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H. J. Greenberg

Fourier Analysis of the Motion
of a Hydraulically Controlled Piston

Abstract: The problem is considered of the motion of a free piston in a finite pipe filled with a compressible
liquid and subject to a step in pressure introduced from the two ends. The treatment is in one dimension using
the linearized wave equation for the density disturbance and the linearized boundary conditions. A general-
ized Fourier series expansion leads to the solution of the problem. The mathematical analysis is complicated
first by the presence of the interior boundary conditions which lead to a system of discontinuous eigen-
functions, and second, by the step pressure input which results in reflected discontinuities. By studying the
properties of the eigenfunctions from a variational characterization, the formal expansions used are estab~
lished rigorously. The motion of the piston is determined as a function of the input parameters, and the max-
imum piston excursion and the associated time are tabulated numerically over the ranges of interest of

these parameters.

1. Introduction

Pressure pulses in hydraulic lines can be used to drive or
position pistons with high speed and precision. In a vari-
ety of applications, such mechanisms are superior to
direct linkage drives. The usual hydraulic analysis of the
motion of the piston ignores wave motion in the fluid,
relating pressures directly to volume changes. The pur-
pose of the present paper is to give a complete linear
treatment of the motion of a coupled fluid-piston-fluid-
system.

The system to be considered consists of a free piston
in a finite pipe filled with hydraulic oil, with pressures
introduced from the two ends. The oil will be treated as a
compressible, inviscid liquid and the problem will be
restricted to one dimension, thereby neglecting the influ-
ence of the wall of the tube. The disturbances will be
assumed to be small so that linear equations for the wave
motion and the boundary conditions result.

The solution of the linearized problem is accomplished
by a generalized Fourier series expansion in which each
term is a particular solution in product form of the re-
duced homogeneous problem.

While the approach is classical, there are two aspects
of the problem which lift it above the ordinary and com-
plicate the analysis. The first is due to the presence of the
piston in the interior of the interval, leading to two inte-
rior “boundary conditions” in addition to those at the
ends of the tube. This leads to a system of discontinuous
eigenfunctions, the discontinuity resulting from the pres-
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sure discontinuity across the piston. In Appendix A, the
properties of these eigenfunctions are discussed, in par-
ticular the orthogonality and completeness relations upon
which the series expansions are based. These properties
are derived from a variational characterization of the
eigenfunctions and eigenvalues.

The second inherent complication lies in the fact that
the pressure input at the ends of the tube introduces dis-
continuous waves at the initial time. Assuming smail
disturbances, these waves travel at sonic speed toward the
piston, are reflected, and thereafter continue to bounce
back and forth between the piston and the ends of the
tube. Because of these discontinuities, the problem admits
only of a so-called “weak solution.” One cannot, there-
fore, directly establish that the formal series expansion
for the density variation is actually the solution of the
wave equation subject to the various boundary and initial
conditions. Appendix B, however, establishes the validity
of the expansion for the time integral of this function.

The final step in the solution is to determine the motion
of the piston from the pressure variation on its two sides.
Since the series obtained is rapidly convergent, good
numerical results may be obtained.

In Section 7 the numerical calculations are first carried
through explicitly for a special case where the eigenvalues
and the Fourier coefficients may be found simply from
asymptotic formulas. This is followed by the results,
shown in Figs. 5-8, of a complete IBM 704 study deter-




mining maximum piston excursion and corresponding
time required over a range of the basic nondimensional
physical parameters specifying mass and geometry.

2. Equations of motion of the fluid

We consider the flow of a compressible fluid in one
dimension, assuming no viscosity. The continuity equa-
tion expressing conservation of mass states that
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where x denotes the space variable, ¢ the time and both p,
the density (mass per unit volume), and u, the fluid
velocity in the x direction, are functions of x and ¢. A
second equation is a statement of Newton’s law of mo-
tion, or conservation of linear momentum, given by

where p is the pressure (force per unit area), a function
of x and ¢ and D /Dt stands for the Eulerian or material
derivative
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A third equation is given by a pressure-density relation
of the form?!

p=p(p) - (2.4)

Letting po denote the constant undisturbed density of the
fluid at atmospheric pressure and ambient temperature,
we write the total density p(x, t) as

p=potp’, (2.5)
where p'(x, t) is assumed to be small compared to po.
Substituting (2.5) into (2.1) and (2.2) and discarding
products of u and p’ and their derivatives as being of
higher order gives the equations
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From (2.4),

or to the first order,

From (2.7) and (2.8)
(2.10)

Eliminating p’ first and then u from the pair of equations
(2.6) and (2.10) gives the second-order equations
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for the functions p’(x, t) and u(x, t). These are the well-
known linear wave equations of acoustics, and the solu-
tion of either equation can be expressed as the sum of a
function of (x—aot) and a function of (x-+agt); these
functions represent advancing and receding waves of
velocity ao. Thus the constant a, appears in this theory
as the velocity of sound, i.e., small disturbances, in the
fluid at density po.

3. Statement of the problem

We consider one-dimensional motion of a fiuid-piston-
fluid system as shown in Fig. 1. Distance x is measured
from the left end of the tube. The piston, of mass M per
unit cross-sectional area of the tube, is assumed at =0
to be at rest at a distance /; from the left end of the tube
and /; from the right end. (Since the piston is treated as a
rigid body, the actual length of the piston does not enter.
For convenience we shall assign it zero length and locate
it in its entirety by a single coordinate.) Also at the initial
time the fluid is assumed to be at rest throughout the tube
at the undisturbed density po. At the boundaries of the
tube, overpressures are assumed to be introduced at the
initial instant and then maintained. The problem is to
determine the ensuing motion of the piston.

The conditions so far described may be expressed in
terms of the density variation p’(x, t) as follows. For
convenience we denote I the interval 0 <{x <I/; and by
I, the interval [; <x <l +1s.

® [nitial conditions for x in I, and I,

p'(x,0) =p'(x,0)=0; (3.1)
® Boundary conditions at tube ends for t >0
p'(0, 1) =pt, p'(li+1z, 1) =p2, (3.2)

where the subscript ¢ denotes partial differentiation with
respect to time and p;’ and p,’ are prescribed positive
constants.

op op’
— —ay—, 2.8
ox 0x (28)
where
2 dp Figure I Configuration of the piston and tube at
Ap"= | —— . (29) « ore . 379
dp ] | p=p, initial time.
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Still to be formulated is the condition at the piston-
fluid interfaces. Let the variable £=£(¢) denote the posi-
tion of the piston at time 7, measured from the initial
position at x=I;. Then

£(0) =£(0)=0, _ (3.3)

where the dot denotes total differentiation with respect to
t. The density of the fluid adjacent to the piston on the
left at time ¢ is po+p_’, where p_’ denotes the limit of
p'(x,t) as x approaches I;+£(t) from the left. Similarly,
the density on the right-hand side is denoted by po+p,’.
Using the linear terms in the Taylor expansion of the
pressure p=p(p) as a function of density, we can there-
fore find the resultant force on the piston and write the
equation of motion as

Mé=p —p,=ac*(p'—p.), (3.4)

taking into account (2.9).

Since the right side of (3.4) contains in the arguments
the unknown position £(¢) of the piston, this equation
leads to an inherently nonlinear condition. Consistent
with the assumption of small disturbances and a linear
theory, however, we may assume £(t) small and evaluate
p-" and p,’ at the original interface location £=0. Thus in
the following we denote
p: = lim p'(x,1).

2->1,+0
By continuity of the fluid, the piston velocity and the fluid
velocity immediately adjacent to the piston must be the
same, so that to a linear approximation
lim u(x, t)= lim u(x, t)=£(t).
0

2—1;-0 a1y
Upon differentiation we have

3 .
ou g (3.5)
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where the subscripts — and + denote left- and right-hand
limits at x=I, as before. From Eq. (2.10) we have
ou. 2 Bp.
L__ L (3.6)
ot Po ox

Combining (3.4), (3.5) and (3.6)
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constituting two additional boundary conditions to be
satisfied for all >0 at x=1I,. These conditions state that
the left- and right-hand derivatives of p’(x,t) at x=I
should be equal and have the value (po/M) times the
jump in p'(x, t).

The problem stated in terms of the fluid is to determine
a solution p'(x, t) of (2.11) satisfying the initial condi-
tions (3.1) and the boundary conditions (3.2) and (3.7).
Because of the initial density discontinuities at the ends
of the tube, the solution p'(x, t) will be expected to have
discontinuities along the characteristics of the wave
equation issuing from these points and the subsequent
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reflections of these characteristics from the boundaries.
Consequently we require that p’(x, t) satisfy the wave
equation (2.11) for x in Iy and I, with t>0 except at
most along certain lines in the x—¢ plane across which
p'(x, t) may be discontinuous. (These discontinuities are
subject to conditions of conservation, but it will not be
necessary to formulate these explicitly for this discus-
sion.) From the function p’(x, t), the displacement £(¢)
of the piston can be obtained from (3.4) by two time
integrations subject to (3.3).

4. Reduction of the problem

Before proceeding, we shall introduce nondimensional
variables into our preceding equations and restate the
problem in terms of these variables. Let

X aomt
omn T ik 41
and
B (x ) =p (%, 1) /po. (4.2)
Denoting the reduced total density by g=p/po we have
p=1+p". (4.3)
The wave equation becomes
" =
over the ranges 0 <% <fr, 7 <%<m, where

L
= @

and X=40~ is the initial position of the piston. Similarly
as before we let I; and I, denote the intervals of ¥ to the
left and right of the piston respectively.

The initial conditions become

p'(x,0)=ps(%,0)=0 (4.6)

for % in I; and I, and the boundary conditions at the ends
of the tube are, for r >0,

pO,)=p’s F(m7)=p, (4.7)
where

pr'=p1'/po, P2'=pz'/po. (4.8)
At the piston, ¥=6x, the condition (3.7) becomes
P —hp-p 1, (49)
where

p £otl) (4.10)

M=

and left- and right-hand limits refer to this value of X.

We proceed now to reduce the problem to one with
homogeneous boundary conditions replacing (4.7), by
introducing a particular solution f of the wave equation




which satisfies the given boundary conditions. We then
express the desired solution g’ as the difference between
f and a function r(X, 7) to be determined. It follows that
r satisfies homogeneous boundary conditions, but since f
turns out to satisfy one but not both initial conditions,
r will be required to satisfy one nonhomogeneous initial
condition in order to compensate for this. Consider the
function

hip'—p1' )z -
P mp)E L ved,
76 AT T
xX)=
h ’_ I; ’ h_’
(pe'—p1) PAmhl cely. (411)
h+1 Th+1

This function consists of two linear segments in X and
does not involve 7, and thus trivially satisfies the wave
equation. The slopes and intercepts have been chosen to
satisfy the four boundary conditions (4.7) and (4.9)
written for f, as may be checked directly. The graph of
f(x) is shown in Fig. 2. If we now define r(%, r) by the
equation

p—f—r (4.12)

it follows by the linear character of the problem that
r must satisfy the following conditions:
o%r o%r

P =a—2,-’_C€71U72, >0 (4.13)
X- T

(excepting discontinuity lines of the function (%, 7)

r(0, 1) =r(=,7)=0, >0, (4.14)
%, 0) =f(% - -

OO et (4.15)
re(%, 0)=0

or or —

— = . =h +—r-]. 1
ox ox [r=r] (4.16)

5. The formal Fourier solution

We begin by seeking particular solutions of the wave
equation (4.13) subject to the boundary conditions
(4.14) and (4.16) in the form of a product of a function
of % by a function of 7, say X (%) T (7). Substituting this
expression in (4.13) we find in the usual way that

£(%) I f

x1

|
|
|

Figure 2 Graph of f(x) for p.'>p,’.

X" +NX=0,%€,Ul, (5.1)
T"+A2T=0, >0, (5.2)

where A® is a constant.

Ordinarily, (5.1) is subject merely to two end condi-
tions leading to a specification of functions X and corre-
sponding A values. In the present problem there are four
conditions to bte satisfied in (4.14) and (4.16). This is
handled by allowing X (%) to be a different combination
of sin A% and cos A% in each of the intervals I; and I». The
coefficients of these combinations are determined by im-
posing the conditions

X(0)=X(x)=0 (5.3)
X Rx-x. (5.4)
ox 0x

In order for there to be a nontrivial solution to the
homogeneous equations, the determinant must vanish,
yielding the “frequency equation” to be satisfied by A.
The corresponding coefficients and the functions X are
then determined. Proceeding in this way one finds

A=—h[tan A@=+tan Ax(1—6)] (5.5)
and
B sin A%, €1,
(cos Afm)sin AM(E—=) /cos A(1— )=, €L, (5.6)

where for each positive A, the corresponding function X
is determined to within a multiplicative constant.

The equation (5.5) defines an infinite sequence of
positive roots A which we denote in order of increasing
size by A1, A2, . ... This statement, and the fact that the
numbers A, approach infinity with increasing n, are read-
ily deduced from consideration of the graphical interpre-
tation of the roots of (5.5), & being a positive number.
(An illustration for the case #=1/3 is furnished by
Fig. 3.) To each A,, termed an eigenvalue of the problem
defined by (5.1), (5.3) and (5.4), there corresponds an
eigenfunction X, (%).

At the same time, there corresponds to each A, a solu-
tion of (5.2) which is a combination of sin A,r and
cos A,7. Bearing in mind that the derivative with respect
to 7 is to vanish at =0, from (4.15) in the final solution,
we shall assume the solution for 7'(r) to be simply
COS AyT.

This then gives an infinity of particular solutions

Xn(X)cos Ay, n=1,2,..., (5.7)

of (4.13), (4.14), (4.16) and the second of conditions
(4.15). Following the usual Fourier procedure we now
satisfy the initial condition r(%, 0) =f(%) by choosing for
r(X%, r) the infinite series

F(X, 1) = > anXn(X)cos A, (5.8)
n=1

where a, is the Fourier coefficient of /(%) with respect to

X, in the expansion

381
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FE) = S anXa()ds (5.9)

n=1

so that

f "HR) Xo(R) d%

T
/ Xn2d%
0

In Appendix A it is shown that the eigenfunctions X,
may be characterized by a variational principle from
which it follows that they satisfy the orthogonality
relation

Qan

,n=1,2,.... (5.10)

T
/ XnXndi=0, m+*#n, (5.11)
[+]

and possess the property of completeness. While it can
be shown that certain classes of functions can be ex-
panded in pointwise convergent series in the functions
X, it is not necessary to prove the validity of (5.8) to
obtain the final expression for the piston motion. This is
shown in Appendix B. In essence, the “time” integral of
r(X, 7) rather than r(X, 7) is expanded in the correspond-
ing generalized Fourier series.

The solution for the reduced density variation function
is then found from (4.12) to be

(%, 1) = f(2) — S auXn(X)COS Aut . (5.12)

n=1
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Figure 3 Graph of frequency equation for case
6=1/3.
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6. Motion of the piston
Let

3
Li41s

&= (6.1)

denote the reduced piston displacement. Then in terms
of nondimensional variables, the equation of motion
(3.4) of the piston becomes

dz
dr2?
where % is as before. The right-hand side of (6.2) is

determined from (5.12) and (4.11) evaluating the right-
and left-hand limits of p’' and f(X)at x=@=. This gives

=h[p'—p/] (6.2)

2""‘ r_ ’ 0
dzg =h [ PP + 3 a, cos }\nr(Xyﬁ—Xn’)jI s

dr? wh+1 ne1
where X,'= lim X,(%). From the jump condition (5.4)
Z—eT0

and the definition of X, from (5.6),
h(Xt—Xn") =An COS A7

so that

d€ _h—-p) 2

+ 3 auhn €Os Apfw cos Apr . (6.3)
dr? rh+1 E i T

Integrating this function and making use of the initial
conditions

£0)= d =0, we obtain
dT T=0
_ h(pllipZ,) \ D g,
_ 77 cos A0
e PP R Wit
— § n COS An7 COS Apfm . (6.4)
n=1 n

In Appendix B, this formally obtained expansion is shown
to represent a true solution for the motion of the piston.

We proceed next to evaluate the coefficients a, appear-
ing above through Eq. (5.10), where f(%) is given by
(4.11) and X, by (5.6) with X replaced by A,. Carrying
out the integrations gives

" dE_1 An? ! AR 6.5
OXn dx=§ 07T+7T(1'—0)B—nz+—'h* n ()

and

w 1
f=——— |\ 5O+ =R+ Auah(p) — po’
ﬂ X .d% PWEEE [p (1+=h) + (p.'— p2')

An
3 (whp1’+p2’)] , (6.6)

where for convenience we set
A,=cos Az, Bnp=cos A;m(1—6). (6.7)

The frequency equation (5.5) for A, can then be written




Ane S AT (6.8)
AnB,

The Fourier coefficients of f(&) with respect to X, are

therefore given by

2hB,

An(1+7h)

[p’ Bu(14+xh) + AuBrhr(p) — p2') — An(zhp +p2") |
[B.2 9rh+ A2 B2+ hn(1—0)A2]

an=

(6.9)

which completes the determination of the solution &().

7. Numerical results

Of particular interest is the case where the end pressures
are equal so that §;"=p,". In this case motion of the piston
occurs if and only if the piston is initially positioned off
center in the tube so that /; <. By symmetry then one
need only consider the cases for which 0<<8<1/2.

The Fourier coefficient simplifies to

271[’1, B, (Bn_An)

an= (7.1)
M Bn2 Onh+A,2 B2 +hn(1—0)A,2]
and
- i AuBy(B,—Ay) (1—cos Ap7)
—2hpy’ .
S =2y e A B (1) A]
(7.2)

As will be seen shortly, the terms in the series (7.2) are
1

0 (—3>as n— o0 due to the presence of the factor A, 2, so
n

that the convergence is rapid.

As an example, prior to discussing the general numeri-
cal results, we take the case where ls=2/; so that §=1/3.
This can be carried through quite explicitly and illumi-
nates the numerical aspects of the problem. The fre-
quency equation becomes

T 27
An=—h1| tan /\n—a—— +tan ,\nT . (7.3)

The eigenvalues A, are determined as the intersections
. A T 27
of the line y= ——h-and the curve y=| tan )\?4— tan /\—3—

in the A—y plane as shown in Fig. 3, where one period
0<A<3, is graphed. These intersections will occur in the

neighborhood of the asymptotes of the functions tan )\n%

27
and tan A, 5 and only there. As n increases, the inter-

sections will approach the values of A corresponding to
3(2k—1)
——— a

2

these asymptotes. The asymptotes are at nd

3(2k—1)

4
which these numbers differ from the actual eigenvalues
by e’ and &.” respectively, we define two sequences of
eigenvalues

,k=1,2,...,and if we denote the amount by

3(2k—1
i = @D +ex’
2
and
3(2k—-1
/\k”= % +Ek” . (7.4)

The actual sequence of eigenvalues Ai, Az, Az, ..., is
obtained by ordering the A,’ and A;” into a single se-
quence of monotone increasing members.

Substituting for Ay’ from (7.4) in (7.3) and retaining
e'* terms in the expansions of the trigonometric terms
leads to the error estimate

, 2h

&g = ———

(2k—1)=

. . . 3(2k-1)
so that the relative error in replacing Ax" by —
) 4h
s —.
3(2k—1)2

Similarly one can show that the relative error corre-
sponding to e;” is

1
O{————]).
<(2k—1)2>

In order to obtain explicit expressions to illustrate the

. . . 3(2k—1)
present discussion we will take Aj'= — an
3(2k—-1) o
A" = — These approximations are clearly gocd
for larger &, but may be used for all k=1,2, 3, ..., if we

suppose h small (the physical significance of % is seen
later).
The eigenvalues A, n=1,2,..., are the successive
numbers 3/4, 3/2, 9/4, 15/4, 9/2, 21/4, 27/4, 15/2,
., in which for n=2, 5, 8, 11, ..., the entries are
successive members of the A;’ sequence, while the entries
forn=1,3,4,6,7,9, 10, ... are successive members of
the A" sequence. In order to compute the Fourier coeffi-
cients which enter into (7.2) it is necessary to evaluate

An
for each A, the corresponding values of 4,=cos —;— and

An2m

B,—=cos . From the frequency equation (7.3) it is

possible to find explicit formulas for these quantities in
terms of n and h to the same order of approximation as
the values of A,.

Two sets of approximation formulas are obtained
arising from the two subsequences of A,. We note that
corresponding to the sequence Ax', A, will be near zero,
whereas for the A" it is B, which is near zero. Specifically

383
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Figure 4 Profile of piston displacement Evsrforf=1/3 {asymptotic approximation for h small).

N 2R(—1)¥ A,27r .
COS A, —m = —m8 8 —— =
"3 302k—1) 0 SO 3
(7.5)
= 2 4(—1)*h
cos A" — =+ L, cos A, n T —-¥1— .
2 3 3(2k—1)

Substituting in (7.2) we obtain finally the displace-
ment of the piston in the form

16;1]51,

o

&)=

[4(1—cos 37/4) —(1—cos 37/2)
4 4
BT (1—cos 97/4) + ?3— (1—cos 157/4)

+ —3—13—(1—cos 187/4)— .. :I
(7.6)

where the terms n=2, 5, 8, .. ., in this series in brackets
are the successive terms k=1, 2, 3, ..., of the sequence

=DF (, (2k—1)7
(2k_1)5_< _COS—Z—_—)’

and the remaining terms n=1, 3, 4, 6, 7, ..., are suc-
cessive terms of the sequence

4(—1)k 3(2k—1)~
——{ l—cos —— ).
(2k—1)3 ( 4 >

The series in brackets in (7.6) has been computed and
is shown plotted in Fig. 4 for two cycles of the motion
as the piston moves to the right and returns. It will be
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noted that no motion takes place until r=1/3, this being
the reduced time required for the first wave to reach the
piston at Xx==/3, the reduced velocity of sound being
unity.

We return now to a numerical study of the piston
motion in the case of equal end pressures py" = p2’.

The motion of the piston is given by Equation (7.2).
Therein the end pressure appears only in the multiplica-
tive factor p,’. The parameters affecting the series are 6
and £, which appear explicitly and also serve to determine
the eigenvalues A, through the frequency equation, (6.8).

In terms of d we have, from (4.5) and (4.10)
L (7.7)

M=0

If we denote the cross-sectional area of the tube by A4,
then the mass of fluid to the left of the piston is po/14 and
the mass of the piston itself is MA. Letting the ratio of
these masses be m we have

!
=" w2 (1.8)
T M
We shall deal with m and @ as representing the essential
nondimensional physical parameters of the problem and
relate to mass and geometry respectively. Fixing m and

determines the quantity

fad Aan Bn—An)(l—COS )tnT)
F(r)=h3 - ¢

= M2[B.2 OxhtAn? B+ ha(1-0)A,2]
(7.9)




—
0.25 0.30 0.35

Figure 5 Piston excursion as a function of 4.

from which the actual displacement ¢ of the piston is
found from the relation

2p1'1
g=P 1 pery,
=0

(7.10)
where we have used (7.2), (6.1) and (4.5). An appropri-
ate nondimensional measure of the piston displacement in
terms of the m and # parameters is therefore the quantity

(7.11)
In terms of r and the parameter 6, the actual time ¢ is
given by

r
(7.12)

Ao 0

I
from (4.1) and (4.5). Here, — is the time required for
Ao

a sound wave originating at the left end of the tube to
reach the piston. As a nondimensional measure of time
which includes the full dependence on the parameter 6
we shall use the quantity

aopm

(7.13)

= — =
0 11
The graph of Fig. 4 is typical of those of piston dis-
placement versus time for any combination of m and 0
values. The essential variation with m and # lies in the
“amplitude” of the wave and its “period.” (The motion is

found to be very near to periodic.) These quantities are
the significant ones if it is desired to drive the piston
hydraulically through a specified excursion (maximum
initial displacement) in a specified time. We denote the
excursion by A and the excursion time by T. For each
pair of specified values of m and 6, £ was calculated as a
function of 7 and the maximum value of £ in the first
wave was read off as A and the corresponding value of
7/6asT.

The calculations were carried out on the IBM 704 with
m values taken to be 0.05, 0.1, 0.25, 0.5, 0.75, 1, 2, and
5. For each m the following values of § were used: 1/3,
1/5, 1/9, 1/15, 1725, 1/35, 1/55. In all, this gave 56
runs. In each case A and T were determined. The results
are depicted graphically in Figs. 5 to 8.

Figure 5 shows the variation of A with § for several
values of m. Figure 6 shows the variation of T with 4 for
two values of m. The variation with m is relatively small
so that the graphs in these figures would have been ex-
cessively crowded if the other m values were included.
To see the relative lack of dependence on m as compared
to 0, in Fig. 7 the variation of A with m is plotted for the
selected values of § and in Fig. 8 the variation of T with
m is plotted for these § values.

By specifying p1'=p:1'/po, [1 and ao in addition to m
and 6, one can in any case calculate the actual maximum
piston displacement ¢ and required time ¢ from (7.10)
and (7.12). Conversely, the graphs may also be con-
veniently used to determine the required m and 6§ to
achieve a specified A and T. For example, if T is given,
using Fig. 6 one determines a range of @ values corre-
sponding to varying m. Checking this range of # values
on Fig. 5 will show which, if any, m value will yield the
desired A value.

A final word concerns the accuracy to which the calcu-
lations were carried out. The eigenvalues were calculated

Figure 6 Piston excursion time as function of 4.
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Figure 7 Piston excursion as function of m.
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Figure 8 Piston excursion time as function of m.
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from the frequency equation (5.5) by a Newton-Raphson
iteration to an error less than 1 x 10-¢, The series of (7.9)
was summed to approximately 50 terms, corresponding
to a determination of all eigenvalues less than 50 in value
and inctuding the corresponding terms. The accuracy was
checked by repeating, for extreme values of the param-
eters, the calculations using the series terms for all eigen-
values less than 100, essentially 100 terms. The observed
change in A was nowhere large enough to affect the loca-
tion of the points plotted in Figs. 5 and 7. For T, there
was no change in the values for r=0.05 and r=1.00, and
even at r=>5.00 the change was of the order of 3%.

It will be noted that the points of Fig. 8 do not all lie
exactly along smooth curves. This is due to the fact that
F(+)/6 was calculated in intervals of Ar=0.1 and that
the maximum F(r)/f was chosen from among these
values. Thus, the value of 7=/ at this point can be in
error (i.e., differ from the location of the true maximum)
by as much as 0.05/6 simply because of the coarseness
of the A7 interval and the lack of interpolation.

However, from (7.12) we see that this corresponds to

. ) L 70.01 .
an error in actual time of At=——( —— ], which may be
aom

several orders of magnitude smaller because of the size
of ay, the velocity of sound.

Appendix A: Orthogonality and completeness of
the eigenfunctions

By showing that the eigenfunctions and eigenvalues de-
termined by (5.1), (5.3) and (5.4) can be generated by
minimizing an appropriate positive definite quadratic
functional, we can by standard techniques deduce the
needed properties of orthogonality and completeness for
the eigenfunctions as well as the convergence of expan-
sions in these eigenfunctions. We shall here only outline
the procedure and specify certain results.

The variational problem to be considered is the follow-
ing. Minimize

D[¢]E/T¢’2d2+a[¢(0w+0)—<;l>(07r—0)]2 (A-1)

over the class of functions ¢ which are continuous over
0<x<7 except for a possible jump discontinuity at an
interior point ¥=0=, and which have piecewise continu-
ous first and second derivatives over 0<x <, subject to
the following subsidiary conditions:

H[¢]= /quzdi:l , (A-2)
¢(0)=o¢(7)=0, (A-3)
¢ (0r+0) =¢(§=—0), (A-4)

where a>0 is a constant.

The following results are established by proceeding as
in [2], Chapter VI. The present problem represents a
generalization of the functionals there considered by
allowing for a discontinuity in the eigenfunctions them-
selves.




As necessary conditions for a minimum in the preced-
ing problem one finds, denoting the minimizing function
by ¢, and the associated minimum by w4,

¢ Fupr=0, 0<Lx<nr, Hn<i<n (A-5)
and
b1/ (0 +0) =a[$1(d7+0) — 1 (§7—0) ] . (A-6)

One then considers a sequence of minimum problems,
in which in addition to the previous conditions the admis-
sivle functions are required to be orthogonal to the mini-
mizing functions ¢; of the previous problems in the sense

/ " bpidx—0. (A-7)

One thus obtains a sequence of orthonormal functions
¢, i=1,2,.., and associated numbers p<pe<. ..,
satisfying (A-5) and (A-6) with 1 replaced by i. It fol-
lows that with a=h, the ¢; are (to within the normalizing
constant factors) among the eigenfunctions defined by
(5.1), (5.3), (5.4) with y; the associated eigenvalues.

That the sequences ¢; and u; constitute all the eigen-
functions and eigenvalues so defined, can then be proved
by verifying that any eigenfunction not contained in the
sequence ¢; must be orthogonal to the ¢; and hence, by a
later expansion theorem, identically zero. Therefore we
can write ¢;=e;X; and p;=A;, i=1, 2, ..., where a; are
the normalizing constants, and X; and A; are defined by
(5.5) and (5.6).

From the fact that lim X;=oco it follows, (see [2],

1—00
§.3) that if (%) is any function satisfying the admissi-
bility conditions of the original minimum problem, then

lim/ [!/’— 26i¢i:l dx=0, (A-8)
where
ci= / 7¢¢,-dx (A-9)

is the Fourier coefficient of ¢ with respect to ¢:, so that
one has convergence in the mean. Equivalently

T o0
/ lpzd.i: 2 c?.
0 i=1

It can then be proved (see, e.g., [2], page 427) that

the series 3 c;¢; converges uniformly and absolutely

=1

0<x<0m fx<i<x, to the function ¢. A distinctive
feature of this result in the present problem is that the
series converges uniformly to a possibly discontinuous
function, since ¢ is permitted a discontinuity at x=0=
(the value of the function and the series at x=#§= is im-
matferial). This is due to the fact that the eigenfunctions
¢; themselves are discontinuous at this point.

This expansion theorem in itself does not provide the
justification for the Fourier expansion (5.5) for the
function r(x, 7), because r(%, r) considered for fixed

as a function of % violates the admissibility conditions in
that it possesses in general discontinuities at points other
than ¥=#=. However, in order to justify the final result
for the piston displacement we will see in Appendix B
that this expansion theorem will suffice.

Appendix B: Validity of the solution

We shall here establish the validity of the series (6.4) for
the piston motion. For simplicity we consider the case
where p2'=p1’.

We consider first the function »(%, ) which by defini-
tion satisfies the following conditions
or o%r

o o ,X€L UL, >0 (B-1)
X T

(excepting discontinuity lines)

r(0, 7)=r(=w 7)=0, >0 (B-2)
rE =1, r(%,0)=0,x€l, VT, (B-3)
or ar

= —h[r.—r]. B-4
ox ox [r.=r] (B-4)

We assume that a solution r(%, v) to this problem
exists which possesses two continuous derivatives and
satisfies the equation (B-1) except along certain lines
X-+7 = constant [characteristics of (B-1)] across which
r and its normal derivative may be discontinuous, but the
tangential derivative remains continuous. It will also be
assumed that a discontinuity is propagated along a char-
acteristic without change.

The existence of such a solution, following an argu-
ment communicated to the author by R. Courant, can be
deduced from the representation of the solution in the
form r(%, 7) =F(%+7)+G(Z—7), using the initial and
boundary conditions to continue the definitions of the
functions F and G to all allowable values of the argu-
ments ¥+ 7 and ¥— 7. This argument, in effect, allows one
to construct the solution r(%, r) in a step-wise fashion
and provides an alternative method of solution to the one
presently under discussion. The details will not be pre-
sented here.

We now consider the function

R(x, )= /Tr(f, T)dr. (B-5)
0

For any 7>0, R is a continuous function of x for X+ fr
since in the range of integration the discontinuities of the
integrand occur at most along a finite number of lines
X+ = constant. At x=0= R(X, ) will be discontinuous
and it can be shown that

oR- oR*

— =— =h[R,—R.] (B-6)
ox ox

for all +%#r; where 7;, i=1,2,..., correspond to the

successive times at which a discontinuity wave from the
right or left end of the tube strikes the piston, i.e., reaches
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X=0=. (This will be proved as Lemma 1 at the conclusion
of this Appendix.)
From (B-2) we have that

R(0,7)=R(=m, 1)=0, >0. (B-7)

The function R for r >0, 77, therefore satisfies all of
the essential admissibility conditions of the variational
principle and expansion theorem of Appendix A. Accord-
ingly we can expand R(X, r) for such 7 in a uniformly
and absolutely convergent series in the eigenfunctions X,

R(% 1) = S Ca(r) Xo(%) , (B-8)
where
C.(7) =af,.2/'TR (%, 1) X.(x)dx, (B-9)

3
and a, %= / X.2dx. To complete the determination of

[t}
R (%, 7) we need to obtain C,(7).
Formally from (5.8) and (B-5) we obtain for R(X, 7)
the expansion

Rz )= =

n=1 n

Xo(X)sin A7, (B-10)

To validate this expansion we must establish then that

an
Cn(r)= 3

n

sin A7, >0, 757, (B-11)

The coefficients a, from (5.10} and (4.11) (since
p1’'=p2'=1 and therefore f(X)=1 in this discussion) re-
duce to

™
anEa,,z/ X.dx . (B-12)
o

By Lemma 2, to be proved at the conclusion of this
Appendix

Co"(7) +A2 Cy=0, 7>0,7% 7. (B-13)

It follows that in each interval = <7 <ri,1
Cy=pn CO8 ApT ¢y sin An7 , (B-14)

where p., g. are constants which might vary for succes-
sive intervals in which the differential equation (B-13)
holds. However, by (B-9) and the continuity of R we can
verify that C.(r) and C,'(r) are both continuous func-
tions for all 7>0. It follows that p,, g, must be fixed
constants independent of the interval of 7.

The constants p,, g, can now be determined from the
initial conditions. We have by (B-7), (B-5) and (B-12)

1€/ (7) —an| =an2|/w(r1)Xnd5c| ) (B-15)
1]

Since r=1 for 7=0, and for sufficiently small r, r=1
except for arbitrarily small intervals near ¥=0 and =, and

since X, is bounded, it follows that lim C,’ (7)=a,.
T—0
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From (B-14) we then have

ay
An

Gn= (B-16)
Similarly from the continuity of R(%, 7) at 7=0 and the
initial value R(%, 0) =0 we find that

lim C,(7) =0

T4

so that in (B-14) we must have p,=0. This establishes
(B-11), and hence (B-10) for R(X, 7) is valid for 1.
From the continuity of R(X, r) as a function of = and the
uniform convergence of the series in (B-10) of continu-
ous functions of = (this follows from the fact that the

1
terms in (B-10) are 0 — ) it follows that the expression
n

(B-10) must be valid for the points r=r; as well.

Returning to the motion of the piston now, we have
from (6.2) by integration, by the definitions (4.12) and
(4.11),

d"s / [/ —f,])dr—F f [r—r]dr

:h-__pz_ +—h[R.—R.]. (B-17)

wh+1
Substituting the series for R_ and R, in (B-17) obtained
by using X,(f=—0) and X,(f=+0) from (5.6) in
(B-10) and termwise integrating the resulting uniformly
convergent series in , returns us to the expansion (6.4)
for the piston motion which we set out to verify.
It remains to prove the two lemmas used above.

® Lemma 1

oR,
_3_; =h[R,—~R.] for 7>0, 7% ;.
X

If 7; denotes the successive 7 values at which discontinuity
waves reach the piston at x=0=, and if #5 r;, then for
sufficiently close to = on either the right or the left, there
must be in the range 0<<r< 7 an even number of cross-
ings of discontinuous waves corresponding to pairs of
incoming and reflected waves on the given side of the
piston. This is illustrated in Fig. 9, where one reflection
is shown and the range of integration is split up into three
subintervals by the points r==a and 7=b5b. The abscissa X
corresponding to this line of integration approaches
=0~ in the limit. Clearly a=a(%) and b=>5(%) and it
follows that

/ ——dr—l—r(x a— 0) —_— —r(x,a+0) -

ob ob
+r(% b—0) — —r(%, b+0) —. (B-18)
ox . ox

By study of conservation of mass across the wave dis-
continuities meeting at the piston, it can be shown? that
the reflected wave has the same discontinuity as the inci-
dent wave so that




r(%,a—0)—r(% a+0)=r(x b-0)—r(xb+0). (B-19)

. da ob
At the same time — =— —— =1, so that all terms on

X ox
the right of (B-18) cancel except for the integral. Thus

/T or
T=0T=0 0 ox

From (B-4) and (B-5) the lemma then follows. It is also
seen that if -=r;, there will be an incident wave on either
the right or left of X=6= whose contribution in terms of
the jump in 7 is not cancelled by a reflected wave, as on
the right side of (B-18), so that there will be an added
term in (B-20).

oR

— dx, TF7Ti. (B-20)
0x

=070

o Lemma 2
C?zrl(7)+)\n2 C,,(T)zo, T>0, T?(:Tj.

We first verify that at points (%, 7) not lying on any of
the discontinuity waves, R(X%, r) satisfies the wave equa-
tion

Rz =R;:r. (B'Zl)

For simplicity let us assume that the r segment from O
to 7 erected at X intersects only one discontinuity wave,
say at (%, a). The considerations will apply to any num-
ber of such intersections. As above, we then have

oR T or

= [ e, (B-22)
ox 0 ox

where [r]=r(x+0, a) —r(x—0, a), and this formula is

valid for discontinuities of either slope +1 or —1. Using
the property that a discontinuity in r, a solution of the
wave equation, travels unchanged along a characteristic,

we have ——— =0 so that
%
o?R T 9%r or
— = — dT+ ~ (B-23)
0x? o 0X2 ox
or or or
where | — |=—(%+0,a) — —(X—0,a). Replacing
ox ox 20X
T INITIAL PISTON
L DISCONTINUITY E
T Bl

PATH OF
INTEGRATION

Figure 9 Typical intersection of discontinuities and
path of integral defining R(X, 7).

o%r o3r

0x? 072
the subintervals of continuity from O to @ and froma to 7

and breaking up the integral in (B-23) over

or
and using the initial condition — =0, we have
T | 7=0
2R or or
- — | — | (B-24)
0x2 or oT
where the y is assigned the slope of the discontinuity.

or or
Now expressing —a—and?_—in terms of the normal and
T X

tangential derivatives along the discontinuity character-
istics and using the already assumed properties of r (%, 7)
it can be shown that along a characteristic discontinuity

or or
— === B-25)
4 [ or :l [ 0% ] (
Combining the last three equations we find that

R
oR_ o (B-26)

’

0x2 oT

L .. . 0*R
which is by the definition of R just

T
satisfied for 7>>0, x € I; UI, provided the point (%, 7)
does not lie on a discontinuity wave.
We now consider the equation

Thus (B-21) is

T
/ Xu(Rz:—R:)dx=0, >0. (B-27)
[

In the range of integration there will occur points of
discontinuity of R and its derivatives due both to the
intersection of discontinuity waves and the discontinuity
at the piston x=fr. Let % denote one or the other of these
points of discontinuity. Then integrating by parts for
fixed >0,

T v
/ Xanidxzf RXn”dj'*‘ [RXn/] - [XnR;] s (B'ZS)
0 0

where now [x]=x(%+0, 7) —x(¥—0, 7). Since the posi-
tion of ¥ may vary with = we have

Y T O L by S
RX,dx= — RX.dx+ ndXx
ot Jo ot ° T

T oR dx
— X dx—[RX,] .
0 87 dT

(B-29)

In cases where ¥ refers to a discontinuity moving along a
characteristic, both R and X, are continuous so that the
last term in (B-29) drops out. Differentiating again gives

oz [T ™ 2R oR dx
- RX,dx= X, dx— | — X, |—.
072 Jo o or? oT dr

(B-30)

In this case [RX, ]=0 in (B-28) so that substituting
from (B-28) and (B-30) in (B-27) gives
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T o2 T R
RX," dx— [X.Rz]— RX.dx— | X, — | y=0,
0 a1? /4 or

(B-31)

dx
where y= T +1 as before. Since X, is continuous at
T

this discontinuity, the terms in brackets cancel by virtue
of (B-25) applied to the solution R of the wave equation
and we have

LR T
/ RX,,d)E—/ RX,"dx=0. (B-32)
0 0

or?

In the second case the discontinuity contribution is due

dx
to the presence of the piston. Here ¥=6= and — =0.
T

Thus,

9t 7 ™ 2R
X Rd%= | X, dx . (B-33)
) 0 or®

072 T

2R
Assuming now that ¥ r;, we have that both Ty and
x

X, are continuous at ¥=#= and in fact
2R
X,'=h[X,],— =h[R]. (B-34)
ox
In (B-28) we have, therefore,
oR oR
[RX.] —[Xn —_:I =X, [R]— — [X.]
ox ox
=h[X,][R]-A[R]I[X,]=0,

so that

T T
/ XaRzz dJ'c=/ RX,"dx . (B-35)
) 0
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Combining (B-33) and (B-35) again leads to (B-32).
Thus, regardless of discontinuities we are led to (B-35),
valid for 7>0, 755 7;. (A third case, where the discon-
tinuity for given 7 occurs at an end-point X=0 or X==
may be disposed of by the boundary conditions to give
the same result.)

By (B-9)
0z (T 1
RX,dx= C," (1), (B-36)
a7z /o on?
and of course
T T )\nz
/ RXn"dx=—)xn2/ RX,di=— . Cn. (B-37)
0 0 Qn

Combining (B-22), (B-36) and (B-37) yields the state-
ment of the lemma.
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