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Synthesis of a Communication Net 

Abstract: A systematic method i s  given for  the realization of communication  nets  from  their terminal capacity 

matrices. It is shown that this procedure  results in a net whose total branch capacity i s  minimum for all nets 

satisfying the same terminal capacity matrix. It is  also shown that when the terminal capacity matrix is  inde- 

terminate, then, for a given total branch  capacity,  the total terminal capacity i s  highest when all terminal 

capacities are made  equal. 

1. Introduction 

Consider any conveying system with  multiple  terminals, 
such  as a  communication net, a  power  distribution sys- 
tem,  a  highway  network, or any one of many  other possi- 
bilities. Topologically, their  structures  are equivalent. 
Each of them can  be  represented by a graph,  the nodes 
of which  correspond to  the terminals, while the connec- 
tions between the terminals are represented by branches 
with weight. The weight of a branch,  or branch capac- 
ity,l indicates the maximum possible rate of flow along 
the link.  Since all these systems have a common repre- 
sentation, the results that  can be derived from  the  graph 
will apply to any of them. The communication net, how- 
ever, will be used here as a convenient  example for dis- 
cussion  because of its important position  in modern 
science and engineering. 

A .  The branch capacity matrix and the terminal capac- 
i ty  matrix 

The properties of a  communication net  may be described 
in terms of two  matrices, namely, the branch capacity 
matrix and  the terminal capacity matrix. The  branch 
capacity matrix is a  symmetrical square matrix,  whose 
order n is the  number of nodes in  the net. Any  term of 
the matrix, b i j ( i# j ) ,  denotes  the  capacity of the  branch 
which is connected  directly between vertices i and j .  Since 
the  branch capacities bii are not defined, we shall  simply 
write  a d in the place of bii for any i. The  branch capacity 
matrix of the communication net in  Fig. 1 is, accordingly, 

B= 

d l 0 0 5  

l d 2 2 0  

0 2 3 d 2  

5 0 1 2 d  

The  terminal capacity matrix is also a symmetrical 
square  matrix of order n. Each  entry tij of the  terminal 
capacity matrix is the  maximum possible communication 
capacity  between  nodes i and j. As we will show  in Sec- 
tion 2, the  terminal capacity matrix of the  communication 
net  in Fig. 1 is 

T =  

tll  t12  t13  t14 f15 

t21  t22 f23 f 2 4  f25 

t31 f32 133 f34  f35 

f 4 1  t42 f43  t44 f45 

t51 f52  f53  t54 f55  

d 4 4 4 6  

4 d 5 5 4  

4 5 d 6 4  

4 5 6 d 4  

6 4 4 4 d  

Since for a communication net,  the  branch capacity 
matrix gives a mathematical description of its  physical 
structure while the  terminal capacity matrix offers some 

Figure I A communication net. 
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measure of its utility, the problem of analysis is essentially 
that of finding the  corresponding  terminal  capacity  matrix 
for a given branch  capacity matrix. The problem of syn- 
thesis is that of finding the corresponding  branch  capacity 
matrix from a given terminal  capacity  matrix,  as  shown in 
Fig. 2. The synthesis procedure  does not result in a  unique 
net. Usually many different nets can  be obtained from a 
single terminal  capacity matrix. The terminal  capacity 
matrix is unique, however, for a given branch capacity 
matrix. 

B.  Three problems of interest 

Specification of a  communication net is conveniently 
given in terms of a  terminal  capacity  matrix. It is reason- 
able to suspect that  not every symmetrical  matrix can be 
a  terminal  capacity  matrix. The study of necessary and 
sufficient conditions for a  symmetrical square matrix to 
be a terminal  capacity  matrix will help to decide what 
kind of matrix is realizable. One answer to this question 
was found recently by Mayeda.2 It will be discussed 
briefly in Section 2A. 

Once we know a  certain matrix is realizable as a  ter- 
minal  capacity  matrix, a natural question to ask is “How 
do we find a corresponding branch capacity  matrix in a 
systematic manner  such  that  the required total  branch 
capacity is as low as possible?’ Theoretically, if the 
matrix is realizable, there is always a  realization  with 
minimum  branch capacity. But without  a systematic 
method, the labor involved in the necessary search  may be 
insurmountable. A systematic synthesis method involving 
straightforward  procedures is described in Section 3. It is 
shown that  the total  branch  capacity  required  with this 
method is a  minimum. Further discussions on the syn- 
thesis method, including comments on some interesting 
properties of the  realization, are given in Section 4. 

Another interesting  problem is one in which the ter- 
minal capacity  requirements of the system are  not avail- 
able. Such is the case when we consider a  military  warning 
system, a system of interconnected  canals  and reservoirs 
for flood control, or a  standby  distribution system for 
reserve electric  power supply. In many such cases the 
terminal capacities are either not known or will vary from 
time to time. The efficiency of a system of such a nature 
is best measured by the terminal  index defined3 as 

I =  x t i j  
i<j 

The problem is to obtain  a  terminal  capacity  matrix 
with maximum index where the total branch capacity and 
the  order of the matrix are fixed. It is found  that when 
the synthesis method in Section 3 is used, the index of any 
matrix may be increased to  the maximum.  This  maximum 
occurs when all t i j  are equal.  Details of these facts are 
discussed in Section 5. 

No special mathematical  background is required to 
follow the proofs for the theorems in this paper.  The 
casual  reader, however, may find it  more  interesting by 

31 2 simply skipping all proofs. 

Figure 2 Relationship between the branch capacity 
matrix  and the terminal capacity matrix. 

2. Some properties of the communication net 

A. Relationships between the branch capacity  matrix 
and the terminal capacity matrix 

The notion of a cut-set of a graph is useful in studying 
the relationships between the  branch capacity matrix  and 
the terminal  capacity  matrix. A cut-set Si,* is a collection 
of branches whose removal  separates the  graph into two 
disjoint non-empty subgraphs  where  no  proper subset of 
Si has this property. Since each branch  in  the net is 
assigned a positive number as its capacity, we may define 
a value of a cut-set as  the sum of all capacities of the 
branches in the cut-set or 

Cs,= 2 bij , (4) 
b 4 ,  i n  Sa 

where CS, denotes the capacity of the cut-set. If special 
attention is paid to a  particular group of cut-sets which 
cut  the  graph is such a way that a given node i is always 
in  one  part  and another given node j is always in  the 
other  part, then  such  a cut-set shall be denoted by the 
symbol (Sk) i, j . 
The terminal  capacity between a pair of nodes can now 
be determined in terms of branch capacities as 5 - 7  

tij=Min [ C ( S , ) ~ , ~ ]  . (5) 

In  other words, the  terminal  capacity between i and j is 
limited by the capacity of the cut-sets which separated 
nodes i and j .  The cut-set which has  the least capacity 
serves as  a bottleneck which the flow of information be- 
tween i and j must pass through. 

In  order  to determine tij, we must  evaluate the capacity 
of all cut-sets which  separate i and j .  For instance, the 
terminal  capacity t23 of (2) is determined from the mini- 
mum of capacities of six cut-sets that separate nodes 2 
and 3. The six cut-sets are shown in Fig. 3. 

B.  The necessary and sufficient condition and the par- 

8, 

titioning process 

As is mentioned in the previous section,  the  determination 
of the terminal  capacity matrix  from  the branch  capacity 
matrix is unique.  However, the reverse process is not 
only  non-unique  but sometimes is impossible, since some 
matrices cannot be realized as  terminal  capacity matrices. 
The realizability condition due  to Mayeda2 will be dis- 
cussed briefly. 

Since the terminal capacities t i j  are evaluated from  the 
capacity of cut-sets and the value tij is the minimum,  it is 
suggested that  there must be a cut-set SI whose value is 
smallest among all cut-sets of the graph. This cut-set will 
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cut  the  graph  into two parts, G A  and GB. One  part will 
contain k nodes and  the  other n- k. The  terminal capac- 
ities tii with i in G A  and j in GB will have a  value t l ,  the 
capacity of the cut-set SI. This suggests a  partitioning 
process of the terminal  capacity  matrix. Thus,  after  re- 
arrangement, T may be written  in  a  partitioned form as 

T =  [ 1. TG,   TI(^) 
(6) 

where T I  is a matrix whose entries are all equal to t1 and 
TGA and T G ~  are  terminal capacity  matrices for G A  and 
GB. Written explicitly in terms of their nodes and 
branches,  numbering so that nodes 1 to k are in G A  and 
nodes k +  1 to n are in G B ,  we have 

TI ( t i )  T G ~  

t I . . .  

f l " .  
. . . . . .  
. . . . . .  1 

Where T1 consists of tl only and any entry  in TG* and 
T G ~  is 

t i j  2 tl , ( 9 )  

(2) T G ~  and T G ~  are  terminal capacity  matrices. No- 
tice that if G has  only  two  nodes  then it is always  a  termi- 
nal capacity  matrix. 

If a matrix is given, the process of  determination is to 
keep partitioning  until all submatrices left  are of order 
two. 

Example: Suppose the  matrix is given as 

I d 4 4 4 6  1 
4 d 5 5 4  

T =  4 5 d 6 4  

4 5 6 d 4  

6 4 4 4 d  
tl * * e t 1  I L J 

' (7)  First  it is seen that we may partition  the  matrix  after t k + l .  k+l * . f k + l . n  I . . . . . .  rearranging  the  matrix as 
. . . . . .  
tn, k+l * ' . t n , n  

Although ( 7 )  is more explicitly written  and is very  clear, 
(6) is preferred from  the  standpoint of simplicity. T = [  

eda is simply this: (1) After  rearrangement, 

'=[ T i  TG, ] * 

ToA 7'1(4) 

The necessary and sufficient condition found by May- T i  (4) TGB 1- 
TG,  TI 

(8) 
where 

d 5 5 j 4   4 '  

5 d 6 1 4  4 

5 6 d l 4  4 
"""I "" 

4 4 4 1 d  6 

4 4 4 1 6  d 

I 

Figure 3 All cut-sets which separate nodes v2 and v3. Branches in cut-sets are indicated by  heavy lines. 
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The next  step is to synthesize. Since we know that  the 
minimum cut-set is 4, we write the  branch capacity 
matrix  as 

and we know that 

b25 + bz1+  b35 + b a  + b45 + b41=4 . ( 1 3 )  

We may  choose  arbitrarily: 

b25=O bzl= 1 
I b35= 1 bsl=O ( 1 4 )  

b45 = 2 b41=O 

and then the  branch capacity matrix will be 

BG* 1 0 

”“”- L ”” I ‘  B= 

Checking over all possible cut-sets which cut nodes  1 and 
5 gives b51=5. Again  by  checking all possible cut-sets 
which cut 2 and ( 3 , 4 ) ,  we conclude that 

bZ3 + b24=4 ( 1 6 )  

It is seen that synthesizing this way for a large matrix, the 
number of cut-sets that  have  to be checked will increase 
very  rapidly  with the size of the matrix.  Although  a lot 
of freedom is available  in  distributing the  branch  capac- 
ity, it is not used to advantage. 

In view of this, it is very  desirable to have  a  simple and 
systematic  method  which will generate the desirable dis- 
tribution for low  total-branch  capacity. Such a  method is 
discussed in the next section. 

3. A simple systematic method for the minimal re- 
alization of a given terminal capacity matrix 

A .  The method 

The  method  to  be described is based on  the partitioning 
process and  can be described best along  with the  parti- 
tioning of the graph. Suppose  the given matrix is parti- 

I 314 tioned in the  form 
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T G . 4  TI ( t l )  
T := 1- (17) 

Then its corresponding graph is also  partitioned into two 
parts, as  shown in  Fig. 4. Then suppose G A  is again par- 
titioned into Gc and Go, and  that tl is divided into two 
equal parts. The  graph is shown  in  Fig. 5. 

Now suppose the  matrix is partitioned in k parts al- 
ready  and  at  the next step one of the k subgraphs will be 
partitioned. The situation is shown in Fig. 6,  where Gk 
denotes the  one  to be  partitioned next. 

The process is the same, that is, each  branch is divided 
into two equal parts, one of which is connected to Gkl 
and  the  other  to Gkz. The  branch bkikz is determined by 
the difference 

Tl(t1)  Tc, 

bkikz=tklk2-% 2 bir. 

The partitioned graph is shown  in  Fig. 6b. 
Since the necessary and sufficient condition is also 

based on  the partitioning process, the ability to  partition 
a given realizable matrix is guaranteed. The process may 
be  written  as  a  simple  rule of thumb. 

Rule: A t  each partitioning process, all branches con- 
nected to  the subgraph to be partitioned are divided be- 
tween  the two partitioned subgraphs equally. The capacity 
of the new branch is determined  by the  difference o f  the 
new terminal capacity and one-half the original branch 
capacity between all other subgraphs and the subgraph to 
be partitioned. 

k-1 

i=1 

B.  Example 

Again  take the  terminal capacity  matrix, after arrange- 
ment: 

t22 f 2 3  f24 f25 

t32 f33 t34 f35 

f 5 2  t53 f54 t55 

t i2  f 13  t14 f15 

d 5 5 4 4  

5 d 6 4 4  

5 6 d 4 4  

4 4 4 d 6  

4 4 4 6 d  

The  graph is realized in successive stages as shown in 
Fig. 7. The  total  branch capacity  used is 

b ~ = 1 4 $  , (20) 



t l  

Figure 4 Appearance of graph after first partition. 

Figure 5 Graph showing the  distribution  of  branch 
capacities in the second partition. 

Figure 6a Appearance of graph before kfh partition. 

Figure 6b Appearance sf graph after kfh partition. 

4 

;.. 

Figure 7 An example of  synthesis by successive 
partitions. 

t l  

Figure 8 Appearance of graph after first partition. 315 
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as  compared  to  the original  value of 16 as given by the 
realization in  Fig. 1. 

C .  The proof 

That  the resultant network satisfies the given terminal 
capacity  matrix. 

At  the first stage, the  matrix T i s  partitioned  as 

In this  case the  branch capacity matrix  and  the  terminal 
capacity matrix  are  the  same  and  the  graph is shown in 
Fig. 8. As we partition again, we rearrange  the  matrix first 
so that  the  submatrix  to be partitioned is always at  the 
upper  left corner. The  terminal capacity matrix  after 
partitioning is 

According to our  method of synthesis, the  branch  matrix 
is given as 

1 bcs bDB BcB 1 

where brJ denotes the  sum of capacities of all  branches 
connected between subgraphs I and J .  It is seen that  the 
cut-set that cuts Gc and Go is equal  to 

Then  after  the  net  has been completed up  to k subgraphs, 
the terminal  capacity matrix  and  the  branch capacity 
matrix is shown  as 

where TO, contains the  terminal capacity tii for i in Gk 
316 and j in Go. The branch capacity matrix is 
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B= 

. . . . . . . . . . . . . .  
br,l  bk-l,l bk-2,~ * * * BG1 J 

At this  stage we partition Gk into Gkl and Gkz, then  the 
terminal capacity matrix will be 

T= 

and  the  branch capacity matrix will be,  according to our 
synthesis method  described  in  Section 3A, 

B =  

L 

In  order  to show that  the given B matrix actually gives the 
desirable T matrix,  we shall use  the following argument. 
Consider the  total of subgraph G I ,  G z ,  - Gk-1 as 
parts of a graph Go. The  branch which originally con- 
nected Gk and any one of the  subgraphs G I ,  Gz,..-..Gk-l 
will be considered  as  merely  connected  between Gk and 
Go. In  order  to  determine  the  terminal capacity tklkz, the 
cut-set which  determines  this  value  must contain  the 
the element b k l k z .  Suppose we consider three cut-sets &, 
SZ, and S, as shown in Fig. 9. Let Go1 and Go2 be the 
resultant  subgraphs of Go; the following relation is seen 
to be true, as  a  result of the synthesis procedure. 

a+b=+ 2 bk,i 
k-  1 

a=c 

b = d ,  

Thus we have 
k-1 

b+c=+ x bk,i . 
i=1 



This result is a consequence of the synthesis method em- 
ployed and is independent of how & cut  the graph GO 
into two parts. Therefore, we may conclude that R 
Min(Cs,, C S ~ )  \< CS, ( 3 1 )  / 
and 

k -1  
bklkz+& x bk,i=tkl, k2 (33) 

i = l  

Since tk,k,>tk< for any i, bklkz will always have a non- 
negative value. By induction, the realization satisfies the 
given terminal capacity matrix. The proof that this method GE 

d 

requires a minimum branch capacity is  given in Section 4. 

4. Further  discusion on the synthesis method 

A .  Lower bound for total branch capacity 

With  a given terminal capacity matrix  it is possible to find 
GH d 

a  lower-bound for  the total  branch capacity required. 
Suppose a realization is obtained using some method 

of synthesis and for any node i the branch capacity of 

Figure 10 Tree representation of graph partitioning 
in Fig. 7. 

1 the incident set is denoted by wi.s Then for any  node 
1 j ( j # i )  we have or 
I wi > tij (34) b T > )  5 tizi . 

from  the definition of a terminal capacity. In particular i= l  

(39) 

where 

tizi=Max(tij) (ifixed) . 
If we sum over the branch capacities of all n incident 
sets, then 
n n 
2 wi> 2 tizi . (37) 
i = l   i = l  

However, the left side of the above  equation is seen to 
be equal to twice the total  branch capacity, simply be- 
cause  each  branch is connected between two nodes. 

Therefore, 

Figure 9 Possible  cut-sets at  kth partition. Branches 
in cut-sets are indicated by  heavy lines. 

Since the terminal capacity matrix contains all informa- 
tion needed to determine  a net and the resulting net is 

(36) unique if the  method  in Section 3 is employed, it is possi- 
ble to determine the required  total  branch capacity with- 
out actually carrying out  the synthesis procedure. This 
process is very simple to follow. But before going into the 
details of such a process it is necessary to  describe first a 
tree representation of the breakdown of the graph.  This 
representation is useful also in the discussion in Section 5. 

The tree representation is as follows: Each subgraph 
will be represented by a box with G in it. On the  right  in 
each box will be the terminal capacity between the two 
subgraphs resulting from  the partition. The partitioning 
of a  subgraph  into two is represented by drawing two lines 
from  the original box to two new boxes. The graph  in 
Fig. 7 for example, will have  the  tree representation in 
Fig. 10. 

In general, the  representation of a  particular  graph 
with n nodes will  be a part of the complete tree of order 
n. The tree consisting of one node only is considered as 
of order one. Binary subscripts are used to keep track of 
the history of any subgraph. The  two partitions of any 
subgraph G ,  will be denoted as Gxo and Gxl. 

C.  Determination of  the total branch capacity 

The tree  representation is especially useful in the deter- 
mination of total  branch capacity for  the realization of a 
given terminal capacity matrix. 

In  the tree representation the  branch capacity that is 
added at each  partitioning may be written on  the line 
joining the two subgraphs of any partition. If only  two 317 
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steps are included, any subgraph of more than one node The terminal matrix in (43) may  be improved to the 
will have a breakdown pattern like the ones shown in following 
Fig. 11. 

Case I is 

The same sum  for Case I1 is T =  [;;;;;I 5 6 d 5 5 ,  (49 1 

Notice that as we sum on the next higher level there will 
be  a  term t ,  always. So, as we sum over all branch ca- of which the realization is shown in Fig. 12. The total 
pacities the  sum will  be branch capacity is seen to remain at the same value. 

The sum of the  branch capaciites at the lowest level in 

t m - + t x .  (40) 

t,o"t,+t,l"t*=tzo+t,l"fz. (41) 

bT=3 x t z t - 3  x tz (42) 5. Nets with indeterminate  terminal matrix 
G,, Q, 

is a node is a node 

For instance, the terminal capacity matrix 

will require a total branch capacity of 

5 1 
2 2 

bT=6+6+ - x 1 4  - 

Another way to express the Eq. (42) is 

e A .  Optimum terminal capacity matrix for given total 
branch capacity 

As is discussed in Section 1, there  are many cases where 
the terminal capacity matrix is not known. The index of 
communication of a  net as defined in Section 1 serves as 
a measure of the over-all utility of the communication 

(43) net. Under this criterion, we  will try to find the terminal 
capacity matrix that will  give the maximum index for  a 
given total branch capacity. We shall denote the total 
branch capacity by bT and the number of nodes of the 
net by n. 

If we use the method in Section 3, the required total 
branch capacity can be determined from  the terminal 

(44) 

Figure I 1  Two possible structures for subtrees con- 
sidered in Section 5C. 

n 
bT=3 2 t iz ,  (45 1 

i=1 

From the discussion in Section 4A it is seen that  the re- 
quired total branch capacity is a minimum if the method 
in Section 3 is employed. 

D.  A bonus theorem 

The total  branch capacity is only dependent on  the highest 
terminal capacity at  each node. One may use this fact  to 
advantage by increasing communication capacity at  no 
increase of total  branch capacity. This will  be stated as 
the following theorem. 

Theorem: Suppose a terminal capacity matrix is parti- 
tioned into 

[ :1 3 
t i j  < Min ( aii, b i j )  , 
and if A and B are  both submatrices of order more than 
one, then the value tii may be made equal to 

Min(aii, bti) (48) 

without increasing the total branch capacity required for 
318 realizing the matrix. 
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Figure 12 Communication net for terminal capacity 
matrix in Eq. (49). 

capacity matrix directly. By smoothing out  the differences 
in these terminal capacities, the index of communication 
can be  increased steadily. The maximum point of such  an 
increase is obtained  where the  terminal capacities are all 
made equal. The proof of this statement is given in detail 
in Section 5B. We see that when all terminal capacities 
are  equal,  the total branch capacities can be expressed as 

t 
2 

bT=n - , or t = 2 b ~ / n .  

Suppose we consider the  net with equal capacity on  each 
branch of a  maximumly  connected net,  the  terminal ca- 
pacities and  the  total  branch capacity are related  as 

n(n-  1 )  
2 

bT=b- 

t = ( n - l ) b   ( 5 1  1 

b T = - t .  
n 

2 

Thus  it is seen that with the  same  total  branch capacity 
the  maximum index is the  same as that of a  uniformly 
distributed network with  maximum  connection. Thus  for 
a given total  branch capacity, one  can expect an average 
communication  capacity of 2 b ~ / n  for a net with n nodes. 

B. The proof 

If the  terminal capacity matrix is given, it is possible to 
find a tree representation for  the given terminal matrix. 
The  total  branch capacity for  the realization is given as 

Suppose we consider  a subgraph G which is partitioned 
into Ga and GB as in  Fig. 13. It is seen that when G con- 
tains two nodes both G A  and GB will contribute 3t to  the 
sum bT. And  the  index of this subgraph is 

I = t  and all t are equal. 

Suppose GA and G B  are  both subgraphs  with at least one 
node,  namely, GA has u nodes and GB has w nodes, also 
assume  in G A  and GB all t are  the  same 

Then  the index of this subgraph is 

I=tA c; f t B  cl +tuv . (54) 

Assume t A < t B  with no loss of generality, the index  can 
be increased by smoothing. We see that  the  total  branch 
capacity which is contributed by this subgraph is 

L L 

so 

V t e = 2 b ~ - U t ~  . ( 5 6 )  

Substituting  this into (54) 

+ t A  [ uvf ~ -~ 

UtA 

u(u-1)  u(w- 1) 
2 2 1 

z(W-1)bT-k - ( U f V ) .  
2 

(57) 

This means if we increase t A (   t A <  t B ) ,  the index will al- 
ways increase  with the  total  branch capacity  held  con- 
stant.  The highest  value for tA is 

Substituting  this in  the expansion, we have,  as  a  result, 

=bT(W-li-U)  (59) 

= b T ( U f W - l ) .  

By induction, then,  the over-all  index can be made  equal 
to 

n ( n -  1 )  

2 
I=bT(n- 1 )  = ~ f (60) 

when all t are  made equal. 

Figure 13 Tree representation for first partition of a 
graph. 
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Since the synthesis method employed  requires  a minimum 
total  branch capacity, the  index as  shown in (60) is the 
maximum  for all nets  with the same total  branch capacity. 

6. Concluding remarks 

This  paper  has shown that a  systematic  synthesis  pro- 
cedure is possible if one  treats all branches  at  the parti- 
tion  equally.  A  particularly  simple method is obtained by 
making the distribution uniform. It is seen that with  this 
method  the  total  branch capacity required is a  minimum 
for a given terminal  capacity matrix  and  can be written 
down without  actually  carrying out  the synthesis pro- 
cedure. The  total  branch capacity is a sum  to which each 
node contributes a term  equal  to half the value of the 
maximum terminal capacity associated with  this particu- 
lar node. 

It is also shown that  the index of a  communication net 
can be increased by smoothing out  the differences in 
terminal capacities. The  maximum of index is obtained 
when  all terminal capacities are equal. 

Throughout  the  paper  it was assumed that  the  branch 
capacities are finite. Actually  this  assumption can be 
removed if we consider  a new graph where each set of 
nodes  with infinite capacities  connecting each  other  are 
considered  as one node. The new graph will be  a net with 
only finite branch capacities. 
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