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Synthesis of Switching  Functions 
by Linear  Graph Theory 

Abstract: Techniques of linear graph theory are  applied to the study of switching networks. The first part 

treats the relationships among paths and circuits in a graph which will  give a simple method of analyzing 

switching networks. The necessary conditions are given for the realizability of switching networks consisting 

of the specified elements. The second part i s  the synthesis which i s  accomplished by the use of the decom- 

position of cut-set matrices. 

Symbols and definitions 

C - Collection of all possible circuit sets of a graph 
including the  empty set. 

Circuit  matrix - Matrix representing  a  collection of in- 
dependent circuits  in  a graph where the  entry  at i, j 
position is 1 if element j is in circuit i in the collec- 
tion  and is 0 otherwise. 

Circuit set - Collection of all the elements in a  circuit 
or in an element disjoint union of circuits. 

CPii - Collection of all possible sets each of which can 
be expressed as pij@ck where  set pii is in Pii and  set 
c k  is in C. That is, a set obtained by the ring sum of 
any  set  in Pii and  any set in C is in CPii, and  the set 
which can not  be  obtained by the ring sum of a  set 
in Pii and a  set  in C is not in CPii. 

C U CPii - Collection of all sets in CPii and in C. 

Cut-set - Collection of elements  in  a  connected graph 
having the properties that ( 1) by the deletion of all 
elements in  the set, the  graph will be  divided into 
two connected subgraphs  (including  the case that a 
subgraph may  consist of one isolated vertex)  and 
(2)  any proper subset of the set  does  not have  Prop- 
erty (1). 

Cut-set matrix - Matrix of order v- 1 by e of rank v- 1 
representing  independent  cut-sets in a graph of v 
vertices and e elements  where the  entry  at i ,  j posi- 
tion is 1 if element j is in cut-set i ,  and 0 otherwise. 

Element - Line  segment,  together  with  its  end-points. 

Element  disjoint union of circuits - Union of circuits 
which  have no elements in common.  (See Ref. 9.) 

Incidence matrix (of a connected graph) - Matrix of 
order v- 1 by e and of rank v- 1 representing  a 
connected graph of v vertices and e elements. The 
entry  at i ,  j position is defined to be 1 if element j 
is incident at vertex i ,  and 0 otherwise. 

Nonseparable  graph - Graph which is not a  separable 
graph. 

Path between vertices i and j - A subgraph which has 
the following properties: 
( 1) The  subgraph consists of at least one element. 
( 2 )  The  subgraph is connected and contains the 

vertices i and j .  
(3) When  any element  in the  subgraph is removed, 

the remaining subgraph does  not  satisfy both 
(1) and (2) .  

Path set - Collection of all the elements  in  a  path. 

4 - Empty set. 

Pii - Collection of the  path sets representing all possible 
paths between the fixed vertices i and j .  Any  set  in 
Pii thus represents  a path between the vertices i and 
j in a graph,  and  there exists no  path between the 
vertices i and j whose path set is not in Pii. 

Ring sum -An  operation  on sets u1 and u2, being the  set 
consisting of elements in  either u1 or u2 but  not in 
both u1 and u2.  The symbol @ indicates the ring sum. 

Separable graph - Connected graph which can be di- 
vided into two  subgraphs  which are connected  by 
only one vertex.  (See Ref. 9.) 

Vertex - End-point of an element. 321 
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Introduction 

Several have shown the possibility of applying 
linear graph theory to  the synthesis of switching func- 
tions. Lofgren4  and Gould5 give sufficient conditions for 
the existence of a switching network consisting of the 
specified elements  without any restriction on  the  network 
structure. 

The  method of synthesizing a  binary  switching func- 
tion  shown  in  this paper consists of two parts. The first 
part is the necessary condition and  the second part is the 
sufficient condition for  the existence of a switching net- 
work consisting of the specified elements  which satisfies 
a given switching function. The  procedure used in the 
first part is similar to,  but simpler than, those used by 
Lofgren and  Gould.  The second part is accomplished by 
the use of the necessary and sufficient conditions for 
realizability of cut-set matrices,6 whereas Lofgren gives 
a  part-by-part method of constructing  a switching net- 
work  and  Gould shows a  part-by-part method of forming 
a tree of a switching network  which consists of the 
specified elements. 

Switching function 

A switching function  can be  considered  as  a  representa- 
tion of a series of conditions under which information  can 
be transferred between two specified vertices  in  a  binary 
switching network. This is easily seen by expressing a 
switching function F as  a sum of terms fi, each of which 
is a product  form of switching  variables as 

F = X f i .  (1) 
(i)  

Since F is 1 when fi is 1 for any i, fi represents  a  condi- 
tion for  the transmission of information. 

The  structure of a switching network  can be  repre- 
sented by giving switching variables  as the weights of ele- 
ments  in the graph. Then  the weights of the elements in a 
path betwen  vertices i and j of a graph give the conditions 
to  transfer  information between  vertices i and j .  Thus  the 
product  form of the weights of all elements  in  a path 
between  vertices i and j of a graph  can be a term f i  in 
Eq. (1). 

Path sets 

In a  study of the properties of paths  and circuits, it is 
convenient to use sets  which are collections of elements, 
rather  than  to use subgraphs. A path set is the collection 
of all elements  in  a path  and a circuit set is the collection 
of all elements  in either a  circuit or  an element disjoint 
union of circuits. 

The symbol C is the collection of all possible circuit 
sets in  a  connected  graph. The  empty set 4 is also included 
in C. For example C, of the  graph in  Fig. 1 consists of 
the following  sets: 

4, {ab} ,  {acd} ,  {ce}, {bcd} ,  {abce}, {ade} ,  and { b d e } .  

(Notice  that set {abce} represents an element disjoin1 
union of circuits.) 
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The symbol Pii represents the collection of all possible 
path sets, each of which  represents  a path between the 
fixed vertices i and j in a  connected graph.  For example, 
Pii of the  graph  in Fig. 1 consists of the following  sets: 

{ a } ,  { b } ,  { c 4 ,  and {de } .  

The symbol CPii represents the collection of sets 
which has  the  property  that  the ring  sum of any set in 
Pii and any  set in C is in CPi,, and  there exist no sets in 
CPif which can  not be expressed as  a  ring sum of a  set 
in Pii and a  set  in C. For example, CPii of the  graph in 
Fig. 1 consists of the following sets: 

{a>, { b ) ,  ( ~ 4 ,  { d e ) ,  {ace), {abed), {bee}, and {abde}. 

The subgraphs  representing these sets are shown in Fig. 2. 
Notice  that  each  subgraph is either  a path between i and 
j or a path between i and j and a  circuit  which have  no 
elements  in common. 

WhitneyG shows that if sets s1 and s2 are circuit  sets, the 
sets sl@s2 is also a circuit set. This result can be extended 
by restricting sets s1 and s2 as follows: Suppose SI and sz 
have  at least one element in  common.  Let this  element  be 
h and  the two vertices  between  which h is connected be 
i and j .  By removing h from s1 and s2, two sets u1 and U P  
can be obtained,  that is, ul=sl@{h} and u2=sz@{h} .  
By definition, u1 and u2 are  in CPii. Notice  that if s1 and 
s2 represent  circuits but  not element disjoint unions of 
circuits, u1 and u2 represent paths between  vertices i and 
j .  Since sl@s2 = ul@ u2, the following theorem  can be 
obtained: 

Theorem I :  If u1 and u2 are in CPij of a graph, then 
the set c=ul@u2 is in  the collection C of circuit sets.s 
Likewise, 

Corollary I :  If u1 is in CPii and c is in C, the set U I @ C  

is in CPii. This is true because u l @ u ~ @ u l = u l @ u l @ ~ ~  
' U Z .  

Figure 1 A connected graph. 



Figure 2 All possible subgraphs corresponding to the sets in CP'i of the graph  in Fig. 1. 

It  can be seen that  the collection C of circuit  sets  in  a 
graph is an Abelian group  under  the ring  sum. Also by 
defining product of a  set c in C and /3, where /3 is in  binary 
field B as 

PC=@= 
( c  if,8=1 
(+ if,8=0 

C with B form a  vector  space. Thus  there exist independ- 
ent sets in C. Since  a set in C represents  a  circuit, there 
exist e- w + 1 independent sets in C of a  connected graph 
consisting of e elements and w vertices. 

The collection C U  CPii of sets, each of which is in 
either C or  CPii, is also an Abelian group  under  the ring 
sum because of Theorem 1 and Corollary 1. Hence with 
a  binary field B ,  CUCPij form a  vector space  and  there 
exist e- w + 2 independent setss in C U CPii.  The reason is 
as follows: By inserting an element h between vertices i 
and j of a  connected graph G, a new graph G' is obtained. 
It is clear that  the sets in the collection C' of circuit  sets 
in G' which do not contain element h are all the sets in 
the collection C of circuit sets in the given graph G. On 
the  other  hand,  the sets in C' which contain element h 
are  not  the circuit sets in C of G : but without the element 
h, these sets are all sets in CPii of G. This means that by 
removing h from every  set in C' which contains h, the 
new collection of sets is CuCPii.  There exist e'- w+ 1 
independent sets in C', where e'( =e+ 1) is the  number 
of elements in G' and e is the  number of elements in G. 
Hence,  there exist e- w + 2  independent  sets  in C U  CPii. 

Since there exist only e--v+ 1 independent sets in C, 
at least one  set in  a  collection of e -  w + 2 independent sets 
in CU CPij belongs to CPii. Furthermore, all sets in  a 
collection of e -  w + 2 independent sets in C u CPi, can be 

in CPii, because the ring sum of any set in C and any  set 
in Pii is in CPii  and Pii c CPii. 

Representation of elements in switching networks 

In  the previous  section, the properties of sets in Pi!, C, 
and CPii are discussed. It  must be  noticed that these 
properties  hold  only when different symbols are used to 
represent different elements  in  a  graph. On  the  other 
hand,  more  than  one element in a  binary switching net- 
work  may  represent the  same switching variable. Also, it 
is convenient to represent each element in a  switching 
network by its weight. Hence,  hereafter  the elements  in a 
graph  are represented by their weights, which are  the 
switching variables, and  the symbols used to represent 
switching variables are as  follows: 

Type 1: To distinguish the different elements  controlled 
under  the  same conditions,  subscripts are used, as yo,  y1, 
y 2 ,  et  cetera.  Subscript 0 of yo can be omitted. 

Type  2: To indicate two elements  which are comple- 
mentary to  each  other, a bar is used, as xi and Pi; that is, 
whenever xi is 1, f i  is 0 and whenever f i  is 1, xi is 0. 

As an example of the elements  in Type 1, a relay con- 
sisting of multiple  contacts is shown in Fig. 3a  and its 
graphical  representation  in  Fig.  3b.  Notice that whenever 
one of y1,  y2, . . . . , and Y k  is 1, all of them  are  1,  and 
whenever one of yl, y 2 ,  . . . . , and Y k  is 0, all of them 
are 0. 

For convenience, the set-product of a  set is defined as 
the  product of all elements in  the set. It  has been shown 
that  the elements (represented by their weights) in a path 
between the two specified vertices in  a graph represent  a 323 
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The synthesis of a switching function by linear graph 
theory is the  formation of a switching function of the 

use of the identities of Boolean algebra and  Eq. (4).  To 
accomplish  this  procedure, a method is necessary to 

Figure 3 A relay consisting of multiple contacts (a), determine whether or  not a function is of the  form of 
and the graphical representation of the Eq. ( 3 ) .  
relay (b). For  each  term fi in a  switching function F in  Eq. ( l ) ,  

; i t  : 
2 Y2 I! 
3 Y 3  jf form of E q .  ( 3 )  from a given switching function by the 

( a )  ( b )  

condition under which information will be transmitted 
between these vertices. 

If a path contains  two  elements  which are comple- 
mentary  to  each  other,  it is called an open-path and a 
signal will not be transferred by the  path  under any  con- 
dition. A path set  representing an  open-path is called an 
open-path set and Pii of a graph may  contain open-path 
sets. It  can be seen that  the set-product of an  open-path 
set is zero.  Hence, the set-product of a path set can be 
considered as a term f of a switching function F in Eq. 
( 1) and  summation of the  set-product of all the  path sets 
in Pii of a graph G will represent  a switching function F 
of G between the vertices i and j ,  i.e., 

we form a  set consisting of all the elements  in i. The 
collection of these sets is called "the collection of sets 
corresponding to F." The  function F is equal  to  the set- 
product of all the sets in D if D is the collection of sets 
corresponding to F. 

If F is of the  form  in  Eq. ( 3 ) ,  then the collection of 
sets corresponding to F should represent Pii of a graph. 
By Theorem 1 and Corollary 1, the ring  sums of an even 
number of any sets in Pii of a graph is a  circuit set which 
is the collection of elements in a  circuit or  an element 
disjoint union of circuits in  the  graph. However, the ring 
sum of an  odd  number of any sets in Pii is a  set  in CPii. 

In general,  every term fi in a switching function F in 
Eq. ( 1) is not always zero. Hence, when the collection of 

F = 2 set-product of all the sets in Pii . ( 3 )  sets  corresponding to F is formed  from F, there exists no 

In addition to  the identities of Boolean algebra, the  fol- each other. However, there is a possibility of having 
set containing two elements  which are complementary to 

lowing identity  holds  because of  the representation of open-paths in a graph. that may not be of 
elements : 

x q = x ,  for any q and r . (4) F = set-product of sets in P;, , ( 5 )  

the  form in Eq. ( 3 ) ,  but  may be of the  form 

Example: To obtain  the switching function  from  the 
graph  in Fig. 4 between vertices i and j ,  the following 
procedure  can be used. 

Since it is only necessary to know e-  v+2 independent 
sets in C u CPij of the  graph  to find all  sets in C U CPii, 
we form e-v+2=4 independent sets from  the  graph as 
cl={alelb}, cz={b6d}, c3={de2az}, andp={a16ez} . 

The designations c1, CZ,  and c3 are circuit sets and p is 
a path set in  the  graph.  (It is not necessary to use e-v+ 1 
independent sets  in C .  However,  these are usually  very 
simple to  obtain  from a graph.8~9) By Theorem 1 and 
Corollary 1, the following sets are all  sets in CPij: 

where P i j  is the collection of all the sets  in Pij except 
open-path sets. 

If the  set obtained by ring sum of an  odd  number of 
sets in P i i  is not  in P i j ,  it  must be  either an  open-path 
set or a  set  which is in CPii.  (Notice  that PijCCPii.)  
Hence, if the collection D of sets corresponding to a 
switching function is P i j ,  D has  the  property  that every 
set  in  the collection E, which is obtained  by ring  sum 
of all possible combinations of odd  number of sets in D ,  
is one of the following three: 

(1) The set is in D. 

p =  { a 1 W   c l @ c z @ p = { d e l e z }  (2) The set can be  decomposed  as up@u,,  where up is in 

cl@p={b6e1e2}  ~ 1 @ ~ 3 @ p = { a ~ b 6 d e d  
E, uc contains at least two elements, and upn u,=+. 

( 3 )  If the  set does not satisfy  either (1) or (2) ,  the  set 
cz @ p = { albdez} cz@c3@p=(a1azb} must contain  two elements  which  complement each 

c3 @ p  = {alaz6dl C ~ @ C Z @ C ~ @ P = { ~ Z ~ ~ }  . other. 

The switching function F can be written as the  summa- If D does not  have  the above property,  it shows that 
tion of the set-products of  the above sets as switching function, by which D is formed, is not of the 

form in Eq. ( 5 ) .  Hence,  one  must  change  the switching 
F=a16ez+66ele2+albdez+alaz6d+delez+azb6del+ function by using the identities of Boolean algebra and 

alazbfazel  . by using Eq. (2) .  Even if D has  the above property,  it is 

Then, by Eq. (4) and by the use of identities of Boolean 
algebra, F can be simplified as 

not sufficient to say that  the switching function, by which 
D is obtained, is of the  form  in  Eq. ( 5 ) .  

Suppose the collection D of sets corresponding to a 
3 24 F=ab+de+ae+ad . switching function F has  the above property.  We then 

" 
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add the  path set ut ,  which consists of  one element t to  the 
collection D,  and  form  the collection Ct of sets by ring 
sum of all possible combinations of even number of sets 
in D,  including ut. It is clear that  the collection Ct has 
the  property  that a  set  obtained by ring sum of any sets 
in Ct is in Ct. Hence, Ct is an Abelian group  under  the 
ring sum  and, with a  binary field B, Ct forms a  vector 
space. Thus  there exist independent sets in C t .  Let I be  a 
collection of independent sets in C t .  Then a  matrix 
R = [ r p q ]  can be formed whose rows represent the sets in I 
and  cdumns represent elements in the sets, where rpq= 1 
if element q is in set p which is in I, and rpq=O otherwise. 

If R is a  circuit matrix, we know that there exists a 
graph G which  has the  property  that  the collection of all 
the circuit sets of G is C t .  Since every  set  in C t ,  which 
contains  element t ,  is obtained by ring sum of ut = { t }  and 
odd  number of sets in P i j ,  one  can  obtain, by removing 
element t from G, the  graph whose P i j  is equal  to  the 
collection D of sets corresponding to the switching func- 
tion F,  where i and j are  the vertices between  which ele- 
ment t was connected. Hence, G without  element t is a 
switching network  which satisfies the given switching 
function. 

At present, there is no simple method of testing whether 
or not a matrix is a  circuit  matrix.  Although the following 
method for converting R, to Q is not  a completely de- 
finitive procedure, it is a  very  useful one since there exists 
an efficient method for determining  whether Q is a fun- 
damental cut-set matrix'  (which is explained in  the next 
section).  It is known that by proper choice of independ- 
ent sets  in C t ,  one can  obtain a matrix R, of the  form 

Notice  that choosing the different independent sets in Ci 
to form R, is equivalent to premultiplying (modulo 2) R 
by a  nonsingular matrix T =  [trim] (tarn = 1 ,  0). From R, 
in Eq. (6), one can obtain a  matrix Q= [ RL12U] where 
R:12 is the transpose of Re12. It is known that if Q is a 
fundamental cut-set matrix,  there exists a  graph whose 
circuit matrix is R. Hence, one can find a  network  which 
satisfies the given switching function. 

Figure 4 A connected graph representing a switch- 
ing network. 

Realizability conditions of cut-set  matrices 

An incidence matrix Ai of order v- 1 by e and of rank 
v- 1 indicates the  structure  of a graph G consisting of v 
vertices and e elements. The rows of Ai represent the 
vertices of G except one vertex called the  reference vertex 
and  the columns Ai represent the elements in G. The 
entry  at i, j position of Ai is defined to be 1 if element j is 
connected to vertex i, and 0 otherwise. Hence,  there exist 
at most two 1's in  each column of Ai. A matrix of order 
v- 1 by e and of rank v- 1 can be an incidence matrix if 
every  column has at most two 1's (all  other entries  in the 
column are 0).  

A row of a  cut-set matrix  of  order v- 1 by e and of 
rank v- 1 represents  a  cut-set (see  the definition of cut- 
set)  and a  column of the cut-set matrix represents an 
element in a graph of v vertices and e elements. The 
entry  at i, j position of a cut-set matrix is defined to be 1 
if element j is in cut-set i and 0 otherwise. A fundamental 
cut-set matrix A ,  is a  cut-set matrix which has  the  form 
A,=  [ A , I l U ] ,  where U is a  unit  matrix. 

Suppose  a matrix Q = [ell U ]  , of order V- 1 by e,  is 
given. We form  the  matrix H from Q by deleting  every 
column which has 1 at row i and by deleting row i. The 
rows and  the columns of H are  rearranged so that H can 
be  partitioned,  as 

If it is impossible to  partition H as in Eq. 7, we define 
that Hll of H consists of no rows and  no columns and 

Definition: When  a  matrix D is obtained from a matrix 
E by the deletion of rows and columns of E,  the symbols 
to indicate the rows and  the columns will follow. That is, 
row i (column j )  of D is the row (the  column) obtained 
from row i (column j )  of E .  

We form two  matrices, MI( i) and M z (  i) , called a 
"pair of M-submatrices  with  respect to  row i," by the 
following procedure: 

M 1  ( i )  is obtained by deleting all rows and columns of 
Hll from  the given matrix Q. 

M z  ( i )  is obtained by deleting all rows and columns of 
H z z  from Q. The symbol i in the parenthesis of M l ( i )  
and M z (  i) indicates the row in  the M-submatrices which 
is used to obtain H .  (See  the process of obtaining MI( 4) 
and M 2 ( 4 )  from Q in the last  section.) 

The characteristics of a  pair of M-submatrices M l ( i )  
and M 2 (  i )  of Q with respect to row i are  that 

( 1 ) every row  except  row i of Q will be  in either M l ( i )  

H z z = H .  

or M a (  i) but not in both,  and 

( 2 )  rowiofQwil lbeinbothMl(i)  andMZ(i). 

Since an M-submatrix M ( i )  has  the  form M (  i) = 

[M(i)llU],  one  can  obtain M-submatrices M ( i j )  and 
M ( j )  of M(i) with respect to row j# i ,  by the  same pro- 
cedure as that used to  obtain M l ( i )  and M z ( i )  from Q. 
Notice  that  the symbols  indicating the rows  in the paren- 325 
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thesis of an M-submatrix are  the rows in the submatrix 
which are already used to  obtain M-submatrices. By the 
characteristics of M-submatrices,  only one of the M-sub- 
matrices of matrix M (  i )  with  respect to  row j #  i contains 
row i ,  because  row i is not  the row used to  obtain a pair 
of M-submatrices from M (  i )  . However, row j is in both 
of these  M-submatrices. Hence,  the inside of the  paren- 
thesis of one of these  M-submatrices of M ( i )  is i, j and 
that of the  other is j .  Thus  the M-submatrices of M ( i )  
with  respect to row j are M ( i ,  j )  and M ( j ) .  

When a row  in  an M-submatrix has been used (i.e., 
the symbol  representing the row is already  in the paren- 
thesis of an  M-submatrix),  one  can not use the  row  to 
obtain a pair of submatrices from  the M-submatrix. 

By continuing the above process until  every row of 
every M-submatrix  has been used, v M-submatrices of 
the  form M(i1,  iz, . . . . , i k )  can be obtained  where 
M(i1,  i p ,  . . . , i k ) ,  consists of rows i l ,  i z ,  . . . . , and ik. 
Such an M-submatrix is called a minimum  M-submatrix, 
and  the collection of these w minimum M-submatrices is 
called a set of minimum  M-submatrices. (See the mini- 
mum M-submatrices  in the last  section.) 

If one  can  partition H in  the  form of Eq. (7)  more 
than  one way, then  there  are  more  than  one pair of M -  
submatrices  with  respect to a row. During  the process of 
obtaining  minimum  M-submatrices, there may  be more 
than  one pair of M-submatrices of M ( i l ,  i z ,  . . . , ii) with 
respect to row in. If this is the case, for  each  pair of 
M-submatrices of M ( i l ,  i z ,  . . . , i j )  with  respect to  row 
in, there exists a  set of minimum  M-submatrices. 

Theorem 2: The necessary and sufficient condition that 
a matrix Q = [QllU] be a fundamental cut-set matrix is 
that  there exists a  set of minimum  M-submatrices of Q 
so that every minimum  M-submatrix in the set is realiza- 
ble as an incidence matrix  (every column of every mini- 
mum M-submatrix  in the set  has at most two 1's) .7 

If a  set of minimum  M-submatrices satisfies Theorem 
2, one  can  form a graph  from these  submatrices by the 
following procedure: 

( 1) We collect all minimum  M-submatrices  in the set, 
each of which has at  least two rows. 

(2) By considering each of these minimum M-sub- 
matrices as an incidence  matrix, we can  obtain  the sub- 
graph  for  each of these submatrices. The symbol to 
indicate  a  vertex  in the  subgraph corresponding to a 
minimum  M-submatrix is the  same symbol  which indi- 
cates  the row of the  submatrix representing the vertex. 
The symbol for  the reference  vertex  must be different for 
each subgraph. In these subgraphs, there  are  at most two 
vertices  having the  same symbol. 

( 3 )  We  choose  two  subgraphs  in  which there  are two 
vertices  having the  same symbol. Let these subgraphs  be 
G, and Gb. Also let K be  the vertex  in G ,  and  in Gb. For 
each element  in G ,  which is connected to vertex K in G ,  
there is an element  which is connected to vertex K in Gb. 
Furthermore,  the symbols for these two  elements are  the 
same. Let el, e2 ,  . . . , ek be the elements  connected to 
vertex K in G,. Then  there  are  the elements  which are 
connected to vertex K in G b  and whose symbols are also 
el, e2 ,  . . . , and ek. We remove all of these  elements from 
G, and G b .  Then we combine  these  two  resultant  sub- 
graphs  by  connecting  element ep  between two vertices, 
one  of which is the vertex  in G ,  other  than vertex K on 
which  element ep was connected. The  other is the vertex in 
G b  other  than vertex K, on which  element ep  was con- 
nected for p =  1, 2, . . . , k .  By repeating  this process, all 
subgraphs will be  combined into  one graph. 

Example of synthesizing a switching function 

From switching function F=xyZ+xgz+Zyz, collection D 
of sets ul={xyZ},   uz={xgz} ,  and u3={Zyz} can be ob- 
tained.  Since u1 @ u2 @ u3 = { ng?} is not in D,  F is not of 
the  form in Eq. ( 5 ) .  By changing F to F'=xyZl+xJzf  
f y z l ,  the collection D of sets consists of 

ul={xyZ1},   up={xgz} ,  and uS={%Yzl} . 
Since ul@ uz@u3 contains z1 and Z1, D has  the  property 
of P i j .  The collection Ct consists of sets ul@t,   uz@t,  
u 3 @ t ,  ul@uz, ul@u3, uZ@u3, and ul@uZ@u3@t, and 
by using the first three of these sets which are independent 
sets in Ct, matrix R can  be  formed as 

Figure 5 The graphs corresponding to the incidence matrices. 
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Figure 6 (a) Graph  obtained by removing elementsII, y, ii from GI  and  Gz  in Fig. 5. 
(b) The graph obtained from GI  and  GZ  in Fig. 5. 
(c) The graph obtained from the graph  in  (b)  and G3 in Fig. 5. 
(dl The graph obtained from the graph  in (c) and  graph G, in Fig. 5. 

z 1 z  x x y 7 Z l t  
1 0 0 1 1 0 0 1  
0 1 0 1 0 1 0 1  
0 0 1 0 1 0 1 1  1 

Then, the  matrix Q=  [ R i ,  U ]  is 

z 1 z  i x y j j  Z l t  
1 1 0 1 0 0 0 0  

2 1 0 1 0 1 0 0 0  
Q = 3 0 1 0 0 0 1 0 0  

4 0 0 1 0 0 0 1 0  
5 '! 1 1 1 0 0 0 0 1  

The matrix H a  of Q with respect to Row 4 is 

z 1 z  x y 7 t 

which can  not be partitioned as in Eq. (7 ) .  Hence, H11 
consists of no rows and no  columns  and H z z  = H .  The 
pair of M-submatrices are 

R z1 
M1(4)  =Q,  andMz(4)  =4[ 1 1 ] . 

The matrix H of M1(4) with respect to Row 3 can  not 
be partitioned as in Eq. (7 ) .  Hence, the M-submatrices 
of M1 (4) with respect to Row 3 are 

z 7  
M1(4, 3)  =Q,  andMl(3)  =3[ 1 1 1 . 

The matrix H b  of M1(4, 3) with respect to Row 2 can 
be partitioned as 

z 1 z  x 7 t 
H b = t [  "I 01 1 1 0  """" 1 0 1 0 0 0 1  0 

3 0 1 1  0 1 0 
5 0 1 1  0 0 1 327 
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Hence,  the M-submatrices of the  matrix M1(4, 3 )  with 
respect to Row  2 are 

z 1 z  f x y 7 t 
1 1 1 0 1 0 0 0  
2 ~ 1 0 1 0 1 0 0  

M1(3 ,2)=3 0 1 0 0 0 1 0 ’ 
5 ~ 1 1 1 0 0 0 1  1 

andMz(4 ,   2 )=4L  O 1 O 1 J 
By using Row 1, the  pair of M-submatrices of  matrix 

M 1 ( 2 ,  1)  are 

Finally, by using Row 5 ,  the pair of M-submatrices of 
matrix M 1  (2, 1 ) are 

G z  x y t 

Z 1 z  x x t 

The M-submatrices Mz(4),  M 1 ( 3 ) ,  M1(4, 2 ) ,  M1(3,  l ) ,  
M I  (2, 5 )  , and M1 ( 1, 5 )  are  the  minimum M-submatrices, 
and these  matrices form  the set of minimum M-submatri- 
ces of Q. Since all of these are realizable  as  incidence 
matrices, there exists a  switching network consisting of 
elements Z1, z, X, x, y ,  7,  and z1 which satisfies the given 
switching function. 

To construct  the switching network, we form  the sub- 
graphs  corresponding to  the matrices M I  (4,2), MI (3 ,  1 ), 
M 1 ( 2 ,  5), and M 1 ( 1 , 5 )  as  shown  in  Fig. 5. 

To combine G1 and G2, we remove the elements X, Z1 
and y from G1 and G z ,  as  shown in Fig. 6a, because  these 
elements are connected to vertex  2  which is the vertex  in 
both G1 and Gz.  Then we connect X between  vertices  4 
and 5 ,  Z1 between vertices 6 and 5 ,  and y between vertices 
6 and 7 as shown  in  Fig.  6b. The resultant graph  and Gs 
can be  combined by the elements Z1, z ,  x, and t as shown 
in Fig. 6c. The resultant graph  (Fig.  6c) with G4 gives 
the  graph  (Fig.  6d)  from which the switching network 
can simply be obtained by removing the element t .  The 
two specified terminals of the switching network are  those 
on which t was connected. 
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