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A Cyclic Code  for Double Error  Correction 

Since N. M. Abramson first applied shift-register se- 
quences  to  correction of single and  double  adjacent 
errors,l a number of investigators have devised codes 
using such sequences for  burst  error  c0rrection.~-4 Bose 
and  Ray-Chandhuri  have applied  these  sequences to con- 
struction of codes of arbitrary  Hamming distance.5 

A group of codes will be  developed using maximal- 
length shift-register sequences for the  correction of all 
double errors  in a message. The codes  described are sys- 
tematic, and  can be  readily constructed  for  any block 
length. They  can be  implemented in  the outstandingly 
simple manner described by J. E. Meggitt.6 

A  criterion will also be given which can be  applied to 
the construction of sequence  codes of arbitrary  Hamming 
distance. 

General structures of the codes 

The codes  described are Hamming-type  codes for mes- 
sages of n bits  consisting of k information digits D1...Dk, 
and m parity digits PI - P, derived from  the  informa- 
tion digits in m equations, defined as follows: 

I I 

The nxm matrix a completely defines the code, and is 
sometimes called the check  matrix. In decoding, the  left 
side of (1) is generated, and if no  errors  occurred  the 
right  side will be the null  vector as in ( 1 ) ; an  error  in  the 
jth bit will make  the right side of ( l ) ,  called the  corrector, 
identical to  the j t h  column vector in  the matrix. If all  col- 
umn vectors of the check matrix  are different, a single- 
error correcting code results,  since the right  side of (1) 
will be a  different  vector for  each single error. 

In a  shift-register  sequence  code for single errors, col- 
umn vectors can be expressed as T,  xT,  x2T + a a xnT, 
where the  transformation  matrix x satisfies the  equation 

364 CX~+c,_lxm-l. . .clxf1=0, (2) 

where 1 represents the identity  matrix. 
Polynomial (2) is chosen  primitive, thus x*m-1+ 1-0, 

and  the vectors form a cyclic group of n=2-1 elements. 
A large number of x matrices will satisfy Eq. (2), each 
giving rise to a  different  check  matrix. Also, the choice of 
T is arbitrary.  For simplest instrumentation, x may be 
chosen to be the Associated Matrix, as  in the  Abramson 
SEC-DAEC Code.1 

For  the purposes of this discussion, the  code will be 
defined  by Eq. ( 2 )  only,  since the  code properties are 
independent of the choice of x .  

Let us now  consider  how the check matrix could be 
expanded for  the  correction of multiple errors. If more 
than  one  error is present, the  corrector assumes the value 
of the  sum of the vectors  corresponding to  the bits in 
error.  For example, an  error in bits Dl  and  D2 will result 
in  the  corrector vector T+xT= ( x +  1) T .  

This vector is identical to a corrector  for a single error 
occurring p bits after  the first bit in  error. 

(x+l )T=xPTorxp+x+l=O.  ( 3 )  

The value of p can be found by multiplying polynomial 
(2) by  a  polynomial Q ( x ) ,  such  that ( X ~ + C , , _ , X ~ ~  
clx+ l )Q(x )  =xa+x+ 1. This  value is independent of 
the  error position in  the message. We will define p as the 
sequence  shift corresponding  to  an x + l  error  pattern, 
since the  corrector sequence for  the x +  1 error  pattern is 
the  same as the sequence for single errors  but shifted by 
p positions. All other multiple error patterns producing 
a non-zero corrector  can be  characterized by their respec- 
tive  sequence  shifts, and  can be distinguished from  the 
single errors by adding a  second  deck matrix derived 
from  another primitive  polynomial F ( y ) .  
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The  total message length is still n so that  the allowable 
information bits have been reduced to  accommodate  the 
additional  parity bits. 

The correctors for single errors consist of n vectors  with 
the components of xjT and y i V .  Consider  now a multiple 
error  pattern with a sequence shift  of p for  one  matrix 
and q for  the  other.  The corresponding correctors will 
assume the components of the vectors x j + p  T and yi+q I/ 
and if the relative  shift p - q  is not 0 a new set of cor- 
rectors is generated.  Disjoint sets of correctors will exist 
for  each  error  pattern with a different  value of p - q ,  mod 
It. If both matrices have  the  same dimensions, 2"+ 1 dif- 
ferent  error patterns can be  corrected. The addition of an 
all-check parity bit will allow correction of 22m+2 differ- 
ent multiple error  patterns. 

The primitive  polynomials to be  matched  need not be 
of the  same  order, as long  as the vector cycle-set periods 
are multiples of each  other.  The  number of correctible 
error  patterns is then  equal  to 1 + y,  where y is the cycle 
set  period of the  smaller  set. The  code is now defined by 
two primitive  polynomials or, as  Meggitt  has  shown, by a 
single polynomial  with  two  primitive  roots.  Burst  correc- 
tion  properties of these  codes  were previously investigated 
by the author.3 

Double error  correction 

Theorem 

A code defined by any primitive  polynomial P ( x )  and its 
inverse P*(x) will correct all double errors. If P ( x )  is of 
even order,  an all-check parity bit must  be  added  for 
single error correction. 

An inverse polynomial P* (x) will be defined as follows: 

If P ( x )  =X"+Cm-lX*l+ f . * . c1x+ 1 =o , (4) 

then 

P(x-1 )  =x-~+cm-lx-(*-I) + - - * - c1x-l+ 1=0. ( 5 )  

Multiplying by x": 

If matrix x satisfies P ( x )  =0, the inverse matrix x1 will 
satisfy P* (x) =0, and  the vectors xjT of one check matrix 
will follow the opposite  sequence to  the vectors x-jV in 

the  other check  matrix. €'*(x) is primitive also since the 
sequence  lengths are  the  same as for P ( x ) .  

Proof 

If the  code is to  correct  any  two  errors in a block 2"- 1 
bits long, a different  relative  sequence  shift p - q  must 
exist for every error  pattern of the type l + x r ,  where 
r 5  2*l- 1 .  No larger values of r need be considered be- 
cause of the cyclic nature of the code. The first and last 
bits of the message are  treated as adjacent bits. 

If the sequence  shift  corresponding to  the 1 + x r  error 
is p for polynomial P ( x ) ,  it follows, as was previously 
stated, that xp+xr+ 1 is divisible by P ( x ) .  But then 
~ - D + x - ~ + l  is divisible by P*(x). Since xr (x -~ '+x-"+1)  
= x r - p + l  +xr is also divisible by P*(x), the sequence 
shift for P*(x) is by definition q = r - p ,  for  the l + x r  
error.  The relative  shift is therefore p - q = 2 p - r .  

We  require p - q  to be different for every r .  Algebrai- 
cally, if 

1 + x r = x p ,  (7) 

then 1 + X ~ + * ~ ~ + X P + ~  ( 8 )  

for all r and k such  that r f2kG2m-1-  1. This condition 
is necessary and sufficient for  the code to  correct all 1 +xr 
errors ( ~ - < 2 ~ - 1 -  1 ) .  If ( 8 )  is not satisfied for a particular 
value of k ,  there will be no distinction  between the 1 +xr 
error  and  the 1+x7fZk error. Certainly 2p-r  is different 
for any odd  and  any even value of r,  and consequently 
Ineq. (8) is a sufficient condition for every possible dou- 
ble error. 

We will assume now that  the opposite is true,  and 
1 +Xr+z7c=X7c+p (9) 

and show that this  set of polynomials is not divisible by 
any primitive  polynomial of order m ,  and  cannot describe 
any relation between vectors  in the check  matrix. 
Eliminating p ,  between (7)  and (9) 

xr+27c + xr+7c + X k  + 1 = 0 . (10) 

Equation (10) can be factored  to: 

(1 +x") ( 1  + x ~ + ~ ~ )  . ( 1 1 )  

Equation (11) is divisible by a primitive polynomial of 
order m if and only if: r+k>27r'-l, which is impossible 
since r+2k<2"-1-1. Therefore, Eq. (9) does not hold, 
and every double  error has a distinct  set of correctors. 

If single errors  are  to be corrected p - q = 2 p - r + 0  in 
the  equation l + x r = x P ,  since 0 is the relative  shift for 
single errors. It will be shown that this condition is always 
met if P ( x )  is  of odd order. 

Assume the opposite is true and 2 p - r = 0 .  This would 
yield the  equation 

l+x'+x'/Z=O. ( 1 2 )  

If we change  the bounds of r to r<2+"2, only even 
values of r need be considered;  setting 2t   =r  

x * t + x t + l = O .  (13 )  
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Multiplying ( 13) by 1 +xt, gives the equivalent equation 

~ 3 t + 1 = 0 ,  (14) 

where t <  2*l- 1. Equation ( 14) is divisible by a  primi- 
tive polynomial of order m if and only if its cycle set 
period 2“- 1 is divisible by 3. This is the case if and only 
if m is even. 

The codes just described will correct all double and 
single errors  in a block of 2”- 1 bits. If m is odd, 2m 
parity bits are needed; if m is even, 2m+ 1 parity bits are 
required. 

An example of this code will be shown  here using the 
polynomials : 

P ( x )  ==x5+x2+ 1 and 

P ( y )  =y5+y3+ 1 =P*(x) . 
The x and y matrices will be chosen as follows: 

0 0 1 0 1  

1 0 0 1 0  0 0 0 1 0  
0 0 0 0 1  0 0 1 0 0  
0 0 0 1 0  y=x-l= 0 1 0  0 0 x= 
0 0 1 0 0  1 0 0 0 0  
0 1 0 0 0  

Let T = V = {  10000).  The check  matrix is: 

1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0  
0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0  
0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0  
0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0  
0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1  

1 0 0 0 0 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0  
0 0 0 0 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0 1  
0 0 0 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0 1 0  
0 0 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0  
0 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 0  

In this example, P ( x )  =x5+x2+ 1, does not divide into 
any of the polynomials (12)  or  (13)  for any r <  15, and 
single errors are  corrected  without  an  additional  parity bit. 

On the other hand P ( x )  =x4+x+ 1 is a factor of the 
polynomial xlo+x5+ 1 = O  and  an all-check parity bit is 
necessary for  the code defined by P ( x )  and P*(x) = 

x4+x3+1, to distinguish a single error  from an 1+x5 
double error. 

Codes for arbitrary Hamming distance 

The class of codes under discussion is defined by the 
equation R ( x )  =0, where R ( x )  is the  product of two or 
more primitive polynomials. The equation R ( x )  =0, or in 
general Q ( x ) R ( x ) = O ,  where Q ( x )  is any polynomial, 
describes the vectors in  the check  matrix that add up  to 
the null vector. Since any xjT vector in  the matrix is a 
corrector  for a single error  in bit aj, the  number of 
terms in the polynomials corresponds to  the  number of 
bits in  error yielding a null corrector. In particular,  the 
minimum number of terms of any polynomial Q (x) R ( x ) ,  
is the  Hamming  distance for  that code providing the 
order of that polynomial is less than the message length. 

Consider for example,  a  code derived from  the primi- 
tive polynomial R ( x )  =x4+x+ 1. The  Hamming distance, 
according to  the previous definition, is 3, for no poly- 
nomial Q (x) will make Q (x) R ( x )  contain less than three 
terms, and be less than  order 15. The code is a single- 
error correcting  code as previously described. Any primi- 
tive polynomial  code  has  minimum distance of 3, for 
there always exists a “p” less than  the cycle length, for 
which xP+x+ 1 is divisible by that polynomial. No two- 
term polynomial of order less than  the cycle length is 
divisible by a  primitive  polynomial by definition. 

The code described in a previous example R ( x )  = 

P ( x )  P*(x) = ( x 5 + x 2 +  1) ( x 5 + x 3 +  1) = O  or  xl0+xs+ 
x7+x5+x3+x2+1=0, has  a  minimum  distance of 5. 
Multiplication of R ( x )  by Q ( x )  =x5+x3+x2+x+1, 
yields R ( x ) Q ( x )  =x15+x7+x3+x+1, a  polynomial with 
5  terms. No other polynomial Q ( x )  will result in fewer 
terms for R ( x ) Q ( x ) ,  if R ( x ) Q ( x )  is  less than  order 31. 

The  same criterion applies to the Bose-Chandhuri 
codes, or more precisely to their generalization in terms 
of a single polynomial described by Peterson.? 
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