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Physical versus Logical Coupling in Memory Systems

Abstract: A memory system consisting of bistable static dissipationless units such as ferrites, ferroelectrics, or
cryotrons is considered. For a given amount of physical material the memory capacity may be increased by
using small volumes of the bistable material for each bit. If made sufficiently small, however, the individual
bits will become unreliable because of the influence of thermal agitation and quantum-mechanical tunnel-
ing processes. Some unreliability can be tolerated, since it can be compensated by redundancy. The
optimum size of the individual bit, for maximum information storage, is evaluated. If thermal agita-
tion is the prime source of errors, then the optimum-sized bit involves typically less than 100 of the inde-
pendent cooperating units (electron spins, dipoles, et cetera) which cause the bistability. The maximization
process concerns itself only with the preservation of information and not with possible methods of access to
the individual bit. In particular, the maximization process neglects complications in the coding equip-

ment needed to read in and out of memory.

Introduction

The search for continually smaller and faster data proc-
essing system components causes us to ask what ultimate
limitations the laws of physics impose on the progress
in this direction. In this note we are concerned with the
increasingly important effects of quantum-mechanical
tunneling and thermal agitation on the reliability of a
memory, as the physical system storing an individual bit
becomes very small. It will be shown that there is a sense
in which there is an optimum-sized memory element.
The existence of the optimum can be expected from
the following crude line of thought. Assume that we are
given a fixed amount, say a pound, of perhaps a ferro-
magnetic material, which can be used to manufacture
bistable units capable of serving as memory elements.
How finely shall we divide our pound? We can use the
whole pound to make only one bit. The resultant bit, be-
cause of its massiveness, will be unlikely to lose its in-
formation, either through a tunneling process, or through
thermal agitation, and will therefore be a very reliable
bit. Nevertheless our whole memory is rather useless
since it is only a single bit. At the opposite extreme, we
can divide the pound into a great many units, each of
which is so small that it loses its information almost im-
mediately. Despite the large number of elements in such
a memory, it is again almost useless. There is, therefore,
presumably an intermediate degree of subdivision which
provides for a maximum memory capacity, if the time
mpreliminary and relatively complete version of this manu-

script had been prepared by J. A. Swanson, and has been brought
info its present form by R. Landauer.

over which we wish to preserve information has been
specified.

Our considerations will involve binary symmetric
storage elements, i.e., elements having two and only two
distinct (but physically equivalent) states. The restric-
tion to binary symmetric elements is convenient, but not
essential.

In general a nonvanishing probability exists that a
storage element makes a spurious transition from one
of its states to the other. Such transitions may be caused
by thermal fluctuations, by the imperfect isolation of a
storage element from the effect of machine operations
supposedly irrelevant to its state, or simply by the fact
that neither state is stationary in the quantum-mechani-
cal sense. Such transitions may lead to error in the inter-
pretation of what information has been stored in
memory. The probabilities of such errors may be re-
duced by the introduction of suitable coupling between
the storage elements.

1. Definition of basic concepts

By physical coupling between n storage elements we un-
derstand a connection such that a transition may occur
if and only if all n elements make the same transition
simultaneously. A new storage element is evidently cre-
ated in this way, having a reduced transition probability.

By logical coupling between n elements we under-
stand the introduction of redundancy such that only
k(k<n) of the group of n elements can be adjusted in
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a logically independent fashion. The remaining (n-k)
elements have their states uniquely determined, when
the & states have been specified, by a definite function of
k arguments, chosen so as to make “error correction”
possible up to a certain point. Such a coupling will be
referred to as (n, k) coupling.

2. Preliminary statement of problem

Both physical and logical coupling reduce error proba-
bilities, and both require extra storage material in order
to keep the amount of stored information constant. An
obvious question is—which method of coupling uses
physical material more efficiently to reduce error? Our
purpose is to gain some insight into this problem.

It is evident that a fair appraisal would take into ac-
count the limitations involved in the physical realization
of logical coupling. However such considerations lie
beyond the scope of this discussion. The fact that logical
coupling requires complications in the coding and de-
coding equipment, which is external to the memory
being interrogated, will be ignored.

3. Transition probability for one element

The states of an element will be labeled “4” and “B.”
Suppose at time =0 the state is definitely 4. What is
the probability as a function of time that the element
makes a transition to state B? Clearly, the answer to this
question depends on our physical model. It is natural to
assume, however, that transitions in both directions
proceed as in a Poisson process. The result of this as-
sumption is found most easily by imagining a large
number of elements 7, originally in state 4. The number
of transitions per unit time to state B is proportional to
the number in 4, while the number of transitions per
unit time to A is proportional to the number in B. The
differential equation to which we are led has as solution
for the number ny in B

n
np= —2"—[1—exp(—2vt)],

where vy is a constant. Thus the probability q of finding
an element in state B known to have been in state A
at time =0 is

1
q =—2—[1~exp(—27t)]-

If yt is small, g=vt. Thus y is the transition proba-
bility per unit time.

4. Behavior of transition probabilities under
physical coupling

An Appendix deals with this problem from a physical
viewpoint. It is shown there that if one assumes a mem-
ory element to be equivalent to a particle in a potential
with two minima, then the transition probability due to
thermal agitation or quantum-mechanical tunneling of n
physically coupled elements is proportional to the expo-
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nential of a negative constant times n. This follows
from taking the n coupled element to correspond to a
particle n times as massive in a potential n times as
strong as a single element. The more intuitive argument
given below yields the same type of dependence of the
transition probability on n using a completely different
sort of assumption as to the exact nature of physical
coupling.

We consider n systems coupled physically, each of
which, when uncoupled, has transition probability y per
unit time. We seek for the transition probability per unit
time, vy, of the coupled system.

Let us suppose that a characteristic time = is required
for the constraint to make itself felt. If all n systems
were impelled to make a transition during time =, the
transition would occur as in the absence of constraint.
The probability for this is (y7)". Thus, if we assume
that the transition cannot otherwise occur (similar re-
sults are obtained if we require that at least one-half
must be impelled to change during time 7)

Ya=7"1(y7)"
Introducing new quantities
v=7"1, uy=—log, vr, y,=ve "

The probability of transition during a time ¢ is (for
Yat K1)

g, =vte—un,

A coupling which yields the above formula will be
called uniform physical coupling. The characteristic of
uniform coupling is that the addition of a new element
always causes the same fractional reduction in the tran-
sitional probability.

While the Appendix points out that “uniform physical
coupling” is the obvious way in which matter is coupled
against the disturbing influences of thermal agitation and
quantum-mechanical tunneling, this does not hold with
respect to the undesired cross influences of various op-
erating elements. As far as “cross talk” is concerned,
the different portions of the same piece of matter are
likely to be subject to related disturbing influences, and
hence their coupling does not reduce the error proba-
bility as effectively as indicated in this section.

5. Reduction of error probabilities by
logical coupling

An (n, k) coupling reduces the number of “messages”
written upon a group of n storage elements from 2* to
2%, However, the existence of spurious transitions ren-
ders the occurrence of all 2® combinations of states
possible. Thus the decoding scheme consists in asso-
ciating 27—% configurations with each message. The
specification of the message to which a given configura-
tion belongs will be said to determine the information
state of the n elements. An error will be said to occur if
the information state changes because of spurious tran-
sitions.




Not all possible (n, k) coupling schemes (of which
there are many, unless n is very small) are equally ef-
fective in reducing error. There is no generally known
way, however, to select the best (n, k) couplings without
carrying through the tedious process of actually com-
puting and comparing the error probabilities. Since we
shall always assume the best logical coupling we are not
in a position to demonstrate a function of n and & which
shall yield the value of the minimum attainable error
probability, but only to assert that such a function is
computable. Nevertheless the theorem of Shannon! re-
garding the capacity of a noisy channel applies here and
allows us to state that

hm qn, k:()y
as n—>oo and k varies in any manner such that

k —c_s,
n

where & is a fixed constant, and
C=1+gq log; g+(1—gq) log; (1—¢q).

Here ¢ is the transition probability for one memory
element, and ¢, ; is the probability of an error in the
information state for the best (n, k) coupling.

6. The fundamental variables

It is convenient to make the number of elementary sys-
tems which are physically coupled a continuous variable,
and to adopt an attitude toward physical coupling in
greater harmony with the facts of natural physical cou-
pling due to co-operative phenomena as it occurs in
ferromagnetics, ferroelectrics, cryogenic memory ele-
ments, et cetera. Let us imagine a volume V of material
as mentioned in the introductory section exhibiting a
natural physical coupling. We may physically separate
this material into N storage elements of equal volume ».
Let us suppose there is a smallest volume v, exhibiting
uniform coupling. We can adopt v, as our unit of vol-
ume. The volume V is then a measure of the maximum
number N, of elements into which we imagine the ma-
terial may be divided. The smallest element will be called
a minimum cell.

The transition probability of a minimum cell will be
written as

Imin, cen=vie—F0.
Thus, in general
q=vte— o

for an arbitrary cell of volume v, according to our result
in the section on physical coupling.

7. The optimum cell

Let us suppose quite generally that we have available a
certain physical material which is to store information
according to some specified scheme. If information is
stored at time =0 and read out at a later time f, we

may regard the entire process as a (delayed) transmis-
sion of information, and may define a channel capacity
in the sense of Shannon.! However we define a capacity
per unit volume rather than per symbol. If there are any
possibilities of variation in the scheme of information
storage, we define the retention capacity R(t) as the
maximum attainable channel capacity per unit volume
under variation of the scheme.

We now apply these rather general ideas to the present
instance. It follows from information theory that the
information I stored in N elements cut from a volume V
according to the scheme outlined previously is

I=N(1+gq log; g+(1—q) log; (1—q)).
The information per unit volume is

1

1
v = (1+qlog, g+(1—q) log, (1—q)).

I
We define R(?) as the maximum of 2 under variation

of ». It will be shown that this maximum is achieved for
a finite value of v. We shall call a storage element pos-
sessing this volume an optimum cell.

We shall look for a maximum in I/V under the as-
sumption that the coefficient v¢, which multiplies the
exponential in the error probability ¢, is very large com-
pared to unity, i.e., that the storage time involved is
tremendous compared to the basic period in which the
constraints are felt. Furthermore we shall assume that
the coefficient p is large enough so that volumes small
compared to the unit volume will already be exceedingly
reliable (g<1).

For the maximization process we must consider the
derivative

d 1
v /vy =-— 2 [14-g logs g+ (1—q) log, (1—q)]
1 dq
+ o v [log, g—logs (1—g)1,
where g= %(l—e—%') and y=ve—#*. Hence dg/dv,

. I\. .
which appears in the expression for ‘—Z)— (?) is given by

dq
dv

=—vtiueZle—av,

dy d
—to—2t B 2t —_—
=T fe= dv (vemsv)

We first wish to point out the existence of a maximum.
To do this we shall consider the sign of d(V—1I) /dv for
very small and very large v.

If v is large enough then g will be very small com-
pared to unity and we can approximate:

A(IN__ 1 ldd,
dv\V ]~ v dv ezd
1 ~

1 dq _
=— —v'é— + Td—v-10g2 (V’e ”‘”),
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1 1
=—F + > (vtpe—2te—av) [pv—log vi].
We can simplify this expression by setting vie—#v=yt
and e—2#*=1—2q=1. This yields

d I 1 1
2 (7) =— — + —— [yl [so—log vil.

The second term on the right-hand side depends expo-
nentially on v through the factor y, and hence for suffi-
ciently large v the first term will predominate and the
derivative will be negative.

Now we must consider the other extreme, where v
is sufficiently small so that at the end of the time ¢ the
value of g is almost exactly ¥42. The function

14¢g logs g+ (1—q) logs (1—q),

has a minimum at g=%2. At the minimum the value of
the information per bit goes to zero, and increases
quadratically as g departs from 2. Let ¥2 —g=3. Then
the quantity whose derivative interests us is

—II7 ~82/v.

And its derivative is

2
(L)t L
v v

av \V 2 v d

Using

dd d 1 dy

L0 P L a2y — o2t 2L

dv dv (2 e=*") tem= dv
=—te~ i (—pve— ) =2udvte 1Y,

we find

d I 82 1

—_f — Y= — i 2 —uvy,

™ ( v ) > + > (482uvvie—nv)

The ratio of the second term to the first term is
4vtpve—rr, It is this ratio which determines the sign
of the derivative. It is clear that in the limit ¥—0 this
ratio goes to zero and the derivative we are interested
in is negative. We are, however, not likely to be inter-
ested in such small values of pv, and wish to show that
for somewhat larger and more reasonable values of v,
which are, however, still associated with (¥2—q)«1,
we have

dutpve—ro>1,

which indicates that the derivative d/dv(I/V) does have
a zero for a value of g not too close to either zero or
one-half.

We are interested only in values of v, which make
e—#v small enough, so that the bistability makes itself felt
for at least a few constraint periods = (or oscillation
periods 1/v). This means pv must be at least of order
unity, and hence pve—#* must also be of order of unity
for this smallest reasonable volume. The information
storage periods of interest, however, are ones which
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make vt tremendous, and hence for this smallest rea-
sonable volume

Qvtpve—#v>3>1.

This gives the desired sign for the derivative d/dv(I/V).
Furthermore since

yi=vte—hv,

we also have y£>1 at this smallest reasonable volume,
and hence (Y2 —g)<1, so that this small volume does
correspond to almost complete loss of information in the
time ¢.

Note that the volume which we have just called the
smallest reasonable volume bears no very obvious rela-
tionship to the minimum volume v, which exhibits
physical coupling. The quantity v, is the smallest volume
in which the co-operative effect is sufficiently strong to
lock the individual particles, spins, et cetera, together in
their bistable behavior.

We have described the two extreme cases, in which g
is either very close to zero, or else very close to 1/2, in
some detail, to show that the derivative vanishes in be-
tween these ranges, since the actual equation obtained by
setting the derivative equal to zero is exceedingly com-
plicated, and we shall not attempt a very accurate solu-
tion. At the maximum we have

d 1
27(7) =0,

which yields

1+qlogy, g+(1—q) log, (1—gq) _ dg
log, g—log, (1—q) T v’

or

1+qlog; g+ (1—q) logy (1—q)
logy, g—log, (1—q)

=v(te—21) (—puve—#v),

which can also be written:

1+4glog, g+ (1—q) log, (1—q)
log, (1—q) —logs q

We have shown that the solution yields a g which is
not very near zero or one-half. Hence the fraction
on the left has a magnitude not too far from unity. Simi-
larly the factor e—2v*=1—2g must be smaller than, but
comparable to unity. We therefore know that the volume
v which solves the above equation cannot be far from
the one which solves

=pve—Myte—21,

pve—# yt=1,

Note that vt is very large, hence the exponential must
be very small, and therefore very small percentage
changes in the volume v can be expected in the transi-
tion from the solution of the rigorous equation to the
solution of the simplified one.

The simplified equation requires e—#* to overcome the
large factor vt. Therefore we know that a reasonable




first guess for a solution of the simplified equation is
pv=log vt. ‘

We can look for a slightly improved solution by letting
po=log vt+8§,

which yields, after taking the logarithm of the simplified
equation

log [log vt+8§1—8=0.
Expanding the left-hand term gives

log log v+ —8§=0.

log vt
The second term is negligible in comparison with the
third, leaving us with

wv=log v+ 8§ =log vt+log log vt.
Thus as vt becomes very large, v approaches—1~log vi.
I3

We see immediately that longer storage times lead to
increasing optimum volumes. The memory capacity per
unit volume, neglecting factors which are smaller than
unity, but not very small compared to unity will then be

I _ _»
V " logwt’

The insensitivity of log vt to small factors in its argu-
ment shows that it will not help a great deal to shorten
the storage period by periodically reading out the entire
memory content and rewriting it. (This conclusion is, of
course, limited to deteriorating influences which can be
drastically reduced by small increases in bit size.)

8. Discussion and interpretation

Our procedure for finding the optimum cell has neg-
lected the difficulties associated with logical coupling.
A more practical method of finding an optimum would
therefore lead to a larger cell. The difficulties in reach-
ing a very small cell for reading and writing purposes
have of course also been completely neglected, and are
likely to require larger elements than our optimum. The
difficulties in reaching a cell are maximized in random
access storage, where a separate channel must exist,
leading to each bit. The difficulties are less pronounced
in storage forms such as tapes and drums, and therefore
our criteria are likely to be more applicable to these.
The most compact known form of storage is that dis-
played in genetics, where the information is really kept
on a molecular Jevel. The economy of space in genetic
storage must be paid for by the slowness of read-out.
The read-out proceeds by a chemical reconstruction
process whose time duration is essentially a gestation
period. But it is presumably at this level of storage effi-
ciency that the limitations due to tunneling and thermal
agitation are really met, and it may well be that these
effects contribute to mutation rates.

Let us, however, try to get an impression of the sig-
nificance of our optimum cell, in terms of more conven-
tional storage media, concentrating furthermore on the
possibility of information loss by thermal agitation. In
the case of thermal activation our criterion requires that
vte—U/KT be comparable to unity. Here U is the height
of the barrier which must be surmounted by thermal
agitation. The frequency v is associated with a molecular
vibration, electronic transition, et cetera, and is there-
fore typically of the order 1012 to 1018, although it can
be lower. In the ferromagnetic case, v is a resonance fre-
quency determined by the anisotropy field and is at best
of the order of a microwave frequency. Furthermore for
all systems, magnetic or otherwise, the factor v that mul-
tiplies the exponential is not really the natural vibrational
frequency, but is in general lower and only becomes com-
parable to the resonance frequency for a critically damped
system.(This point has been discussed in detail by Kra-
mers.2) Therefore we can expect that the factor v of in-
terest typically lies in the range 106 to 1016. The storage
period of interest, ¢, is likely to be at least a second and
may well be 1000 years for some conceivable applications.3
Hence vt is likely to range between 106 and 102°. This
requires that the factor exp(—U/kT) range roughly
between 10—% and 10—19. The quanity U/kT then must
range between about 14 and 44. Since our calculation is
based on an optimum coding, which is not likely to be
really available, we should perhaps take larger values
of U/kT. In any case, however, U/kT is not likely to
exceed 100.

How large is the volume which provides a switching
barrier of 100 £7? This cannot be answered with any
real generality, but a rough order-of-magnitude guess
can be made. All the co-operative phenomena which
give rise to bistability are associated with some critical
temperature T,, at which the co-operative phenomena
disappear. The switching barrier per participating unit
(electron spin, moving atom, et cetera) is typically of
the order kT,. For n elementary participating particles
the barrier is therefore of order nkT,. Hence n must be
large enough to give

nkT,~100 kT.

The operating temperature T will be below the critical
temperature 7, but in all known cases T is still of the
same order of magnitude as T,. Hence # is of the order
of 100. This is an exceedingly small element. In most
co-operative phenomena this would in fact be likely to
be less than the critical number required for establishing
the co-operative phenomenon involved. Furthermore
since a cubic array of 100 units consists of a cube with
about 5 units on a side, it can be seen that the difficulties
of addressing such an element are extreme.

Despite the remoteness of the results from practical
possibilities, they are perhaps more relevant than some
more prevalent typical considerations. It has been re-
alized a number of times, that in order to read a signal
from memory, against a background of thermal noise,
the switching energy should be of order kT, or for high
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accuracy, a few times k7.4 We see that the criterion for
preserving information against thermal fluctuations is a
more stringent one than the read-out in the presence of
noise.

Appendix: Effect of increasing volume on thermal
agitation and quantum-mechanical tunneling.

We have in mind a situation somewhat as depicted op-
posite, which shows the energy (or perhaps free energy)
of the switching system as a function of the coordinate x
being switched. 4 and B are the two possible stable
states denoting “0” and “1,” respectively. There are
many possible paths by which the system can pass from
A to B, and the one dimensional diagram is merely in-
tended to be symbolic. Our principal assumption is that
the energy barrier in this diagram will be proportional to
the volume of the switched element, as the latter is
changed. This is certainly characteristic of processes
such as rotational switching in ferrite films, without
domain-wall motion, in which a one-dimensional dia-
gram exactly as shown is really relevant, since the whole
volume is locked together in its switching action. The
simple energy barrier versus volume proportionality may
also, perhaps, hold for more complicated systems in
which switching involves nucleation and domain-wall
motion. The simple scaling law will obviously break
down for switching units which are so small that the co-
operative phenomenon which caused the bistability it-
self disappears—e.g., a minimum number of spins is
needed to make a ferromagnet. The range of applica-
bility is therefore somewhat uncertain, but in any case
it is clearly the simplest sensible assumption for the de-
pendence of reliability on volume. The probability for
transfer from A to B by thermal agitation is then of the
form v exp(—U/kT), where U is the barrier height
which is taken to be proportional to the volume, and v is
a frequency factor, not likely to be too different from the
typical frequency of oscillation associated with well 4.
The exact value of v depends on the degree to which vi-
brations in the system are damped, in a manner which
has been discussed by Kramers.?2 In any case v is not
likely to be appreciably affected by volume increases.
The resulting dependence on volume of exp(—U/kT)
is identical with that deduced in the section dealing with
physical coupling.

As far as quantum-mechanical tunneling is concerned,
we must consider a probability of the form

exp[ — —fll—/\/Zm(V—E)dx] .

where the path of integration is taken through that por-
tion of the barrier providing the largest leakage. Strictly
speaking, a uniform probability of tunneling, unchang-
ing in time, does not apply to this problem, but rather
to the case typified by a-decay, where the particle, after
tunneling has no coherent probability of tunneling back
again. In the case we are considering, where the barrier
separates two identical wells, we find a resonant tunnel-
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ing back and forth with a frequency AE/h, where AE
gives the splitting of two states which are similar within
each well, but have opposite parity about the barrier
center. Therefore if the system is initially in Well A4 its
probability of appearing in Well B rises first as ¢2 and is
followed by sinusoidal oscillations in the probability of
occupation. It seems, however, likely that, if Well B is
a many dimensional well, that thermal scattering of the
system occurs sufficiently frequently, so that the co-
herence leading to the resonance is destroyed. That is,
the system after arriving in B will go through a consid-
erable history before it arrives once more at the portion
of the barrier which permits maximum tunneling. In this
period it will have had an opportunity to interact suffi-
ciently with other systems to lose its quantum-mechani-
cal phase memory. Hence tunneling from 4 to B is just
like tunneling from A into free space, except that in the
two-well case there is a probability of eventual return
tunneling. The probability of return tunneling is, how-
ever, a process once again just like the initial tunneling,
and therefore independent of phase details.

Even if the system does exhibit the real resonance
processes, it seems likely that a simple tunneling rate,

v exp [ — —;l— / [p| dx] , will still describe the mean

rate of information loss, with fair accuracy. The im-
portant point for our considerations, in any case, is that
v is independent of volume, and |p| proportional to it.
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