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C. M. Melas

A Cyclic Code for Double Error Correction

Since N. M. Abramson first applied shift-register se-
quences to correction of single and double adjacent
errors,’ a number of investigators have devised codes
using such sequences for burst error correction.?-* Bose
and Ray-Chandhuri have applied these sequences to con-
struction of codes of arbitrary Hamming distance.’

A group of codes will be developed using maximal-
length shift-register sequences for the correction of all
double errors in a message. The codes described are sys-
tematic, and can be readily constructed for any block
length. They can be implemented in the outstandingly
simple manner described by J. E. Meggitt.¢

A criterion will also be given which can be applied to
the construction of sequence codes of arbitrary Hamming
distance.

General structures of the codes

The codes described are Hamming-type codes for mes-
sages of n bits consisting of k information digits Dy --+ Dy,
and m parity digits Py - - - P,, derived from the informa-
tion digits in m equations, defined as follows:

D,

Py
The nxm matrix a completely defines the code, and is
sometimes called the check matrix. In decoding, the left
side of (1) is generated, and if no errors occurred the
right side will be the null vector as in (1); an error in the
jtt bit will make the right side of (1), called the corrector,
identical to the jt® column vector in the matrix. If all col-
umn vectors of the check matrix are different, a single-
error correcting code results, since the right side of (1)
will be a different vector for each single error.

In a shift-register sequence code for single errors, col-
umn vectors can be expressed as T, xT, x2T ... x"T,
where the transformation matrix x satisfies the equation

CX"H-Cpp 1 X™ e ox+1=0, (2)
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where 1 represents the identity matrix.

Polynomial (2) is chosen primitive, thus x2"-1+1==0,
and the vectors form a cyclic group of n=2"-1 elements.
A large number of x matrices will satisfy Eq. (2), each
giving rise to a different check matrix. Also, the choice of
T is arbitrary. For simplest instrumentation, x may be
chosen to be the Associated Matrix, as in the Abramson
SEC-DAEC Code.?

For the purposes of this discussion, the code will be
defined by Eq. (2) only, since the code properties are
independent of the choice of x.

Let us now consider how the check matrix could be
expanded for the correction of multiple errors. If more
than one error is present, the corrector assumes the value
of the sum of the vectors corresponding to the bits in
error. For example, an error in bits D; and D, will result
in the corrector vector T-+xT=(x+1)T.

This vector is identical to a corrector for a single error
occurring p bits after the first bit in error.

(x+1)T=x?T or xP4+x+1=0. (3)

The value of p can be found by multiplying polynomial
(2) by a polynomial Q(x), such that (x"™+c,_1x™1 - -
c1x+1)Q(x) =xP+x+1. This value is independent of
the error position in the message. We will define p as the
sequence shift corresponding to an x+1 error pattern,
since the corrector sequence for the x+1 error pattern is
the same as the sequence for single errors but shifted by
p positions. All other multiple error patterns producing
a non-zero corrector can be characterized by their respec-
tive sequence shifts, and can be distinguished from the
single errors by adding a second deck matrix derived
from another primitive polynomial F(y).
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The total message length is still » so that the allowable
information bits have been reduced to accommodate the
additional parity bits.

The correctors for single errors consist of n vectors with
the components of x/T and y/V. Consider now a multiple
error pattern with a sequence shift of p for one matrix
and g for the other. The corresponding correctors will
assume the components of the vectors x/*? T and y/+aV
and if the relative shift p—¢q is not 0 a new set of cor-
rectors is generated. Disjoint sets of correctors will exist
for each error pattern with a different value of p—g, mod
n. If both matrices have the same dimensions, 2™+ 1 dif-
ferent error patterns can be corrected. The addition of an
all-check parity bit will allow correction of 222 differ-
ent multiple error patterns.

The primitive polynomials to be matched need not be
of the same order, as long as the vector cycle-set periods
are multiples of each other. The number of correctible
error patterns is then equal to 14y, where y is the cycle
set period of the smaller set. The code is now defined by
two primitive polynomials or, as Meggitt has shown, by a
single polynomial with two primitive roots. Burst correc-
tion properties of these codes were previously investigated
by the author.?

Double error correction
Theorem

A code defined by any primitive polynomial P(x) and its
inverse P*(x) will correct all double errors. If P(x) is of
even order, an all-check parity bit must be added for
single error correction.

An inverse polynomial P* (x) will be defined as follows:

If P(x) =x™+cCpm 1x™ 14 - - - c1x+1=0, (4)
then
P(xl) =x"4Cpax-m-D 4 oot c1x14+1=0. (5)

Multiplying by x™:
xMP(x1) =P*(x)=14cCm_1X+Cm_ox? - Crx™14+xm=0 .
(6)

If matrix x satisfies P(x) =0, the inverse matrix x-1 will
satisfy P*(x) =0, and the vectors x?T of one check matrix
will follow the opposite sequence to the vectors x/¥ in

the other check matrix. P*(x) is primitive also since the
sequence lengths are the same as for P(x).

Proof

If the code is to correct any two errors in a block 27 —1
bits long, a different relative sequence shift p—g must
exist for every error pattern of the type 1-+x”", where
r<2m-1—1, No larger values of r need be considered be-
cause of the cyclic nature of the code. The first and last
bits of the message are treated as adjacent bits.

If the sequence shift corresponding to the 1+x" error
is p for polynomial P(x), it follows, as was previously
stated, that x?4+x7+1 is divisible by P(x). But then
xP+x7+1 is divisible by P*(x). Since x"(x?+x"+1)
=x"P+1+x" is also divisible by P*(x), the sequence
shift for P*(x) is by definition g=r—p, for the 14x"
error. The relative shift is therefore p—g=2p—r.

We require p—gq to be different for every r. Algebrai-
cally, if

14+x7=x?, @)
then 14 xr+2k=xrh (8)

for all  and k such that r+2k<2m-1—1. This condition
is necessary and sufficient for the code to correct all 1 +x"
errors (r<2™1—1).If (8) is not satisfied for a particular
value of k, there will be no distinction between the 1+x"
error and the 14+x7+2¢ error. Certainly 2p—r is different
for any odd and any even value of r, and consequently
Ineq. (8) is a sufficient condition for every possible dou-
ble error.
We will assume now that the opposite is true, and

1 4 x7+2k — xh+p (9)

and show that this set of polynomials is not divisible by
any primitive polynomial of order m, and cannot describe
any relation between vectors in the check matrix.
Eliminating p, between (7) and (9)

xRk xrib Lk 1 =0, (10)
Equation (10) can be factored to:
(1+x7c)(1+xr+k). (]])

Equation (11) is divisible by a primitive polynomial of
order m if and only if: r+k>2"—1, which is impossible
since r+2k<2m1—1, Therefore, Eq. (9) does not hold,
and every double error has a distinct set of correctors.

If single errors are to be corrected p—g=2p—r=0in
the equation 1--x7=x?, since O is the relative shift for
single errors. It will be shown that this condition is always
met if P(x) is of odd order.

Assume the opposite is true and 2p—r=0. This would
yield the equation

1+x7+x7/2=0. (12)

If we change the bounds of r to r<2™—2, only even
values of r need be considered; setting 2t=r

x?t4xt+1=0. (13)
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Multiplying (13) by 14x?, gives the equivalent equation
x14+1=0, (14)

where t<2™1—1. Equation (14) is divisible by a primi-
tive polynomial of order m if and only if its cycle set
period 2™—1 is divisible by 3. This is the case if and only
if m is even.

The codes just described will correct all double and
single errors in a block of 2™—1 bits. If m is odd, 2m
parity bits are needed; if m is even, 2m-1 parity bits are
required.

An example of this code will be shown here using the
polynomials:

P(x)=x54x2+1 and
P(y)=y"+y*+1=P*(x) .

The x and y matrices will be chosen as follows:

00101 01000
10000 00100
x=[{ 01000 y=x'=|100010
00100 00001
00010 10010

Let T=V ={10000}. The check matrix is:

10010110011111000110111010100600
01001011001111100011011101010060
0010010110011111000110111010100
0001001011001111100011011101010
0000100101100111110001101110101

10000101011101100011111001101060
0000101011101100011111001101001
0001010111011000111110011010010
00101011101100011111001101001060
01010111011000111110011010010060

In this example, P(x) =x5+x2+1, does not divide into
any of the polynomials (12) or (13) for any r<{15, and
single errors are corrected without an additional parity bit.

On the other hand P(x) =x*+x-+1 is a factor of the
polynomial x°+x°+1=0 and an all-check parity bit is
necessary for the code defined by P(x) and P*(x)=
x*+x341, to distinguish a single error from an 1+x°
double error.

Codes for arbitrary Hamming distance

The Hamming or minimum distance of a code can be
defined as the minimum number of errors in a message
that is interpreted by that code as a correct message. A
code with Hamming distance 2d+1 will correct any ¢
errors in the message.
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The class of codes under discussion is defined by the
equation R(x) =0, where R(x) is the product of two or
more primitive polynomials. The equation R(x) =0, or in
general Q(x)R(x)=0, where Q(x) is any polynomial,
describes the vectors in the check matrix that add up to
the null vector. Since any x/T vector in the matrix is a
corrector for a single error in bit a;, the number of
terms in the polynomials corresponds to the number of
bits in error yielding a null corrector. In particular, the
minimum number of terms of any polynomial Q(x)R(x),
is the Hamming distance for that code providing the
order of that polynomial is less than the message length.

Consider for example, a code derived from the primi-
tive polynomial R(x) =x*+x+ 1. The Hamming distance,
according to the previous definition, is 3, for no poly-
nomial Q(x) will make Q(x)R(x) contain less than three
terms, and be less than order 15. The code is a single-
error correcting code as previously described. Any primi-
tive polynomial code has minimum distance of 3, for
there always exists a “p” less than the cycle length, for
which x?+x+1 is divisible by that polynomial. No two-
term polynomial of order less than the cycle length is
divisible by a primitive polynomial by definition.

The code described in a previous example R(x)=
P(x) - P*(x)=(x"+x2+1) (x5+x3+1) =0 or x0+x8+
x7+x5+x3+x2+1=0, has a minimum distance of 5.
Multiplication of R(x) by Q(x)=x%4x34+x2+x-41,
yields R(x) Q(x) =x154+x"+x3+x+1, a polynomial with
5 terms. No other polynomial Q(x) will result in fewer
terms for R(x)Q(x), if R(x)Q(x) is less than order 31.

The same criterion applies to the Bose-Chandhuri
codes, or more precisely to their generalization in terms
of a single polynomial described by Peterson.”
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