On Dimensional Analysis

R. E. Thun

Abstract: The dimensions of physical quantities g are interpreted as vectors

qd7vin, Yiz « -

s Yin)=vYab1tvebet o . . FYinbu ,

where the basic elements b; generating the vector space represent the basic quantities of the dimensional

system and the coefficients vy; are defined by

q; =IIb]7ij *
=1

This interpretation permits the application of the theorems on vector spaces to dimensional analysis. Some
results of this approach are simplified rules for the transformation of dimension and unit systems and a
physically more transparent derivation of a complete set of dimensionless products by a transformation of
bases. The new notation yields a sequential order of physical equations which may lead to a dimensional

analysis based on appropriately selected equation groups.

Introduction

For many years dimensional analysis has been a well estab-
lished field.’* It is mainly used in checking the correctness
of physical equations, transforming units, and analyzing
similarity conditions. Tt can also be of aid in deriving
physical formulas.

Dimensional analysis is based physically on the con-
cept of homogeneity* and on Buckingham’s famous
H-theorem,"" ¢ and mathematically on the theory of simul-
taneous linear equations. It shall be shown that a slightly
different physical approach leads to a formulation which is
equivalent to the content of the [I-theorem but is physically
more transparent. In many cases, the resulting calculations
will be simplified.

Dimension space

A physical formula expresses the functional relation be-
tween measurable quantities such as mass, energy, mag-
netic induction, et cetera. Dimensionally these quantities g;
are defined as products of powers of a restricted number n
of basic quantities b;:

gi=L1p;%i - M
-

The product Hb,—”i is called the dimension of the
quantity g. It is possible to choose different sets b;, b,
b}, . . . of basic quantities defining different dimensional
systems. Examples for such systems are mass, length, time
(MLT), or electric charge, mass, length, time (QMLT).

*Bridgman uses the term complete instead of Aomogeneous.

It should be mentioned that a one-to-one correspondence
between quantities and dimensions does not always exist.
In MLT, for instance, energy and torque are both repre-
sented by the dimension ML?T -2, This introduces a certain
arbitrariness into dimensional analysis, the consequences of
which shall not be discussed here.

Instead of using the notation of Eq. (1), one may repre-
sent the physical quantities ¢; in a given dimensional system
by vectors’

s Vin) =[vi1, Yer, o o s Vind
=vabit+vihot . .. +YVinbn . (@)

These vectors can be interpreted as radius vectors in an
n-dimensional vector space generated by the set of n
linearly independent elements b(i=1, 2, ., n). Any
such #-dimensional vector space shall be called a dimension
space (DS). According to this interpretation, the theorems
on vector spaces may be applied to dimensional analysis.

q(vit, Yiz -« -

The transformation of bases

Dimensional systems with various numbers »n of basic ele-
ments have been used in physics. Two vector spaces V,
and V,,, however, are isomorphic only for m=n. A one-
to-one correspondence q.(vi)<>g{7yi;) and consequently
invariance of physical formulas with respect to a trans-
formation from one dimensional system into another, can
thus be expected only if both systems are generated by an
equal number #n of basic quantities and if these quantities
span DS,.
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On the other hand, any n-dimensional vector space V»,
is isomorphic with any other n-dimensional vector space.

The transform 7 of the row matrices [v}}i—[7v;], is found
easily from the system of linear equations:

b;=711b1+’ylgb2+ er o TYinbn
by="yaib1+vasbot . .. +Yonbn

: 3
bn="Ymbi+Ynbat . . . +Vnabn
as the matrix [yu]
YuYiz .o s Vin
r=| 7™ )
.7n17n2 e 77

It can be shown that the transformation of quantities is
given by the equation:

[yd=lviT )

In Eq. (5), the vectors [v,] and [y;] may be replaced by
matrices of m such vectors:

[71‘7']=['Y;.7]T7 l=la 2’ DIREPRPNY /(I (6)

It is often desirable to write explicitly the system of linear
equations transforming the individual coefficients v; of
any quantity:

Vi=auyitawyet .. Fawvh

72=a2171+0227£+ v Fawyn (7)
Yo=Yl Fanryst .o o Faunyh

The matrix [a;] is given by

[ax]l=T", ®

where T’ is the transpose of T.

Transformations between the commonly used
dimensional systems

Two mechanical systems are frequently used: mass, length,

time (MLT) and force, length, time (FLT)'. The equations

transforming the coefficients +; are given by:

'V;«"=’YM
YL =—vyu+vL )]
Yr=2vyu+vyr .

’YM=7'F
YL =vp+vL
Yr =—2vF 4+t

Energy, written conventionally ML2T—2 transforms thus
as follows:

{IM42L—2T}>{1F+(~14+2)L+Q2—2)T} ={1F+1L} .

The result corresponds to the conventional notation FLT®,
Equation (9) transforms all mechanical quantities. Three
basic quantities generate, therefore, the physical subspace
of mechanics.

The equations of transformation between the dimen-
sional system QMLT and electric charge, electric po-
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tential, length, time (QVLT) are:

Yo = Yo— Vv Yo= Yo+ Tu

M= v Y= M

v = 2vy+ VL Yi==2vu+ YL 10
7

Yo +3vu+vyr -

The electromagnetic-mechanical subspace is spanned by
n=4 linearly independent quantities. Consequently, this
DS cannot be generated by only 3 basic vectors. It is thus
not surprising that no unique transformation exists be-
tween the electromagnetic system (M LT )en, and the electro-
static system (MLT )esu.

Unique transformations exist, however, from any 4-
dimensional electromagnetic system such as QMLT to
(MLT)¢my and (MLT)es,. For instance:

yulesw)= Ivo+vu
vr(esw)= 3vo+vL yr(em)=%vo+vL an
vr(esw)=—vyo+vr Yr(emw)= vyr .

These transformations can be regarded as projections of
DS, onto the 3-dimensional mechanical subspace. No
unique inverse transform exists.

The inclusion of the thermodynamic subspace requires
5 basic quantities to span DS. An appropriate dimensional
system is electric charge, mass, length, time, temperature
(OMLT,0). 1t is compatible with the MKS unit systemt
and isomorphic with any other 5-dimensional DS. All
other dimensional systems in use can be derived from
QMLT,? by a unique transformation whereas the inverse
is not the case.

Tables 1 and 2 give a list of the dimensions and units
of the common physical quantities in QMLT,0. The con-
cept of dimensional vectors permits an extremely condensed
notation of physical dimensions as long as no transforma-
tions between different dimensional systems are involved.
A few quantities may be given as examples

Yr =—vo—2vv+vr  vr=

yulemuw)=%vo+vum

Conventional New Notation
Quantity Notation in OMLT,0
Acceleration MOLIT2 [12]
Energy MIL2T? [122]
Entropy ML2T—%01 [122,1]
Electric Potential QIMILT? 1122}

Isomorphism of two dimensional systems is the necessary
and sufficient condition for invariance of homogeneous
physical formulas with regard to a transformation from
one system into the other. Invariance means that the form
of a formula does not depend on the choice of a particular
basis of DS.

The conversion of units

A definite physical quantity g is given by its measure m
and its unit u(g):

g=mu(q) . (12)
In another unit system, g may be written

a=m'u'(q) . 13)

tThe MKS-system with the units meter, kilogram, second, ampere is legally
accepted in the United States since January, 1948.




If a transform exists for two dimensional systems, a
single conversion function

F=u'lu=m/m’ a4

can be given for all units of the corresponding self-
consistent unit systems. This function F may be written
conveniently in the following form:

Y

3
F=10="", (15)
where the «;’s are defined by
a;= logio [1'(b)/u(®)] . (16)

The basic quantities b; are those of the umprimed system.
One must always choose n=n’. The equation Fl=uju’
=m'[/m is valid for all units and measures even in those
cases where no inverse dimensional transform is defined.

The conversion function from the MKS-system with the
electrical units ampere, volt, coulomb, etc. and the me-
chanical units kilogram, meter, second, which can be re-
garded as based on QMLT, to the electromagnetic cgs-
system emu based on MLT is given by

log F=vo—3yu—2vL ; Fu(MKS)=u(cgsems)... (17)

where the ¥’s are those of the dimensional system QMLT.
The emu-units for the magnetic field and the magnetomo-
tive force must be taken as abamp/cm and abampere,
respectively. No unique transformation can be given for
the original Gaussian system since 1 oersted=(1/4w)
abamp/cm, and 1 gilbert=(1/47) abampere.

The MKS-units are transformed into the electrostatic
esu-units of the cgs-system (statvolt, statcoulomb, etc.) by

log F=—(log {)ve—3vm—2vL
=~ ~(9+ log 3yve—3yu—2vL (18)

Fu(MKS) = M(Cgsesu)

where the v’s are again those of the dimensional systems
OMLT. ¢=2.997930X10% is the velocity of light in cm/sec.

The derivation of a complete set of dimensionless
products

Let the solution of a physical problem depend on a set
g1, 42 . . . g5 of quantities contained in a minimal physical
subspace of n dimensions (n<s). # of these quantities g
can then be chosen as a new basis of DS,. These n new
basic quantities shall be denoted as b (j=1, 2, ..., n).
The only restriction on their choice is given by the condition
that they must span DS,. The remaining (s-n) gquantities
can now be written as linear combinations of these n new
basic elements:

qi(’}’i’j)=‘Yf1b{+’Y1’2b§+ e +7inb?lz ;i=12,...,(-n). (19)
Consequently:

{vibl+vibs+ ..« Fvinbr} —ai(¥i)=0 . (20)

Equation (20) defines all the vector sums of the quantities
g: (i=1,2,...,5) equal to zero which are possible in b}
if trivial identities are not considered. The corresponding
dimensionless products

IL=gIIp ; i=1,2,...,(s-n) Q@
i=1

form, therefore, a complete set of dimensionless products of
the quantities qi, go, . . . , g.. Any physically homogeneous
solution of the problem considered can thus be expressed
as a function of these dimensionless products:

C=f(H1,H2, .

where ¢ is a numeric constant usually of unit magnitude.
Equations (21) and (22) are equivalent to Buckingham’s
theorem.

With another choice of the new basic quantities b;, other
complete sets of dimensionless products can be formed.
The transformation of such sets shall not be discussed
here, however, since a number of simple rules can be given
to show how the set of dimensionless products appropriate
for a particular solution can be found:

LI, (22)

(1) Equation (22) is often desired in the form:
g < 1o yd L, 1L, .. 1L, . 3)
=1

In such a case, the inclusion of g, in the new basis b} has
to be avoided.

(2) Frequently, the functional dependence of ¢g; on certain
other quantities ¢q;, g, etc. is explicitly known or can be
determined by simple experiments. It is then advantageous
to include these quantities g;, gm, . . . in the basis b} since
this permits a determination of the function ¥ in the most
economical way. It is in this way often possible to derive a
formula explicitly by dimensional reasoning, (the only re-
maining uncertainty being, of course, a numeric factor
frequently of unit magnitude).

(3) The dependence of ¢; on a quantity g, may only be
small. If ¢, does not belong to b}, it may be easily neglected
later on by dropping the single dimensionless product H,.

(4) There may be some doubt if a quantity ¢, or a quantity
q. contributes to a change of ¢;. If these quantities g, and
g, are not included in the basis b/, their dimensionless
products I1, and I1, can be easily exchanged in the com-
plete formula. Such exchanges permit a certain experiment-
ing in dimensional analysis.

Examples

1. The mass flow of a gas in a long tube of circular and
uniform cross section may be considered in the molecular
flow region where the inter-collisions of the gas molecules
can be neglected against the collisions on the walls because
of the long mean free path. The mass flow dG/dr depends
evidently on the diameter d of the tube and its length /. The
driving force can properly be expressed by the pressure
difference Ap between both ends of the tube. Any differ-
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ence in the behavior of various gases may be characterized
by the molecular weight m of the gas under considera-
tion. It is furthermore reasonable to assume that the flow
depends on the density of the gas and is thus a function of
the temperature. A convenient quantity to express this
dependence is the product of gas constant and temperature
RO. A dependence of the mass flow on the pressure itself
is not considered since the mean free path is assumed to be
large in comparison with the tube dimensions.

The following quantities are chosen as the new basis
of DS:

Ap=M—L—-2T; m=M; RO=M+2L—-2T .

The symbols M, L, T express the original basic quantities
mass, length, time. A rearrangement of these equations
yields:

M=m; L=4R6—}Ap; T=im—3RO0—3Ap .

The quantities dG/dt=M—T, d=L, and | =L are now
transformed into:

dG/dt=3m-+4R6-+3Ap 5 d=1R0—3Ap ;
I=3RO6—Ap .

These equations correspond to Eq. (19). They can be re-
arranged to the form of Eq. (23) simply by inspection:

dG/dtocm1/2(R0)1/S(Ap)l/3¢><d(5€0p)2z3 > l((lég)1lll:> .

This equation can be simplified by drawing the fairly
obvious conclusion that the conductance of the tube, and
therefore the mass flow, must be proportional to the inverse
of the tube length. One obtains then:

1/3
dGldt = mlﬂlﬂ(Ro)“w(“Ef;’ - ) .

Not much more ambiguous, at least for the limited pressure
range considered here, is the assumption that the mass flow
is proportional to the pressure difference Ap. In case of
any doubt, this could be checked, of course, by experiment.
This assumption yields:

IO
dG/dt=c-Ap\/% d7

with a dimensionless numeric constant ¢ of unit magnitude.
(A full analytic treatment of this problem yields ¢=
Vr/182=042.)

The remarkable result of this dimensional analysis is the
proportionality of the mass flow to the third power of the
tube diameter, a result which has been obtained without
any consideration of the actual collision mechanism.

[kg sec™1 ,

a) V=0Qlcosé/4mer? | 2132 | 1122
b) V= Edl=— [(3B/dr)ds | 1122 | 1112
) d(mv)/dt=(e[2nR)dpn/dt | 1121 | 1000
d) AQ=AV-T-dp/dT | 122 | 112
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2. What is the space-charge-limited current of a magneti-
cally focussed beam of charged particles in an accelerating
electrical field?® For brevity, only the dimensional argu-
ment will be presented here. The following quantities
seem to enter into the problem: the current I, the beam
radius @, the magnetic field component in the direction of
the beam B, the dielectric constant e, the charge-to-mass
ratio of the particles e¢/m, and the voltage V. In QMLT,
these quantities are represented by the following vectors:

I=Q—T; a=L; B=—Q+M~-T;
€=20—M—3L+42T;e/m=0—M;V=—Q+M~+2L—2T.

B, ¢, ¢/m, and ¥V may be chosen as the new basic quantities.
These vectors yield the following equations of transforma-
tion:

=—04+M-T =—Bte— ~ 47y

— _Bie_3€.3

€=20—M—3L+2T > M=—Bte—5 “+3y

—_p _le 1

efm=0—M L=-B 2m+2V
V=—Q+M+2L—2T| T=-B —i

I and a are transformed by these equations to:

ey le 3, _
I=et5 45V ; a=-B +:V .

_le 1
2m 2

The saturation current is then given by:

Ie e\/ﬁ V%¢<a3\/6 / ﬁ) .

m m
The assumption that the current 7 is proportional to the
cross section of the beam (I « a?) leads to the final result:

3
I e\/(f) V'V a*B
m
Sequences of dimensional vectors

Table 1 shows clearly that the physical quantities can be
arranged in a unique order according to the digital values
of their dimensional vectors. This order depends, of course,
on the particular dimensional system chosen. The same
order principle can be extended to physical equations pro-
vided that in each equation the dimensional vectors are
already arranged in an appropriate sequence. The follow-
ing example gives the (decreasing) sequential order of four
equations selected at random, representing

a) the potential of a dipole,

b) Maxwell’s current equation,

¢) a charged particle in a magnetic field, and
d) the Clausius-Clapeyron equation:

10 |10 | 10 | a |
20 [ 10 | 1 |
0 | 1L |10 | t | 1]

30 ] o1 | 01 |




The quantities are expressed in QMLT,8.

If such a sequence of equations encompassing a suffi-
ciently large field of physical experience is transferred to
punch cards, a digital computer can sort out all equations
containing a certain combination of physical quantities.
By developing a dimensional analysis from the resulting
subset of physical equations, the dimensional argument can
be based more easily on past physical experience than is
presently the case. The examination of such a subset of

equations may often enable one to visualize links between
different fields which are not yet fully exploited. This con-
cept of analyzing groups of equations promises to be useful
in analogy considerations, in the conception of new devices,
and in the evaluation of device systems.

The author wishes to express his gratitude to his father
for stimulating his interest in dimensional methods and to
Mr. P. H. Berning and Mrs. J. A. Berning for many helpful
discussions of the subject.
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Table la Basic, dimensionless, kinematic, and some thermal quantities

Symbol

Exponents of
M|L|T,| 8

Unit
rationalized mksa

Quantitiy

Remarks

a,B,7,0,9,¢
w,

T,6

t
ILbhx,y2
m

o

0

0

-

= OININIFI— O OO OO ===~

[ N6 T \© YA SSRGS NI I W

-

W W NN
- O N =

rad (radian)
sr (steradian)

°K (degree abs.)
s (second)

m (meter)

kg (kilogram)

C (coulomb)

plane angle
solid angle

temperature

time

length, breadth, height
mass

charge (electric)

Dimensionless Constants and Quantities

rad
sr

strain
Poisson’s ratio

relative permittivity
electrical susceptibility
plane angle

solid angle

Kinematic (and some Thermal) Quantities

°K
Hz (hertz)
S—I
S-‘l
s

s

s~ 2
m—l
m 1
m
m

ms™~!
ms™!
ms—2
ms 2
m2
m2s!

m2s—!
Jkg™t °K!
m3

m'&s—l

temperature
frequency

specific reaction rate const.

angular velocity
time

period

angular acceleration
wave number
curvature

length

wave length
temperature gradient
velocity, speed
velocity of light
acceleration
accleration of gravity
area

diffusion coefficient

kinematic viscosity
heat capacity (mass)
volume

volume velocity

1 rad corresponds to circular arc
of length of circle radius

1 sr corresponds to 1/4 of surface
area of sphere of unit radius

Aljl, Av v, et cetera
lateral contraction strain
linear strain of rod

€/€o

x=PleE

cycles/second
k=(1/) 1In (a/a-x)
dg/dt

dz/de?
1/x
1/radius

ds/dt

2.998 X108 ms~1 in vacuo
dis/dt?

2=9.80665ms2

flux=—D grad c,
dc/0t=Da%/dx?
viscosity/density

IBM JOURNAL * JULY 1960




References 4. C. M. Focken, Dimensional Methods and their Applications,
Arnold, London, 1953.

1. P. W. Bridgman, Dimensional Analysis, Yale University 5. E. Buckingham, Phys. Rev. 4, 345 (1914).
Press, New Haven, 1922, 6. E. Buckingham, J. Wash. Acad. Sci. 4, 347 (1914).

2. H. L. Langhaar, Dimensional Analysis and Theory of Models, 7. H. Langhaar, A Summary of Dimensional Analysis, J. Franklin
Wiley, New York, 1951. Inst., 242, 459, Dec. 1946.

3. 1. W. Duncan, Physical Similarity and Dimensional Analy- 8. J. R. Pierce, Theory and Design of Electron Beams, Van
sis, Arnold, London, 1953, Nostrand, p. 152, New York, 1954,

Table Ib  Mechanical and some thermal quantities

Exponents of Unit

Symbol Q|M|L|T,| 6 rationalized mksa Quantity Remarks

m 11010 kg mass

Ry 1101 Nm™1s mechanical rectilinear resis. Ry =force/velocity

Cu 1102 N~'m rectilinear compliance Cyu=change of length/force

Y, @ 11012 IJm—2 surface tension energy/area

1 1103 Wm™—2 sound intensity I=p?*pec

S 1103 Wm—?2 Poynting vector power/area

7 1|11 Nm~2% viscosity n=shearing stress/velocity grad.
1 to flow

J/) 1111 mkg s71 momentum p=my

g 111 mkg s~! impulse g=[Far=Ap

We 17112 gm3 energy density energy/volume

D 11112 Nm~2 pressure force/area

S, T 11112 Nm—2 stress force/area

EY 1{112 Nm™—2 modulus of elasticity o =EAljl

(Young’s modulus)

k 1112 Nm™2 bulk modulus Compression stress/volume strain

T.S. 11112 Nm—2 tensile strength P/A, (max. load/orig. cross section)

i 11112 Nm—2 shear modulus shearing stress/shear strain

S.S. 11112 Nm™—2 shear strength max. shear load/cross section

F 111(2 N (Newton) force mass X acceleration

Cy 11112, (1 gm3°K~1 heat capacity (volume)

A 11143 |1 gmIs71°K1 thermal conductivity A=AQI/area t6

Ly 11210 mZkg moment of inertia $r2dm

A 1121 Js action A= $12p.g.dt

Ry 1121 o | Nms mech. rotational resis. Ry =torque/angular velocity

L 11211 o | m?kgs™t angular momentum L=rX(mv)

L 1121 o | m?kgs™! moment of momentum L= Emi(rxh-)

Cr 1.2]2 a | N"Im! rotational compliance M=Ap/Cr

E U 11212 g (joule) energy, work (volt X coulomb)
Potential energy: V, E,; kin,
energy: T, Ex

Q,q 11212 9 quantity of heat

M 11212 a | Nm moment, torque M=rXF

S 11221 J°K! entropy for infinitesimal, revers. process:
dS= erev/ T

R 11212,11 J°KY(mole™?)  molar gas constant R=(M/g)(pV/T)=8.31662g°K~1

P 1123 W (watt) power work/time

U 1213 w | Wsr1 radiation intensity power/solid angle

r 17310 mikg1t specific refraction r=(1/density) ((n2—1){(n*+2))

mol. refr. = sp. refr. Xmol. weight

d 1{3]0 m~3kg density

M 11410 m—*kg inertance p=MdU/dt, U=vol. velocity

Za 1141 Nm5s acoustic impedance Z4=p/U (pressure/vol. velocity)

(mks acoustic ohm)

R4 11411 mks ac. ohm acoustic resistance real component of impedance

Xa 11411 mks ac. ohm acoustic reactance imaginary component of im-
pedance

354 Ca 11412 N—!m? acoustic capacitance p=AV[C4, V=volume
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Table Ic Electrical and magnetic quantities
Exponents of Unit

Symbol Q|/M| LT, 8 rationalized mksa Quantity Remarks

Q 10,010 C (coulomb) charge (electric) 1C=quan. of elec. transferred
thru cross section in 1s by 14

¥ 1,0/0(0 C fiux (electric) o= ffD.ds (same dimension as
charge)

9, i 1,0/0]1 A (ampere) current 14 produces betw. 2 conductors
Im apart a force of 2X1077 N
per meter of length

mmf, § 1001 ampere turn magnetomotive force f Hdl

pr 110110 Cm™! linear charge density charge/length

P 1({ol10 Cm dipole moment p=ql

H 1joj1(1 Am~! magnetic field intensity H=B/u

M 1jo}1]1 Am™! magnetization magn. moment/volume

K 1011 Am™ sheet current density current/length

Qs A tjof{11 Am pole strength fpmdv

D 1,0{2]|0 Cm—? electric displacement charge/area (flux density)

P 1/0[2](0 Cm™? polarization dipole moment /volume

g 110211 Am™? current density current/area

Pm 17021 Am™? pole density pole strength/volume

m 1021 Am? magnetic {(dipole) moment mechanical moment/magnetic
flux density

P 1/0(3|0 Cm— charge density (volume) charge/volume=vy-D

B 1{1/0(1 Wbm™? magnetic induction, magn. B=uH

flux density

A 11711 Wbm—{(NA™1) vector potential current X permability

E 1/1/1/2 Vm™! elect. field intensity potential/length

$ 11112]1 Wb (weber) magnetic flux des

m 11|21 Wb quantity of magnetism

A 171121 weber turns flux linkage flux X turns

V, ¢ 111212 V (volt) potential (electric) 1V =potential betw. 2 points of a
conductor carrying 14, when
the power dissipation between
the points is 1 W, there being no
source of emf between the
points

V, emf 1117212 \" electromotive force f Ed!

M 171131 Wbm magnetic moment o

u 201110 Qm-1s permeability e=1/Veo , po=4rXx10"
henry/meter

LM 2]1]2]0 H (henry) coefficient of inductance

® 21120 A7'Whb permeance magnetic flux/mmf

®R 2111210 A Wb reluctance mmyf/magnetic flux

V4 211121 Q (ohm) impedance (electric) potential/current (V/A)

R 21121 Q resistance (electric) real component of impedance

X 2111211 Q reactance (electric) imag. component of impedance

Y 2111121 mho admittance (electric) Y=1/Z=1/(R+iX)=G—iB

(Siemens, ™)

G 2111251 mho conductance G=R/(R*4+X?)

B 2111211 mho susceptance B=X/(R*4+X?

C 211122 F (farad) capacitance charge/potential

p 211131 Om resistivity resistance X cross section/length

Y, ¢ 211131 Q- 'm™! conductivity 1/p

€ 2111312 CV1m! permittivity, e=D/E

(farad/meter) dielectric constant €o=8.854 X102 (farad/meter) 355
—
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Table 2 Alphabetic index of the physical quantities

Quantity Symbol Dim. No. Quantity Symbol Dim. No.
acceleration a 12 magnetism, quantity of m 1121
action A 121 magnetization M 1011
acoustic capacitance Cy 142 magnetomotive force mmf, F 100l
acoustic impedance Za 141 mass m 100
acoustic reactance X4 141 mechanical rectilinear resis. Ry 101
acoustic resistance R, 141 mechanical rotational resis. Rp 121
admittance (electric) Y 2121 moment (torque) M 122«
angle (plane) o Oa moment of inertia 1,3 120
angle (solid) w, Ow moment of momentum L 121
angular acceleration o 2a momentum )/ 111
angular momentum L 121 period T 1
angular velocity 2 la permeability I 2110
area A, S 20 permeance ® 2120
bulk modulus k 112 permittivity (dielectric constant) € 2132
capacitance C 2122 Poisson’s ratio o 0
charge (electric) Q 1000 polarization P 1020
charge density (volume) P 1030 pole density pm 1021
coeflicient of inductance LM 2120 Pole strength Om gn 1011
conductance G 2121 potential (electric) V, ¢ 1122
conductivity Y, o 2131 power P 123
current 3,1 1001 Poynting vector S 103
current density g 1021 pressure P 112
curvature P 10« radiation intensity U 123w
density d 130 reactance D' 2121
diffusion coefficient D 21 rectilinear compliance Cu 102
dipole moment (electric) P 1010 relative permittivity € 0
elasticity, modulus of E Y 112 reluctance ®R 2120
electrical displacement (flux density) D 1020 resistance (electric) R 2121
electric field intensity E 1112 resistivity (volume) P 2131
electrical susceptibility X 0 rotational compliance Cr 122a
electromotive force V,emf 1122 shear modulus (rigidity) " 112
energy, work EU 122 shear strength S.S. 112
energy density W 112 sheet current density k 1011
entropy S 122,1 sound intensity I 103
flux (electric) ¥ 1000 specific reaction rate const. 3 1
flux linkage A 112}« specific refraction r 130
force F 112 strain € 0
frequency v, f 1 stress s, T 112
gas constant (molar) R 122,1 surface tension Y, o 102
gravity, acceleration of g 12 susceptance B 2121
heat, quantity of 0,q 122 temperature T,0 0,1
heat, capacity (mass) Cn 22,1 temperature gradient grad 6 10,1
heat, capacity (volume) C, 112,1 tensile strength T.S. 112
impedance VA 2121 thermal conductivity A 113,1
inertance M 140 time t 1
kinematic viscosity v 21 vector potential A 1111
length [ 10 velocity, speed v 11
linear charge density oy 1010 velocity of light ¢ 11
magnetic dipole moment m 1021 viscosity 7 111
magnetic field intensity H 1011 volume v,V 30
magnetic flux P 1121 volume velocity U 31
magnetic induction (flux density) B 1101 wavelength A 10
356 magnetic moment M 1131 wave number s, 7 10
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