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Synthesis of a Communication Net

Abstract: A systematic method is given for the realization of communication nets from their terminal capacity
matrices. It is shown that this procedure results in a net whose total branch capacity is minimum for all nets
satisfying the same terminal capacity matrix. It is also shown that when the terminal capacity matrix is inde-
terminate, then, for a given total branch capacity, the total terminal capacity is highest when all terminal

capacities are made equal.

1. Introduction

Consider any conveying system with multiple terminals,
such as a communication net, a power distribution sys-
tem, a highway network, or any one of many other possi-
bilities. Topologically, their structures are equivalent.
Each of them can be represented by a graph, the nodes
of which correspond to the terminals, while the connec-
tions between the terminals are represented by branches
with weight. The weight of a branch, or branch capac-
ity,* indicates the maximum possible rate of flow along
the link. Since all these systems have a common repre-
sentation, the results that can be derived from the graph
will apply to any of them. The communication net, how-
ever, will be used here as a convenient example for dis-
cussion because of its important position in modern
science and engineering.

® A. The branch capacity matrix and the terminal capac-
ity matrix

The properties of a communication net may be described
in terms of two matrices, namely, the branch capacity
matrix and the terminal capacity matrix. The branch
capacity matrix is a symmetrical square matrix, whose
order n is the number of nodes in the net. Any term of
the matrix, b;;(i~j), denotes the capacity of the branch
which is connected directly between vertices i and j. Since
the branch capacities b;; are not defined, we shall simply
write a d in the place of b; for any i. The branch capacity
matrix of the communication net in Fig. 1 is, accordingly,

-bn biz b1z bua b15- —d 1 0 0 5T
bor bas by bay by 1 d2 20
B=1 b3y bss bss bas bss |=|0 2 d 3 1].(1)
b byz bss bas bys 0 2 3 d 2
bsy bsz bss bss bss 5 01 2 d

The terminal capacity matrix is also a symmetrical
square matrix of order n. Each entry #; of the terminal
capacity matrix is the maximum possible communication
capacity between nodes i and j. As we will show in Sec-
tion 2, the terminal capacity matrix of the communication
net in Fig. 1 is

rtn tiz hga tise 1157 rd 4 4 4 67
trr tay fag o Izs 4 d 5 5 4
T=|ts tsg ts3 tsy tas |=|4 5 d 6 4 2)
LZCTRN PERN PR FPR 13 4 5 6 d 4
_t51 Isz ts3 154 t55_‘ _6 4 4 4 d_J

Since for a communication net, the branch capacity
matrix gives a mathematical description of its physical
structure while the terminal capacity matrix offers some
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Figure I A communication net.
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measure of its utility, the problem of analysis is essentially
that of finding the corresponding terminal capacity matrix
for a given branch capacity matrix. The problem of syn-
thesis is that of finding the corresponding branch capacity
matrix from a given terminal capacity matrix, as shown in
Fig. 2. The synthesis procedure does not result in a unique
net. Usually many different nets can be obtained from a
single terminal capacity matrix. The terminal capacity
matrix is unique, however, for a given branch capacity
matrix.

® B. Three problems of interest

Specification of a communication net is conveniently
given in terms of a terminal capacity matrix. It is reason-
able to suspect that not every symmetrical matrix can be
a terminal capacity matrix. The study of necessary and
sufficient conditions for a symmetrical square matrix to
be a terminal capacity matrix will help to decide what
kind of matrix is realizable. One answer to this question
was found recently by Mayeda.? It will be discussed
briefly in Section 2A.

Once we know a certain matrix is realizable as a ter-
minal capacity matrix, a natural question to ask is “How
do we find a corresponding branch capacity matrix in a
systematic manner such that the required total branch
capacity is as low as possible?” Theoretically, if the
matrix is realizable, there is always a realization with
minimum branch capacity. But without a systematic
method, the labor involved in the necessary search may be
insurmountable. A systematic synthesis method involving
straightforward procedures is described in Section 3. It is
shown that the total branch capacity required with this
method is a minimum. Further discussions on the syn-
thesis method, including comments on some interesting
properties of the realization, are given in Section 4.

Another interesting problem is one in which the ter-
minal capacity requirements of the system are not avail-
able. Such is the case when we consider a military warning
system, a system of interconnected canals and reservoirs
for flood control, or a standby distribution system for
reserve electric power supply. In many such cases the
terminal capacities are either not known or will vary from
time to time. The efficiency of a system of such a nature
is best measured by the terminal index defined?® as

I= 2 tij . (3 )
i<f

The problem is to obtain a terminal capacity matrix
with maximum index where the total branch capacity and
the order of the matrix are fixed. It is found that when
the synthesis method in Section 3 is used, the index of any
matrix may be increased to the maximum. This maximum
occurs when all #; are equal. Details of these facts are
discussed in Section 5.

No special mathematical background is required to
follow the proofs for the theorems in this paper. The
casual reader, however, may find it more interesting by
simply skipping all proofs.
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Figure 2 Relationship between the branch capacity
matrix and the terminal capacity matrix.

2. Some properties of the communication net

® A. Relationships between the branch capacity matrix
and the terminal capacity matrix

The notion of a cut-set of a graph is useful in studying
the relationships between the branch capacity matrix and
the terminal capacity matrix. A cut-set S;,* is a collection
of branches whose removal separates the graph into two
disjoint non-empty subgraphs where no proper subset of
S; has this property. Since each branch in the net is
assigned a positive number as its capacity, we may define
a value of a cut-set as the sum of all capacities of the
branches in the cut-set or
Csp= 2 bij s 4)
by in8y
where Cy, denotes the capacity of the cut-set. If special
attention is paid to a particular group of cut-sets which
cut the graph is such a way that a given node i is always
in one part and another given node j is always in the
other part, then such a cut-set shall be denoted by the
symbol (Si)i,;.
The terminal capacity between a pair of nodes can now
be determined in terms of branch capacities as >7

fij=MiI'l [C(Sk)i,j] . (&)

8
In other words, the terminal capacity between i and j is
limited by the capacity of the cut-sets which separated
nodes i and j. The cut-set which has the least capacity
serves as a bottleneck which the flow of information be-
tween i and j must pass through.

In order to determine ¢;;, we must evaluate the capacity
of all cut-sets which separate i and j. For instance, the
terminal capacity fs3 of (2) is determined from the mini-
mum of capacities of six cut-sets that separate nodes 2
and 3. The six cut-sets are shown in Fig. 3.

® B. The necessary and sufficient condition and the par-
titioning process

As is mentioned in the previous section, the determination
of the terminal capacity matrix from the branch capacity
matrix is unique. However, the reverse process is not
only non-unique but sometimes is impossible, since some
matrices cannot be realized as terminal capacity matrices.
The realizability condition due to Mayeda? will be dis-
cussed briefly.

Since the terminal capacities #; are evaluated from the
capacity of cut-sets and the value ¢; is the minimum, it is
suggested that there must be a cut-set S; whose value is
smallest among all cut-sets of the graph. This cut-set will




cut the graph into two parts, G4 and Gg. One part will
contain k nodes and the other n—k. The terminal capac-
ities t;; with i in G, and j in G will have a value t,, the
capacity of the cut-set S;. This suggests a partitioning
process of the terminal capacity matrix. Thus, after re-
arrangement, 7" may be written in a partitioned form as

l: T1(t1) :|
T= s
T, (1)

Te,
where T is a matrix whose entries are all equal to #;, and
Tg, and Tg¢, are terminal capacity matrices for G4 and
Gp. Written explicitly in terms of their nodes and
branches, numbering so that nodes 1 to k are in G, and
nodes k+1 to n are in G, we have

T,
(6)

[Ct11 he2 e | ta = - - T
tn Iz tag 'ty »= - ¢ +h
T=1 tin  tr2 e |ty - - -+ h
51 S R S T IR 175 7 7S s lkn
151 51 : : M s h tn,k+1 s lnn _

Although (7) is more explicitly written and is very clear,
. (6) is preferred from the standpoint of simplicity.

The necessary and sufficient condition found by May-
eda is simply this: (1) After rearrangement,

Te, Th
T— :
T T,

(8)

Figure 3 Al cut-sets which separate nodes v, and v;.

A7)

Where T consists of +; only and any entry in T¢, and
T(;B iS

izt (9)

(2) T¢, and T¢, are terminal capacity matrices. No-
tice that if G has only two nodes then it is always a termi-
nal capacity matrix.

If a matrix is given, the process of determination is to
keep partitioning until all submatrices left are of order
two.

Example: Suppose the matrix is given as

B .
d 4 4 4 6
4 d 5 5 4
T=| 4 5 d 6 4 (10)
4 5 6 d 4
6 4 4 4 d

First it is seen that we may partition the matrix after
rearranging the matrix as

d 5 5l4 4]
i
5 d 614 4
To, Ti(4) |
T= =15 6 dl 4 4 §,(11)
T/ (4) Tey | | —==—m- [
4 4 4=d 6
4 4 4}6 d

where

Branches in cut-sets are indicated by heavy lines.
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d 5 5

d

Te,=| 5 d 6 {, Tg,=
5 6 d |

Therefore, it is seen that the matrix T is a terminal capac-
ity matrix.

o C. Synthesis by arbitrary choice

The next step is to synthesize. Since we know that the
minimum cut-set is 4, we write the branch capacity
matrix as

Bs, B
B= , (12)
B, B,

and we know that

bos+boy+bss+b31+bas+bay=4. (13)
We may choose arbitrarily:

bas=0 by=1

bss=1 b31=0 : (14)
by=2 by=0

and then the branch capacity matrix will be

[ 1o 1
Bg, }10
B={ I—E—B—' (15)
0 1 2 |
1 0 0! Bos
B !

Checking over all possible cut-sets which cut nodes 1 and
5 gives bs1=5. Again by checking all possible cut-sets
which cut 2 and (3, 4), we conclude that

bos+boy=4. (16)

It is seen that synthesizing this way for a large matrix, the
number of cut-sets that have to be checked will increase
very rapidly with the size of the matrix. Although a lot
of freedom is available in distributing the branch capac-
ity, it is not used to advantage.

In view of this, it is very desirable to have a simple and
systematic method which will generate the desirable dis-
tribution for low total-branch capacity. Such a method is
discussed in the next section.

3. A simple systematic method for the minimal re-
alization of a given terminal capacity matrix

o A. The method

The method to be described is based on the partitioning
process and can be described best along with the parti-
tioning of the graph. Suppose the given matrix is parti-
tioned in the form
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Te, T:(ty)
7= . (17)
T:(11) Tg,

Then its corresponding graph is also partitioned into two
parts, as shown in Fig. 4. Then suppose G4 is again par-
titioned into G¢ and Gp, and that ¢, is divided into two
equal parts. The graph is shown in Fig. 5.

Now suppose the matrix is partitioned in k parts al-
ready and at the next step one of the k subgraphs will be
partitioned. The situation is shown in Fig. 6, where G
denotes the one to be partitioned next.

The process is the same, that is, each branch is divided
into two equal parts, one of which is connected to G,
and the other to Gy,. The branch by, is determined by
the difference

k-1

iy =try,—% > bir . (18)
=1

The partitioned graph is shown in Fig. 6b.

Since the necessary and sufficient condition is also
based on the partitioning process, the ability to partition
a given realizable matrix is guaranteed. The process may
be written as a simple rule of thumb.

Rule: At each partitioning process, all branches con-
nected to the subgraph to be partitioned are divided be-
tween the two partitioned subgraphs equally. The capacity
of the new branch is determined by the difference of the -
new terminal capacity and one-half the original branch
capacity between all other subgraphs and the subgraph to
be partitioned.

® B. Example

Again take the terminal capacity matrix, after arrange-
ment:

B T
tas taz s 12z 121
t32 f33 34 I35 fs1
T={ tso tz tu lss tu
ts2 Is3 54 Is5 @51

tiz tz he hs I

(19)

I
A OB U w8
A B o A W
N - Y,
L - N NN
SV N N NN

L. -

The graph is realized in successive stages as shown in
Fig. 7. The total branch capacity used is

br=14%, (20)
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Figure 4 Appearance of graph after first partition.

Figure 5 Graph showing the distribution of branch
capacities in the second partition.

Figure7 An example of synthesis by successive
partitions.

Qo

Figure 6b Appearance of graph after k* partition. Figure 8 Appearance of graph after first partition. 315
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as compared to the original value of 16 as given by the
realization in Fig. 1.

o C. The proof

That the resultant network satisfies the given terminal
capacity matrix.
At the first stage, the matrix T is partitioned as

Ta, T:(t1)
T= . 21
T (1) Tap

In this case the branch capacity matrix and the terminal
capacity matrix are the same and the graph is shown in
Fig. 8. As we partition again, we rearrange the matrix first
so that the submatrix to be partitioned is always at the
upper left corner. The terminal capacity matrix after
partitioning is

[
[__T_‘."”_J_Zzi’i)s Ti(t1) 1
T=— T;‘,(tz)l Tep . (22)

L T, (1)

According to our method of synthesis, the branch matrix
is given as

[ |

Bg, bep ber

B= bep Bg, bps

beg  bps Bg,

-
e er 2]
- 6t Bo 2 (23)
B i

where b;; denotes the sum of capacities of all branches
connected between subgraphs I and J. It is seen that the
cut-set that cuts G¢ and Gp, is equal to

to— 1 L oMin (L, 1) (24)
—— in{—,—| =t2.
73 N7z 7"

Then after the net has been completed up to & subgraphs,
the terminal capacity matrix and the branch capacity
matrix is shown as

Tg, Tox
T= (25)
T (I)k TGo

where Tor contains the terminal capacity t; for i in G
and j in Go. The branch capacity matrix is

IBM JOURNAL * JULY 1960

Bg, buka  brre by, 1 _1
b1  Bey, braka ¢ - - bran
B=l. . . . . . ... .. ... Ve

Lbk,l bk—l,l bk—2,2

B¢, J

At this stage we partition Gy, into Gy, and Gy,, then the
terminal capacity matrix will be

T'ox, l Te, J

and the branch capacity matrix will be, according to our
synthesis method described in Section 3A,

(27)

r kol by, xa by, T
Bg, tiey by~ 3% X by —— S i/
* v i=1 2 2
k=2 b, k1 by1
Ly ky—% > b B¢ . S —
A 2 2 2
B=|. . . . . . .. .. B,

In order to show that the given B matrix actually gives the
desirable T matrix, we shall use the following argument.
Consider the total of subgraph G,, Gz, ---- -~ Gr1 as
parts of a graph Go. The branch which originally con-
nected G and any one of the subgraphs G, Gz,-++- G
will be considered as merely connected between G and
Gy. In order to determine the terminal capacity tzx,, the
cut-set which determines this value must contain the
the element by ,. Suppose we consider three cut-sets S1,
S2, and S; as shown in Fig. 9. Let Go1 and Go2 be the
resultant subgraphs of Gy; the following relation is seen
to be true, as a result of the synthesis procedure.

k

1

at+tb=%1> by ;

)

\!

1

(29)

& e
1

-1

C'{‘d::l E bk,i
i=1

also

a=c¢

(30)
b=d.

Thus we have

b+(,‘==%kjlbk,i . (31)

i=1

L................BGI




This result is a consequence of the synthesis method em-
ployed and is independent of how S cut the graph Gy
into two parts. Therefore, we may conclude that

Min(Cs,, Cs,) < Cs, (32)
and
k-1
by +3 3 bri=try, 1y . (33)
e

Since g, > tx; for any i, by, will always have a non-
negative value. By induction, the realization satisfies the
given terminal capacity matrix. The proof that this method
requires a minimum branch capacity is given in Section 4.

4. Further discusion on the synthesis method
® A. Lower bound for total branch capacity

With a given terminal capacity matrix it is possible to find
a lower bound for the total branch capacity required.

Suppose a realization is obtained using some method
of synthesis and for any node i the branch capacity of
the incident set is denoted by w;.® Then for any node
j(j7i) we have

wi>t;; (34)
from the definition of a terminal capacity. In particular
Wity , (35)
where

ti;=Max(t;)  (ifixed). (36)

If we sum over the branch capacities of all n incident
sets, then

n n

Swiz D b (37)
i=1 i=1
However, the left side of the above equation is seen to

be equal to twice the total branch capacity, simply be-
cause each branch is connected between two nodes.

Therefore,
n n
2b1v= 2 w; > 2 tiz; (38)
i=1 i=1

Figure 9 Possible cut-sets at k™ partition. Branches
in cut-sets are indicated by heavy lines.

GH d Gy d

Figure 10 = Tree representation of graph partitioning
in Fig. 7.

or

br>%§ lizy (39)

i=1
® B. The tree representation of the partitioning process

Since the terminal capacity matrix contains all informa-
tion needed to determine a net and the resulting net is
unique if the method in Section 3 is employed, it is possi-
ble to determine the required total branch capacity with-
out actually carrying out the synthesis procedure. This
process is very simple to follow. But before going into the
details of such a process it is necessary to describe first a
tree representation of the breakdown of the graph. This
representation is useful also in the discussion in Section 5.

The tree representation is as follows: Each subgraph
will be represented by a box with G in it. On the right in
each box will be the terminal capacity between the two
subgraphs resulting from the partition. The partitioning
of a subgraph into two is represented by drawing two lines
from the original box to two new boxes. The graph in
Fig. 7 for example, will have the tree representation in
Fig. 10.

In general, the representation of a particular graph
with n nodes will be a part of the complete tree of order
n. The tree consisting of one node only is considered as
of order one. Binary subscripts are used to keep track of
the history of any subgraph. The two partitions of any
subgraph G, will be denoted as G and Gyy.

e C. Determination of the total branch capacity

The tree representation is especially useful in the deter-
mination of total branch capacity for the realization of a
given terminal capacity matrix.

In the tree representation the branch capacity that is
added at each partitioning may be written on the line
joining the two subgraphs of any partition. If only two
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steps are included, any subgraph of more than one node
will have a breakdown pattern like the ones shown in
Fig. 11.

The sum of the branch capaciites at the lowest level in
Case L is

tzo_%tx . (40)
The same sum for Case Il is
to— et~ $te=tw+ta—t.. (41)

Notice that as we sum on the next higher level there will
be a term ¢, always. So, as we sum over all branch ca-
pacities the sum will be

br=% 3 t.+% I 1. (42)
Gtﬂ
is anode is gnode

For instance, the terminal capacity matrix

[ d 55 4 4 i
5 d 6 4 4
T=} 5 6 d 4 4 (43)
4 4 4 4 6
i 4 4 4 6 d i
will require a total branch capacity of
br=6-+6+ —5—=14i. (44)
2 2
Another way to express the Eq. (42) is
br=t 3t 45)

From the discussion in Section 4A it is seen that the re-
quired total branch capacity is a minimum if the method
in Section 3 is employed.

& D. A bonus theorem

The total branch capacity is only dependent on the highest
terminal capacity at each node. One may use this fact to
advantage by increasing communication capacity at no
increase of total branch capacity. This will be stated as
the following theorem.

Theorem: Suppose a terminal capacity matrix is parti-
tioned into

A T,
(46)

T: B
t,-j<Min(ai,~, bij) N (47)

and if 4 and B are both submatrices of order more than
one, then the value #; may be made equal to

Min(aij, bij) ' (48)

without increasing the total branch capacity required for
realizing the matrix.
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The terminal matrix in (43) may be improved to the
following

[ i

(49)

H

fl
TRV SV Y T W
th W v A W
TRV -
o A U w»n W
F - NV SRV SV

of which the realization is shown in Fig. 12, The total
branch capacity is seen to remain at the same value.

5. Nets with indeterminate terminal matrix

® A. Optimum terminal capacity matrix for given total
branch capacity

As is discussed in Section 1, there are many cases where
the terminal capacity matrix is not known. The index of
communication of a net as defined in Section 1 serves as
a measure of the over-all utility of the communication
net. Under this criterion, we will try to find the terminal
capacity matrix that will give the maximum index for a
given total branch capacity. We shall denote the total
branch capacity by by and the number of nodes of the
net by n.

If we use the method in Section 3, the required total
branch capacity can be determined from the terminal

Figure 11 Two possible structures for subtrees con-
sidered in Section 5C.

o]

CASE I
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Figure 12 Communication net for terminal capacity
matrix in Eq. (49).

capacity matrix directly. By smoothing out the differences
in these terminal capacities, the index of communication

can be increased steadily. The maximum point of such an

increase is obtained where the terminal capacities are all
made equal. The proof of this statement is given in detail
in Section 5B. We see that when all terminal capacities
are equal, the total branch capacities can be expressed as

t
bT=n7,or t==2bp/n . (50)
Suppose we consider the net with equal capacity on each

branch of a maximumly connected net, the terminal ca-
pacities and the total branch capacity are related as

n(n—1)

bT=b—2——

t=(n—1)b (51)
n

bT=7t.

Thus it is seen that with the same total branch capacity
the maximum index is the same as that of a uniformly
distributed network with maximum connection. Thus for
a given total branch capacity, one can expect an average
communication capacity of 2b7/n for a net with n nodes.

® B. The proof

If the terminal capacity matrix is given, it is possible to
find a tree representation for the given terminal matrix.
The total branch capacity for the realization is given as

br=3% 3 t:+%1 3 t.. (52)
Gz Go1
is a node isanode

Suppose we consider a subgraph G which is partitioned
into G, and Gp as in Fig. 13. It is seen that when G con-
tains two nodes both G4 and G will contribute 3¢ to the
sum br. And the index of this subgraph is

I=t and all ¢ are equal.

Suppose G4 and Gp are both subgraphs with at least one
node, namely, G4 has u nodes and G has v nodes, also
assume in G4 and Gp all ¢ are the same

t=t in G
4 moa (53)
t=tp inGg.
Then the index of this subgraph is
I=IA'C12‘ +tB-Cg+tm). (54)

Assume t,<tg with no loss of generality, the index can
be increased by smoothing. We see that the total branch
capacity which is contributed by this subgraph is

t ts
br=u- 49— (55)
TR
S0
vt3=2bT—utA . (56)

Substituting this into (54)

u(u—l)t n (v—1) (2bp—uty) +tauv=(v—1)br

JueD,
- -1

+tA[uv+ u(u2 1) _ u('v2 ):'

~ (= Dbr+ S (u+0) (57)

This means if we increase t4(£4<1g), the index will al-
ways increase with the total branch capacity held con-
stant. The highest value for #4 is

uz—fju ’ (58)
Substituting this in the expansion, we have, as a result,
u(v+u)  2br
I=(v—1)bT+—2 s
=br(v—1+u) (59)
=bp(u+v—1).

By induction, then, the over-all index can be made equal
to

n(n—1) ;

I=br(n—1)= (60)

when all t are made equal.

Figure 13 Tree representation for first partition of a
graph.
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Since the synthesis method employed requires a minimum
total branch capacity, the index as shown in (60) is the
maximum for all nets with the same total branch capacity.

6. Concluding remarks

This paper has shown that a systematic synthesis pro-
cedure is possible if one treats all branches at the parti-
tion equally. A particularly simple method is obtained by
making the distribution uniform. It is seen that with this
method the total branch capacity required is a minimum
for a given terminal capacity matrix and can be written
down without actually carrying out the synthesis pro-
cedure. The total branch capacity is a sum to which each
node contributes a term equal to half the value of the
maximum terminal capacity associated with this particu-
lar node.

It is also shown that the index of a communication net
can be increased by smoothing out the differences in
terminal capacities. The maximum of index is obtained
when all terminal capacities are equal.

Throughout the paper it was assumed that the branch
capacities are finite. Actually this assumption can be
removed if we consider a new graph where each set of
nodes with infinite capacities connecting each other are
considered as one node. The new graph will be a net with
only finite branch capacities.
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