
J. A. Swanson t 

Physical  versus  Logical  Coupling in Memory Systems 

Abstract: A memory  system  consisting  of bistable static  dissipationless  units such  as ferrites,  ferroelectrics,  or 

cryotrons is considered.  For a given amount of physical material the  memory  capacity  may be increased by 

using  small  volumes of the bistable material for each bit. If made sufficiently small,  however, the individual 

bits will become unreliable because of the  influence of thermal agitation and  quantum-mechanical  tunnel- 

ing processes.  Some unreliability can be tolerated, since it can be compensated by redundancy.  The 

optimum size of the individual bit, for maximum information storage, is evaluated. If the'rmal agita- 

tion is the prime source of errors,  then  the  optimum-sized bit involves typically less than 100 of the  inde- 

pendent  cooperating units (electron spins,  dipoles,  et  cetera) which cause the bistability. The maximization 

process  concerns itself only with the preservation of information and not with possible  methods of access to 

the individual bit. In particular,  the maximization process  neglects  complications in the  coding  equip- 

ment  needed to read in and out of memory. 

Introduction 

The  search  for continually  smaller and  faster  data proc- 
essing system components causes us to ask what  ultimate 
limitations the laws of physics impose on  the progress 
in this  direction. In this  note we are concerned  with the 
increasingly important effects of quantum-mechanical 
tunneling and  thermal agitation on  the reliability of a 
memory, as the physical system storing an individual  bit 
becomes very small. It will be  shown that  there is a sense 
in which there is an optimum-sized  memory  element. 

The existence of the  optimum  can be  expected from 
the following crude line of thought.  Assume that we are 
given a fixed amount, say a pound, of perhaps a ferro- 
magnetic  material,  which  can  be used to  manufacture 
bistable units  capable of serving as  memory elements. 
How finely shall we divide our  pound?  We  can use the 
whole pound  to  make only one bit. The resultant  bit, be- 
cause of its massiveness, will be unlikely to lose its in- 
formation, either through a tunneling process, or  through 
thermal agitation, and will therefore be  a very reliable 
bit.  Nevertheless our whole memory is rather useless 
since it is only  a single bit. At  the opposite  extreme, we 
can divide the pound into a  great many units, each of 
which is so small that it loses its information almost im- 
mediately. Despite the large number of elements  in such 
a memory, it is again  almost useless. There is, therefore, 
presumably an intermediate  degree of subdivision  which 
provides for a  maximum memory capacity, if the  time 
?Deceased. A preliminary and relatively complete version of this manu- 

script had been prepared  by J.  A. Swanson, and has been brought 
inlo its present  form  by R. Landauer. 

over which we wish to preserve information  has been 
specified. 

Our considerations will involve binary  symmetric 
storage elements, i.e., elements  having two  and only two 
distinct (but physically equivalent) states. The restric- 
tion  to binary  symmetric  elements is convenient, but  not 
essential. 

In general  a  nonvanishing  probability exists that a 
storage  element  makes  a spurious transition from  one 
of its  states to  the other.  Such  transitions may be  caused 
by thermal fluctuations, by the imperfect  isolation of a 
storage  element from  the effect of machine  operations 
supposedly  irrelevant to its state,  or simply by the  fact 
that neither state is stationary in the quantum-mechani- 
cal sense. Such  transitions  may  lead to  error in the inter- 
pretation of what  information  has been  stored  in 
memory.  The probabilities of such  errors may be re- 
duced by the  introduction of suitable coupling between 
the storage elements. 

1. Definition of  basic  concepts 

By physical  coupling between n storage  elements we un- 
derstand a connection  such  that a transition may  occur 
if and only if all n elements make  the  same transition 
simultaneously.  A  new storage element is evidently  cre- 
ated in this  way,  having  a  reduced  transition  probability. 

By logical  coupling between n elements we under- 
stand  the  introduction of redundancy  such  that only 
k (  k<n)  of the  group of n elements can be  adjusted  in 305- 
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a logically independent fashion. The remaining ( n - k )  nential  of  a negative constant times n. This follows 
elements have their  states uniquely determined, when from taking the n coupled element to correspond to a 
the k states have been specified, by a definite function of particle n times as massive in  a potential n times as 
k arguments, chosen so as  to make “error correction” strong as a single element. The more intuitive argument 
possible up  to a certain point. Such  a coupling will be given  below yields the same type of dependence of the 
referred to as ( n ,  k )  coupling. transition probability on n using a completely different 

sort of assumption as to  the exact nature of physical 
2. Preliminary statement  of problem coupling. 

Both physical and logical coupling reduce  error  proba- We consider n systems coupled physically, each  of 
bilities, and both require extra storage material in order which, when uncoupled, has transition probability y per 
to keep the amount of stored information constant. An unit time. We seek for  the transition probability per unit 
obvious question is-which method of coupling uses time, yn,  of the coupled system. 

physical material  more efficiently to reduce  error? Our Let  us suppose that a  characteristic  time T is required 

purpose is to gain some insight into this problem. for  the constraint to make itself felt. If all n systems 
It is evident that a fair appraisal would take into ac- were impelled to make  a  transition  during time 7 ,  the 

count  the limitations involved in the physical realization transition would occur as in the absence of constraint. 

of logical coupling. However such considerations lie The probability for this is ( Y T ) ” .  Thus, if we assume 

beyond the scope of this discussion. The fact  that logical that  the transition cannot otherwise occur  (similar  re- 

coupling requires complications in the coding and de- sults are obtained if we require that  at least one-half 

coding equipment, which is external to the memory must be impelled to change during time T )  

being interrogated, will be ignored. Y ~ = T - ~ ( Y T ) * .  

3,. Transition probability for one element 

The states of an element will  be labeled “A” and “B.” V=TV1, PE-loge YTy  Yn=Ve-pn* 
Suppose at time t=O the  state is definitely A .  What is 
the probability as a  function of time that the element 
makes a transition to state B? Clearly, the answer to this 
question depends on  our physical model. It is natural  to q,=vte-pn. 
assume, however, that transitions in both directions 

Introducing new quantities 

The probability of transition during  a time t is (for 
y l z t d )  

A coupling which yields the above formula will be 
proceed as in a Poisson process. The result of this as- called uniform physical coupling. The characteristic of sumption is found most by imagining a large uniform coupling is that the addition of a new element number of elements n, originally in state A .  The number 
of transitions per unit time to state B is proportional to sitional probability. 

always causes the same  fractional  reduction in the tran- 

the number in A ,  while the number of transitions  per While the Appendix points out  that “uniform physical 
unit time to A is proportional to the  number in B. The coupling,, is the obvious way in which matter is coupled 
differential  equation to which we are led has as solution against the disturbing influences of thermal agitation and 
for  the number ng in B quantum-mechanical tunneling, this does not hold with 

respect to the undesired cross influences of various op- 
ng= - [ 1 - e x p (   - 2 y t ) ] ,  erating elements. As far as “cross talk” is concerned, 

the different portions of the same piece of matter  are 
where Y is a  constant- Thus the Probability 4 of finding likely to be subject to related disturbing influences, and 
an element in State B known to have been in  state A hence their coupling does not  reduce the error  proba- 
at time t=O is bility as effectively as indicated in this section. 

q = - [ l “ e x p ( - 2 y t ) ] .  

no 
2 

1 
2 5. Reduction of error probabilities by 

logical coupling 

bility  per unit time. An ( n ,  k )  coupling reduces the  number of “messages” 
written upon a group of n storage elements from 2” to 

4. Behavior  of  transition probabilities under 
2fi. However, the existence of spurious transitions ren- 
ders the occurrence of all 2” combinations of states 

physical  coupling possible. Thus  the decoding scheme consists in asso- 

An Appendix deals with this problem from a physical ciating 2%-fi configurations with each message. The 
viewpoint. It is shown there that if one assumes a mem- specification of the message to which a given configura- 
ory element to be equivalent to a particle in  a potential tion belongs will be said to determine the information 
with two minima, then the transition probability due  to state of the n elements. An error will  be said to occur if 
thermal agitation or quantum-mechanical tunneling of n the information  state changes because of spurious tran- 

If y t  is small, q = y t .  Thus y is the transition proba- 

306 physically coupled elements is proportional to  the expo- sitions. 
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Not all possible ( n ,  k )  coupling  schemes (of which 
there are  many, unless n is very small)  are equally ef- 
fective  in  reducing error.  There is no generally  known 
way,  however, to select the best ( n ,  k )  couplings  without 
carrying through  the tedious  process of actually  com- 
puting and comparing the  error probabilities. Since we 
shall always assume the best logical coupling we are  not 
in  a  position to  demonstrate a function of n and k which 
shall yield the value of the minimum  attainable error 
probability, but only to assert that  such a function is 
computable.  Nevertheless the theorem of Shannon1 re- 
garding the capacity of a noisy channel applies here  and 
allows us to  state  that 

lim qn, k = o ,  

as n+cc and k varies in any manner  such  that 

k 
- L C - 8 ,  
It 

where 8 is a fixed constant,  and 

C=l+q  log, q+( l -q )  log, ( 1 - q ) .  

Here q is the transition  probability for  one  memory 
element, and qn, k is the probability of an  error  in  the 
information  state for the best ( n ,  k )  coupling. 

6. The fundamental variables 

It is convenient to  make  the  number of elementary sys- 
tems which are physically coupled  a  continuous  variable, 
and  to  adopt  an  attitude  toward physical coupling in 
greater harmony with the facts of natural physical cou- 
pling due  to co-operative  phenomena  as it occurs in 
ferromagnetics,  ferroelectrics,  cryogenic  memory ele- 
ments,  et cetera.  Let us imagine a volume V of material 
as mentioned in the  introductory section  exhibiting a 
natural physical  coupling.  We  may physically separate 
this material  into N storage elements of equal volume v. 
Le: us suppose there is a smallest volume vo exhibiting 
uniform coupling. We  can  adopt vo as  our  unit of vol- 
ume. The volume V is then a measure of the maximum 
number No of elements into which we imagine the ma- 
terial may  be divided. The smallest element will be called 
a minimum cell. 

The transition  probability of a minimum cell will be 
written  as 

h i " .  ,eIl="te-ao 
Thus, in  general 

q=vte-Wo 

for  an  arbitrary cell of volume v, according  to  our result 
in the section on physical coupling. 

7. The optimum cell 

Let us suppose quite generally that we have available a 
certain physical  material which is to  store  information 
according to some specified scheme. If information is 
stored at time t = O  and read out at a later time t ,  we 

may  regard the  entire process as  a (delayed) transmis- 
sion of information,  and may define a channel capacity 
in  the sense of Shannon.1 However we define a capacity 
per unit volume rather  than  per symbol. If there  are  any 
possibilities of variation  in the scheme of information 
storage, we define the retention  capacity R (  t )  as the 
maximum attainable  channel  capacity per unit  volume 
under variation of the scheme. 

We now apply  these rather general ideas to  the present 
instance. It follows from  information  theory  that  the 
information I stored  in N elements cut  from a  volume V 
according to  the scheme  outlined previously is 

I = N (  1 +q log, q+ ( 1  -q)  log, ( 1  "4) ). 
The  information  per unit  volume is 

I 1  
v v  _" - (1+q log, 4+(1"q) log2 (1-q)).  

We define R (  t )  as the maximum of - under variation 
Z 
V 

of v. It will be  shown that this  maximum is achieved for 
a finite value of v. We shall call a  storage  element pos- 
sessing this volume an optimum  cell. 

We  shall look  for a maximum  in I / V  under  the as- 
sumption  that  the coefficient v f ,  which multiplies the 
exponential in  the  error probability q, is very  large  com- 
pared  to unity, i.e., that  the storage  time involved is 
tremendous compared  to  the basic period  in  which the 
constraints are felt. Furthermore we shall  assume that 
the coefficient p is large  enough so that volumes small 
compared  to  the unit  volume will already  be exceedingly 
reliable ( q  << 1 ) . 

For the maximization  process we must consider the 
derivative 

d 1 
dv - ( I / V  =- 7 [l+qlog, 4+(1"q)  log, (1"q)l  

+ ---[log2 q - b ,  (1-q)19 
1 dq 
v dv 
1 
2 

where q= "(l-e-2rt) and y=ve-fiv. Hence dqldv, 

which appears in the expression for - ( - I )is  given by 
dv V 

= -vtpe-We-fiV. 

We first wish to point out  the existence of a maximum. 
To do this we shall  consider the sign of d(  V-lZ) /dv for 
very small and very  large V .  

If v is large  enough then q will be very  small  com- 
pared  to unity and we can  approximate: 

v dv 
1 1 dq + --log, 4 

- 1  1 dq 
v2 v dv 
" - + - - log, (vte-av) , 307 
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1 1 
212 v 

=" + - (vtpe-2rte-fiv) [pv-log vt]. 

We can simplify this expression by setting vte-ru=yt 
and e--Brt = 1 -2q & 1. This yields 

$)(+)=-7 1 + - 2, 1 [ytl [pv-log vtl. 

The second term on the right-hand side depends expo- 
nentially on v through the  factor y,  and hence for suffi- 
ciently large v the first term will predominate and  the 
derivative will be negative. 

Now we must consider the other extreme, where v 
is  sufficiently  small so that  at  the end of the time t the 
value of q is almost exactly Yz. The function 

l + q  log, 4+(1-q) log2 (l-q),  

has a minimum at q= ?h . At  the minimum the value of 
the information per bit goes to zero, and increases 
quadratically as q departs from YZ . Let 9'2 -q= 8. Then 
the quantity whose derivative interests us is 

I 
V 
- -62/v. 

And its derivative is 

Using 

we find 

The ratio of the second term to the first term is 
4vtpve-rv. It is this ratio which determines the sign 
of the derivative. It is clear that in the limit v+O this 
ratio goes to zero and  the derivative we are interested 
in is negative.  We are, however, not likely to be inter- 
ested in such small values  of pv, and wish to show that 
for somewhat larger and more reasonable values of V, 
which are, however,  still associated with (YZ -q)<<l, 
we have 

4vtpve-fiV> 1, 

which indicates that  the derivative d / d v ( I / V )  does have 
a zero for a value of q not too close to either zero or 
one-half. 

We are interested only in values of v, which make 
e-pv small enough, so that the bistability makes itself felt 
for  at least a few constraint periods T (or oscillation 
periods l /v).  This means pv must be at least of order 
unity, and hence pve-fiv must also be  of order of unity 
for this smallest reasonable volume. The information 

308 storage periods of interest, however, are ones which 

make v t  tremendous, and hence for this smallest rea- 
sonable volume 

4vtpve-fiV>>l. 

This gives the desired sign for  the derivative d / d v ( Z / V ) .  
Furthermore since 

yt=vte-fiv, 

we also have yt>l  at this smallest reasonable volume, 
and hence (YZ - q )  <<1, so that this small volume does 
correspond to almost complete loss of information in the 
time t. 

Note  that  the volume  which we have just called the 
smallest reasonable volume bears no very obvious rela- 
tionship to  the minimum volume vo, which  exhibits 
physical  coupling. The quantity vo is the smallest volume 
in  which the co-operative effect is  sufficiently strong to 
lock the individual particles, spins, et cetera, together in 
their bistable  behavior. 

We have described the two extreme cases, in which q 
is either very  close to  zero,'or else  very  close to 112, in 
some detail, to show that  the derivative vanishes in be- 
tween these ranges, since the  actual equation obtained by 
setting the derivative equal to zero is exceedingly  com- 
plicated, and we shall not attempt a very accurate solu- 
tion. At  the maximum we have 

-+) d =o, 
which  yields 

or 

which can also be written: 

We have shown that the solution yields a q which  is 
not very near zero or one-half. Hence the fraction 
on  the left has a magnitude not too far  from unity. Simi- 
larly the  factor  e-2rt=1-2q must be smaller than, but 
comparable to unity. We therefore know that  the volume 
v which  solves the above equation cannot be far from 
the one which  solves 

pve-fiv vt= 1. 

Note  that vt  is  very large, hence the exponential must 
be  very small, and therefore very small percentage 
changes in the volume v can be expected in  the transi- 
tion from  the solution of the rigorous equation to the 
solution of the simplified one. 

The simplified equation requires e--p" to overcome the 
large factor vt. Therefore we know that a reasonable 
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first guess for a solution of the simplified equation is 

@=log vi. 

We  can look for a slightly improved  solution by letting 

puv=log vt+s, 

which yields, after  taking the logarithm of the simplified 
equation 

log [log vt+S]-S=O. 

Expanding the left-hand  term gives 

S 
log vt 

log log vt+ " s =o. 

The second term is negligible in comparison with the 
third, leaving us with 

yv=log vf+S=log  vt+log log vt. 

Thus  as vt becomes very large, v approaches-log vf. 

We see immediately that longer storage times lead to 
increasing optimum volumes. The memory  capacity  per 
unit volume, neglecting factors which are smaller than 
unity, but  not very small compared to unity will then be 

1 
P 

I P -=- 
Y log vt * 

The insensitivity of log vt to small factors in its argu- 
ment shows that it will not help  a  great deal to shorten 
the  storage period by periodically reading out  the entire 
memory  content and rewriting  it. (This conclusion is, of 
course, limited to deteriorating influences which can be 
drastically reduced by small increases in bit size.) 

8. Discussion and interpretation 

Our procedure for finding the optimum cell has neg- 
lected the difficulties associated with logical coupling. 
A more practical  method of finding an optimum would 
therefore  lead to a  larger cell. The difficulties in reach- 
ing a very small cell for reading and writing purposes 
have of course also been completely neglected, and  are 
likely to require  larger elements than  our optimum. The 
difficulties in reaching  a cell are maximized in random 
access storage, where a separate  channel  must exist, 
leading to each bit. The difficulties are less pronounced 
in storage  forms such as tapes and  drums, and therefore 
our criteria are likely to be more applicable to these. 
The most compact  known form of storage is that dis- 
played in genetics, where the information is really kept 
on a  molecular level. The economy of space in genetic 
storage  must be paid for by the slowness of read-out. 
The read-out proceeds by a  chemical  reconstruction 
process whose time  duration is essentially a gestation 
period. But it is presumably at this level of storage effi- 
ciency that the limitations due to tunneling and thermal 
agitation are really met,  and  it may well be that these 
effects contribute to mutation rates. 

Let us, however, try  to get an impression of the sig- 
nificance of our  optimum cell, in terms of more conven- 
tional  storage  media,  concentrating furthermore  on  the 
possibility of information loss by thermal  agitation. In 
the case of thermal  activation our criterion  requires that 
vte-U/kT be comparable to unity. Here U is the height 
of the  barrier  which  must be surmounted by thermal 
agitation. The  frequency v is associated with a molecular 
vibration,  electronic  transition,  et  cetera, and is there- 
fore typically of the order 1012 to 1016, although  it  can 
be lower. In the  ferromagnetic case, v is a  resonance fre- 
quency  determined by the anisotropy field and is at best 
of the  order of a microwave frequency. Furthermore  for 
all systems, magnetic or otherwise, the factor v that mul- 
tiplies the exponential is not really the natural vibrational 
frequency, but is in general lower  and  only becomes com- 
parable to the  resonance  frequency for a critically damped 
system.(This  point  has been discussed in detail by Kra- 
mers.2) Therefore we can expect that  the  factor v of in- 
terest typically lies in the range 106 to 10l6. The storage 
period of interest, t ,  is likely to be at least a second and 
may well be 1000 years for some conceivable  application^.^ 
Hence v t  is likely to range between 106 and  This 
requires that  the  factor  exp(  --U/kT) range roughly 
between 10-6 and 10-19. The quanity UjkT then  must 
range between about 14 and 44. Since our calculation is 
based on  an  optimum coding, which is not likely to 6e 
really available, we should  perhaps  take  larger values 
of UIkT.  In any case, however, UjkT is not likely to 
exceed 100. 

How large is the  volume which provides a switching 
barrier of 100 kT? This cannot  be answered with any 
real generality, but  a  rough  order-of-magnitude guess 
can be made. All the co-operative phenomena which 
give rise to bistability are associated with  some  critical 
temperature T,, at which  the co-operative phenomena 
disappear. The switching barrier per participating  unit 
(electron  spin, moving atom, et  cetera) is typically of 
the  order kT,. For n elementary  participating particles 
the barrier is therefore of order nkT,. Hence n must be 
large  enough to give 
nkTc- 100 kT. 

The operating temperature T will be below the  critical 
temperature T,, but in all  known cases T is still of the 
same order of magnitude  as T,. Hence n is of the order 
of 100. This is an exceedingly small element. In most 
co-operative phenomena this would in  fact be likely to 
be less than  the critical number required for establishing 
the co-operative phenomenon involved. Furthermore 
since a  cubic array of 100 units consists of a cube with 
about 5 units on a side, it can be seen that  the difficulties 
of addressing such  an element are extreme. 

Despite  the remoteness of the results from practical 
possibilities, they are perhaps more relevant than some 
more prevalent typical considerations. It has  been re- 
alized a number of times, that in order  to  read a signal 
from memory, against a background of thermal noise, 
the switching energy should be of order kT,  or  for high 
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accuracy,  a  few times kT.4 We see that  the  criterion  for 
preserving information against thermal fluctuations is a 
more  stringent  one  than  the read-out  in the presence of 
noise. 

Appendix Effect of increasing volume on thermal 
agitation and quantum-mechanical  tunneling. 

We have  in  mind a  situation  somewhat  as  depicted op- 
posite, which shows the energy (or  perhaps  free  energy) 
of the switching  system  as  a function of the  coordinate x 
being switched. A and B are  the two possible stable 
states  denoting “0” and “1,” respectively. There  are 
many possible paths by which the system can pass from 
A to B, and  the  one dimensional  diagram is merely in- 
tended to be symbolic. Our principal  assumption is that 
the energy barrier  in this  diagram will be proportional to 
the volume of the switched  element,  as the  latter is 
changed. This is certainly  characteristic of processes 
such as rotational switching in ferrite films, without 
domain-wall motion,  in which  a  one-dimensional  dia- 
gram exactly  as  shown is really relevant,  since the whole 
volume is locked  together  in its switching action. The 
simple  energy barrier versus volume  proportionality may 
also, perhaps,  hold for  more complicated systems in 
which switching involves nucleation and domain-wall 
motion. The simple scaling  law will obviously break 
down  for switching units  which are so small that  the co- 
operative  phenomenon  which caused the bistability it- 
self  disappears-e.g., a minimum  number of spins is 
needed to  make a ferromagnet.  The  range of applica- 
bility is therefore somewhat  uncertain, but in any case 
it is clearly the simplest sensible assumption for  the de- 
pendence of reliability on volume. The probability for 
transfer  from A to B by thermal agitation is then of the 
form v exp( “ U I R T ) ,  where U is the  barrier height 
which is taken  to be proportional  to  the volume, and v is 
a frequency  factor,  not likely to be too different from  the 
typical frequency of oscillation associated with well A .  
The exact  value of v depends on  the degree to which vi- 
brations in  the system are  damped, in a manner which 
has been discussed by Kramers.2 In  any case v is not 
likely to be  appreciably affected by volume increases. 
The resulting  dependence on volume of exp( - U / k T )  
is identical  with that deduced in  the section  dealing  with 
physical coupling. 

As far as quantum-mechanical tunneling is concerned, 
we must  consider  a  probability of the  form 

where the  path of integration is taken  through  that por- 
tion of the  barrier providing the largest  leakage.  Strictly 
speaking,  a uniform probability of tunneling,  unchang- 
ing  in  time,  does not apply to this problem,  but  rather 
to  the case typified by a-decay, where  the particle, after 
tunneling has  no  coherent probability of tunneling  back 
again. In  the case we are considering,  where the  barrier 

310 separates two identical wells, we find a resonant tunnel- 
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ing back  and  forth with  a frequency AElh, where AE 
gives the splitting of two  states  which are similar  within 
each well, but  have opposite parity  about  the  barrier 
center. Therefore if the system is initially in Well A its 
probability of appearing  in Well B rises first as t2 and is 
followed by sinusoidal oscillations in  the probability of 
occupation. It seems, however, likely that, if Well B is 
a many dimensional well, that  thermal scattering of the 
system occurs sufficiently frequently, so that  the co- 
herence leading to the  resonance is destroyed. That is, 
the system after arriving in B will go  through a consid- 
erable history before  it arrives once  more  at  the portion 
of the  barrier which  permits maximum tunneling. In this 
period it will have  had  an  opportunity  to  interact suffi- 
ciently with other systems to lose its quantum-mechani- 
cal  phase  memory. Hence tunneling from A to B is just 
like  tunneling from A into  free space,  except that  in  the 
two-well case there is a  probability of eventual return 
tunneling. The probability of return tunneling is, how- 
ever, a process once again  just  like the initial  tunneling, 
and  therefore independent of phase details. 

Even if the system  does  exhibit the  real resonance 
processes, it seems likely that a  simple  tunneling rate, - 

v exp - f [I p 1 dx 1 , will still describe the mean 
L J 1 

rate of information loss, with fair accuracy. The im- 
portant  point  for  our considerations,  in any case, is that 
v is independent of volume, and IpI proportional  to it. 
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