Error Correcting Codes

J. E. Meggitt

for Correcting Bursts of Errors

Abstract: It is observed that the codes of Abramson, Melas and others are essentially described by the char-

acteristic equation that a certain matrix satisfies. Consequently it is found that transformations of these codes

are possible provided that the characteristic equation is preserved. These transformations may then be

exploited to produce codes that have a simple implementation and, in fact, a general method is indicated

by which any code may be implemented when the characteristic equation is known.

In data transmission systems that are subject to noise, it
is found that errors do not occur randomly but in bursts.
Consequently, much interest has lately centered on the
problem of constructing suitable error correcting codes.

In most of the codes described so far, difficulties have
occurred with their implementation, because different
courses of action have to be followed by their decoders,
depending on the nature of the error burst that is detected,
and this has made them expensive in equipment. The
main purpose of the present paper is to show how some
of these codes may be transformed to make their imple-
mentation simple.

Fed-back shifting registers, whose logic contains only
modulo two adders, are conveniently described in terms
of matrices.! If the contents of a shifting register are
represented by the k by 1 vector x, it is convenient to
denote the contents after a shift by

Tx, , N

where T is a k by &k matrix, all of whose elements are zero
or one.

The behavior of such a shifting register is determined
by the characteristic equation of degree k, that T satisfies

F(T)=0. )

By a suitable choice of F(T), it is possible to make the
successive contents of the register take 2¥—1 different
values. Such a characteristic equation will be denoted in
this paper by

M(kT)=0. (3)

For a good discussion of these ideas, the reader should
see Reference 1.

It happens that codes for correcting bursts of errors
may be constructed in terms of these matrices T.

Application to codes

In the class of codes to be considered, data is transmitted
in blocks of » binary digits. In each block there are n—k
information digits and k check digits and, as each block is
received, error correction is carried out.

If the digits in the block are a; * - + - @, then the class
of codes to be considered is defined by the equation

aix+a:Tx+a;Tx+- - - - +a,T*1x=0, 4)

where T is a matrix such as has just been described, and
n is such that T*=1. These k linear equations define k of
the a’s in terms of the other n—k, and these are taken to
be the check digits.?

To correct such a message, the error vector z is calcu-
lated, where

z=a' x+a,Ix+a,T?x+----+a, T"'x, (5

and where the a’'’s are the received digits. The various
mistakes that the code is required to correct are arranged
to produce different error vectors z, so that an examina-
tion of z gives sufficient information for the correction
of the message.

Transformation of codes

When a code of the form (4) has been designed (which
is done by the choice of a suitable matrix T), it may be
found that it is a difficult code to implement. It is desira-
ble then to transform the code so that the rules for im-
plementing it are simpler, and yet to retain its fundamen-
tal structure. This may be done as follows:

Let S be a matrix with an inverse. Then from (4),

a1Sx+as (STS1)Sx+az (STS-1)2 8x+ - - - -
+a,(STS1)"1 Sx=0. (6)
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If U is written

U=ST§1, (7)
and
y=8x, 8
then
a1y +a;Uy+a;U2y+ - - - - +a,Ur1y=0. (9)

These k equations define a code with different rules for
the formation of the check digits from the previous one.
However, a mistake with the first code that leads to an
error vector z, leads with the new code to an error vector
Sz. Since S is non-singular, the distinct vectors z corre-
spond to distinct vectors Sz. Thus the new code with T
replaced by U corrects exactly the same mistakes as the
old one.

For any particular code it is possible to search for a
convenient matrix S. However, this is a laborious pro-
cedure, so a different approach is adopted. It is observed
that the matrix T has a characteristic equation that T
itself must satisfy. Thus

F(T)=0, (10)
) SF(T)S1=0,

and since F is a polynomial in T,

F(U)=0. (11)

Thus the characteristic equation is invariant under the
transformation.

It may be shown that the converse is true under the
condition that the minimal polynomials for U and T are
each identical with their characteristic polynomials. This
means that if U and T are two matrices which have the
same characteristic equation, and which satisfy the con-
dition about minimal polynomials, they are related by

U=STS. (12)

It follows that if these matrices are used to produce
codes, the codes produced must have identical properties.
It is then possible to assert that the properties of a code
of the form (4) are determined essentially by the charac-
teristic equation that T satisfies (provided that the mini-
mal polynomial for T is the same as the characteristic
polynomial, a condition that is usually satisfied by matri-
ces that produce useful codes).

This has two implications. The first is that when
searching for new codes systematically it is not necessary
to search through the set of all matrices T, but only
through the set of possible characteristic equations. The
second is that this provides a ready means for simplifying
existing codes. The procedure is to find the characteristic
equation that an existing matrix T satisfies and then to
choose a matrix U which is simpler than T, but which
satisfies the same equation. It will be explained how this
is done. The result is the same as if T had been trans-
formed explicitly by finding a suitable matrix S.
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Examples of known error correcting codes and their
associated characteristic equations

® Example 1
If T is chosen to satisfy
M(kT) =0, (13)

then the codes defined by (4) are such that single-error
correction is possible and the block length, n=2%—1.
This follows because if say the rth digit is received
wrongly,

z=T"x, (14)

and by definition the vectors T™x are all different for
r=1,2---.- n, so that the value of » may be found and
the mistake rectified.

This gives rise to a set of codes first noted by Abram-
son.® The relevant characteristic equation is simply (13).

® Example 2

If to the k equations defining the codes 1, is added a total
parity check, then it can be seen that double adjacent
error correction is also possible, as was also noted by
Abramson.

The idea is that the total parity check equation specifies
whether there has been a single or double error. If there
has been a single error, correction is carried out as in
Example 1. If on the other hand there has been a double
error in digits a, and a,,1, then the error vector is

z=T"1(1+T)x
=Ty, wherey=(1+T)x. (15)

As before, since the vectors T7-1y are all different, the
value of r may be found.

In this case the code is based upon a (k+1) by (k+1)
matrix

1 0
T= , (16)
0 T,

where Ty is a k by k matrix satisfying M (kT,) =0. The
block length is n=2%—1 while there are now (k-+1)
check digits.

The characteristic equation that T satisfies is the prod-
uct of the two characteristic equations that the two diag-
onal parts of the matrix T satisfy separately. Thus the
characteristic equation is

(T+1)M(KT)=0. 17
® Example 3

The codes 2 may in turn be extended as has been done by
Melas.* In this case the (ki+k2) by (ki+k2) matrix T
is used, where

T, 0
0 T




and T, satisfies
M (kT1) =0,
while T satisfies
M (k:T2) =0,

and k; and k, are chosen so that 2%—1 is a factor of
2%—1. The idea is to use two separate sets of check
equations, each of the same form as Example 1. To see
exactly how this works, the reader should see Reference
4, but it is clearly not surprising that such a code should
be capable of correcting bursts of errors of various kinds.
It is seen that there are k=ky + k. check digits in the code,
while the block length is n=2%1—1.
The characteristic equation that T satisfies is

M(kT)M(k:T)=0. (19)
® Example 4

A further group of codes is based on the (ki+k:) by
(k1+k2) matrix T, where

T 0
0 T:

and where T, satisfies M (k,T2) =0, while Ty is the k; by
k1 matrix

0 0 O 1 _‘
0 0
o010 - - .« .0
T,= . (21)
o000 - - - 10
L .
The code then becomes explicitly
1 7 ~ 0 0 ]
0 1 _‘ 0
0 0 1
a| * [ta| * {+a Foeee =0. (22)
X T2X ngx

Codes of this form have been described by Fire,® and
these too are good for correcting bursts of errors of vari-
ous kinds. It is necessary for k4 to be chosen to be prime to
2¥a—1. It is then found that k=k; + ks and n=4;(2%—1).

The idea behind these codes is that the first k; equations
should be capable of detecting the kind of error burst

which is to be corrected, while the other k, should define
the position of the burst. Again the reader should see
Reference 5 for details. T, satisfies the characteristic
equation

T:+1=0. (23)
Thus T satisfies the characteristic equation
(T8 +1)M(k,T) =0 (24)

It will be seen that the characteristic equations which
essentially define a number of important codes may easily
be obtained explicitly. It will be shown now how these
codes may be simplified by transformations of the type
that have been suggested.

Form of transformed codes

There exists a simple method of implementing any code
whose matrix T satisfies a known characteristic equation
(providing the minimal polynomial for T coincides with
the characteristic polynomial) and this will now be de-
scribed. It is valuable because it provides ways of imple-
menting existing codes such as those of Abramson, Melas
and Fire, and because it provides a general way of imple-
menting any other code of the form (4) which may be
found.
The general characteristic equation has the form

T Coy T4 Cp T2 4+ - - - +CT+Co=0,  (25)

where the C’s are zero or one. A convenient matrix that
satisfies this equation is the associated matrix

Cra Crz Cry---Cy Co
1 0 0 0 0
0 1 0 0 0
T= 0 0 1 0 0 . (26)
1 0

This matrix has the property that its minimal poly-
nomial is the same as its characteristic polynomial.

With this T, the vector x of equation (4) may be
chosen arbitrarily provided it is such that

G(T)x#0 27)

for any polynomial G of degree less than k. (If this con-
dition is violated, the resulting code is the same as that
produced by an r by r matrix T* satisfying the charac-
teristic equation of degree r say, (r <k)

G(T*)=0,

and such a code could be constructed using only r check
digits instead of k).
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If x is chosen to be
[17]
0
0
x=1 1, (28)

| o]
then repeated multiplication by the matrix T of (26),
shows that the vectors x, Tx - - - - T%x are linearly inde-
pendent so that with this x, the condition (27) is bound
to be satisfied. Consequently x is always taken to have
this form.

® Example

Consider the Abramson code for correcting single and
double adjacent errors, that has block length n=7.

It has been shown in equation (17) that the appropri-
ate characteristic equation is

(T+1)M(3T)=0. (29)
A possible form for M(3T) is
MQ@AT)=T*+T+1. (30)

Thus the characteristic equation for T is
T++T34+T24+1=0, (31)
Thus from (26) T is taken to have the form

1 1 0 1
r—| 1 0 0 0 (32)
o 1 0 o
l_. 0o o0 1 o
Using (28) the coding equations then become
11 [1ﬂ 0] 1]
0 1 1 0
a 0 + a2 0 + a3 1 + ay 1
0 0 0| | 1]
0] 0] [07]
1 0 0
+ as 0 + ag 1 + a7 0 =0, (33)
1 - L 0 - - 1 -

This is just a transformation of Abramson’s form for
this code which is of course

1 1] 1] 1]
1 0 1 1
a; 0 + as 1 + as 0 + a4 1
0 _OJ L 1] L0 |
1] 1] 1]
- as ! + ag 0 + a; 0 ={ (34)
1 1 0
] L) L
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It will be seen that there is much more symmetry in the
new code (33) and this is exploited in its implementation
which is considered next. The power of the transforma-
tion is best appreciated when the method is applied to a
more complicated code. For brevity this is left to the
reader.

Implementation

For brevity too, the encoding and decoding apparatus that
is in general required will be described only for the par-
ticular case of the code (33). However, the method is
absolutely general and the extensions will be clear.

When the message is transmitted, digits will be sent
serially in order, starting with @;. The last four digits (in
general the last k) are chosen to be the check digits and
from (33) it is seen that they are defined by

ag=a;+as as=az+az
(35)

ag=az+ay ar=ay+tas .

It is observed that each equation has the form of the
previous one, with the digit labels increased by one, and
that each check digit is defined in terms of only the earlier
digits. This is a general property of codes defined by (26)
and (28) as may be shown as follows.

Let the first of the k check equations (4) be

2 aibi=0 . (36)
=1

Then from the form of T (26), it can be seen that (4)
may be written out in full as

F by 7 r by W B by
bn by b,
bn—l bn bl
ay + as +agl
L an:+2 1 anc+3 . bn—k+4 .
[ b ]
bnfl
buz
e ) =0. (37)
| anm,l _

By construction

— b, =1 ™1 -
by, 0
bn1 0
X— = . (38)
L bnfl£+2_ LO N




Thus b, p2=bn g3="--+- b,=0, while since the last
vector in (37) cannot be 0, b,_y,1=1.

The first check equation (36) therefore reduces to
n-k

E aibi:anJCJ(l .

i=1
The second becomes

n-k

E ai+1bi =dn_k2
i=1

........... (39)

The ktt becomes

n-k

> aik1bi=an,
i=1

and this proves the assertion.

Encoder

An encoder that imposes the conditions (35) is shown in
Fig. 1. The squares indicate a shifting register. Informa-
tion flows into the register at times 1, 2, 3 as shown by
the timing pulses applied to the input gate, while data is
fed back at times 4, 5, 6, 7, when the check digits are
formed. The configuration is shown at time 4. At time 5
the first digit a; is transmitted, @, and as move one place
right, while the check digit a;—a;+a: is placed in the
position occupied by az at time 4. This process continues
as all the check digits are formed.

An alternative design uses a shifting register that takes
values T'x(r=0,1,2---) in turn, and this is used to
steer information into four check digit stores in a fairly
obvious way.

The general design of the encoder of Fig. 1 imposes
the conditions (39). This is done by using a shifting
register of length n—k, the feed back connections to
which are determined by the b’s of Eq. 37.

Decoder

A decoder is shown in Fig. 2. The operation of the de-
coder is first to calculate the error vector.

Z;=ai+dz:+ay

Zo=azt+ast+as
(40)
Z3=dst+ay+as

Zy=as+as+as

The values of the z’s indicate the nature and position
of errors. The received message is fed into a shifting reg-
ister and the adder 4 forms the sums z automatically at
times 4, 5, 6, 7, and they are fed to a second shifting
register B. The decoder is shown at time 8 (which is the
same as time 1, times being measured from the arrival of
the first digit) when all the transmitted digits occupy the
main shifting register, while the four z’s occupy the
shifting register B. Henceforth until time 4, the register B

is fed back so that its contents are continually changing,
while simultaneously information leaves the main regis-
ter. As this happens the detection circuit C, looks for
coincidences and when coincidences are found, the digit
currently being output from the end of the main register
is inverted and corrected. Simultaneously register B is
altered to indicate that the burst pattern it is now required
to correct is a simpler one, since the first digit of it has
already been corrected.

Theory of decoder

The role of the fed-back shifting register B is to operate
repeatedly on its content z with T-2. The connections to it
are in fact determined by the C’s in equation (26). The
detection circuit is arranged to detect the vectors x and
(1+T)x which have the form shown in Fig. 2.

Thus if the rt® digit alone is wrong,

z=T"1x , (41)

and coincidence will be detected after (r—1) shifts.
However, at this time the rth digit is currently being out-
put and so it is inverted as is required. The detection
circuit also adds x to the present contents (x in this case)
of the register B, so it now contains zero and no further
correction will take place.

4,567

INFORMATION oUTPUT

TO LINE

Q3 Qs )

1,23

Figure 1 Configuration required for an encoder.

FROM LINE CORRECT
1 a7 | @6 | 95 °4}°3 az 1 ay OUTPUT
®
A
c

DETECT 0 0 0 1
0 0 1 o0

IF DETECTED, QUTPUT 1

4,5 6,7
24| 23 | 22 | 21 ®

H
@

Figure 2 Configuration required for a decoder.

333

IBM JOURNAL s JULY 1960




334

For a double adjacent error, when the rtt and (r+1)th
digits are both wrong

z=T(1+T)x, (42)

and again coincidence will be detected after (r— 1) shifts
and the rtt digit corrected. The detection circuit adds x
to the present contents (now (14T)x) of register B, so
that it now contains Tx. This leads to the detection of x
at the next digit time, and the subsequent correction of
the (r+1)% digit, as is required.

When the apparatus is designed for a general code,
which corrects amongst other things, bursts of the form
qiqz - - dp, then it is necessary to detect in register B,

(q1+q2T+qsT2+ - - - - +g,TP1)x (43)

and to make provision for the correction of all shorter
bursts.

The operation then is merely an extension of the opera-
tion just described. The only other change it is necessary
to make for a general code, is to alter the lengths of regis-
ters and to arrange the correct feed back connections.
Simple formulae can be given for these connections in
terms of the C’s of equation (26).
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Conclusion

A simple implementation has been given for any code
that is described by a characteristic equation, and it has
been observed that many codes can be characterized in
this way. Hence this is a powerful approach to the coding
problem.
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