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Error  Correcting Codes 
for  Correcting  Bursts of Errors 

Abstract: It is  observed that the codes of Abramson, Melas  and others are essentially described by the char- 

acteristic equation  that a certain matrix satisfies. Consequently it is  found that transformations of these codes 

are possible provided that the characteristic equation is  preserved. These transformations may then be 

exploited to produce codes that have a simple implementation and,  in fact, a general method is  indicated 

by which any code may  be  implemented  when the characteristic equation is  known. 

In  data transmission systems that are subject to noise, it Application to codes 
is found  that  errors  do  not occur randomly but in bursts. 
Consequently, much interest  has lately centered on  the 
problem of constructing  suitable error correcting codes. 

In most of the codes described so far, difficulties have 
occurred with their implementation, because different 
courses of action have to be followed by their decoders, 
depending on  the  nature of the  error  burst  that is detected, 

In  the class of codes to be considered, data is transmitted 
in blocks of n binary digits. In  each block there  are n-  k 
information digits and k check digits and, as each block is 
received, error correction is carried  out. 

If the digits in the block are a1 * a,, then  the class 
of codes to be considered is defined by the  equation 

and this  has made  them expensive in  equipment. The 
main  purpose of the  present  paper is to show how some 
of these codes  may be transformed  to  make  their imple- 
mentation  simple. 

Fed-back  shifting  registers, whose logic contains  only 
modulo  two  adders, are conveniently described in terms 
of matrices.' If the contents of a  shifting  register are 
represented by the k by 1 vector x, it is convenient to 
denote  the contents after a  shift by 

~ Txy 
( 1 )  

where T is a k by k matrix, all of whose elements are  zero 
or  one. 

The behavior of such a  shifting register is determined 
by the  characteristic equation of degree k, that T satisfies 

F(T) = O  . ( 2 )  

By a  suitable  choice of F(T), it is possible to  make  the 
successive contents of the register take 2k-1 different 
values. Such  a  characteristic equation will be denoted in 
this paper by 

M(kT) = O  . (3) 

For a good discussion of these  ideas, the reader  should 

It happens that codes for correcting  bursts of errors 
' see  Reference 1. 

may  be  constructed  in terms of these matrices T. 

U1X+aZTX+asT2X+. . . . +a,T"-lx=O, (4) 

where T is a matrix  such as has just been described, and 
n is such  that Tm= 1. These k linear  equations define k of 
the a's in terms of the  other n -  k,  and these are  taken  to 
be the check digits2 

To correct  such a message, the  error vector z is calcu- 
lated, where 

z = u ~ x + u ' , T x + ~ ~ T ~ x +  - * * +uLT"-'x, (5) 

and where the a' 's are  the received digits. The various 
mistakes that  the  code is required  to  correct  are arranged 
to  produce different error vectors z, so that  an examina- 
tion of z gives sufficient information  for  the correction 
of the message. 

Transformation of codes 

When a  code of the form (4) has been designed (which 
is done by the choice of a  suitable matrix T), it may be 
found  that it is a difficult code to implement. It is desira- 
ble then  to  transform  the  code so that  the rules for im- 
plementing it are simpler, and yet to retain its fundamen- 
tal structure. This  may be done as  follows: 

Let S be a matrix with an inverse. Then  from (4),  

U ~ S X  + ( STS-I) SX + (STS-1) 2 SX + * * * * 

+a, (STS-I) %-l SX = 0 . (6) 329 
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If U is written 

U = STS-I , (7) 

and 

y = s x ,  (8) 

then 

aly + azUy + a3U2y + . e - + anUn-ly = 0 . (9) 

These k equations define a code with  different  rules for 
the  formation of the check digits from  the previous  one. 
However,  a  mistake  with the first code  that leads to an 
error vector z, leads  with the new code  to  an  error vector 
Sz. Since S is non-singular, the distinct  vectors z corre- 
spond to distinct  vectors Sz. Thus  the new code with T 
replaced by U corrects  exactly the  same mistakes  as the 
old one. 

For  any  particular  code it is possible to  search  for a 
convenient matrix S. However,  this is a laborious pro- 
cedure, so a  different approach is adopted. It is observed 
that  the  matrix T has a characteristic  equation  that T 
itself must satisfy. Thus 

F ( T )  = O  , (10) 

so SF(T)S-l=O, 

and since F is a  polynomial  in T ) 

F(U) 3 0 .  (11) 

Thus  the characteristic equation is invariant  under  the 
transformation. 

It may be  shown that  the converse is true  under  the 
condition that  the minimal  polynomials for U and T are 
each identical  with their characteristic polynomials. This 
means that if U and T are two  matrices  which have  the 
same characteristic equation,  and which satisfy the con- 
dition about minimal  polynomials,  they are related  by 

U = STS-I . (12) 

It follows that if these  matrices are used to  produce 
codes, the codes produced  must  have identical  properties. 
It is then possible to assert that  the properties o f  a code 
of the form (4) are determined essentially by the charac- 
teristic  equation that T satisfies (provided  that  the mini- 
mal polynomial for T is the  same as the  characteristic 
polynomial,  a  condition that is usually satisfied by matri- 
ces that  produce useful codes). 

This  has two  implications. The first is that when 

Examples of known error correcting  codes and their 
associated characteristic equations 

9 Example 1 

If T is chosen to satisfy 

M ( k T )  = 0 ,  (13) 

then the codes defined by (4) are such that single-error 
correction is possible and  the block length, r ~ = 2 ~ -  1. 
This follows because if say the rth digit is received 
wrongly, 

z = Tr-1~ (14) 

and by definition the vectors Tr-lx are all different for 
r= 1, 2 . . . . . n,  so that  the value of r may  be found  and 
the mistake rectified. 

This gives rise to a set of codes first noted by Abram- 
The relevant  characteristic equation is simply (13). 

Example 2 

If to  the k equations defining the codes 1, is added a total 
parity check,  then  it can  be seen that  double  adjacent 
error correction is also possible, as was also noted by 
Abramson. 

The idea is that  the  total parity  check equation specifies 
whether there  has been  a single or double error. If there 
has been a single error,  correction is carried  out as  in 
Example 1. If on  the  other  hand  there  has been  a  double 
error in digits a,. and a,+l, then  the  error vector is 
Z=T1"l (1 +T)x 

=T'-ly , where y =  (1 +T)x . (15) 

As  before,  since the vectors T"ly are all different,  the 

In this  case the  code is based upon a ( k +  1)  by ( k +  1)  
value of r may  be found. 

matrix 

T=[: 3 (16) 

where T1 is a k by k matrix satisfying M(kT1) =O. The 
block length is n=2"- 1 while there  are  now ( k +  1)  
check digits. 

The characteristic equation  that T satisfies is the  prod- 
uct of the two  characteristic equations  that  the two  diag- 
onal  parts  of  the  matrix T satisfy separately. Thus  the 
characteristic equation is 

searching for new codes  systematically it is not necessary (T+ 1 ) M (  kT) = 0 . (17) 
to search  through  the  set of all matrices T, but only 
through  the set of possible characteristic  equations. The 
second is that this  provides  a ready means for Simplifying The codes 2 may in turn be extended  as has been done by 
existing codes. The  procedure is to find the characteristic ~ ~ l ~ ~ . 4  this the ( kl + k , )  by ( kI + k 2 )  matrix T 
equation  that  an existing matrix T satisfies and  then  to is used, where 
choose a matrix U which is simpler than T, but  which 
satisfies the  same equation. It will be  explained how this 
is done. The result is the  same  as if T had been  trans- (18)  

Example 3 

330 formed explicitly by finding a  suitable matrix S. 
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and TI satisfies 

M(klT1) = O ,  

while Tz satisfies 

M(kzTz) =O,  

and kl and k2 are chosen so that 2k1- 1 is a factor of 
2"- 1. The idea is to use  two separate sets of check 
equations,  each of the  same  form as Example 1. To see 
exactly how this works, the reader  should see Reference 
4, but it is clearly not surprising that such  a code should 
be capable of correcting  bursts of errors of various kinds. 
It is seen that  there  are k =  kl + k2 check digits in the code, 
while the block length is n =2kl- 1. 

The characteristic  equation that T satisfies is 

M(klT)M(kzT)=O. (19) 

Example 4 

A further  group of codes is based on the ( k l + k z )  by 
(kl + k2) matrix T, where 

T=[ ; ;2]7 (20) 

and where T2 satisfies M(k2T2) =0, while TI is the kl by 
kl matrix 

r 

o o o . . . .  1 

l o o * - *  * o  
0 1 0 . . * . 0  

TI= 
. . . . . . . . 
. . . . . . . . 

O O O . . .  1 0  
L 

The code  then becomes explicitly 

' 1  
0 
0 

- 

X 

0 
1 
0 

- 

T2x 

1. 
i 

t a:: 

' 0  
0 
1 

- 

TZ'X 

which is to be corrected, while the  other kz should define 
the position of the burst.  Again the reader  should  see 
Reference 5 for details. TI satisfies the characteristic 
equation 

Tl'l+ 150  . (23 I 
Thus T satisfies the characteristic  equation 

(Tk1+l)M(k2T)=O. (24) 

It will be seen that  the characteristic  equations which 
essentially define a number of important codes may easily 
be obtained explicitly. It will be shown now how  these 
codes  may be simplified by transformations of the type 
that have been suggested. 

Form of transformed codes 

There exists a  simple  method of implementing any code 
whose matrix T satisfies a  known  characteristic  equation 
(providing the minimal  polynomial for T coincides with 
the characteristic  polynomial) and this will now be de- 
scribed. It is valuable because it provides ways of imple- 
menting existing codes  such as those of Abramson, Melas 
and  Fire, and  because  it provides a general way of imple- 
menting  any other code of the  form (4) which may be 
found. 

The general  characteristic  equation  has the  form 

Tk+Ck-lTk-1+Ck-2TIC-2+ * * * * +C1TSCo=O, ( 2 5 )  

where  the C's are  zero  or one. A convenient matrix  that 
satisfies this equation is the associated matrix 

T= 

Codes of this form  have been described by Fire,s and 
these too are good for correcting  bursts of errors of vari- 
ous kinds. It is necessary for kl  to be chosen to be prime to 
2k~-1.1ti~thenfoundthatk=kl+k~andn=k1(2k~-1). 

The idea behind these codes is that  the first kl equations 
should be capable of detecting the kind of error burst 

This matrix has  the property that its minimal poly- 

With  this T, the vector x of equation (4) may be 
nomial is the same as its characteristic polynomial. 

chosen arbitrarily  provided  it is such  that 

G(T)x#O (27) 

for  any polynomial G of degree less than k. (If this con- 
dition is violated, the resulting code is the  same as that 
produced by an r by r matrix T* satisfying the charac- 
teristic  equation of degree r say, ( r  < k )  

G(T*) = O  , 
and such a code could be constructed using only r check 
digits instead of k ) .  33 1 
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If x is chosen to be 

X =  I!] 
I : I ' 

then  repeated  multiplication by the  matrix T of ( 2 6 ) ,  
shows that  the vectors x, Tx * . T"1x are linearly  inde- 
pendent so that  with this x, the condition (27) is bound 
to be satisfied. Consequently x is always taken to have 
this form. 

Example 

Consider  the  Abramson  code  for correcting single and 
double  adjacent errors,  that  has block length n=7. 

It  has been  shown in  equation (17) that  the  appropri- 
ate characteristic equation is 

(T+ 1)M(3T) = O  . (29) 

A possible form  for M(3T) is 

M(3T) = T 3 + T + l .  

Thus  the  characteristic  equation  for T is 

T4+T3+T2+ 1=0.  (31) 

Thus from ( 2 6 )  T is taken  to  have  the  form 

Using (28) the coding equations  then become 

This is just  a transformation of Abramson's form  for 
this  code  which is of course 

332 
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Thus bn-lC+2=bn-k+3 = * . bn=O, while  since the last 

The first check equation (36)  therefore reduces to 
vector  in (37)  cannot be 0, b , -~~+~= 1. 

n-lc 
2 aibi=an-k+l . 
i=1 

The second becomes 
n-k 

2 ai+lbi=an-~c+z 
i=1 

. . . . . . . . . . .  

. . . . . . . . . . .  (39)  

The kt” becomes 
n-lc 

2 ai+k-lbi=an 9 

i = l  

and this proves the assertion. 

Encoder 

An encoder that imposes the conditions (35) is shown  in 
Fig. 1. The squares  indicate  a  shifting  register. Informa- 
tion flows into  the register at times l, 2, 3 as  shown by 
the timing pulses applied to  the  input gate, while data is 
fed back at times 4, 5 ,  6, 7,  when the  check digits are 
formed.  The configuration is shown at  time 4. At time 5 
the first digit al is transmitted, a2 and a3 move one place 
right, while the check  digit a4=al+az is placed in  the 
position occupied by a3 at time 4. This process continues 
as all the check digits are formed. 

An alternative design uses a  shifting register that takes 
values Trx(r=O, 1, 2 . .  .) in  turn,  and this is used to 
steer information  into  four check digit stores in a  fairly 
obvious way. 

The general design of the encoder of Fig. 1 imposes 
the conditions (39) .  This is done by using a  shifting 
register of length n- k ,  the  feed back  connections to 
which are determined by the b’s of Eq. 37. 

Decoder 

A  decoder is shown  in  Fig. 2. The  operation of the de- 
coder is first to calculate the  error vector. 

zl=al+az+a4 

zz=a2+a3+a5 
(40 1 

z.?=a3+a4+a6 

z4=a4+a5+a7 

The values of the z’s indicate the  nature  and position 
of errors.  The received message is fed  into a shifting reg- 
ister and  the  adder A forms  the sums z automatically at 
times 4, 5 ,  6, 7, and they are  fed to a  second  shifting 
register B.  The decoder is shown at  time 8 (which is the 
same as  time 1 ,  times being measured from  the  arrival of 
the first digit) when all the transmitted digits occupy the 
main  shifting register, while the  four z’s occupy the 
shifting register B.  Henceforth until  time 4, the register B 

is fed back so that its  contents are continually  changing, 
while simultaneously information leaves the  main regis- 
ter.  As  this  happens the detection  circuit C,  looks for 
coincidences and when  coincidences are  found,  the digit 
currently being output  from  the  end of the  main register 
is inverted and corrected.  Simultaneously register B is 
altered to indicate that  the  burst  pattern  it is now required 
to  correct is a  simpler one, since the first digit of it  has 
already been corrected. 

Theory of decoder 

The role of the fed-back shifting register B is to  operate 
repeatedly on its content z with T I .  The connections to  it 
are in fact determined by the C‘s in  equation (26).  The 
detection  circuit is arranged  to detect the vectors x and 
( 1 +T)x which  have the  form shown in Fig. 2.  

Thus if the rth digit  alone is wrong, 

z Tr-1~ (41) 

and coincidence will be  detected after ( Y -  1) shifts. 
However, at this  time the rth digit is currently being out- 
put  and so it is inverted  as is required. The detection 
circuit also adds x to  the present  contents (x in this case) 
of the register B, so it now contains  zero and  no  further 
correction will take place. 

I 

“4 ” + I N F O R M A T I O N  
0 3  01 a2 O U T P U T  

T O   L I N E  

”: - 
Figure I Configuration  required for an encoder. 

CORRECT 

0 
A 

C 

DETECT 0 0 0 1 
0 0 i o - ,  

4, 5. 6, 7 I F  DETECTED, OUTPUT 1 
$5 

1 1 1 1  

Figure 2 Configuration  required for a decoder. 333 
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For a  double adjacent  error,  when  the rth and ( r +  1) th Conclusion 
digits are  both wrong 

z=TV-1 (1+T)x 9 

A simple  implementation has been given for  any  code 
(42) that is described  by  a characteristic  equation,  and  it has , ,  

been  observed that  many codes can be  characterized in 
and again  coincidence will be  detected after ( r -  1) shifts this way. Hence this is a powerful approach to the coding 
and  the rth digit corrected.  The detection  circuit adds x problem. 
to  the present contents  (now (1 +T)x) of register B, so 
that  it now  contains Tx. This leads to  the detection of x References 
at  the next digit time, and  the subsequent correction of 
the ( r +  1 )  t h  digit,  as is required. 

When  the  apparatus is designed for a  general code, 
which corrects amongst other things,  bursts of the  form 
q 1 q 2  . e . . qp, then it is necessary to detect in register B, 

(q1+qsT+q3T2+. . * +qpTP-l)X (43) 

and  to  make provision for  the  correction of all shorter 
bursts. 

The  operation  then is merely an extension of the  opera- 
tion just described. The only other  change  it is necessary 
to  make  for a  general  code, is to  alter  the lengths of regis- 
ters  and  to  arrange  the  correct  feed  back connections. 
Simple formulae  can be given for these  connections in 
terms of the C’s of equation (26). 
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