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1 On Dimensional  Analysis 

Abstract: The dimensions of physical quantities q are interpreted as vectors 

qi(yi1. yiz, 9 Yin)=Yilbl+Yizbz+ . . +Ti&, 9 

where the basic elements bj generating the vector  space  represent the basic quantities of the dimensional 

system and the coefficients yj are defined by 

n 
qi =IIb,Yii 

i=1 

This interpretation permits the application of the theorems on vector spaces  to dimensional analysis. Some 

results of this approach are simplified rules for the transformation of dimension and unit systems and a 

physically more transparent derivation  of a complete set of dimensionless products by a transformation of 

bases.  The new notation yields a sequential order of physical equations which may  lead to a dimensional , analysis based on appropriately selected equation groups. 

Introduction 
For many years dimensional analysis has been a well estab- 
lished It is mainly used in checking the correctness 
of physical equations,  transforming  units, and analyzing 
similarity conditions. It can also be of  aid  in deriving 
physical formulas. 

Dimensional analysis is based physically on the  con- 
cept of homogeneity* and on Buckingham's famous 
n-theorem,5s  and mathematically on the theory of simul- 
taneous  linear  equations. It shall be shown that a slightly 
different physical approach leads to a  formulation which is 
equivalent to the  content of then-theorem but is  physically 
more  transparent. In many cases, the resulting calculations 
will be simplified. 

Dimension space 
A physical formula expresses the  functional  relation be- 
tween measurable quantities such as mass, energy, mag- 
netic induction,  et  cetera. Dimensionally these quantities q2 
are defined as products of powers of a restricted number n 
of basic quantities bi: 

I 
The product nbiYii is called the dimension of the 

quantity q. It is possible to choose different sets b;, b:, 
b;', . . . of basic quantities defining different dimensional 
systems. Examples for such systems are mass, length, time 
(MLT), or electric charge, mass, length, time (QMLT). 
*Bridgman  uses the  term complete instead of homogeneous. 

It should be mentioned that a one-to-one correspondence 
between quantities and dimensions does not always exist. 
In MLT, for instance, energy and  torque  are both repre- 
sented by the dimension ML2T-2. This  introduces  a certain 
arbitrariness into dimensional analysis, the consequences of 
which shall not be discussed here. 

Instead of using the  notation of Eq. (l), one may repre- 
sent the physical quantities qi in a given dimensional system 
by vectors7 

qi(yi1, . 9 ?in)  '[Y~I, ~ $ 2 ,  . . . 3 y i n l  
- ~ i ~ b ~ + y < z b z +  . . . fy inbn - ( 2 )  

These vectors can be interpreted as radius vectors in an 
n-dimensional vector space generated by the set of n 
linearly independent elements b,(i= 1 ,  2, . . . , n). Any 
such n-dimensional vector space shall be called a dimension 
space (DS).  According to this interpretation,  the theorems 
on vector spaces may be applied to dimensional analysis. 

The transformation of bases 
Dimensional systems with various numbers n of basic ele- 
ments have been used in physics. Two vector spaces Vn 
and VL, however, are isomorphic only for m=n. A  one- 
to-one correspondence qi(yij)ctq,(y$j) and consequently 
invariance of physical formulas with respect to a  trans- 
formation from one dimensional system into another,  can 
thus be expected only if both systems are generated by an 
equal number n of basic quantities and if these quantities 
span DS,. 349 
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On the other hand, any n-dimensional vector space V ,  
is isomorphic with any  other n-dimensional vector space. 

The transform T of the row matrices [ ~ & + [ y ~ ] b  is found 
easily from  the system of linear equations: 

b:=yllbl+Ylzb2+ . . . fY1nbn 
bi=yz&l+yzzbz+ . . . +~znbn 

(3) 
bk=yn,bl+yn&+ * * + ~ n n b n  

as  the matrix [rik] : 

YllYl?  . . . Y1n 

T=[  :21yzz ] . (4) 

Yn1Yn2 1 . . Ynn 

It can be shown that the  transformation of quantities is 
given  by the equation: 

[ Y ~ I  = [Y:I T (5 )  

In  Eq. ( 3 ,  the vectors [r?] and [y:] may be replaced by 
matrices of rn such vectors: 

[yii]=[&]T,  i=l,   2, .  . . , rn . (6) 

It is often desirable to write explicitly the system of linear 
equations transforming the individual coefficients yi of 
any  quantity: 

yl=ally:+alzy~+ . . . +alnTA 
Yz=a21Y:+a22Y:+ . . . +ann~A (7) 

;/n=anly:+an~y:+ . . . +annYA 

The matrix [ad  is given  by 

[a,kl= T' 9 (8) 

where T' is the transpose of T. 

Transformations between the commonly used 

Two mechanical systems are frequently used: mass, length, 
time ( M L T )  and force, length, time (FLT)'. The equations 
transforming the coefficients y j  are given by: 

dimensional systems 

Y M = Y k  7; = Y M  

YL  =Yk+YL YL = " Y M f Y L  (9) 
y r  = -2Yk+Y: Y'T =2YM+YT . 
Energy, written conventionally M L 2 T 2  transforms thus 
as follows: 

(lM+2L"2TJ+{  lF+(-1+2)L+(2-2)T} = { 1 F f l L ) .  

tential, length, time (QVLT) are: 

Y Q  = Yb- 7: YQ + Y M  
YM = $' y V =  YM 
YL = 2r:+ 7;. Y t  = - 2YM+ YL (10) 
Y T  =-&-26'+$' y!T= YQ f 3 Y M S Y T  - 

The electromagnetic-mechanical subspace is spanned by 
n = 4 linearly independent quantities. Consequently, this 
DS cannot be generated by only 3 basic vectors. It is thus 
not surprising that  no unique  transformation exists be- 
tween the electromagnetic system (MLT)emu and the electro- 
static system (MLT)esu. 

Unique  transformations exist, however, from any 4- 
dimensional electromagnetic system such as QMLT to 
(MLT),,, and (MLT)esu. For instance: 

Yw(eSu)= +?fQfYM  yM(emu)=hQfYM 
YL(cSu)= %Q+YL YL(emu)=hQ+YL ( 1  1) 
w ( e s u ) =  -YQ+YT w-(ernu)= YT . 
These transformations  can  be regarded as projections of 
DS4 onto the 3-dimensional mechanical subspace. No 
unique inverse transform exists. 

The inclusion of the thermodynamic subspace requires 
5 basic quantities to span  DS. An  appropriate dimensional 
system is electric charge, mass, length, time, temperature 
(QMLT,O). It is compatible with the MKS unit system? 
and isomorphic with any other 5-dimensional DS. All 
other  dimensional systems in use can  be derived from 
QMLT,O by a  unique  transformation whereas the inverse 
is not the case. 

Tables 1 and 2 give a list of the dimensions and units 
of the common physical quantities in QMLT,O. The con- 
cept of dimensional vectors permits an extremely condensed 
notation of physical dimensions as long  as no transforma- 
tions between different dimensional systems are involved. 
A few quantities may be given as examples 

Conventional New Notation 
Quantity Notation in QMLT,O 
Acceleration 
Energy M 1 L 2 T 2  [ 1221 
Entropy MlL2T-20-1 1 1  22,11 
Electric Potential Q-IM1L2T2 [ I 1  221 

MOLlT-2 [ I 2 1  

Isomorphism of two dimensional systems is the necessary 
and sufficient condition  for  invariance of homogeneous 
physical formulas with regard to a  transformation  from 
one system into  the other.  Invariance means that the form 
of a formula  does not depend on  the choice of a particular 
basis of DS. 

The conversion of units 
A definite physical quantity q is given  by its measure m 
and its  unit u(q): 

The result corresponds to the conventional notation FLTO. q=rnu(q) . 
Equation (9) transforms all mechanical quantities. Three 
basic quantities generate, therefore, the physical subspace 
of mechanics. q E rn'u'(q) . 

The equations of transformation between the dimen- 
350 sional system QMLT and electric charge, electric po- 

In  another unit system, q may be written 

?The  MKS-system  with  the  units  meter, kilogram, second, ampere is legally 
accepted in the  United  States since January, 1948. 
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If a transform exists for two dimensional systems, a 
single conversion function 

F= u’/u = m/m’ (14) 

can be given for all units of the corresponding self- 
consistent unit systems. This  function F may be written 
conveniently in  the following form: 

2 QtYi F= lo=’ 9 (15) 

where the aj)s are defined by 

ai= log10 [u’(bi)/u(bj)l - (16) 

The basic quantities bi are those of the umprimed system. 
One must always choose n Ln’. The equation F-l= u/u’ 
=m’/m is valid for all units and measures even in those 
cases where no inverse dimensional transform is defined. 

The conversion function  from the MKS-system with the 
electrical units ampere, volt, coulomb, etc. and  the me- 
chanical units kilogram, meter, second, which can be re- 
garded as based on QMLT, to the electromagnetic cgs- 
system emu based on  MLT is given by 

log F = y ~ - - 3 7 ~ - - 2 y ~  ; F~(MKS)=U(cgs,,,). . . (17) 

where the y’s are those of the dimensional system QMLT. 
The emu-units for the magnetic field and  the magnetomo- 
tive force must be taken as abamp/cm and abampere, 
respectively. No unique  transformation  can be given for 
the original Gaussian system since 1 oersted=(1/4?r) 
abamp/cm, and 1 gilbert = (1144 abampere. 

The MKS-units are transformed into the electrostatic 
esu-units of the cgs-system (statvolt, statcoulomb, etc.) by 

log F= -(log i ) y ~ - 3 7 ~ - 2 7 ~  
-(9+ log ~ ~ Q - ~ Y M - ~ Y L  (18) 

Fu(MKS) = u(cgseSu) 

where the y’s are again those of the dimensional systems 
QMLT. c = 2.997930 X 1Olo is the velocity of light in cm/sec. 

The derivation of a complete set of dimensionless 

Let the solution of a physical problem depend on a set 
ql,  q 2 .  . . q8 of quantities contained in a minimal physical 
subspace of n dimensions (n<s).  n of these quantities q 
can then  be chosen as a new basis of DS,. These I? new 
basic quantities shall be denoted as b; (j= 1, 2, . . . , n). 
The only restriction on their choice is  given  by the  condition 
that they must  span DS,. The remaining (s-n) quantities 
can now be written as linear  combinations of these n new 
basic elements: 

products 

Q~(Y~~)=Yilb:+yi&~+ . . . +Tin% ; i =  1 , Z .  . . , (s-n). (19) 

Consequently: 

{yilb:+yizb;+ . . . +Ti&) -qi(y&)=O . (20) 

Equation (20)  defines all the vector sums of the quantities 
qi (i= 1, 2, . . . , s) equal to zero which are possible in b; 
if trivial identities are not considered. The corresponding 
dimensionless products 

ni=qilnbjyif . n ,  

, i =  1, 2, . . . , (s-n) (21) 

form, therefore, a complete set of dimensionless products of 
the  quantities ql, q2, . . . , 4.. Any  physically homogeneous 
solution of the problem considered can  thus be expressed 
as a function of these dimensionless products: 

j= 1 

c = m , , n * ,  . . . ,n,J , (22) 

where c is a numeric constant usually of unit magnitude. 
Equations (21) and (22) are equivalent to Buckingham’s 
theorem. 

With another choice of the new basic quantities b:, other 
complete sets of dimensionless products  can be formed. 
The transformation of such sets shall not be discussed 
here, however, since a number of simple rules can be  given 
to show how the set of dimensionless products appropriate 
for a particular  solution can be found: 

(1) Equation (22) is often desired in the  form: 

qi nb;Yif#(n2, n3, . . . , n,=J . 
n I  

(23) 
1=1 

In such a case, the inclusion of q1 in the new basis bi has 
to be avoided. 
(2) Frequently,  the  functional dependence of q1 on certain 
other quantities qr, qm. etc. is explicitly known or can be 
determined by simple experiments. It is then  advantageous 
to include these quantities ql, qm, . . . in  the basis bj’since 
this permits a determination of the function + in  the  most 
economical way. It is in this way often possible to derive a 
formula explicitly by dimensional reasoning, (the only re- 
maining uncertainty being, of course, a numeric factor 
frequently of unit magnitude). 

(3) The dependence of q1 on a quantity qr may only be 
small. If qr does not belong to b,;, it may be easily neglected 
later on by dropping the single dimensionless product n,.. 
(4) There may be some doubt if a quantity qs or a quantity 
q t  contributes to a change of ql. If these quantities q. and 
q t  are not included in the basis b:, their dimensionless 
products n, and n, can be easily exchanged in  the com- 
plete formula. Such exchanges permit a certain experiment- 
ing in dimensional analysis. 

Examples 
1. The mass flow of a gas in a long  tube of circular and 
uniform cross section may be considered in the molecular 
flow region where the inter-collisions of the  gas molecules 
can be neglected against the collisions on the walls because 
of the long mean free path. The mass flow dG/dt depends 
evidently on the diameter d of the  tube and its length 1. The 
driving force can properly be expressed by the pressure 
difference Ap between both ends of the  tube. Any differ- 35 1 
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ence  in the behavior of various gases  may  be characterized 
by the molecular weight m of the gas under considera- 
tion. It is furthermore reasonable to assume that  the flow 
depends on the density of the gas and is thus a function of 
the temperature. A convenient quantity to express this 
dependence is the  product of gas constant and temperature 
R8. A dependence of the mass flow on the pressure itself 
is not considered since the mean free path is assumed to be 
large in comparison with the  tube dimensions. 

The following quantities are chosen as the new basis 
of DS: 

Ap=  M-L”2T; m= M ;  R8= M f 2 L - 2 T  . 
The symbols M ,  L,  T express the original basic quantities 
mass, length, time. A rearrangement of these equations 
yields: 

M = m ;  L=+Re-+Ap;  T=lm-- 2 aRO-+Ap . 
The quantities dG/dt= M-T,  d=  L,  and 1 = L are now 
transformed into : 

dG/dt=+m++R8++Ap ; d=+Rie-+Ap ; 
l=+R#-+Ap . 

These  equations  correspond to Eq. (19). They can be re- 
arranged to the  form  of  Eq. (23) simply by inspection: 

This  equation  can be simplified  by drawing the fairly 
obvious conclusion that the conductance of the tube, and 
therefore the mass flow, must be proportional  to the inverse 
of the tube length. One obtains then: 

Not much more ambiguous, at least for the limited pressure 
range considered here, is the assumption that the mass flow 
is proportional to the pressure difference Ap. In case of 
any  doubt, this could be checked, of course, by experiment. 
This assumption yields: 

dG/dt = c,Ap& m 7 d3 [kg sec-l] , 

with a dimensionless numeric constant c of  unit magnitude. 
(A full analytic treatment  of  this problem yields c =  

The remarkable result of this dimensional analysis is the 
proportionality of the mass flow to the  third power of the 
tube diameter, a result which has been obtained without 
any consideration of the  actual collision mechanism. 

= 0.42.) 

a) V=  Qlcod/4mr2 1 2l32 I 1122 
b) V= $Edl= - J(dB/dt)ds I 1122 1 1112 
c) d(mv)/dt = (e/2?rR)d+,/dt I 1121 I 1000 

352 d) AQ=AV*T*dp/dT I 122 I 112 

2. What is the space-charge-limited current  of a magneti- 
cally focussed beam of charged particles in an accelerating 
electrical field?* For brevity, only the dimensional argu- 
ment will  be presented here. The following quantities 
seem to enter into the problem:  the  current I ,  the beam 
radius a, the magnetic field component in the direction of 
the beam B, the dielectric constant e, the charge-to-mass 
ratio of the particles elm, and the voltage V. In QMLT, 
these quantities are represented by the following vectors: 

I=Q-T;   u=L;   B=-Q+M-T;  

E = ~ Q - M - ~ L + ~ T ; ~ / ~ = Q - M ; V = - Q + M + ~ L - ~ T .  

B, E ,  elm, and V may be chosen as the new basic quantities. 
These vectors yield the following equations  of transforma- 
tion: 

B=-Q+M-T I l e  3 

3 e  3 
2 m  2 

Q=-B+E-- 2 m  -+-V 2 

€=2Q-M--3L+2T  M=-B+E-- -+-V 

e/m=Q-M 

V = - Q + M + ~ L - ~ T ~  T = - B  - 5 rn 

I and a are transformed by these equations to: 

The saturation  current is then given by: 

The assumption that the  current Z is proportional to the 
cross section of the beam (I  a a2) leads to the final result: 

Sequences of dimensional vectors 
Table 1 shows clearly that the physical quantities can be 
arranged in a unique order according to the digital values 
of their dimensional vectors. This  order depends, of course, 
on the particular dimensional system chosen. The same 
order principle can be extended to physical equations pro- 
vided that in each equation  the dimensional vectors are 
already arranged in  an appropriate sequence. The follow- 
ing example gives the (decreasing) sequential order of four 
equations selected at random, representing 

a) the potential of a dipole, 
b) Maxwell’s current  equation, 
c) a charged particle in a magnetic field, and 
d) the Clausius-Clapeyron equation: 

I 1000 
I 1101 
1 100 
I 30 
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, 
The quantities are expressed in QMLT,8. 

If such a sequence of equations encompassing a suffi- 
ciently large field of physical experience is transferred to 
punch  cards, a digital computer  can  sort out all  equations 
containing a certain  combination of physical quantities. 
By developing a dimensional analysis from  the resulting 
subset of physical equations,  the dimensional argument  can 
be based more easily on past physical experience than is 
presently the case. The examination of such a subset of 

equations may often enable one  to visualize links between 
different fields which are  not yet fully exploited. This  con- 
cept of analyzing groups of equations promises to be useful 
in analogy considerations, in  the conception of new  devices, 
and in the  evaluation of device systems. 

The  author wishes to express his gratitude to his  father 
for stimulating his interest in dimensional methods and to 
Mr. P. H. Berning and Mrs. J. A. Berning for many helpful 
discussions of the subject. 
Received September 9, I959 

Table l a  Basic,  dimensionless,  kinematic, and some thermal quantities 

Symbol I 

E 

(r 

ET 

X 
a 
W 

V I 

Q - 

1 

Exponents of 
M 
- 

1 
0 

L 
- 

1 
0 
0 

- 1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 

2 
2 
3 
3 

- 

- 

- 

0 

0, 
1 
0 
0 
0 

1 

-I 

a 
W 

a 

a 

a 

I '  

Unit 
rationalized mksa Quantitiy Remarks 
rad (radian)  plane angle 

sr (steradian) solid angle 

"IC (degree abs.) temperature 
s (second) time 
m (meter) length, breadth, height 
kg (kilogram) mass 
C (coulomb) charge (electric) 

Dimensionless Constants and Quantities 
strain 

Poisson's ratio 

relative permittivity 
electrical susceptibility 

-ad plane angle 
X solid angle 

Kinematic (and some Thermal) Quantities 
"IC temperature 

S-1 specific reaction rate const. 
S" angular velocity 
S time 
S period 
S-2 angular acceleration 
m-' wave number 
m-l curvature 
m length 
m wave length 
m-' "IC temperature gradient 
ms-' velocity,  speed 
ms" velocity of light 
ms? acceleration 
mss2 accleration of gravity 
m2 area 
m2ss1 diffusion coefficient 

m2ss1 kinematic viscosity 
4 kg-l O K 1  heat capacity (mass) 
n3 volume 
n3s1  volume velocity 

Hz (hertz) frequency 

1 rad corresponds to circular arc 
of length of circle radius 

1 sr corresponds to 114 of surface 
area of sphere of unit  radius 

Aljl, Av/v, et cetera 
lateral  contraction  strain 
linear  strain of rod 

cycles/second 
k = ( l / t )  In (+-x) 
djrldt 

d2jr/dt 2 

l/radius 
1 /x 

ds/dt 
2.998 X lo8 ms-' in vacuo 
d2s/dtr2 
g=9.80665ms-2 

flux = - D grad c, 

viscosity/density 
dc/dt = Dd2c/dx2 

353 
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Table l b  Mechanical and some thermal quantities 

E. 
4 

1 
1 
I 
1 
1 
1 
1 

1 
1 
1 
1 
I 
1 

I 
1 
I 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

- 

1 
1 
1 

1 
1 
1 
1. 

1 
1 
1 

1 
1 

I 
- 

lonent.! i 0" Unit 
rationalized mksa  Quantity Remarks 

kg 
Nm-ls 
N-lm 

Wm+ 
Wm-2 
Nmw2s 

mkg 
mkg s-l 
3m-3 
NmP2 
Nmr2 
Nm-2 

Nm-2 
NmP2 
Nm-2 
Nm-2 
N  (Newton) 
3m-3 'IC-1 

m2kg 

Nms 
m2kgs-1 
m2kgs-l 

3 (joule) 

gm-ls-l q<-1 

3s 

N-lm-1 

3 

3OIC-l 
Nm 

mass 
mechanical rectilinear resis. 
rectilinear compliance 
surface tension 
sound intensity 
Poynting vector 
viscosity 

momentum 
impulse 
energy density 
pressure 
stress 
modulus of elasticity 

(Young's modulus) 
bulk modulus 
tensile strength 
shear modulus 
shear strength 
force 
heat capacity (volume) 
thermal conductivity 
moment of inertia 
action 
mech. rotational resis. 
angular  momentum 
moment of momentum 
rotational compliance 
energy, work 

quantity of heat 
moment, torque 
entropy 

3 oK-l(mole-l) molar gas constant 
W (watt) power 
Wsr" radiation intensity 
m3kg-l specific refraction 

m-3kg density 
m-4kg inertance 
Nm-5~ acoustic impedance 
(mks acoustic ohm) 
mks ac. ohm acoustic resistance 
mks ac. ohm acoustic reactance 

N"m5 acoustic capacitance 

RM = force/velocity 
CM =change of lengthlforce 
energylarea 
I=P2/Poc 
powerlarea 
q =shearing stress/velocity grad. 
I to flow 

p=mv  
J = S , F d t = A p  
energy/volume 
forcelarea 
forcelarea 
r7 = EA111 

Compression stress/volume strain 
PIAo (max. load/orig. cross section) 
shearing stress/shear strain 
max. shear load/cross section 
mass x acceleration 

X = AQl/area t0 
xr2dm 

A = StXpiqidt 
Rrt = torque/angular velocity 
L = r X ( m v )  
L = X m i ( r > ( i i )  

(volt x coulomb) 
Potential energy: V,  Ep; kin. 
energy: T, E k  

M=Ap/CR 

M = r X F  
for infinitesimal, revers. process: 

R=(M/g)(pV/T)=8.31662$"IC-I 
d s  = dqreo/T 

work/time 
power/solid angle 
r=(l,'density) ( (n2-  l)/(n2+2)) 
mol. refr. = sp. refr. Xmol. weight 

p = MdU/dt ,  U=vol. velocity 
ZA = p / U  (pressure/vol. velocity) 

real component of impedance 
imaginary component of im- 

p = A v/cA, V= volume 
pedance 
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Table IC Electrical and magnetic  quantities 

Exponents of 
A! 

0 

0 

0 

- 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
1 

1 
1 
1 
1 
1 
1 

1 
1 
1 

1 
1 
- 1 
1 
1 
1 
1 

1. 
- 1 
1 
1 
1 
1. 

- 

- 

Unit 
rationalized mksa Quantity Remarks 
C (coulomb) 

C 

A (ampere) 

ampere turn 
Cm-l 
Cm 
Am-' 
Am-' 
Am-' 
Am 
Cm- 
Cm- 
Am-2 
Am-2 
Am? 

CmP3 
Wbm-2 

Wbm-l(NA") 
Vm-l 
Wb (weber) 
Wb 
weber turns 
v (volt) 

V 
Wbm 
Qm-ls 

H (henry) 
A-lWb 
A Wb-l 
n (ohm) 
n 
n 
mho 

mho 
mho 
F (farad) 
Qm 
Q-lm-l 

CV-lm-' 

(Siemens,it") 

(farad/meter) 

charge (electric) 

flux (electric) 

current 

magnetomotive force 
linear charge density 
dipole moment 
magnetic field intensity 
magnetization 
sheet current density 
pole strength 
electric displacement 
polarization 
current density 
pole density 
magnetic (dipole) moment 

charge density (volume) 
magnetic induction,  magn. 

flux density 
vector potential 
elect. field intensity 
magnetic flux 
quantity of magnetism 
flux linkage 
potential (electric) 

electromotive force 
magnetic moment 
permeability 

coefficient of inductance 
permeance 
reluctance 
impedance (electric) 
resistance (electric) 
reactance (electric) 
admittance (electric) 

conductance 
susceptance 
capacitance 
resistivity 
conductivity 
permittivity, 
dielectric constant 

1 C =  quan. of elec. transferred 
thru cross section in Is by I A  

Q= s s D . d s  (same dimension as 
charge) 

1A produces betw. 2 conductors 
lm apart a  force of 2X1Op7 N 
per meter of length 

j" Hdl 
charge/length 
P = d  
H = B / p  
magn. moment/volume 
currentllength 

charge/area (flux density) 
dipole moment /volume 
currentlarea 
pole strength!volume 
mechanical momentlmagnetic 

charge/volume = v.  D 
B = p H  

current  Xpermability 
potentialilength 
J' s Bds 

flux x turns 
1 V=potential betw. 2 points of a 

conductor  carrying lA ,  when 
the power dissipation between 
the points is 1 W ,  there being no 
source of emf between the 
points 

S S S P m d V  

flux density 

s Ed1 

c = l / d = ,  po=4nX10" 
henry/meter 

magnetic fluxlmmf 
mmflmagnetic  flux 
potential/current (V/A)  
real component of impedance 
imag. component of impedance 
Y = l / Z = l / ( R + i X ) = G - i B  

G=R/(R2+X2)  
B=X/(R2+X2) 
charge/potential 
resistance Xcross section/length 

E = D/E 
eo=8.854X10-12 (faradlmeter) 

1 IP 
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