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Synthesis of Switching Functions

by Linear Graph Theory

Abstract: Techniques of linear graph theory are applied to the study of switching networks. The first part

treats the relationships among paths and circuits in a graph which will give a simple method of analyzing

switching networks. The necessary conditions are given for the realizability of switching networks consisting

of the specified elements. The second part is the synthesis which is accomplished by the use of the decom-

position of cut-set matrices.

Symbols and definitions

C — Collection of all possible circuit sets of a graph
including the empty set.

Circuit matrix — Matrix representing a collection of in-
dependent circuits in a graph where the entry at i, j
position is 1 if element j is in circuit { in the collec-
tion and is 0 otherwise.

Circuit set — Collection of all the elements in a circuit
or in an element disjoint union of circuits.

CP;; — Collection of all possible sets each of which can
be expressed as p;;@ci, where set p;; is in P;; and set
¢y is in C. That is, a set obtained by the ring sum of
any set in P; and any set in C is in CPy;, and the set
which can not be obtained by the ring sum of a set
in P;; and a set in C is not in CP;;.

CUCP;; — Collection of all sets in CP;; and in C.

Cut-set — Collection of elements in a connected graph
having the properties that (1) by the deletion of all
elements in the set, the graph will be divided into
two connected subgraphs (including the case that a
subgraph may consist of one isolated vertex) and
(2) any proper subset of the set does not have Prop-
erty (1).

Cut-set matrix — Matrix of order v—1 by e of rank v—1
representing independent cut-sets in a graph of v
vertices and e elements where the entry at i, j posi-
tion is 1 if element j is in cut-set i, and 0 otherwise.

Element — Line segment, together with its end-points.

Element disjoint union of circuits — Union of circuits
which have no elements in common. (See Ref. 9.)

Incidence matrix (of a connected graph) — Matrix of
order v—1 by e and of rank v—1 representing a
connected graph of v vertices and e elements. The
entry at i, j position is defined to be 1 if element j
is incident at vertex i, and O otherwise.

Nonseparable graph — Graph which is not a separable
graph.

Path between vertices i and j— A subgraph which has

the following properties:

(1) The subgraph consists of at least one element.

(2) The subgraph is connected and contains the
vertices i and j.

(3) When any element in the subgraph is removed,
the remaining subgraph does not satisfy both
(1) and (2).

Path set — Collection of all the elements in a path.
¢ — Empty set.

P;; — Collection of the path sets representing all possible
paths between the fixed vertices i and j. Any set in
P;; thus represents a path between the vertices i and
j in a graph, and there exists no path between the
vertices i and j whose path set is not in P;;.

Ring sum — An operation on sets #; and u., being the set
consisting of elements in either #; or us but not in
both u; and uz. The symbol & indicates the ring sum.

Separable graph — Connected graph which can be di-
vided into two subgraphs which are connected by
only one vertex. (See Ref. 9.)

Vertex — End-point of an element.
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Introduction

Several papers'-* have shown the possibility of applying
linear graph theory to the synthesis of switching func-
tions. Lofgren* and Gould® give sufficient conditions for
the existence of a switching network consisting of the
specified elements without any restriction on the network
structure.

The method of synthesizing a binary switching func-
tion shown in this paper consists of two parts. The first
part is the necessary condition and the second part is the
sufficient condition for the existence of a switching net-
work consisting of the specified elements which satisfies
a given switching function. The procedure used in the
first part is similar to, but simpler than, those used by
Lofgren and Gould. The second part is accomplished by
the use of the necessary and sufficient conditions for
realizability of cut-set matrices,® whereas Lofgren gives
a part-by-part method of constructing a switching net-
work and Gould shows a part-by-part method of forming
a tree of a switching network which consists of the
specified elements.

Switching function

A switching function can be considered as a representa-
tion of a series of conditions under which information can
be transferred between two specified vertices in a binary
switching network. This is easily seen by expressing a
switching function F as a sum of terms f;, each of which
is a product form of switching variables as

F=3f. (1)
(i)

Since F is 1 when f; is 1 for any i, f; represents a condi-

tion for the transmission of information.

The structure of a switching network can be repre-
sented by giving switching variables as the weights of ele-
ments in the graph. Then the weights of the elements in a
path betwen vertices i and j of a graph give the conditions
to transfer information between vertices i and j. Thus the
product form of the weights of all elements in a path
between vertices i and j of a graph can be a term f; in

Eq. (1).
Path sets

In a study of the properties of paths and circuits, it is
convenient to use sets which are collections of elements,
rather than to use subgraphs. A path set is the collection
of all elements in a path and a circuit set is the collection
of all elements in either a circuit or an element disjoint
union of circuits.

The symbol C is the collection of all possible circuit
sets in a connected graph. The empty set ¢ is also included
in C. For example C, of the graph in Fig. 1 consists of
the following sets:

¢, {ab}, {acd}, {ce}, {bcd}, {abce}, {ade}, and {bde}.

(Notice that set {abce} represents an element disjoint
union of circuits.)
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The symbol P;; represents the collection of all possible
path sets, each of which represents a path between the
fixed vertices i and j in a connected graph. For example,
P;; of the graph in Fig. 1 consists of the following sets:

{a}, (b}, {cd}, and {de}.

The symbol CPj; represents the collection of sets
which has the property that the ring sum of any set in
P;; and any set in C is in CP;;, and there exist no sets in
CP;; which can not be expressed as a ring sum of a set
in P;; and a set in C. For example, CP;; of the graph in
Fig. 1 consists of the following sets:

(a}, (b}, {cd}, {de}, {ace}, {abed}, {bce}, and {abde}.

The subgraphs representing these sets are shown in Fig. 2.
Notice that each subgraph is either a path between i and
j or a path between i and j and a circuit which have no
elements in common.

Whitney® shows that if sets s, and s. are circuit sets, the
sets 51 @ s, is also a circuit set. This result can be extended
by restricting sets s, and s» as follows: Suppose s; and s2
have at least one element in common. Let this element be
h and the two vertices between which #/ is connected be
i and j. By removing & from s; and s2, two sets uy and us
can be obtained, that is, u;=s1@ {h} and u.=sD{h}.
By definition, u; and u; are in CP;;. Notice that if 54 and
sz represent circuits but not element disjoint unions of
circuits, u; and us represent paths between vertices i and
j. Since s1Ps2=u1Pu,, the following theorem can be
obtained:

Theorem I: If uy and us are in CP;; of a graph, then
the set c=u;@Pu. is in the collection C of circuit sets.®
Likewise,

Corollary 1:If u, is in CPy; and c is in C, the set u; e
is in CPy;. This is true because u; D uDus=u1Pu:1Dus
=Ug.

Figure I A connected graph.

i
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Figure 2 All possible subgraphs corresponding to the sets in CPi of the graph in Fig. 1.

It can be seen that the collection C of circuit sets in a
graph is an Abelian group under the ring sum. Also by
defining product of a set ¢ in C and B3, where 8 is in binary
field B as

Sc if B=1
Be=cB= l¢ if 8=0 (2)

C with B form a vector space. Thus there exist independ-
ent sets in C. Since a set in C represents a circuit, there
exist e—v+ 1 independent sets in C of a connected graph
consisting of e elements and v vertices.

The collection CUCP;; of sets, each of which is in
either C or CPy, is also an Abelian group under the ring
sum because of Theorem 1 and Corollary 1. Hence with
a binary field B, CUCP;; form a vector space and there
exist e—v+2 independent sets® in CUCP;;. The reason is
as follows: By inserting an element 4 between vertices i
and j of a connected graph G, a new graph G’ is obtained.
It is clear that the sets in the collection C’ of circuit sets
in G’ which do not contain element A are all the sets in
the collection C of circuit sets in the given graph G. On
the other hand, the sets in C’ which contain element A
are not the circuit sets in C of G: but without the element
h, these sets are all sets in CP;; of G. This means that by
removing k from every set in C’ which contains 4, the
new collection of sets is CUCP;;. There exist ¢ —v+1
independent sets in C’, where e¢’'(=e+1) is the number
of elements in G’ and e is the number of elements in G.
Hence, there exist e—v+2 independent sets in CUCP;;.

Since there exist only e—v+1 independent sets in C,
at least one set in a collection of e— v+ 2 independent sets
in CUCP;; belongs to CP;;. Furthermore, all sets in a
collection of e—v+-2 independent sets in CUCP;; can be

in CP;;, because the ring sum of any set in C and any set
in Py is in CP;; and P;; CCPy;.

Representation of elements in switching networks

In the previous section, the properties of sets in P, C,
and CP;; are discussed. It must be noticed that these
properties hold only when different symbols are used to
represent different elements in a graph. On the other
hand, more than one element in a binary switching net-
work may represent the same switching variable. Also, it
is convenient to represent each element in a switching
network by its weight. Hence, hereafter the elements in a
graph are represented by their weights, which are the
switching variables, and the symbols used to represent
switching variables are as follows:

Type 1: To distinguish the different elements controlled
under the same conditions, subscripts are used, as yo, Y1,
¥z, et cetera. Subscript 0 of y, can be omitted.

Type 2: To indicate two elements which are comple-
mentary to each other, a bar is used, as x; and X;; that is,
whenever x; is 1, %; is 0 and whenever X; is 1, x; is O.

As an example of the elements in Type 1, a relay con-
sisting of multiple contacts is shown in Fig. 3a and its
graphical representation in Fig. 3b. Notice that whenever
one of y1,ys,...., and yi is 1, all of them are 1, and
whenever one of yi, y2,...., and yi is 0, all of them
are 0.

For convenience, the set-product of a set is defined as
the product of all elements in the set. It has been shown
that the elements (represented by their weights) in a path
between the two specified vertices in a graph represent a
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Figure 3 A relay consisting of multiple contacts (a),
and the graphical representation of the
relay (b).

condition under which information will be transmitted
between these vertices.

If a path contains two elements which are comple-
mentary to each other, it is called an open-path and a
signal will not be transferred by the path under any con-
dition. A path set representing an open-path is called an
open-path set and P;; of a graph may contain open-path
sets. It can be seen that the set-product of an open-path
set is zero. Hence, the set-product of a path set can be
considered as a term f of a switching function F in Eq.
(1) and summation of the set-product of all the path sets
in P;; of a graph G will represent a switching function F
of G between the vertices i and j, i.e.,

F = 3 set-product of all the sets in P;; . 3)

In addition to the identities of Boolean algebra, the fol-
lowing identity holds because of the representation of
elements:

xq=x, forany g and r . 4)

Example: To obtain the switching function from the
graph in Fig. 4 between vertices { and j, the following
procedure can be used.

Since it is only necessary to know e—v4-2 independent
sets in CUCPy; of the graph to find all sets in CUCPy;,
we form e—v+2=4 independent sets from the graph as
1= {alelb}, Co= {bbd}, Cy= {dezaz}, and D= {alBez} .

The designations c¢i1, ¢z, and ¢3 are circuit sets and p is
a path set in the graph. (It is not necessary to use e—v-1
independent sets in C. However, these are usually very
simple to obtain from a graph.®®) By Theorem 1 and
Corollary 1, the following sets are all sets in CP;;:

c1DesPp={deies}
c1®cs@p={a:bbde,}
c:@p={aibde:} c2Des D p=1{aia=b}

3@ p={a1a:bd} a@ceDesDp={aer} .

The switching function F. can be written as the summa-
tion of the set-products of the above sets as

pP= {albez}
C1 @p= {bBeleZ}

F =a15e2 + Bbe1e2 + llldeZ + a1a25d+ de1e2 + aszdel-l-
aazb+aze; .

Then, by Eq. (4) and by the use of identities of Boolean
algebra, F can be simplified as

F=ab+de+ae+tad .
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Synthesis of switching functions by
linear graph theory

The synthesis of a switching function by linear graph
theory is the formation of a switching function of the
form of Eq. (3) from a given switching function by the
use of the identities of Boolean algebra and Eq. (4). To
accomplish this procedure, a method is necessary to
determine whether or not a function is of the form of
Eq. (3).

For each term f; in a switching function F in Eq. (1),
we form a set consisting of all the elements in f;. The
collection of these sets is called “the collection of sets
corresponding to F.” The function F is equal to the set-
product of all the sets in D if D is the collection of sets
corresponding to F.

If F is of the form in Eq. (3), then the collection of
sets corresponding to F should represent P; of a graph.
By Theorem 1 and Corollary 1, the ring sums of an even
number of any sets in P;; of a graph is a circuit set which
is the collection of elements in a circuit or an element
disjoint union of circuits in the graph. However, the ring
sum of an odd number of any sets in P;; is a set in CP;;.

In general, every term f; in a switching function F in
Eq. (1) is not always zero. Hence, when the collection of
sets corresponding to F is formed from F, there exists no
set containing two elements which are complementary to
each other. However, there is a possibility of having
open-paths in a graph. This means that F may not be of
the form in Eq. (3), but may be of the form

F = 3 set-product of sets in P; ()

iy

where P}; is the collection of all the sets in Py; except
open-path sets.

If the set obtained by ring sum of an odd number of
sets in P}, is not in Py;, it must be either an open-path
set or a set which is in CP;;. (Notice that P;CCPy;.)
Hence, if the collection D of sets corresponding to a
switching function is P};, D has the property that every
set in the collection E, which is obtained by ring sum
of all possible combinations of odd number of sets in D,
is one of the following three:

(1) Thesetisin D.

(2) The set can be decomposed as u, P u., where u, is in
E, u. contains at least two elements, and u, Nu.=do.

(3) If the set does not satisfy either (1) or (2), the set
must contain two elements which complement each
other.

If D does not have the above property, it shows that
switching function, by which D is formed, is not of the
form in Eq. (5). Hence, one must change the switching
function by using the identities of Boolean algebra and
by using Eq. (2). Even if D has the above property, it is
not sufficient to say that the switching function, by which
D is obtained, is of the form in Eq. (5).

Suppose the collection D of sets corresponding to a
switching function F has the above property. We then




add the path set u,, which consists of one element ¢ to the
collection D, and form the collection C; of sets by ring
sum of all possible combinations of even number of sets
in D, including u,. It is clear that the collection C; has
the property that a set obtained by ring sum of any sets
in C; is in C;. Hence, C; is an Abelian group under the
ring sum and, with a binary field B, C; forms a vector
space. Thus there exist independent sets in C;. Let I be a
collection of independent sets in C,. Then a matrix
R =[rp,] can be formed whose rows represent the sets in /
and columns represent elements in the sets, where rp,—1
if element q is in set p which is in I, and rp,=0 otherwise.

If R is a circuit matrix, we know that there exists a
graph G which has the property that the collection of all
the circuit sets of G is C;. Since every set in C;, which
contains element ¢, is obtained by ring sum of u,={¢} and
odd number of sets in P;;, one can obtain, by removing
element ¢ from G, the graph whose P}; is equal to the
collection D of sets corresponding to the switching func-
tion F, where [ and j are the vertices between which ele-
ment ¢ was connected. Hence, G without element ¢ is a
switching network which satisfies the given switching
function.

At present, there is no simple method of testing whether
or not a matrix is a circuit matrix. Although the following
method for converting R, to Q is not a completely de-
finitive procedure, it is a very useful one since there exists
an efficient method for determining whether Q is a fun-
damental cut-set matrix? (which is explained in the next
section). It is known that by proper choice of independ-
ent sets in C;, one can obtain a matrix R. of the form

R.=[URa:] . (6)

Notice that choosing the different independent sets in C,
to form R, is equivalent to premultiplying (modulo 2) R
by a nonsingular matrix T= [trn] (fam=1, 0). From R.
in Eq. (6), one can obtain a matrix Q=[R’CI2U] where
R’ , is the transpose of R.z. It is known that if Q is a
fundamental cut-set matrix, there exists a graph whose
circuit matrix is R. Hence, one can find a network which

satisfies the given switching function.

Figure 4 A connected graph representing a switch-
ing network.

Redlizability conditions of cut-set matrices

An incidence matrix A; of order »—1 by ¢ and of rank
v—1 indicates the structure of a graph G consisting of v
vertices and e elements. The rows of A4; represent the
vertices of G except one vertex called the reference vertex
and the columns A; represent the elements in G. The
entry at i, j position of A; is defined to be 1 if element j is
connected to vertex i, and 0 otherwise. Hence, there exist
at most two 1’s in each column of A;. A matrix of order
v—1 by e and of rank v—1 can be an incidence matrix if
every column has at most two 1’s (all other entries in the
column are 0).

A row of a cut-set matrix of order v—1 by e and of
rank v—1 represents a cut-set (see the definition of cut-
set) and a column of the cut-set matrix represents an
element in a graph of v vertices and e elements. The
entry at i, j position of a cut-set matrix is defined to be 1
if element j is in cut-set i and O otherwise. A fundamental
cut-set matrix A, is a cut-set matrix which has the form
A.=[A.1U], where U is a unit matrix.

Suppose a matrix Q= [Q1:U], of order v—1 by e, is
given. We form the matrix H from Q by deleting every
column which has 1 at row i and by deleting row i. The
rows and the columns of H are rearranged so that H can
be partitioned, as

o ol B 7

[O I H22:| ) N

If it is impossible to partition H as in Eq. 7, we define
that H,; of H consists of no rows and no columns and
Hy,—H.

Definition: When a matrix D is obtained from a matrix
E by the deletion of rows and columns of E, the symbols
to indicate the rows and the columns will follow. That is,
row i (column j) of D is the row (the column) obtained
from row i (column j) of E.

We form two matrices, M;(i) and M.(i), called a
“pair of M-submatrices with respect to row i,” by the
following procedure:

M (i) is obtained by deleting all rows and columns of
H 1, from the given matrix Q.

M., (i) is obtained by deleting all rows and columns of
Hy, from Q. The symbol i in the parenthesis of M;(i)
and M, (i) indicates the row in the M-submatrices which
is used to obtain H. (See the process of obtaining M,(4)
and M»(4) from Q in the last section.)

The characteristics of a pair of M-submatrices M, (i)
and M. (i) of Q with respect to row i are that

(1) every row except row i of Q will be in either M (i)
or M. (i) but not in both, and

(2) row i of Q will be in both M, (i) and M (i).

Since an M-submatrix M (i) has the form M(i)=
[M(i)11.U], one can obtain M-submatrices M (ij) and
M (j) of M (i) with respect to row j7i, by the same pro-

_cedure as that used to obtain M,(i) and M2(i) from Q.

Notice that the symbols indicating the rows in the paren-

325

IBM JOURNAL * JULY 1960




326

thesis of an M-submatrix are the rows in the submatrix
which are already used to obtain M-submatrices. By the
characteristics of M-submatrices, only one of the M-sub-
matrices of matrix M (i) with respect to row j5i contains
row i, because row i is not the row used to obtain a pair
of M-submatrices from M (i). However, row j is in both
of these M-submatrices. Hence, the inside of the paren-
thesis of one of these M-submatrices of M (i) is i, j and
that of the other is j. Thus the M-submatrices of M (i)
with respect to row j are M (i, j) and M(j).

When a row in an M-submatrix has been used (i.e.,
the symbol representing the row is already in the paren-
thesis of an M-submatrix), one can not use the row to
obtain a pair of submatrices from the M-submatrix.

By continuing the above process until every row of
every M-submatrix has been used, v M-submatrices of
the form M(iy, i, ....,ix) can be obtained where
M(iy, iz, ..., 0), consists of Tows iy, i2,...., and ik.
Such an M-submatrix is called a minimum M-submatrix,
and the collection of these v minimum M-submatrices is
called a set of minimum M-submatrices. (See the mini-
mum M-submatrices in the last section.)

If one can partition H in the form of Eq. (7) more
than one way, then there are more than one pair of M-
submatrices with respect to a row. During the process of
obtaining minimum M-submatrices, there may be more
than one pair of M-submatrices of M (iy, i, . . . , {;) with
respect to row i,. If this is the case, for each pair of
M-submatrices of M (i, iz, ..., i) with respect to row
in, there exists a set of minimum M-submatrices.

Theorem 2: The necessary and sufficient condition that
a matrix Q=[Q11U] be a fundamental cut-set matrix is
that there exists a set of minimum M-submatrices of Q
so that every minimum M-submatrix in the set is realiza-
ble as an incidence matrix (every column of every mini-
mum M-submatrix in the set has at most two 1’s).”

If a set of minimum M-submatrices satisfies Theorem
2, one can form a graph from these submatrices by the
following procedure:

(1) We collect all minimum M-submatrices in the set,
each of which has at least two rows.

(2) By considering each of these minimum AM-sub-
matrices as an incidence matrix, we can obtain the sub-
graph for each of these submatrices. The symbol to
indicate a vertex in the subgraph corresponding to a
minimum M-submatrix is the same symbol which indi-
cates the row of the submatrix representing the vertex.
The symbol for the reference vertex must be different for
each subgraph. In these subgraphs, there are at most two
vertices having the same symbol.

(3) We choose two subgraphs in which there are two
vertices having the same symbol. Let these subgraphs be
G, and Gy. Also let K be the vertex in G, and in G». For
each element in G, which is connected to vertex K in Ga
there is an element which is connected to vertex K in G,.
Furthermore, the symbols for these two elements are the
same. Let ey, es, ..., er be the elements connected to
vertex K in G,. Then there are the elements which are
connected to vertex K in G, and whose symbols are also
e, es,...,and ex. We remove all of these elements from
G, and G,. Then we combine these two resultant sub-
graphs by connecting element e, between two vertices,
one of which is the vertex in G, other than vertex K on
which element e, was connected. The other is the vertex in
G, other than vertex K, on which element e, was con-
nected for p=1,2,..., k. By repeating this process, all
subgraphs will be combined into one graph.

Example of synthesizing a switching function

From switching function F=xyZ+xyz+ Xyz, collection D
of sets uy = {xyZ}, ue={x9z}, and us={Zyz} can be ob-
tained. Since w1 P usPus={%yZ} is not in D, F is not of
the form in Eq. (5). By changing F to F'=xyZ;+xyz+
Xyz1, the collection D of sets consists of

ur={xyz1}, uz={xyz}, and us={*yz:} .

Since u; @ usPDus contains z; and Z;, D has the property
of Pj;. The collection C, consists of sets u: D¢, u2Dt,
usPt, u1®us, u1@us, u2Pus, and U1 Pu2SusPHt, and
by using the first three of these sets which are independent
sets in C;, matrix R can be formed as

Figure 5 The graphs corresponding to the incidence matrices.

G, for M (4,2) G2 for My (2,5}

IBM JOURNAL * JULY 1960

Gy for My (1,5) Gafor M1 (3,1)




Figure 6 (a) Graph obtained by removing elementsz,, y, x from G, and G, in Fig. 5.
(b) The graph obtained from G, and G; in Fig. 5.
(c) The graph obtained from the graph in (b) and G; in Fig. 5.
(d} The graph obtained from the graph in (¢} and graph G, in Fig. 5.

z which can not be partitioned as in Eq. (7). Hence, H11
0 consists of no rows and no columns and Hz;—H. The
1 pair of M-submatrices are

0

X 1
Then, the matrix Q=[R;, U] is Mi(4)=Q,and My(4)=4[ 1 1 ].
The matrix H of M1(4) with respect to Row 3 can not

be partitioned as in Eq. (7). Hence, the M-submatrices
of M,(4) with respect to Row 3 are

1
2
Q=3 z
4
5

1

¥y
Mi(4,3)=Q,and M.(3)=3[ 1 11].

The matrix H, of M,(4, 3) with respect to Row 2 can
The matrix H, of Q with respect to Row 4 is be partitioned as

y
0
1
0
0
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Hence, the M-submatrices of the matrix M:(4, 3) with
respect to Row 2 are

ka4l

71z X x y ¥Vt
i1f1 1.0 1 0 O O
2’7 101 01 0 O
M;(3,2)=31 0 1 0 0 0 1 0 |’
SL 1 1.1 0 0 0 1
y
1

x
2111 0
and M;(4,2)=4| 0 1 0 1 |-

By using Row 1, the pair of M-submatrices of matrix
Mi(2,1) are

vz x x y t
111 1 0 1 0 O
M,2,1)=2f1 0 1 0 1 0 |,
51 11 0 0 1
Zi 2 x ¥
111 1 1 0
and M,(3,1)=3| 0 1 0 1 |-

Finally, by using Row 5, the pair of M-submatrices of
matrix M;(2, 1) are

Zvz X y t
21 01 1 0
M:(2,5=5; 1 1 1 0 1 ’
71 2 X x t
111 1 0 1 0O
and M,(1,5)=5( 1 1 1 0 1 |-

The M-submatrices M2(4), M1(3), M1(4,2), My(3, 1),
My(2,5),and M,(1, 5) are the minimum M-submatrices,
and these matrices form the set of minimum M-submatri-
ces of Q. Since all of these are realizable as incidence
matrices, there exists a switching network consisting of
elements Z3, z, %, x, ¥, ¥, and z; which satisfies the given
switching function.

To construct the switching network, we form the sub-
graphs corresponding to the matrices M1(4,2),M;(3, 1),
M.(2,5), and M,(1,5) as shown in Fig. 5.
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To combine G, and G, we remove the elements %, Z;
and y from G, and G2, as shown in Fig. 6a, because these
elements are connected to vertex 2 which is the vertex in
both G1 and G.. Then we connect ¥ between vertices 4
and 5, 71 between vertices 6 and 5, and y between vertices
6 and 7 as shown in Fig. 6b. The resultant graph and G3
can be combined by the elements 71, z, X, and ¢ as shown
in Fig. 6¢c. The resultant graph (Fig. 6¢) with G4 gives
the graph (Fig. 6d) from which the switching network
can simply be obtained by removing the element ¢. The
two specified terminals of the switching network are those
on which ¢ was connected.
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