An through  the frequency equation, (6 .8) .  
4 4 
33 5 3  

- - (1  -COS 9 ~ / 4 )  + - (1  -COS 1 5 ~ / 4 )  In terms of I9 we have, from (4.5) and (4.10) 

1 
33 

+ -( 1-COS 1 8 ~ / 4 )  - . . . MnI9 
( 7 . 7 )  

(7.6; If  we denote the cross-sectional area of the  tube by A ,  
then  the mass of fluid to  the left of the piston is p&4 and 
the mass of the piston itself is M A .  Letting the  ratio of 
these masses be rn we have 

where the terms n = 2 ,  5 ,  8, . . . , in  this series in  brackets 
are  the successive terms k =  1 ,  2,   3 ,  . . . , of the sequence 

( -  1)" ( 2 k -  l)T 
( 2 k -  1 1 3  

1 -cos 
4 m=- pol1 

M ( 7 . 8 )  

and  the remaining  terms n = l ,  3 ,   4 ,  6, 7 ,  . . . , are suc- 
cessive terms of the sequence We shall  deal with nz and I9 as representing the essential 

nondimensional uhvsical uarameters of the  moblem  and 
4( - l )k+l  3 ( 2 k -  1)r  

1 -cos 
( 2 k - 1 ) 3  4 

& ,  

relate to mass and geometry respectively. Fixing m and 0 
determines the  quantity 

The series in brackets  in (7.6) has been computed  and m AnBn(Bn"An) (1"COS A n 7 1  

is shown  plotted  in  Fig. 4 for two cycles of the motion F ( 7 ) = h X  - 
n=l hn?[Bnr 0;;h+An2 BnZ+h;:( l-19)AL21 ' 

384 as the piston moves to  the right and  returns.  It will be (7.9) 
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Figure5  Piston excursion as a function  of 8. 

from which the actual  displacement f of the piston is 
found  from  the relation 

(7.10) 

where we have used (7.2),  (6.1 ) and (4.5). An appropri- 
ate nondimensional  measure of the piston displacement in 
terms of the rn and 6’ parameters is therefore  the quantity 

(7.11) 

In  terms of T and the parameter 8 ,  the  actual  time t is 
given by 

(7.12) 

from  (4.1)  and (4.5). Here, - is the  time  required for 

a  sound wave originating at the  left  end of the  tube  to 
reach  the piston. As a  nondimensional  measure of time 
which includes the full  dependence on the  parameter 0 
we shall use the quantity 

t ’ = ” - t *  

I1 
a0 

T aox 

e lI 
(7.13) 

The  graph of Fig. 4 is typical of those of piston dis- 
placement versus time for any  combination of m and 0 
values. The essential variation with m and 8 lies in the 
“amplitude” of the wave and its “period.” (The motion is 

found  to be very near  to periodic.)  These  quantities are 
the significant ones if it is desired to drive the piston 
hydraulically through a specified excursion (maximum 
initial  displacement) in a specified time. We denote  the 
excursion by A and  the excursion  time by T .  For each 
pair of specified values of rn and 0, f ’  was calculated as a 
function of T and  the maximum  value of f in the first 
wave was read off as A and  the corresponding  value of 
T / 8  as T .  

The calculations were carried  out  on the IBM 704 with 
rn values taken to be 0.05, 0.1, 0.25, 0.5, 0.75, 1, 2, and 
5. For  each rn the following values of 0 were  used: 1/3, 
1/5,  1/9,  1/15,  1/25,  1/35, 1/55. In all, this gave 56 
runs.  In each case A and T were  determined. The results 
are depicted  graphically in Figs. 5 to 8. 

Figure 5 shows the variation of A with 0 for several 
values of m. Figure 6 shows the  variation of T with 8 for 
two values of rn. The variation  with rn is relatively small 
so that  the graphs in these figures would have been ex- 
cessively crowded if the  other rn values were included. 
To see the relative lack of dependence on m as compared 
to 0, in Fig. 7 the variation of A with rn is plotted for  the 
selected values of 0 and in Fig. 8 the variation of T with 
rn is plotted for these 0 values. 

By specifying pl‘=pl’/po, Il and a. in  addition to m 
and 0, one can  in any case  calculate the  actual maximum 
piston displacement f and required  time t from  (7.10) 
and  (7.12). Conversely, the  graphs may also be  con- 
veniently used to determine the required rn and e to 
achieve  a specified A and T. For example, if T is given, 
using Fig.  6 one determines  a range of 19 values corre- 
sponding to varying rn. Checking  this range of 8 values 
on Fig. 5 will show which, if any, m value will yield the 
desired A value. 

A final word  concerns the accuracy to which the calcu- 
lations  were carried  out.  The eigenvalues were  calculated 

200 2401 I 
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Figure6  Piston excursion time as function of 8. 385 
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200 k 

from the frequency equation (5.5) by a  Newton-Raphson 
iteration  to  an  error less than 1 x The series of (7.9) 
was summed to approximately 50 terms,  corresponding 
to a determination  of all eigenvalues less than 50 in  value 
and including the corresponding  terms. The accuracy  was 
checked by repeating, for  extreme values of the  param- 
eters, the calculations using the series terms  for all eigen- 
values less than 100, essentially 100 terms. The observed 
change  in A was nowhere  large  enough to affect the loca- 
tion of the points  plotted  in Figs. 5 and 7. For T ,  there 
was no  change  in  the values for r=0.05 and r= 1.00, and 
even at r=5.00 the  change was of  the  order of 3%. 

It will be noted that  the points of Fig. 8 do  not all lie 
exactly  along smooth curves. This is due  to  the  fact  that 
F ( T )  /6' was calculated  in  intervals of A ~ = 0 . 1  and  that 
the maximum F ( T ) / ~ '  was chosen from  among these 
values. Thus,  the value of T = T / ~ '  at this point can be in 
error (Le., differ from  the location of the  true  maximum) 
by as  much as 0.05/6' simply because of the coarseness 
of the AT interval and  the  lack of interpolation. 

However, from (7.12) we see that this  corresponds to 

an  error  in  actual time of At = - - , which  may be 

several orders of magnitude  smaller because of the size 
of ao, the velocity of sound. 

Appendix A: Orthogonality and completeness of 
the eigenfunctions 

By showing that  the eigenfunctions  and eigenvalues de- 
termined by (5.1), (5.3) and (5.4) can be  generated by 
minimizing an  appropriate positive definite quadratic 
functional, we can by standard techniques deduce  the 
needed  properties of orthogonality and completeness for 
the eigenfunctions  as well as the convergence of expan- 
sions  in  these  eigenfunctions. We shall here only  outline 
the  procedure  and specify certain results. 

The variational  problem to be  considered is the follow- 
ing. Minimize 

D[+]= ~~+fzd-?+n[C(6 'a+O) -+ (~X-0 ) ]2  (A-1) 

over the class of functions + which are  continuous  over 
O S n l n  except for a possible jump discontinuity at  an 
interior  point 2 = O X ,  and which  have piecewise continu- 
ous first and second  derivatives  over 0535 X ,  subject to 
the following subsidiary  conditions: 

a07 l1 r.3 

(A-2 1 

$40) = + ( x )  =o , (A-3 1 
(A-4) 

where a> 0 is a  constant. 
The following  results are established by proceeding  as 

in [2], Chapter  VI.  The present  problem  represents  a 
generalization of the functionals  there  considered by 
allowing for a  discontinuity  in the eigenfunctions them- 

386 Figure8 Piston excursion time as function of m. selves. 
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As necessary conditions for a minimum  in  the preced- 
ing problem  one finds, denoting the minimizing function 
by and  the associated minimum by pl, 

+1"+p1+1=0, O l f < 8 ~ ,  8 ~ < f < ~  (A-5) 

and 

+l'(87r*O) = ~ [ + 1 ( 8 ~ + 0 )  -+1(8~-0) ] .  ( A 4  

One then  considers  a  sequence of minimum  problems, 
in  which in addition to  the previous conditions the admis- 
sible functions  are required to be  orthogonal to  the mini- 
mizing functions +i of the previous  problems  in the sense 

l T + + i d f = o .  (A-7) 

One  thus obtains a sequence of orthonormal functions 
(pi, i= 1, 2,  . . , and associated numbers pl<p22 . . . , 
satisfying (A-5)  and (A-6) with 1 replaced  by i. It fol- 
lows that with a=h,  the +i are  (to within the normalizing 
constant factors)  among  the eigenfunctions defined by 
(5.1), (5.3), (5.4) with pi the associated eigenvalues. 

That  the sequences +i and pi constitute all the eigen- 
functions  and eigenvalues so defined, can then be proved 
by verifying that any  eigenfunction not contained  in the 
sequence $ 3  must  be  orthogonal to  the +i and hence, by a 
later expansion theorem, identically  zero. Therefore we 
can write +i E aiXi  and pi = X i ,  i= 1, 2, . . . , where ai are 
the normalizing  constants,  and Xi and hi are defined by 
( 5 . 5 )  and (5.6). 

From  the  fact  that lim X i =  00 it follows, (see [2], 

0 . 3 )  that if +(a) is any function satisfying the admissi- 
bility conditions of the original  minimum  problem,  then 

n+m lim iT [ +- j l c i+I2df=o 3 (A-8) 

where 

Z + M  

c i = l T * + i d f  (A-9) 

I" 
is the  Fourier coefficient of + with  respect to + i ,  so that 
one  has convergence  in the mean.  Equivalently 

+'df= 2 ci2 . 
m 

i=1 

It  can  then be proved  (see, e.g., [2], page 427) that 

the series 2 ci+i converges  uniformly and absolutely 

O i f < 8 x ,  8 7 r < f < ~ ,  to the function +. A distinctive 
feature of this result  in the present  problem is that  the 
series converges uniformly to a possibly discontinuous 
function, since + is permitted  a  discontinuity at f = 8 ~  
(the value of the  function  and  the series at X = 8~ is im- 
material).  This is due  to  the  fact  that  the eigenfunctions 
+i themselves are discontinuous at this  point. 

This expansion theorem  in itself does  not  provide  the 
justification for  the  Fourier expansion (5 .5)  for  the 
function r ( f ,  T ) ,  because r ( f ,  T )  considered for fixed T 

W 

i=1  

as a function of f violates the admissibility conditions in 
that  it possesses in  general  discontinuities at points other 
than x=&. However,  in order  to justify the final result 
for  the piston displacement we will see in  Appendix  B 
that this  expansion  theorem will suffice. 

Appendix B: Validity of the solution 

We  shall here establish the validity of the series (6.4) for 
the piston  motion. For simplicity we consider the case 
where pz'= pl'. 

We  consider first the  function r ( f ,  T )  which by defini- 
tion satisfies the following  conditions 

(excepting  discontinuity  lines) 

r ( 0 ,  T )  = r ( r ,  T )  =0, T > O  (B-2) 

r (3 ,  0 ) ~  1, r 7 ( f ,  0 )  =0, 2 E Il u T z  03-3) 

We assume that a  solution r ( f ,  r )  to this  problem 
exists which possesses two continuous derivatives and 
satisfies the  equation  (B-1 ) except along certain lines 
f *  r = constant  [characteristics of (B-1 ) ] across which 
r and its normal  derivative  may  be  discontinuous, but  the 
tangential  derivative  remains  continuous. It will also be 
assumed that a  discontinuity is propagated along a char- 
acteristic  without  change. 

The existence of such a  solution,  following an argu- 
ment  communicated  to  the  author by R.  Courant,  can be 
deduced from  the representation of the solution  in the 
form r ( f ,  T )  = F ( ~ + T )  + G ( ~ - T ) ,  using the initial and 
boundary conditions to continue  the definitions of the 
functions F and G to all allowable values of the argu- 
ments f +  T and f -  r. This argument, in effect, allows one 
to  construct  the solution r (3 ,  T )  in  a step-wise fashion 
and provides an alternative method of solution to  the  one 
presently under discussion. The details will not be pre- 
sented  here. 

We  now  consider the function 

R ( f ,  T) = r(R, T ) d T .  lT (B-5) 

For  any r>O, R is a  continuous function of f for X#& 
since  in the  range of integration  the discontinuities of  the 
integrand occur  at most  along  a finite number of lines 
f* r = constant. At f = 6% R(X, T )  will be discontinuous 
and  it can  be  shown that 

for all T # ~i where T ~ ,  i= 1,2, . . . , correspond to  the 
successive times at which  a  discontinuity wave from  the 
right or left  end of the  tube strikes the piston, Le., reaches 387 
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x = O r .  (This will be proved  as Lemma 1 at  the conclusion From (B-14) we then  have 
of this Appendix.) 

From (B-2) we have  that a, 
x, q,1= - . (B-16) 

R ( 0 ,  T) = R ( x ,  T) =o, T > O .  
(B-7) Similarly from  the continuity of R (X, T )  at T = O  and  the 

The  function R for T > 0, T # ~i therefore satisfies all of initial value R (2, 0) = 0 we find that 
the essential admissibility conditions of the variational 
principle and expansion theorem of Appendix A. Accord- T+O 

and absolutely  convergent series in the eigenfunctions X,, (B- ), and hence (B-lO) for (X, is valid for T f  T i .  

From  the continuity of R ( x ,  T )  as  a function of T and  the 
(B-8) uniform convergence of the series in (B-10) of continu- 

ous functions of T (this follows from  the  fact  that  the 

lim C,(T) =O 

ingly we can expand R ( x ?  ’) for such in a so that in (B-14) we have pn=O. This establishes 

m 
R ( x ,  7)  2 Cn(T)Xn(P) 3 

n=1 

terms in (B-10) are 0 ) it follows that  the expression 

(B-9)  (B-10) must be valid for  the points T = T ~  as well. 
Returning  to  the motion of the piston now, we have 

from (6.2) by integration, by the definitions (4.12) and 
and a,-*= XnZdX. To complete the  determination of 

R (x, T) we need to  obtain C,( T )  . 

the expansion 

R(2 ,  T) = 2 - X,(P)sin A,T . (B-10) xh+ 1 

To validate  this  expansion we must establish then that 
Substituting the series for R- and R+ in (B-17) obtained 
by using X,(Or-O) and X,(Ox+O) from (5.6) in 
(B-10) and termwise integrating the resulting  uniformly 

C,(T) = - sm X n T ,  T > O ,  T # T ~ .  (B-11) convergent series in T, returns  us  to  the expansion (6.4) 
for  the piston motion which we set  out  to verify. 

L* (4.111, 

Formally  from (5 .8)  and (€3-5) we obtain for R(X, T )  - =h [ f - - f + l d T - h  [r--r+ldT 
dT dt LT L 

O0 Qn = h  ~ T - - ~ [ R - - R + ] .  
PI” pz’ (B-17) 

n=1 A n  

Qn . 
x, 

The coefficients Q, from (5.10) and (4.11) (since It remains to prove the two lemmas used above. 
pl’=pz’= 1 and  therefore f (P)  1 in  this  discussion) re- 
duce  to 0 Lemma 1 

aR+ 
(B-12) - ax = h [ R + -  

J o  

By Lemma 2, to be proved  at  the  conclusion of this 
Appendix 

Cn”(5) +An2  C,=O, T > O ,  T # T ~ .  (B-13) 

It follows that in each  interval ~i < T < T ; + ~  

C, = p n  COS X,T + qn sin X n ~  , (B-14) 

where pn, qn are constants  which  might  vary for succes- 
sive intervals  in  which the differential equation  (B-13) 
holds. However, by (B-9) and  the continuity of R we can 
verify that C,( T) and C,’( T) are  both continuous func- 
tions for all T>O.  It follows that p n ,  qn must be fixed 
constants  independent of the interval of T. 

The constants p n ,  qn can now be determined from  the 
initial conditions.  We  have by (B-7),  (B-5) and (B-12) 

I ~ , ‘ ( T )  -a,[ = a n 2 1  ( r -  l)XndPl . 

Since r=  1 for T=O,  and  for sufficiently small T ,  r = l  

388 
except for arbitrarily small intervals near 2=0 and x ,  and 
since X, is bounded, it follows that lim C,’(T) =an. 

l (B-15) 

T+O 

R - ]  for s>O,  T # T ~ .  

If TS denotes the successive T values at which discontinuity 
waves reach  the piston at ? = O X ,  and if tfn, then for R 
sufficiently close to Or on either the right or the  left,  there 
must  be in the  range 0 < T < 7 an even number of cross- 
ings of discontinuous waves corresponding to pairs of 
incoming and reflected waves on  the given side of the 
piston. This is illustrated in Fig. 9, where one reflection 
is shown and  the  range of integration is split up  into three 
subintervals by the points T=a and T =  b. The abscissa P 
corresponding to this  line of integration  approaches 
x=Ox in the limit.  Clearly a=a(X)  and b=b(X) and it 
follows that 

ab ab 
+r(X, b-0) - - r ( 3 ,  bS.0) - . (B-18) ax ax 

By study of conservation of mass across the wave dis- 
continuities  meeting at  the piston, it  can be shown3 that 
the reflected wave has  the  same discontinuity as the inci- 
dent wave so that 
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r ( n ,  a - 0 )  - r ( T ,  a+O) = r ( n ,  b -0 )  -r(i?,  b+O). (B-19) a2r a+ 
aa ab an2 a T 2  

At the same time - = - - = 1, so that all terms  on  the subintervals of continuity from 0 to a and  from a to T ax ax 

" 
" and  breaking up  the integral in (B-23) over 

the right of (B-18) cancel  except for  the integral. Thus  and using the initial 

From (B-4) and (B-5) the lemma then follows. It is also 
seen that if T = T ~ ,  there will be an incident wave on either 
the  right or  left of X = ~ X  whose contribution in terms  of 
the  jump in r is not cancelled by a reflected wave, as on 
the right  side of (B-l8),  so that  there will be an added 
term  in (B-20). 

0 Lemma 2 

C T L " ( ~ )  +An2 C,(T) =0, T > O ,  T # T ~ .  

We first verify that  at points (i, T )  not lying on any of 
the discontinuity waves, R(X, T )  satisfies the wave equa- 

(B-24) 

where the y is assigned the slope of the discontinuity. 

Now expressing - and-  in terms of the  normal  and 

tangential  derivatives  along the discontinuity character- 
istics and using the  already assumed properties of r(X,  T )  

it can be shown that along a  characteristic  discontinuity 

ar  ar 
a T  an 

Y [;I =- [;I. 
Combining the last three  equations we find that 

a2R ar 
ax. aT ' (B-21) 

- "- 

(B-25) 

(B-26) 

For simplicity let us assume that  the T segment from 0 
to T erected at X intersects  only one discontinuity wave, 
say at (3 ,  a ) .  The considerations will apply to any num- 
ber of such intersections. As above, we then have 

(B-22) 

where [r]-r(X+O, a )  " r ( 2 - 0 ,  a ) ,  and this formula is 
valid for discontinuities of either  slope + 1 or - 1. Using 
the  property  that a  discontinuity  in r,  a  solution of the 
wave equation, travels  unchanged  along  a  characteristic, 

a [r1 
an we have - = O  SO that 

P R  
which is  by the definition of R just- . Thus (B-21) is 

satisfied for T > O ,  x E TI U provided the point (X, T )  

does  not lie on a  discontinuity wave. 
We now consider the  equation 

a T z  

LT Xn(R;;-RTT)dZ=O, T > O .  (B-27) 

In the  range of integration there will occur points of 
discontinuity of R and its derivatives due  both  to  the 
intersection of discontinuity waves and  the discontinuity 
at the piston x= 07 .  Let 2 denote one or the  other of these 
points of discontinuity. Then integrating by parts  for 
fixed T > 0, 

(B-23) RX,"d.?+ [RX,'] - [ X , % ] ,  (B-28) 

2r 
where [$] = -(Z+O, a )  - - (2 -0 ,  a ) .  Replacing  where now [ X ]  - x ( K + O ,  T )  - x ( i -O ,  T )  . Since the P s i -  

ar 
an a,? tion of 2 may  vary  with T we have 

In cases where K refers  to a  discontinuity moving along  a 
characteristic, both R and X ,  are  continuous so that  the 
last term in (B-29) drops  out. Differentiating again gives 

u a2R 

(B-30) 

Figure 9 Typical intersection of discontinuities and In this case [RX,'] = O  in (B-28) so that substituting 
path of integral defining R(Z,  T I .  from (B-28) and (B-30) in (B-27) gives 389 
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RX,”  dx-  [X,Rz] - 

(B-31) 

d,T 
dr  

where y= -= k 1 as before.  Since X ,  is continuous  at 

this  discontinuity, the  terms  in brackets  cancel by virtue 
of (B-25) applied to  the solution R of the wave equation 
and we have 

$lT RXnd.t-lTRXn”d,T=O. (B-32) 

In  the second  case the discontinuity contribution is due 

to  the presence of the piston. Here X 0 7  and - = 0. 

Thus, 

dX 
dr  

(B-33) 

aR 
Assuming  now that T # ~ i ,  we have that  both - and 

ax 
X,‘ are continuous at X = BT and  in  fact 

aR 
X n ’ = h [ X n ] , -   = h [ R ]  . (B-34) ax 
In  (B-28) we have, therefore, 

aR 
=X, ’ [R]  - - [x,]  

a t  

390 
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Combining (B-33)  and  (B-35) again  leads to (B-32). 
Thus, regardless of discontinuities we are led to  (B-35), 
valid for T > O ,  s#ri .  (A third case, where the discon- 
tinuity for given T occurs  at  an end-point Z=O or f = ~  
may  be disposed of by the  boundary conditions to give 
the  same  result.) 

BY 03-9) 

$ l T R X n d . f =  - 1 C,”(T)  , (B-3 6 )  

J 3 =  i’ 
a n 2  

and of course 

RX,”d.f= -An2 RXndX= - 7 C,  . (B-37) 
An2 

an 

Combining  (B-22),  (B-36)  and  (B-37) yields the state- 
ment of the  lemma. 
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