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Information-Theoretical Aspects
of Inductive and Deductive Inference

Abstract: By a straightforward application of Bayes’ theorem of probability, the behavior is discussed of
the credibilities (inductive probabilities) of competing hypotheses as functions of an increasing body of
relevant empirical data. It is shown how the effect of a priori credibilities persists in the evaluation of credibilities
in general, except in the important limiting cases investigated. An “inverse H-theorem” is mathematically
demonstrated, according to which the entropy function defined in terms of the credibilities shows a net de-
crease in time. This decrease is not necessarily monotonous in an individual case, but is monotonous in the
‘expected’ behavior of the inductive entropy function. Three machine-simulation experiments of inductive
inference on the IBM 704 are described. The first two concern the classical problem of guessing the ratio of
white and black balls in an urn. The third experiment concerns guessing a hidden pattern obeyed by a se-

quence of binary numbers.

1. Introduction and methodological remarks
® A. Need for machine simulation of inductive process

Efforts in simulating human cognitive processes on com-
puting machines have recently shown surprising progress,
as exemplified by Gelernter’s geometry-problem-solving
machine! and Samuel’s checker-playing program.? One of
the most interesting features found in some of these ad-
vanced programs is that the computing machine which was
primarily designed to carry out deductive inference seems
to be executing some task which constitutes part of in-
ductive inference. This may easily be observed, for in-
stance, in the case of Samuel’s checkers program,? in which
various criteria (hypotheses) for winning are evaluated on
the basis of empirical data obtained by the machine during
games. Admittedly, the available criteria are first chosen in
this case by men and given to the machine.

These newer developments in programming suggest that
a practical need will be felt more and more acutely in the fu-
ture for a well-founded mathematical method of executing
as much as possible of what is called inductive inference,
including hypotheses testing. A quest of such a method
may provide also some clue to the basic methodological
questions, such as whether a machine can perform the en-
tire inductive process, including the so-called ‘“‘creative”
work which is often considered a necessary ingredient of
inductive inference. Without pretending to give any ulti-
mate answers to such basic questions, the present paper is
intended to be a contribution to mathematical analysis of
inductive inference as a whole, making necessarily some
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reference also to deductive inference. Those readers who
are not particularly interested in nonmathematical, me-
thodological arguments are invited to pass from this point
to the beginning of Section 2.

® B. Conditions for a mathematical model of induction

The present paper may be considered as a possible mathe-
matical explication of the procedures involved in inductive
inference. No claim is made that human intelligence actual-
ly follows or should follow precisely the prescriptions
derivable from this explication. Neither is it contended that
this form of explication covers all the subtle aspects of in-
ductive inference. It is only a mathematical model. The
reader will find, however, that many of the important
features of inductive inference are adequately represented
in this model theory. In the following, we shall mention ten
important features of inductive inference which any ade-
quate theory of inductive inference should incorporate in
some way or another, and which the present mathematical
model indeed does. Admittedly, these ten conditions may
not be sufficient but are certainly necessary.

(1) Role of deductive inference. Inductive inference con-
tains, as a necessary ingredient, a constant comparison of
the deductive consequence from a hypothesis with the ex-
periment. Accordingly, the model theory of inductive
inference must permit deductive inference to play a cor-
responding role within its framework.




(2) Logical refutation by counterexample. This is the
most elementary step in inductive inference, in which a
hypothesis is disqualified when the hypothesis excludes the
occurrence of a certain event (observed datum) while actual
experience shows that this forbidden event in fact occurs
(is observed). This is the only part of the inductive process
where deductive logic is the sole arbiter. Tt is surprising
that many philosophical papers are still written at this ele-
mentary level of consideration. Nevertheless, this process
of logical refutation must be included in any theory of
inductive inference.

(3) Continuous measure of preferential confidence on hy-
potheses. The essential theoretical difficulty concerning the
process of inductive inference stems mainly from the fact
that there usually exist a great number of, indeed often
infinitely many, hypotheses which are not logically refuted
by the available evidence, and which are not necessarily
unanimous regarding the outcome of an observation which
is not yet made known. For this reason, inductive inference
is often declared to be ‘““logically” ill-founded. It should be
noted, however, that in actual human inductive inference,
we usually place preference on one hypothesis to another
even though both are not logically refuted. There seem to
be two sources for such preference. One of these two sources
will be discussed under (5) below. The other source is the
fact that the body of evidence is capable not only of refut-
ing or not refuting a hypothesis but also of furnishing a
continuous degree of support to a hypothesis. For instance,
suppose that there are two hypotheses H, and H., and
that the first hypothesis H, allows the occurrence of
two events D; and D. with nonvanishing probabilities,
while the second hypothesis H. allows only the oc-
currence of D, Suppose further that the actual body of
evidence consists only of D.. Then neither H, nor H. is
logically refuted, but we have to place preference on hy-
pothesis H., for it better fits the experimental data. This
degree of preference will depend on the probabilities
placed on D and D, by H,, and also the preference of H,
must be stronger if the number of D- in the body of evi-
dence is larger. This simple example is sufficient to show
that we must be allowed to attach a continuous measure of
preferential confidence, or credibility, or inductive proba-
bility,* to each of the competing hypotheses. We shall
agree on the convention that the value of credibility equal
to unity (the largest possible value) would mean that the
hypothesis is a “law” and the value equal to zero would
mean that the hypothesis is totally incompatible with ex-
perience. A logically refuted hypothesis will have credi-
bility zero, but there may be cases where the credibility of a
hypothesis tends to zero in the limit with an increasing
body of evidence, even though the hypothesis is not logi-
cally refuted.

(4) Successive approach. The essence of scientific method
resides not in discovering an absolute truth but in suc-
cessive improvement of knowledge. This is true whether
the term “improvement’” means the applicability of a
theory to a broader domain of experience, or the capability
of a theory in yielding more precise agreement with the
experimental measurement within a given domain of ex-

perience, or a better fit of the predicted frequency dis-
tribution of various results with the experimental frequency.
This basic nature of scientific method must be reflected in
any theory of inductive inference. Thus it seems natural to
require that the theory be based on a procedure by which
we “modify” or “improve” the evaluation of credibility in
the measure as the body of evidence accumulates. In our
model, we use Bayes’ Theorem as the basis for the formula
for improvement of the evaluation of credibilities. It is not
contended that this is the only justifiable way to establish
such a formula, but this approach certainly has many attrac-
tive features.

(5) Effect of judgment from broader experience. A test
of hypotheses must be defined by some observational op-
eration, and such a test must be instrumental in the above-
mentioned successive improvement of the evaluation of the
credibilities. However, in this actual evaluation, enough
flexibility must be left to accommodate the consideration
originating from a broader field of experience, of which
the test in question represents only a small part. Such a
flexibility is needed to permit a unifying structure of a
“theory” covering a wide area of experience. Such broader
consideration also serves greatly to invent new hypotheses
as well as to degrade useless hypotheses before the test.

(6) Absolute certainty of validity of hypothesis denied.
No hypothesis should be declared to be a law (i.e., credi-
bility unity) on the basis of a finite number of observed
data. This is closely connected with the fact that it is im-
possible to derive a conclusion (or a hypothesis) for an
infinite number of cases from the experience of a finite
number of cases.

(7) Existence of law with objective validity. Notwith-
standing the remark (6) above, we cannot deny the existence
of a law (probabilistic or deterministic) governing a limited
area of experience, for such denial would amount to re-
nouncing scientific quest in general. Corresponding to this
situation, it must be guaranteed that some hypothesis,
whether or not already considered, reaches credibility unity
in the limit where the size of the body of evidence becomes
infinitely large. And this selection of hypothesis must be
independent of any preconceived judgment, except in the
case where there is more than one “equivalent” hy-
pothesis.

(8) Distinction between credibility and confirmability. As
stated under (3), credibility is the degree of preferential
confidence. In other words, it is a relative weight among the
competitive hypotheses. As was seen in (5), the credibility
is bound to be influenced by the experience at large, except
in the limiting case discussed under (7). Distinct from cred-
ibility, there must be a certain measure of the degree to
which a test (which is a series of the same type of observa-
tion) confirms a hypothesis individually taken, completely
independent of the other hypotheses and of the experience
outside the test in question. This degree of confirmation
will be called confirmability and will be normalized so that
it becomes unity when the confirmation becomes “‘perfect.”
Although credibility and confirmability are conceptually
distinct, a high confirmability must tend to increase the
credibility.
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(9) Room for new hypotheses. Usually we cannot from
the outset think of all the possible hypotheses to cope with
a certain series of experiments. On the contrary, a new
hypothesis usually occurs to a scientist after he has accumu-
lated a certain amount of experimental facts. Therefore,
the model theory of induction must be such that we can
add a new hypothesis at any stage of the process of induc-
tion and let it compete with the other hypotheses which
have already been considered. In this case, of course, past
experience must also be reviewed in the light of the new
hypotheses.

(10) Anti-ergodicity and inverse H-theorem. Inductive in-
ference is a process such that the distribution of weights
(credibilities) becomes increasingly concentrated on a de-
creasing number of cases (hypotheses) no matter how widely
one distributes the weights initially. Loosely speaking, this
is contrary to the tendency of an ergodic stochastic chain in
which, no matter on what case one might put the weight
initially, the distribution of weights gradually spreads out
to all the cases, which are “connected” to the initially
chosen case. Correspondingly, there must be a theorem show-
ing the tendency opposite to the H-theorem if the (induc-
tive) entropy is defined suitably with the aid of credibilities.
As the H-theorem shows an increase (or nondecrease) of
the entropy with time, in a certain sense of the average
value, the inverse H-theorem can be expected to show a
decrease (or non-increase) of the inductive entropy with the
growth of experience, in a certain sense of the average.
It seems that the inverse H-theorem has deep philosophical
implications, as has the usual H-theorem (entropy principle
of thermodynamics) proved to have in the past. But we re-
frain from philosophizing on this matter here.

® C. Method based on Bayes’ theorem

Now a few more remarks explaining how these require-
ments are actually satisfied by the method based on Bayes’
theorem. To make these explanations briefly, let us first
define some convenient symbols. Let D be the set of all
possible outcomes of a well-defined observation of a well-
defined kind of phenomena; let B3¢ be a sequence of the
outcome of the past v observations of the kind defined in
connection with D; and let 3¢ be the set of hypotheses
under consideration that allow one to calculate the de-
ductive probability of obtaining any one of the elements of
the set D. Thus B is the body of evidence so far obtained.
If two hypotheses give the same deductive probability dis-
tribution with respect to a certain subset of O, we shall
say that these two hypotheses are probabilistically equiva-
lent with respect to this subset. We denote by ¢’ (H) the
credibility we attach to hypothesis H (a member of 3C)
on the basis of B®. We might have included the cases
where JC contains an infinite number of hypotheses, but
we confine the discussion to the finite case, since the
mathematical complications due to infinity may mar the
more important issues.

The use of the continuous measure g (H) satisfies Re-
quirement (3) above. Bayes’ theorem is, in accordance with
Requirement (4), a mathematical formula permitting cal-
culation of ¢ (H) from ¢g*~V(H) with the help of the »t®
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observed datum and of the deductive probabilities attrib-
uted to the »* datum by various H’s. The use of deductive
probabilities here corresponds to Requirement (1). Bayes’
theorem is such that if a hypothesis H gives zero deductive
probability to the »t® observed datum, then ¢’ (H) of this
hypothesis becomes zero no matter what value ¢ (H)
may have. This shows that the process of logical refutation,
Requirement (2), is automatically performed by Bayes’
theorem. However, Bayes’ theorem, being a prescription
for obtaining ¢¢”(H) from g¢*~V(H), cannot determine, as
far as » is finite, the actual values of the credibilities, leav-
ing arbitrary a set of constants, g/ (H), which may be in-
terpreted as the a priori credibilities of hypotheses. Here,
the term a priori is to be understood as “‘not solely deter-
mined by ®”, i.e., the empirical data of the observation
as specified in the definition of . We can capitalize on
this fact to accommodate Requirement (5) by letting ¢ (H)
represent the judgment from a broader experience. The
only exception to this general rule (that ¢'“(H) are needed
for evaluation of the values of ¢’ (H) with a finite ») is the
case where the process of logical refutation leaves one and
only one hypothesis. This case, however, happens very sel-
dom. The indispensability of the a priori credibilities be-
comes particularly manifest when there are two hypotheses
which are probabilistically equivalent with respect to the
outcome included in B, In this case, the ratio of the
credibilities of these two hypotheses becomes simply the
ratio of the a priori credibilities attached to these hy-
potheses, which may be evaluated by other tests or by a
broader consideration.

An immediate consequence of the above observation is
that no hypothesis can be crowned as the law on the basis
of a finite size of the empirical data, agreeing with Require-
ment (6). Indeed, any credibility evaluated on the basis of a
finite B depends on the a priori credibilities, and a change
in the a priori credibility causes a change in a posteriori
credibility at a finite stage ». The evaluation of these a priori
credibilities may be considered as a product of another
inductive process of broader range or higher level, but this
inductive process, again being based on a finite experience,
can never give definite values of these a priori credibilities.

On the other hand, the present paper also allows one to
draw some comforting conclusions, in compliance with
Requirement (7). If a set of probabilistically equivalent
hypotheses is considered as a single hypothesis with regard
to D, then we can show that, as the empirical data accumu-
late, the credibility of one of the hypotheses approaches
unity, i.e., ¢’ (H)—1 with »—«, and the credibilities of
the remaining hypotheses approach zero, no matter how
the a priori credibilities are given. (For a more rigorous
discussion of the condition for ¢”(H)—1, see Section 4.)
It can also be shown that the credibility of each hypothesis
becomes less sensitive to the a priori credibility as the size
of the empirical data increases. It should be noted that two
equivalent hypotheses with regard to a specific observation
defining © may not be equivalent for another specific ob-
servation. This will help differentiate two hypotheses and
determine the preference between them. It may also be
noted that even if it is guaranteed that ¢ (H)—1 with




yv— for a particular H, the value of ¢ (H) for a finite »
depends on the a priori credibilities of all hypotheses in 3C;
hence an appropriate evaluation of a priori credibilities is
always a great help when v is finite.

Section 3 assumes the existence of the limit: ¢ (H) for
y—oo, under a very lenient condition about B¢, and
concludes that the limit must be 0 or 1, if a family of
probabilistically equivalent hypotheses is counted as one
hypothesis. On the other hand, in Section 4, it is assumed
that the frequency in B of various events belonging to
D has a definite distribution, and it is then shown that this
limit ¢ (H) indeed exists and is 0 or 1, provided that a
hypothesis whose confirmability (see below) becomes
unity at the limit is included in 3C.

) As regards Requirement (8), it should be noted that a
hypothesis always gives a deductive probability for the
occurrence of each possible event included in O, and that
this probability distribution can be compared with the
actual frequency of occurrence of various events in ®,
The present paper gives in Section 5 a nice measure for
the degree of agreement of these two probability distribu-
tions (one predicted by H and the other empirical), thus
offering a method to determine the confirmability required
in (8). This confirmability is, of course, different from the
credibility, but it will be shown that if the confirmability
of a hypothesis becomes unity (its maximum value) in
®, then this hypothesis is bound to be granted
g™ (H)=1. But on the other hand, if none of the hy-
potheses reaches confirmability unity, then a hypothesis
whose confirmability is the highest will reach credibility
unity. This may be called a “law” since it is the ‘“‘best”
available hypothesis. This is the reason why we use
g™ (H) =1 as the definition of a law. A stricter definition
of a law would be to require both credibility and con-
firmability to be unity. It may be noted that too strong
reliance on the confirmability at a finite v is misleading,
since, in contrast to the credibility, the confirmability can
accidentally become unity at a finite v even though its
value at v— o is not unity.

'Objections have been raised to the application of Bayes’
theorem to the problem of inductive inference. An answer
to some of these objections will be presented in a concrete
example in Section 4C. The gist of the view proposed in
this paper in this connection is the extreme flexibility
which is allowed in evaluating the a priori credibilities.
They have to depend greatly on the circumstances under
which the experiments are performed. The a priori credi-
bilities can even be altered in the middle of a series of ex-
periments. As a matter of fact, in natural science or in
daily life, all conceivable hypotheses are not usually
thought of at the beginning. On the contrary, as a series of
experiments goes on, a scientist or layman may suddenly
hit upon a new hypothesis. This means that the a priori
credibility of such hypothesis is zero at the beginning of the
series of experiments and suddenly takes a finite value in
the middle of the series of experiments. In such a case,
all the past experiments can be reconsidered in the light of
the new hypothesis, This satisfies Requirement (9).

As far as Requirement (10) is concerned, Section 6 will

give a detailed mathematical proof based on Bayes’
theorem for the anti-ergodic tendency and the inverse
H-theorem. There will also be given an estimate of the in-
evitable fluctuations of the inductive entropy about its
“average’ behavior, which satisfies the inverse H-theorem.

® D. Some general considerations

So far the outline of our mathematical model has been
explained as if every mathematical detail had a factual
meaning in every inductive process. Of course in some
practical cases, the numerical values of the deductive prob-
abilities as well as those of the credibilities are very difficult
to evaluate. Even in those cases, the general nature of our
approach seems to give some insight into the problem of
inductive inference. Particularly interesting is the way the
a priori credibilities intervene in the estimation of the
a posteriori credibilities when the experience is finite, which
is always the case with human experience. It should be
emphasized once more that the term a priori here means
“not directly determined by the observed data ®,” and
does not mean ‘“independent of all human experience’.
Indeed, it is very often the case that the a priori credibilities
can be derived from the experience of a broader scope.
For instance, if the observation concerns a particular
phenomenon in the domain of pure physics, most physicists
will agree to give higher a priori credibilities to those hy-
potheses which can be expressed in terms of a differential
equation than to those hypotheses which cannot. This
preference is undoubtedly a result of an inductive process
based on experience in a broader domain, or at a higher
level, covering a great variety of physical phenomena.
Therefore, the determination of the so-called a priori credi-
bilities must again be subjected to the process of gradual
improvement by comparison with the experience at the
higher level. This inductive determination on a higher level
of the a priori credibilities of a lower level will again neces-
sitate the use of higher level a priori credibilities. This
process thus has to be continued indefinitely along a long
ladder of “‘levels.”” If we push this affair further and further
along this ladder, which might be infinite, it is very well
possible that the hypotheses in question can be formulated
only in so vague and ill-defined terms that they can only
be evaluated by a quasi-esthetical criterion, such as the
principle of simplicity. It should be reminded that a “higher
level hypothesis” means a hypothesis interconnecting and
synthesizing many lower-level hypotheses. The whole struc-
ture may thus be compared to a pyramid-like network of
ladders, of which the top part can at present be described
only in a rather foggy fashion.

In view of these circumstances, it is usually impossible
to give a definite numerical value to the a priori credibilities,
and this fact leaves room for what may be called subjective
elements. Because of the property (7) mentioned above, the
ultimate conclusion will be free from the subjective pre-
judgment. However, for a finite size of experience, these
subjective elements can be as great a help as a hindrance in
selecting the right hypothesis. While the credibility cannot
be completely free from the subjective elements, at a finite »,
the confirmability has an objective meaning.
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To illustrate some of the points of our approach, let us
take an example analogous to the one discussed by N.
Goodman.? Let us consider two hypotheses:

H,: Copper is electrically conductive,

Hs: Copper observed on or before December 31, 1960 is
electrically conductive and copper observed on or after
January 1, 1961 is not electrically conductive.

These two hypotheses are probabilistically equivalent
with respect to all the available data up to the present.
Therefore from a purely empirical standpoint, it may be
argued, they should be given an equal weight. If H, is
logically refuted by an observation on January 1, 1961,
then one can take another hypothesis H’» similar to H. but
with a later date. Then, H, and H'; must be again given an
equal weight. From the point of view of the present paper,
if two hypotheses are probabilistically equivalent, the a
priori credibility becomes a decisive factor in determining
their credibilities. These a priori credibilities have to be de-
termined by an inductive inference of higher level. For a
scientist, it is perfectly natural to ask credibilities of the
following hypothesis K and of its negation X, although this
is not the unique question to be asked in this connection.

K. The content of a basic natural law (or a highly credible
hypothesis) does not depend on a particular point of time,
i.e., on a date.

K: Negation of K.

Goodman* has shown that we can rephrase H; and H, in
such a way that the time-dependence appears in a state-
ment equivalent to H; and the time-independence appears
in a statement equivalent to H,. But this was done only by
concealing the time-dependence in a symbolic predicate.
We are not interested in syntactical content of a proposi-
tion, but in the pragmatical, extrasyntactical content of
propositions. Thus H, is pragmatically time-independent
and H, is pragmatically time-dependent.

Now hypothesis K has a perfect match with past ex-
perience, in the sense that the deductive probability dis-
tribution (0 and 1 here) and the actual empirical probability
distribution coincide. On the other hand, it is not so with
hypothesis K. If hypothesis K is true, then there is a non-
vanishing deductive probability that a natural law changes
on a particular date, future or past. But no basic natural
law is known to have changed in the past. This means that
past experience shows that the events to which the hy-
pothesis gives nonvanishing probability have not happened.
Hypothesis K is then favored, although neither hypothesis
is logically refuted. This corresponds to the example
quoted under Requirement (3). Then K has a perfect con-
firmability, while K has not, and if the a priori credibilities
for K and K are not extremely different, then the a posteriori
probability of X is higher than that of K.

However, K and K again may be given a priori credibil-
ities overwhelmingly in favor of K. Then, this difference can
offset the empirical evidence in favor of K. In fact, there
may be a philosopher who believes that the hypothesis J
that everything changes in time enjoys an overwhelmingly
large credibility. This may cause him to attach an extremely
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large a priori credibility to X. It is in principle possible to
examine empirically the credibility of J and that of its
negation J, but there always remains an arbitrary element
due to the a priori credibilities of J and J. The philosopher
can take advantage of this arbitrariness to increase the
credibility of J.

The main point of this paper as applied to the present
example is that for any given ratio of the a priori credi-
bilities given to K and K, the empirical data sufficiently
accumulated (if in favor of K) will finally give a higher
credibility to K than to K. On the other hand, it is not de-
nied that for a finite size of empirical data, an extremely
high a priori credibility attached to K may offset the em-
pirical data in favor of X. This may seem to be an endless
seesaw game, but it is not quite so. The reason is that an
infinitely large empirical data, if available and if in favor
of K, will give, according to our theory, a credibility equal
to unity to K, no matter how large an a priori credibility
one may attach to K. This means that the see-saw game is
doomed to end in accordance with the edict of the empirical
data, whatever it may be. As far as K and K are concerned,
one might say that the game (at today’s level of scientific
knowledge) has advanced so much in favor of K that one
can no longer offset it except by ‘“‘distorting” the entire
picture of the universe to a ridiculous degree. An example
would be undue emphasis on a thesis like J, which will
certainly ignore the practicalities of life. The term dis-
tortion as used here might be best interpreted as the a priori
credibilities in flagrant contradiction to the confirmabilities
determined by experience.

® E. Intent and extent of hypothesis

So much for the generalities of inductive inference. We
shall now briefly summarize the contents of Section 2,
which deals with deductive inference. We shall first define
JC and D more closely and clarify the function of (a special
type of) deductive inference. The definitions there will be
made so that the relationship between the elements of JC
and the elements of O can represent not only the relation
between hypothesis and observational datum but also, to
some extent, the relation between concept and particular
object and the relation between pattern and individual
figure. The main interest in Section 2 is the information
balance in the process of deductive inference, whereby the
information is defined with respect to the individual out-
come of observation. The knowledge that a certain phe-
nomenon obeys a certain law contains a certain amount I,
of information, but this is not enough to identify the in-
dividual outcome. For the latter end, one needs an addi-
tional information in the amount of /¢, which may be sup-
plied by auxiliary conditions, such as the initial or boundary
conditions. On the other hand, each law (or hypothesis)
has its extent, E, which measures essentially how many in-
dividual outcomes are allowed by the law. Each law has
also its intent, J, which measures essentially how specific
and restrictive the law is. The results of Section 2 are ex-
pressed by three theorems, [.=J, I¢=E, E+J=con-
stant, where ‘‘constant” means ‘“independent of which
hypothesis is the law”. The last relation shows that the




larger the intent the smaller the extent. The intent of a law
or a concept usually means something more semantic, but
what is called “intent” here may be considered to be the
numerical aspect of the “intent”, somewhat in a similar
way as the term “information” has both semantic and
numerical aspects. For instance, the semantic intent of a
law, d%/dx?=0, is that the curve is a straight line (among
other possible curves), but the numerical intent of the
same law is expressed as the logarithm of the ratio of the
number of all possible curves to the number of all possible
straight lines. (In order to avoid complications due to con-
tinuum, we shall interpret differentiations as differences, so
as to make everything enumerable). The semantic aspect
of a hypothesis is actually extremely important in selecting
the hypotheses to be considered, since it can be used as a
guide in retrenching JC from the set of all conceivable
hypotheses to the set of hypotheses of a certain 7ype, mak-
ing the convergence of credibilities much faster. For in-
stance, the number of hypotheses which can be expressed
as dy/dx =0, (r=0,1,2...), is extremely small compared
with the number of all possible hypotheses, each of which
represents any arbitrary class of curves. The semantic in-
tent is also extremely important in concept building and
pattern recognition. The semantic intent of a concept is the
internal bondage existing among the elements and making
them cohere as one family. The stronger, i.e., the more
restrictive, this bondage is, the smaller the family will be;
and the numerical intent measures this smallness.

® F. Source of information

It should be clearly understood from the foregoing that the
“extent” of a law is the uncertainty (entropy) regarding
the outcome of an individual observation, while the induc-
tive entropy is the uncertainty regarding the correct hy-
pothesis. In inductive inference, the credibility starting from
a widely spread distribution over many hypotheses gradu-
ally concentrates on one hypothesis, as neatly expressed by
our inverse H-theorem. Thus we are, in some sense, ab-
sorbing information regarding the correct hypothesis as
we accumulate empirical data. But through this decrease of
inductive entropy in inductive process, the evaluation of
the extent of a law becomes more reliable, i.e., the un-
certainty about the uncertainty about the outcome of an
individual observation becomes smaller. Other than these
two kinds of entropy functions, there is a third kind of en-
tropy function which, as shown elsewhere,? increases in the
process of deductive inference. All of these entropy func-
tions represent certain kinds of information quantities,
which are interrelated in a certain intricate fashion. This
paper gives very little consideration to this matter, except
in Section 6E.

In any event, it is a very interesting future task to investi-
gate the flow and balance of information in all inductive
and deductive activities.® We can, however, immediately
foresee two difficulties in such an investigation. One of
them concerns a question as to whether the natural phe-
nomena in themselves (without preconceived concepts or
categories) have any definite information content, which we
supposedly absorb in the inductive process. The second con-

cerns a question as to what is the real source of information
contained in a very high level hypothesis, such as the
principle of simplicity. Is it really to be found, as our ex-
plication may seem to lead us to believe, in experience?

As a mild warning against too hasty a mechanistic inter-
pretation of cognitive processes, let us borrow a few
words of wisdom from Gaston Bachelard’ who enounced
them in an entirely different context: “On ne peut étudier
que ce gi'on a d’abord révé. La science se forme plutdt
sur une réverie que sur une expérience et il faut bien des
expériences pour effacer les brumes du songe”. The reader
may be tempted to add either one of the following two re-
joinders: (1) “Where there is no experience at all, there
will be no reverie either,” or (2) “Where there is no dream-
ing consciousness, there will be no experience either.”

2. Basic concepts useful in describing
deductive inference

® A. Definitions

We are given two sets of propositions, 3¢ {Hy, H,, . . .,

.Hyland D {Dy, Ds, ..., Dy, ... D}, and to each
element H; of JC are ascribed deductive conditional proba-
bilities p(D;| H;), or simply p(i|I},i=1,2, ..., n, such that
p(i|l) is the probability of proposition D; being true when
proposition H; is true. These definitions are the mathe-
matical basis needed in the following consideration, but
some illustrations will be adduced to indicate the areas to
which our mathematical formalism is meant to apply. Prop-
osition D; may be of the following type: By measurement of
a certain physical quantity in a physical system prepared
according to a given prescription, one obtains a certain
value, say, V;. Then H, will be a hypothesis, that is, a
would-be law, which is supposed to govern a certain do-
main of natural phenomena including the observation in-
volved in D;. This is a typical case of hypotheses and rele-
vant empirical observations. We can also apply the present
framework of theory, with some necessary caution, to the
questions of ‘“‘concepts and particulars,” “‘patterns and
figures,” and ‘“‘genera and species.” Proposition H; may be
of the type: “The letter is 4 (abstract concept or pattern),”
and D; may be a proposition of the type: “The letter is
found to be written as @ (particular item or figure).” The
H’s will often be referred to as hypotheses or patterns,
and the D’s will be referred as data or items. We assume
in the present paper that N and n are finite, except in a
limiting case. In some cases, one H may be a conjunction of
more than one hypothesis.

In some cases, an observation may find more than one
D to be true, if the D’s are not disjoint (not mutually ex-
clusive). In this case, we can replace » by another D’
whose elements are disjoint and can be expressed as con-
junctions of elements of D, so that the elements of D can
be expressed as disjunctions of elements of D', If p(i|1) is
given with respect to D, and if D; are independent, then we
can calculate p(i|7) with respect to ©’ from p(i|I) with re-
spect to . We shall limit ourselves to the cases where the
elements of © are disjoint. Thus, we assume

pilD>0; 2pilh=1, I=1,2,...,N. (2.1)
i=1
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In some cases, particularly in problems of patterns, it
happens that for a given I, p(i|I) are zero for a certain group
of i’s, but the actual values of nonzero components of
pli|l) are indeterminate. The set of i’s for which p(i|]) 0
for a given 7 will be called the domain of /; the number
of i’s in the domain will be called the dimension of [ (de-
noted by W(I)). The total number of possible patterns, as
defined by their domains (i.e., not by the actual values of
nonzero p(i|l)), is 2—1. However it is often the case,
for one reason or another, that N is less than its maximum
value 27— 1. This restriction of N often makes the problems
of deduction and induction manipulable, since 2"—1 is
usually a prohibitively large number. When the domains
of any two patterns of the set 3C do not overlap, then we
speak of disjoint patterns. In this case, assuming that no i
is uncovered by an H, we have

N

E W(y=n . 2.2)
When rn and N are given, and further if the N numbers
W), W@, ..., W(N), satisfying (2.2) are given, there
are n!/W(1)! . . . W(N)! possible sets of disjoint patterns.
Under similar circumstances, with a less restrictive con-
dition that the numbers W(1), W(2), ... W(N) are arbi-

trary so long as (2.2) are satisfied, the total number of
possible sets of disjoint patterns will be given by

EL(—])k(k)N(N—k)n

We do not restrict ourselves, however, to the cases of dis-
joint patterns in the following.

Although we can derive various useful results in the
cases where the values of the nonzero probabilities p(i|I)
are indeterminate, we shall often restrict our discussion in
this note to the cases where all the probabilities p(i|/) are
given. To handle the pattern problems where p(i|l) #0
are indeterminate, it is sometimes useful to assume

p(i|y=1/W(), if i belongs to the domain of I ,

Pl =0 , otherwise . b

When a pattern is treated in this fashion, we shall speak of a
“homogenized”™ pattern. We can easily set up experiments,
as we shall see later in an example in Section 7, so as to
meet the assumption (2.3).

In the general case, where p(i|/) can take any value
satisfying (2.1}, the number of possible hypotheses H, can
be continuously infinite although # is finite. This is a
very important fact in connection with the inherent diffi-
culties of inductive inference. If there are k(> 1) hypotheses
H; which have the same probability distribution p(i|I) for
all ’s in a subset of D, then we speak of a k-fold degenerate
case and these hypotheses are said to be probabilistically
equivalent in this subset of . There can of course be more
than one set of probabilistically equivalent hypotheses.

® B. Intent and extent of hypothesis

Deductive inference starts with an assumption that one and
only one of the hypotheses, H,, is true, i.e., it is a “law.”
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Under this circumstance, the ignorance as to what outcome
will be observed is given by the extent E of H;, which is
defined by

5 =~ Zp(1 1 tog plil) >0. 24)

The maximum value of E(/), with regard to 7, is
(E())max= logn , 2.5

if there is a hypothesis such that p(i|I) =1/n. Equation
(2.5) gives the maximum ignorance regarding the outcome
which can be one of the n possibilities.

The difference between (E(I))ma.x and E(I), i.e.,

J(I) = log n—E(I)

=2p(i11) log n p(i1) >0 , 29

=1

called the intent of hypothesis I, gives the amount of infor-
mation regarding the outcome furnished by the knowledge
that hypothesis H; and only hypothesis H; is true. For log
n is the original ignorance without any knowledge about
the hypothesis, and E(I) is the remaining ignorance after
cognizance is taken of the fact that H; is the law. In this
sense, J(I) may be called the “predictive information con-
tent,” or “predictive power” of hypothesis H;.

In order to determine the outcome, one needs a total
information in the amount log n, but the knowledge of the
true hypothesis provides an information amount, J(I).
Hence, one needs an additional information in the amount
log n—J(I) = E(I) to specify the actual outcome. This in-
formation is thus the necessary auxiliary information to
identify an individual, contingent outcome when the law
is known. In this sense, it may be said to represent ‘‘con-
tingent” information.

To facilitate understanding, the main points of the fore-
going explanation will be repeated in the form of theorems
with words instead of symbols. First we have

(Theorem 1): Extent+Intent =constant, 2.7)

where ‘“‘constant” means that it does not depend on I.
The larger the extent, the smaller the intent. Next, we have

(Theorem 2): Intent=predictive power of hypothesis,

(Theorem 3): Extent=necessary contingent (2.8)
information,

where the predictive power of a hypothesis means the in-
formation provided by the hypothesis if it is true, and the
contingent information of a hypothesis is the amount of
information necessary to identify an observed datum D
when one hypothesis is known to be true.

The reason why the words ‘“‘extent” and ‘“‘intent” are
used will become clear if we consider the case of a “homog-
enized” pattern, (2.3). E(/) is simply the logarithm of the
number of cases included in /. We have here

E(I)= log W(I) , and
Jh=logn/W() . (2.9)




In a strict deductive inference, only one hypothesis is
supposed to be a law, but in a more general case, hy-
pothesis H; may be assigned a weight Q(J) such that
O >0, and gQ(l) =1. Then the probability given to the

outcome i will be ZQ(I)p(i |I). The natural generalization
I

of “extent” and “intent” will then be

E=-3% { Zi0oupl 1] tog [Elga)p(i ll)]} :

J=logn—E , (2.10)

which refers not to a single hypothesis but to our proba-
bilistic knowledge about possible hypotheses. The meanings
of E and J as predictive power and necessary auxiliary
information or contingent information remain the same.

® C. Example 1

Take a rectanguiar coordinate system, x,y, in a plane, where
x and y can take P discrete values, P being a prime num-
ber, x,y=0, 1, 2, . . ., P—1. The items considered are
single-valued functions, y of x, i.e., we assume that there is
one and only one value of y for each value of x. There are
n=PF such curves (items), and the number of possibie
hypotheses is 22 —1. It can be shown that there is one-to-
one correspondence between such a “‘curve” and an ex-
pression

yzap_lxp_l-i—ap-gx”‘?-l- T +01X+ao, (mod. P) . (211)

where each of a., ai, . . . , ar_1, has the same domain as x
and y, ie, 0,1, 2,..., P—1. The expression (2.11) thus
contains PP different cases, as it should.

Defining “‘differentiation” by

7 =88 ety —p) @)

where fis a function of x, we can also express any curve
(2.11) by a “Taylor” series

509 =30+ Dt 204

Oy et o
e
+(P—1)!X(x ... (x—P+2)
=p§—0y(r)(0)<':> . (2.14)

Here, y®(0) is the rt" “derivative” of y with respect to
x at x=0, to which one is allowed to add any integral
multiple of P, so that y®(0) becomes divisible by #! This is
always possible when P is a prime number, and the co-

{(r)
efﬁcient”yr—'(ol of x(x—1) ...
and takes any value from 0, 1, 2, . .., P—1. Thus (2.14)
can be written

(x—r+1) becomes unique,

P_1
y(x) = §Ob,x(x—1) e (x=r 1),

b=0,1,2,...P~1, (2.15)

where the term for r=0 under the summation is under-
stood to mean a constant b,.

In this expression, there are P coefficients b,, each of
which can take any of P different values. Thus (2.13) or
(2.15) contains n=P¥ items. We can thus characterize an
item (curve) by a sequence of numbers A=(ap, a1 . . .,
ap,l) or B=(b0, bl, PN apﬁ).

Suppose now the set JC of patterns consists of P patterns
defined by

Ary(x) =0

= ... P 2.1
M0, r-12...0 216)

The solution of (2.16) can be written as

T—rge X—X
») = §0y<r>(x0)< . ) ,

for x>x,, and, in particular, for x,=0, we have (2.14) or
(2.15) with

B=(by by, ..., b1,0,0...0) . 2.17)

The pattern (2.16) contains Pr different items (curves).
Hence, pattern H(r) defined by (2.16) has a domain of
dimension W(r) = Pr. Assuming the equal probability
to each curve, i.e., assuming the homogeneity hypothesis
(2.3), one obtains the extent and intent of pattern H(r)
from (1.9),

E(r)=rlog P, s
J(ry=(P—r)log P ,

satisfying E(r)+J(r) =P log P= log n.

When no knowledge is available about a curve, all P
coefficients in A=(ay, ay, . .., ap_y) orin B={(be, by, . ..,
bp_,) are arbitrary, each coeflicient being capable of taking
any one of P possible values. If each curve has the same
probability, i.e., if we have (2.3), our ignorance about the
curve is given by log n=P log P. By the knowledge that a
curve belongs to H(r), the number of arbitrary coefficients
is reduced to r, each coefficient taking one out of P possible
values. Thus the ignorance is reduced to r log P. The de-
crease in ignorance, i.e, information, due to the knowledge
of the pattern H(r), is J(r)=(P—r) log P, which is the
predictive power of the pattern H(r). When the pattern is
known, then all we need in order to specify one particular
curve is to determine r coefficients, bq, by, . . ., b,_;, which
allows Pr combinations, The information which allows one
to select one out of P~ equally probable possibilities is
E(r) =rlog P. Thus, this quantity is the necessary auxiliary
information to specify one particular curve when it is known
to belong to H(r).

(2.18)

In deduction of a particular solution from a “‘natural
law’ expressed by a differential equation
Ary
=0, .
A (2.19)

215

IBM JOURNAL * APRIL 1960




216

one needs the initial conditions given by r values:
»0),¥'0), . .., y(0) . (2.20)

The natural law (2.19) provides information J(r) and the
initial conditions (2.20) provides information E(r}.
We shall give an example of curves and their expressions
in the forms (2.11), (2.13) and (2.15) for the case P=7.
Figure 1 gives the curve from which we can calculate all
the derivatives, as shown in Fig. 2. The expansions (2.14}
and (2.11) are in this case

(%) =24+x4+2x(x— D) (x—2) F2x(x— N {x—2)(x—3)
=24+2x2+4x%42xt , (mod.7) .

This can be understood as a special case of the law

with initial conditions

y(0)=2, y®(0) =1, y(0) =0,

yOQ) =5, y»(0) =6 .

The law providés information in the amount (7—5) log 7,

while the initial conditions provide information in the

amount 5 log 7, the sum 7 log 7 being just sufficient to
identify one out of 77 possible curves.

® D. Example 2

There are five urns, of which a certain number contain
only black balls and the rest contain only white balls.
The hypothesis H(r) states that r(=0, 1, 2, . . ., 5) urns
contain only black balls and (5—r) urns contain only
white balls. One is supposed to pick one bail out of an
arbitrary urn without knowing which category the urn be-
longs to. The outcome is either black (i=1) or white
(i=0). Thus,

p(|n=r/5,
pO|ry=(5—n/5 . (2.21)

In this case n=2, N=6. Suppose now that H(2) is known
to be true, i.e., H(2) is the law, then we obtain

FE(2) = —(2/5) log (2/5)—{(3/5) log (3/5)=0.971 ,

J(2) = log 2+(2/5) log (2/5)+(3/5) log (3/5)=0.029 ,
E2)+J(2)= log2=1 . (2.22)
In order to obtain a unique outcome, we have to know
which category an urn belongs to. The information amount
which enables us to answer this last question is obviously
equal to —(2/5) log (2/5)—(3/5) log (3/5), since the prob-
ability of an urn being black is 2/5. Thus we can see that
this necessary additional information is exactly equal to
the “‘extent” E(r) of (2.22).

3. Inductive probability

o A. Credibility and Bayes’ theorem as algorithm

Inductive probability or ““credibility” should be a measure
of confidence we place in a hypothesis on the basis of the
observed data. Credibility thus is a function of past ex-
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Figure 1

Example of a process of deductive inference.
The M-shaped curve here is expressed as
y=242x244x32x* (mod. 7).

perience, and we should not consider an a priori credibility
except as an auxiliary concept, insofar as we are concerned
with one particular inductive process. Our task is to expli-
cate this vaguely conceived notion of credibility.

An experience consists of a sequence B¢ of v consecu-
tively observed data: 8 = (i}, is, . . ., i), Where iy, iz, . . ., 1y
are the first, second, . . ., v*h observed data, and can be any
one of the D’s defined in the previous section. On the basis
of ®® we attach to each hypothesis H; a certain value
g |G, or simply g(I), in such a fashion that g™ (J)
serves “‘best” as an instrument to predict the result of the
(v+ 1)t observation by the formula:

P =Za"Dpl1) (3.1

where p(”(i) is supposed to be the probability of D; being
observed in the (v+ 1) observation. Such a quantity ¢¢*(f)
may be considered as a more explicit definition of credi-
bility. However, there seems to be no unique way to expli-
cate the word “‘best” in the foregoing sentence. The follow-
ing consideration should be considered as one of the possi-
bilities. Since p* (i) must be non-negative no matter what
values p(i|/) may have, we have from (3.1)

g >0 . (3.2)
Also, by summing (3.1) over i, we obtain from (2.1)
ZI]qM(.z) =1. (3.3)




1 3 1 5 4 [ 0
2 4 6 2 3 é

3 3 1 5 2

4 4 6 0

5 3 [

6 2

Figure 2

Deductive inference.

The values of derivatives are derived from the values of y
taken from Fig. 1. The information below the stair-shaped
heavy line is not necessary if the law ASy[Ax5=0 is known.

The essential feature of inductive inference lies in the
gradual change or “improvement” of ¢(*)(I) with », and
there seems to be a sound reason, based on Bayes’ Theorem,
to assume the following formula to be an adequate ex-
pression of this process of stage-by-stage improvement,
‘“‘stage” here meaning each value of v:

g =" W)plis 1] Za=(1)p(is)1) (34

We shall not try to justify (3.4) but shall adopt (3.4) as
an algorithm.?

Using (3.4) as a recurrence formula, we obtain

Q" Dp [ DpG]1) . . .. oG 3.5)
aO(")pli | I)plia| 1) . . . . plin|T)

qa® () =3
I/

where ¢ () may be interpreted as the a priori credibility
of H;, which cannot be determined uniquely by the obser-
vation B, As far as v is finite, the g(*’s are affected by the
q‘%’s, A practically unique induction is possible only if
g (I) for large v does not depend appreciably on g‘@(]).
As far as v is finite, one can permutate i), s, . . . [, in any
fashion in (3.5) without changing the values of g ([).
However, if v— o, we have to be careful about the order of
(i1, is . . . ), since an arbitrary change of the order may
affect the limiting behavior of ¢ (I) for y—.

It should be noted that if g (I) =0 for a particular Hj,

then ¢ (I) =0 for this Hr and for any ». This amounts to
ignoring H; completely from our list JC of hypotheses
from the beginning. Therefore, we assume that ¢ (I) =0
for all H, in 3C.

In order that formula (3.5) yield an improvement of
g (I) rather than a meaningless fluctuation, it is necessary
at least that g (/) with »—> converge to a certain
value

lim g®(I) =q®(I) =q(I) , foreach I=1,2,...,N . (3.6)

Our further interest lies in the conditions under which the
limit ¢(1), (3.6), is independent of ¢“(I). Such a considera-
tion will also reveal how persistently the effect of g@(I)
remains in most cases. Before undertaking to investigate
this problem let us first introduce some characterizations
of the observation sequence ®,

® B. Definition of € and §®

B is the sequence (i1, is, . . . . , §,), in which the ’s are
arranged in the natural chronological order of a sequence
of repeated observation. Let C(®), or simply G, be
the set of the D’s included in ®®. Symbolically, C*' =
{D;| D; € ®*»}. Obviously, one has

coCerCeeC ... CcewnC..., 3.7
and since

e Dforany v , (3.9
the sequence of G has its limit

1321@@(”)=G(w>s@ . 3.9

Since @™ is a discontinuous set, ¢ will become identical
with @ for large enough values of ». Denoting the smallest
of such »’s by v, we obtain

C=¢e, forvzw,. (3.10)

It is sometimes necessary to consider a sequence ob-
tained from B by omitting the first (u—1) elements:

B —BED = (i, fup1, +  )- 3.11)

The set of D’s included in B« —®&« D, (3.11), will be
called ¥, i.e.,

F, =B —-®*D); FI=C . (3.12)
We have to postulate
F, =€ for any finite u (3.13)

to make any intelligible discussion possible in our problem.
This postulate (3.13) means essentially that if a datum D;
appears once at a finite position, it will reappear again in a
position higher than any arbitrary position.

Next, let g designate the set of those H’s for which
p(i, 1D =0 for u=1, 2, . .. ». Symbolically, g = { Hr| p(i/l)
#0 for all D; € B}, In other words, J is the set of those
I’s which have nonvanishing probability p(i|I) for the i’s
included in @™, g is obviously a function of G,
It follows then that 30— g is the set of hypotheses which
do not allow occurrence of ®”, i.e., those hypotheses
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which should be logicaily refuted by ®¢’. From this defi-
nition, it is clear that

OGO L DM ... (3.14)

Since there is a lower bound which is the empty set, the
sequence (3.14) has a limit.

lim g =g=i=g . (3.15)

If § is an empty set, there will finally be no single surviving
hypothesis, after logical refutation. Then the whole in-
ductive process is worthless. Hence, we discuss only the
case where

I=J (3.16)
from which also follows, in virtue of (3.14),
JUEZ . (3.17)

The statement (3.16) means that there is at least one hy-
pothesis which gives nonvanishing deductive probabilities
pli|1) for all D; € €. Since g is a discontinuous set, §¢*
will become g for a large enough ». Denoting the smallest
of such » by »,/, we have

g»=g forv>w, . (3.18)

We obviously have vy’ <w,, where v, is taken from (3.10)
since a new member in C¢) may or may not retrench §.
Hence we still can maintain (3.18) using », for vy,

If there are k(> 1) hypotheses H; belonging to §© which
have the same distribution p(i|l) for the i’s included in
C®, we say that these hypotheses are probabilistically
equivalent with respect to C¢, and we speak of a k-fold
degeneracy in G, There can be more than one set of
equivalent hypotheses with respect to €,

o C. Some immediate consequences of our algorithm

The above definition of € and g has nothing to do
with our specific algorithm (3.4) or (3.6). We shall now con-
sider some of the consequences that can immediately be
drawn from this algorithm. First, we note that the factor
pli | Dptiz|I) . . . . p(i,|1) multiplying g‘®(/) in (3.5) is zero
for a hypotheses I belonging to 3C— g and nonzero for
a hypothesis belonging to §". Since g == &F, (3.17), and
q© (/) 0, the denominator of (3.5) is nonzero. If =,
then ¢‘(I) for »> v, would become indeterminate. Hence,
we get

qg»I)=0 for H;€3—9g»Ci—-g , (3.19)
and consequently the limit (3.6) exists and
g()=0 for H,c -9 . (3.20)

This means that the process of logical refutation is built
in our formula (3.5). From (3.19) follows that for v> v,
we can limit I’ in (3.4) and (3.5) only to those I's which
belong to .

From the same argument, it follows also that

g ()#0 for a finite » and
for H, € g, (3.21)
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since ¢®(1)£0 and the factor multiplying ¢®(J) is non-
zero and the denominator in (3.5) is finite. Egs. (3.19) and
(3.21) allow us to write: g ={H;|q""()=0} for a
finite v.

If we put ¢ (I) =1 in (3.5), it follows that the numerator
and the denominator must be the same, which means that
g consists of only one hypothesis. Consequently, at a
finite », ¢((I) can never become unity except in the case
where all but one hypothesis has logically been refuted by
then.

® D. The limit of ¢®(I) for v—=

It is very important to note that we cannot put y= c« in
(3.21), for, ¢ (I)5#0 can gradually tend to zero at the
limit »— . The existence of the limit (3.20) for H, € X —§
follows from (3.5). But, for H;€ §, we have so far no
guarantee that the limit (3.6) exists. We shall see in the
next section a sufficient condition for the existence of the
limit (3.6). In this section, however, we shall take the con-
verse approach and assume the existence of (3.6) for
H; € g and examine the consequences of this assumption.
We can then classify the H; in § in two classes, namely,
those for which the limit g(I) =0 and those for which the
limit g(/) 0. "We shall denote the set of the latter hy-
potheses by K. Symbolically, X = { Hr|q(I) #0}. Obviously
KCY, and we have also g(I) =0 for H; € 3C—X.

Now, if g(I) for H; € § exists, it is necessary, according
to (3.5), that for any ¢(>0) there exists a »(>vo) such
that

-0y — gD | = | g _ ¥ Dpl, ) ¢
I~ —g» (1) | K U] SETRATE <

for v2>w; . (3.22)

Since this must hold for any »(>»)), i, will take all possible
i’s included in F, ¢ defined in (3.12). Due to the assump-
tion (3.13), this means that i, will take all i’s included in C.
I and I’ in (3.22) are those included in §. Eq. (3.22) will
obviously be satisfied if lim g(”(/) =0. Limiting 7 in (3.22)

Vo

to those belonging to X, we can conclude from (3.22) that
for any arbitrary e»(>0) there exists a number », such that

lplir| )~ SN p(0, 1) | <o for v2: (3.23)

where I belongs to & and I’ belongs to g, and i, is any one
of the i’s belonging to €. Note: p(i|]) <1. As we assume
the existence of g(I), we have for any arbitrary e(>0),
g () —q(l)| <e for ¥>vs. (3.29)
If both ¢; and ¢; were zero, one would get from (3.23),
(3.24),

p(i|D=2apG|I) , (3.29)

where i € @, IC XK, I’ € K. Now the lefthand side of (3.25)
depends on 7, while the righthand side does not. Hence,
any two I’s, say [, and I», belonging to X, must have the
same distribution.

|1y =pGll) , N LEX,i€C. (3.26)




This means that X must consist of a set of probabilistically
equivalent hypotheses with respect to €. If the degree of
degeneracy of these hypotheses is k, then & will be number
of elements in X. Now this conclusion has been reached
with the assumption that e,=0, e¢=0. If €, € are not
zero, (3.26) will be replaced by

|pG|L)—pG|L) | <e:, L, LEX, (3.27)

in such a way that we can make e, arbitrarily small by
taking e» and ¢; sufficiently small, i.e., by taking v, and
v; large enough. In consequence, the conclusion (3.26)
will hold in the limit.

As regards the values of g(I) for I belonging to X, we
can immediately see from (3.5) that

q(ly) =q(°>(11) 3.28
a(l)  qO() 429
Hence g(I), for H; € X, depends on ¢©(I) in general. In
order that g(I) may not depend on ¢‘®(]), it is necessary
thus that the set X consist of only one hypothesis, and
for this hypothesis

gl)=1. (3.29)

If there is no degeneracy in JC with respect to D from the
beginning, then (3.29) will always hold. However, it should
be noted that even if there are degenerate hypotheses in JC
with respect to 9, they may drop out of X. The necessary
condition is that the hypotheses belonging to X have no
degeneracy with respect to C.

® E. Summary

Summarizing the foregoing argument, we can conclude
the following. The two conditions (3.13) and (3.16) being
always assumed, the existence of the limit, g(/), independent
of the a priori probabilities g(({), implies that g(/) =0 or 1.

Before we pass to the next section, it may be of interest
to note that the definition of ¢, therefore of g, is made
solely with the help of the distinction between p(i|l) =0
and 0. Therefore, even without the knowledge of the
precise values of the nonvanishing p(i|l), we can define
g and g. This process of retrenching the set of possible
hypotheses from JC to § through the intermediary stages
g© corresponds to a gradual elimination of inadmissible
hypotheses by the counterexamples presented by the ob-
servation B, This is a “logical” process based on the
concepts of “allowed” and ““forbidden.” The further re-
trenchment of g to X is possible only by a probabilistic
consideration, which requires the knowledge of the values
of nonvanishing p(i|I). It may also be repeated that no
hypothesis will be given credibility unity at a finite stage,
except in the case where J consists of only one element,
i.e., except in the case where all but one hypothesis are
logically eliminated. Also, if g(®(]) are cleverly given, then
g™ (1) will approach g(I) at an earlier stage of ».

4. ® with definite frequency distribution

® A. Consequences of definite frequency distribution

In the preceding section, we assumed the existence of

g (I) independent of the a priori probabilities g®(/), and
concluded that the values of ¢ (I) must then be zero or
one. In that argument, we required a minimum property
of ®™, namely F,=¢€, (3.13). As regards ¢®(I), we
postulated only g@(I)0 for all /. In this section, we
require a stronger restriction on ®¢ and shall show that
g (I) then indeed exists in a certain sense of average. The
requirement on ¢©(7) is again only ¢ (I) #0 for all 1.

Take the empirical sequence B =(iy, is, . . . i,) and let
v; be the number of times D; appears in this sequence of
length ». We define empirical frequency distribution
o M=1,2,...,n) by

am=" (4.1)
14

which obviously satisfy

;>0 , 2LaM=1 . (4.2)

The basic equation (3.5) can be written as

2" FO )

O — , 4.3
TS o oy )
with

FOI(D) =I="-I[p(i[1)]vi :Ii[o[p(i!”)]a[(y)v , 4.4

where 0° will be understood as meaning ““‘one’. By virtue of
(3.16) and the condition ¢‘®(I) #0, the relations (3.2) and
(3.3) are guaranteed.

We require of 8 in this section that the appearance of
outcome D; in B be governed solely by the independent
probability Prob. (D;) =v,. In this case, we shall say that
B has a definite frequency distribution. If we take one
single B, the actual frequency «;¢ of D; in it will not be
exactly v.. However, if we take a very large number of
samples of B (with a finite »), the average of the fre-
quency a;*? in this population will be ;. We shall therefore
be allowed to write (4.4) as

Foh =i 1y (4.6)

to describe the “expected behavior” of ¢*'(I) for a finite v.

The deviation of ¢*’(/) for large » in an individual B
from its “expected’ value can be estimated on the basis of
the following calculation. The fluctuation é; of »;, from its
expected value vy,

Si=vi—vyi , 28;=0 (4.7)
=1

obeys the multinominal distribution, which for large v be-
comes '
Prob. (81, 8, . . . , 8.) =[Qmy) Iy exp (—238:22vv,) .
i=1 i
(4.8)

The expected values of 6;6,, under the restriction 26@:0,

=1
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is given by
8:8,= —vyey, for ixj; S2=vyi(l—v) . (4.9)

Consequently, the rms fluctuation of «;¢” from «; is

V@O =3t= V=) v (4.10)
which tends to zero with »— . Thus we can write

a=0; = lim ;M=7y;, i=1,2,...,n. 4.11)

¥ —0

See Section 6C for the fluctuations of v; and ¢ (I).

We have to introduce at this stage a simple lemma. Let
G»(I),1=1, 2, ..., N, be a probability distribution with
regard to / given by

(U]
POl , 4.12
0 2[4y 12

where A(I), (I=1, 2, ..., N), are non-negative and not all
of them are zero. Let the largest value of 4(/) be denoted by
MIax (A)) = Amax » (4.13)
and let m be the number of I’s which have this value Amnax.
Then we have the following lemma.

lim G™(/) =1/m for those I's (whose number is m) such

v —0

that A(J) = Amax »
lim G®(1) =0 for other I’s . 4.14)

v —co

The proof is almost unnecessary, since if we have for two
Is, say I) and I, A(I)) > A(I>), then lim [A(]))/A(5)]"— .

By writing (4.6) as

FO) =[(4U)]” , A =g[p(i|1)]”f ) (4.15)
we immediately obtain from (4.3) and (4.14)

lim g0() =Id)_ | 4.16
o 0 };’qw)(p) (4.16)

for those I’s for which A(I) = Aw.x. The summation X is
also extended only over such I’'s. We have also
lim ¢ () =0 4.17)
for those I’s for which A(I) # Anm.x. If there are k& degenerate
I's for which A(I) = Amax, then these k I's belong to the
class of I’s under consideration with respect to (4.16).
However, conversely A(l)) = A(ls) = Amax does not neces-
sarily imply that I, and I, are probabilistically equivalent.
9 is characterized by A(l)#0, and X by A(l) = Awax. IH-J
and §-X are respectively characterized by A(/)=0 and
05 A(I) # Amax.

Now if there is only one I for which A(J) = Amax, then
g (I) becomes independent of ¢®(J) and

lim ¢g()=10r0 . (4.18)
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The fact that X does not necessarily consist of proba-
bilistically equivalent hypotheses may seem to be at vari-
ance with the conclusion of the last section, where X
consisted of probabilistically equivalent hypotheses. This
apparent discrepancy stems from the fact that in the last
section we assumed the uniform convergence of g(I) for
any arbitrary B¢ obeying only (3.13), while in this section
we have proved the convergence of average g(I) for an
“expected” B obeying a particular probabilistic law
given by the v’s. The convergence of ¢(/), as assumed in the
last section, is a more stringent notion than the convergence
considered in this section. However, this rather delicate dis-
cussion becomes unnecessary if JC contains a hypothesis
for which y,=p(i|I). For, in this case, as we shall see later
in Section 3, the relation A(I) = Amax is satisfied only by
those hypotheses which are statistically equivalent in C
satisfying v;=p(i|]).

Summarizing the results, we can say, under the assump-
tion (3.16), that if the empirical sequence has a definite
frequency distribution, then as far as the expected behavior
is concerned the limits
lim g (1) =q(I) 4.19)
V-—0
exist and their values are 0 or given by (4.16). In par-
ticular, if there is only one I for which A(J) = Awmax, then
the limits are either 0 or 1. See Section 6 for the fluctuations
about this expected behavior in this case, in particular,
(6.22) and (6.26).

® B. Example 1

It is known that an urn contains a very large number N of
balls, of which some are white and the rest are black. There
are N4-1 possible hypotheses H; (/=0, 1, 2, . . . N), namely,
H;: The urn contains I white balls and N—17 black balls.

The experiment consists in taking one ball from the urn,
determining its color and replacing it back into the urn.
There are thus two possible data, or events:

D,: The balil is white,
D,: The ball is black.

Suppose we repeated » experiments, and obtained »;
times D, and »s times D.. The problem is to obtain the in-
ductive probability for H;. We have here
1
N

() (-4)"

p(Di|]) = ,p(D2H)=1—§ ; (4.20)

o) = . 4.21

a”) Zq(o>(1/)<£>v.(1_£>v2 (4.21)
r N. N

Since N is extremely large, let us put

!— €2 :,1, (v} (0 :l (u)‘

N =4 (), ¢ =734 (4.22)

Then g'”{x) dx represents the total sum of those g (J)
whose argument [ lies between I and 7+ N dx. There are
N dx such I’'s. Summation over I can be replaced by an
integral, so that for instance,




N 1 1
?q(”(l‘) =f g ()N dx=f q(x) dx=1 ., (4.23)
=0 0 o

(4.21) becomes

g () =— 42X =X (4.249)

f q@(x)x*1(1 —x)*2dx
4]

Now the distribution function multiplying ¢(®(x) in (4.24)

is, when normalized,

Sy =02 gy (4.29)

Vl!Vzl

which has its maximum at

__n
x= o (4.26)
The average and the higher moments of (4.25) are
1
- __ntl 2
W= [ apg as= 2L @2)
1
Y — r — (V1+V?,+,1),!7, (Vli_,,r)! i
{x >—j; x7f(x) dx—(V\+Vg+r+l)! o 4.28)
For large »i>>1,
N s ¥
)t () <V1 Jm) (429
showing
((xB—(x))—0 . (4.30)

This means that for a very large number of trials, v=y,
+v,>v>3>1, the distribution f(x) is sharply concentrated
about the mean value x=a;=w»/(y;+v.). Therefore, if
q®(x) is continuous in the vicinity of this point, we obtain
from (4.24)

P Gl | LR PP (4.31)

(v}
q mity,y!

which is the same as (4.25), or in terms of the variable I,

1 (V1+V2+I)! I1\" I\
O =— L1721 /¢ L
0= N <N> (' N) ’ (4:32)

which does not depend on ¢©®(I) any longer.
The probability of obtaining the event D, in the (v—+1)°th
observation is then, according to (3.1),

1

(DN =2 a(] n=_ntl_ , 4.33

(D) =Zq (D) = 2 (433

which is the same as the mean value given in (4.27).
When »,=0, that is, when v observations have consecu-

tively given the same event D,, then the probability of ob-

taining D, in the next observation is, according to (4.33),

PD) =2 (434

which is Laplace’s law of succession.

Coming back to the general case, the statement that
(4.31) or (4.32) is true for large » (therefore large »), im-
plies already that oy =w,/(»1+vs) converges for large »,
see (4.29). If », becomes extremely large, then (4.24) will
become

g (x)=d(xv—a) , (4.35)

where 6(x—a«) is to be considered to be zero except in a
small vicinity of width 1/N of oy, in which it takes value
of the order of N. Therefore, (4.32) becomes

g (=1, (4.36)

for the particular 7 which gives the maximum value of

a log 2$+(1 —a) log <1 —{J) (4.37)

provided there is only one such /. And for the remaining I’s,
we shall have

) =0 . (4.38)

o C. Example 2

The following problem is an example that could be ad-
duced as an argument against the use of the Bayes Theorem
in inductive inference.® The author, on the other hand,
would like to present here his defense of the use of the
Bayes Theorem. The experiment consists in determining
the “head” or “tail” of a coin after tossing it. The experi-
ment is repeated with the same coin. The D consists of
“head(0)” and “tail(1)”. The hypotheses in question
are two:

H(F): The coin is a falsified, double-headed one.

H(G): The coin is a genuine one.

Thus:
pO[F) =1, p(1[F)=0, p(0|G)=p(1|G)=1/2 . {4.39)

Suppose we tossed v times and have gotten heads all »
times. What is the minimum value of » for us to be reason-
ably convinced that H(F) is true? To make the problem
more concrete, what is the minimum value of v to make
g (F) larger than 10 times as large as ¢©(G)? Now the
argument against the Bayes Theorem runs somewhat as
follows. The a priori probability (taken as a statistical fre-
quency in the real population of all coins genuine and falsi-
fied) for a coin to be double-headed is extremely small,
say, 1072, ie., ¢'V(F)/q(G) =107, Therefore the solu-
tion for v of inequality

q(”&F)
Al (4.40)

with

q(v)(F)‘ C[(O)(F)

a(G) qV(G)(1/2)”
is

v2>70 . (4.42)

=10 . 20 (4.41)

ry3
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Now, the opponent of the Bayes Theorem says that any
reasonable man will be convinced of H(F) after a small »,
say, 6 or 7 at most. The Bayes Theorem is therefore un-
reasonably prudential.

However, this argument is based on a wrong interpreta-
tion of the a priori credibility, which depends greatly on
the entire circumstances under which the experiment is
made. If, for instance, one goes to a nearby grocery store
and takes a penny from an arbitrary cash register, then
the a priori credibility for this penny to be double-headed
is extremely small, as a result of which it will take indeed a
very large v for a reasonable man to decide that the coin
is false. But if a professor of psychology comes to a subject
of his experiment, to test human behavior in inductive in-
ference, then there is a great deal of probability that the
professor uses a variety of tricks and gimmicks. Therefore,
the values of ¢ (F) /¢‘(G) cannot be too small. The Bayes
Theorem gives v>7 if ¢ (F) /¢ (G) =1/10, which may not
be too far from a realistic situation.

The subject, of course, does not use a mathematical
formula to make his decision. However, we can attempt to
translate his mental process more or less in terms of mathe-
matical formulae and give some interpretation. An out-
standing feature of the actual situation is that the a priori
credibility does not have a fixed value. As a matter of fact,
if a psychology professor starts this experiment before a
subject, the latter at the beginning may even not think of
such a possibility as a double-headed coin. That means the
a priori credibility g‘®(F) at the beginning is practically
zero. But suddenly the possibility of such a hypothesis may
occur to the subject, and thus ¢@(F) jumps from zero to
a finite value. And further, guessing the motivation of the
professor, the subject may still increase the value of g‘¥(F)
during the course of the experiment. This kind of consider-
ation has nothing to do with the gradual change of ¢¢"(F)
with the accumulation of the empirical data ®, and there-
fore must be attributed to g (F). If the coin is taken arbi-
trarily from a grocery store cash register, the subject would
not increase ¢@(F) so much as with the coin taken out of
the psychology professor’s pocket.

An interesting fact here is that the a priori credibility
can change, even in the middle of the experiments. A similar
argument has previously been used by the author to repudi-
ate Loschmidt’s objection to the H-theorem.!?

5. Confirmability

@ A. Comparison of predicted frequency and
observed frequency

Equation (4.3) shows that ¢ (I) is equal to ¢‘®(I) times an
empirical weight proportional to F®(I). The larger the
F™(]) is, the more the hypothesis H| is confirmed by experi-
ments. For this reason, we may use

lulOg FOU(I) = log .Ijl[p(ill)]“*(” (5.D

7

=, log p(ill) (<0) , (5.2)

=1
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as a measure of confirmation (per observation) of hypothe-
sis H; by experiments up to the »* observation.
The quantity (5.2) takes its maximum value

2o log i (<0) , (5.3)
i=1

if there is a hypothesis which gives
pi|)=a; foralli . 549
Therefore, the quantity

IR log a;™
i=1
col)y =—M ———— (5.3)

2 log plil1)
i=1

is a convenient measure of confirmation, and will be called
confirmability of hypotheses / at stage ». Indeed, we have

o<cr(n<t, (5.6)

and C”(I)=1 if and only if the ‘“perfect match” (5.4)
takes place. Further, one gets C” (1) =0, if and only if there
occurs an observed datum D; which is prohibited by hy-
pothesis H;, i.e., there is an i for which a;”>0 and
pi|H=0. In other words, C®(I)=0 for a logically ex-
cluded hypothesis.
If & has a definite frequency distribution as expressed by
(4.11), then C® will converge to
Zlai log «;

=

C=CN)=———— . (5.7
Za; log plil])

It is of importance to note that if there is one and only
one [ which makes a perfect match, (5.4) with v= «, then
that H; will finally win out with g{/) =1, since such H; will
certainly make A(l), (4.15), maximum. However, the hy-
pothesis H; which is given credibility unity as »— o does
not necessarily exhibit a perfect matching. If two hypotheses
are statistically equivalent in € and show both perfect
matching, then their final credibilities will be proportional
to their respective a priori credibilities; see (3.28).

Another quantity which may be used for the same pur-
pose as C(I) is

ip(i!l) log p(i|I)

col)y=—— (5.8)

n

Z o, log plil1)

=1

6. Inverse H-theorem for inductive entropy

® A. Statement of theorems
By the use of inductive probability distribution g(J), one
can define an “‘entropy” function

U» = _Zlq(v)(]) log ¢(I) , 6.1)




which measures the uncertainty about the hypotheses. The
largest possible value of U is log N which corresponds to
the case where ¢‘)(I) assigns an equal probability to all
hypotheses in 3C. Its smallest value is zero, which means
that one of the hypotheses is true and all the rest are false.
We can prove the following two theorems, which in a sense
express a tendency of the U™-function which is opposite
to the H-theorem.

Theorem: If g (I} has a limit for v— = independent of ¢'(I),
and if the logical refutation leaves more than one
hypothesis, then

U'> U =0, y=finite . 6.2)

Theorem: If the empirical data has a definite frequency dis-
tribution, then except for a finite number of the
first values of v, U is “expected” to decrease
monotonously, i.e.,

Uw<um, forv<u . 6.3)

The first theorem is obvious, since U™ >0 because of
the remark in the last paragraph of Section 3 Cand U =0
due to (3.29). The term “expected” in the second theorem
is used in the sense of (4.6), hence (6.3) represents an
“average” behavior of U® in many series of experiments.

In an individual series B of experiments, the U will
fluctuate about the monotonously decreasing curve, be-
cause of the effect discussed in (4.9), (4.10). Later in this
section an estimation of this fluctuation for large » will be
made for the case U =0 and shown to decrease with ».

® B. Proof of second theorem

The premise of the second theorem is that ¢ is given,
as in (4.6), by

qO ) F ()

g =§q(0)([')1:<")(l') (6.4)
with

FO=4(DY , (6.5)
A= H[pl]l) ,0<4)<1 . (6.6)

In these expressions, v can be considered as a continuous
variable, and —d U /dv will represent the information gain
per stage regarding the right hypothesis. We shall demon-
strate that for » larger than a certain lower bound,

(r)
<0, ©7)

from which (6.3) follows. It should be noted that the hy-
potheses which do not belong to ¢ have A(I) =0, hence
g (I) =0 for »>1 according to the present approximation.

Taking any one I, of the hypotheses belonging to X
H,EX (6.8)

as standard, we introduce new variables 5(I) and x(/) by

(1) Al)
1>x(I

B = q(m ,)>0 =405

B(I) is a measure of the a priori credibility and x(I) is a

measure of the confirmability. x(7) =1 for / belonging to X.

Then, it is easy to see that we can write

>0,/€9 . (6.9)

U<v>=§_§: , (6.10)
with
X =57‘3(1)xv(1) (6.11)
YO =26()x*(1) log (")) —

Z8(1)x*(1) log B()x"(D) 6.12)

where the summation with regard to I extends over J.
Then, the derivative:

dU; = [XAY ) fdy) — (dX D d) YO/ (X )2 (6.13)
becomes
‘%V(i) BT (B

log [B()x* (D)} In [x(I') /x(1)} . {6.14)

Adding to this expression another expression obtained
from (6.14) by an interchange of I and I, one obtains

2(x(v))2id(%) =§§B(1)XV(1)6(1’)xV(I’) X

B | )
B =) ™ =D - (®13)

Now if log [3(1)/8(1')] and log [x({)/x(I')] have the same
sign, then we have obviously

log =2

B XU o 6.16
By ™ x) < (©19
If log [B(1)/B(I')] and log [x(])/x(I’)] are nonzero and have
opposite signs, then we have again (6.16) for v satisfying

B x(l)

() n X7 - 6.17)
If log {B())/B(I"]=0, and log [x(J)/x(I")]#0, then (6.16)
holds for any ». If log [x(1)/x(I")]=0, then

Bx() | XU _ o :
B ) " x(l) (©18)
no matter what value log {3(/)/3(I'}] may have. Therefore,
we conclude from (6.15), (6.16), (6.18)

du® (6.19)
dv
for v large enough so that (6.17) is satisfied for those pairs
(, I') which have different x’s. For a finite » larger than the
lower bound set by this consideration, relation (6.19) can
be interpreted as the “‘expected” behavior of U®, Thus
the inverse H-theorem is proved. Further, if all the hy-

log —~—-~

— log ===

log
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potheses are given equal a priori credibilities, then the
lower bound of determined by (6.17) becomes zero. Hence,
the theorem is true for any ».

® C. Evaluation of fluctuations

If we use a single experimental series ®® to calculate U®
with the help of the empirical «’s, then the value of U™ is
bound to show some fluctuation about the “expected”
curve of U™, However, since the fluctuation of the em-
pirical s, as was shown in (4.10), decreases with increasing
v, it can be expected, at least within a certain limitation,
that the fluctuation of U about the smooth curve also
becomes very small for large ». As an example, we shall
now give an estimate of the order of magnitude of the fluc-
tuation of U™ for large v in the case where U®—0 as
V— 0,

This last condition means that in the expression of U,
(6.1), one of the g(]). say, ¢”(I,) becomes very close to
unity for larger v, and all the remaining ¢ (/) become close
to zero. Because of the nature of the function x log x, the
contribution to U™ from ¢*’({y) then becomes negligible
compared with the contributions from other ¢™(I), I#1,.
In the same way, in the expression of the small fluctuation
UM of UM:

8U® =—2bq(1) log ¢(1) (6.20)

we can ignore the term corresponding to f,. In the denomi-
nator of the expression, (4.3), of ¢*(I), the term cor-
responding to I’ =1, will be very large compared with the
other terms. Therefore, we can write (4.3) as
©(J) (1)
g q“d p
= gy H[p(, B

_ a1 pli|l)
=Sy P l:Zm n IIO)] for I=%I, , (6.21)

from which follows

64( ) 1)
a0

~Ea Cill) (6.22)

with
Cil)=Inp(ii)— I p(i|ly) . (6.23)
With the aid of (4.9), we derive from (6.22)

g (1) dg Iy _ ,
S ~PE D (6.24)

with
DU, T =Z~y¢Ci(I)C5(I’)—(Z'in,-(I))(ZwCi(I’)) . (6.25)
On the other hand, (6.21) shows that the order of mag-

nitude of ¢ (I) can be written (putting v;=vy; and as-
suming g (1) = g (1y))

g(l) =e ¢ | (6.26)
with
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G(l) = —2viC(l) . (6.27)

where G(/) must be positive because g"(I) with 71, be-
comes very small for large ». From (6.24) and (6.25),
we obtain

g (Noq(IY = D(I, I')v exp | ~[GU)+GI)]} . (6.28)

Substituting (6.26) and (6.28) in the square of (6.20),
we obtain

BUMe~ 2 X D, IGIHGI)v

Il I =1,

exp { =[G +G)]} 6.29)

The square of the entropy U itself is, according to (6.26),
U= X X GG
(U™) = [,#[OG(I) (v

exp | =G +G)]} . (6.30)

Therefore we see that both U™ and its fluctuation tends
to zero with increasing v, as was expected. It is true that
(6U™)? vanishes more slowly with increasing » than
(U®)?2, but this should not be disconcerting, since the in-
ductive entropy U, in the same way as the physical
entropy, does not change its usefulness if one adds to it an
arbitrary constant. For instance, we can use V= (log
N—U)/log N as a convenient measure of ‘“‘certainty”.
Then the fluctuation of V¢ is very small compared with
V' itself for large v.

The above discussion refers to the case where X consists
of only one hypothesis ;. If X consists of more than one
hypothesis, the situation is not so simple.

® D. Decrease versus non-increase of entropy

Next, we can ask whether U™ can reach its minimum value
at a finite ». This will happen if and only if there is a number
», such that dU /dv=0 for v>»,. To investigate this ques-
tion, one should first note that the factor 8(H)x*(NB(I") x*(I')
in (6.15) is always nonzero at a finite ». Therefore, dU®/dv
becomes zero only if (6.18) is the case for all pairs (7, I')
in §. For I=1', (6.18) is self-evident. For I1’, (6.18) holds
if x(f) =x(I") and/or

BID/BAY) =[x} [x(D)]”

This last equation, for a pair x(I)#x(I'), may happen to
hold for a particular value of », but then it will not hold
any value of v larger than this value. Therefore, in order
that dU®/dv=0 may hold for v>w, it is necessary and
sufficient that x(J) =x(I’) for all pairs in §. However, as
we have seen before, the I's belonging to X have the
largest value of the x’s. Hence, the condition is satisfied
only if g=X. If this is not the case, then dU™ /dy will tend
to zero only with v— 0. At this limit, x*(/) in (6.15) for I
not belonging to X will vanish because x(/) <1, and the
terms corresponding to two I’s both belonging to X will
vanish because then In [x(I’)/x(I)]=0. Hence, U reaches
its minimum value only at the limit r—=, except in a
special case X =4. In this last case, dU®/dv=0 for any




v>1. Of course, this conclusion, as well as other results
discussed here, is based on (4.6).

® E. Uncertainty about law and uncertainty about outcome
It should be noted that

dU® .

-4 (=0) (6.31)
represents the information gain per stage regarding the
limiting hypothesis, i.e., the law.

The uncertainty or ignorance U regarding hypotheses
should not be confused with the uncertainty regarding the
outcome of an individual observation as estimated at stage
v. This last quantity should be expressed by

EC ==2p®(i) log p (i) , (6.32)
with
PO =2g()pli| (6.33)

in accordance with (2.10) and (3.1). A similar but different
quantity is

<E(1) > ==2g"(1) 2p(i|1) log plil1) (6.34)

which may be characterized as the expected value of the
extent of the law. It is obvious that both quantities converge
to the same value with v— e, namely the extent of the
limiting hypothesis. If the hypotheses are disjoint in the
sense that for a given i, there is only one I such that
pli| 1) #0, then

EM=U»+<EN>" , (6.35)

but (6.35) does not hold in general cases.

The largest possible value of (6.32) is log n. If the a priori
probability ¢‘®(/) is such that p@(j) =1/n, then E® will be
log n. In such a case, we have

EOLE® | p=1,2,.... (6.36)

This is, in a sense, comparable to the result (6.2). How-
ever, in a general case one cannot expect any definite
tendency in the behavior of E¢ as a function of ». An ex-
pression corresponding to (6.15) becomes in this case

2(X )2 . dT() =§ ) E %B(Dﬁ(l’)x”(l)x”(l’)p(i |G| 1) X

IE”ﬁ(I/I)xy(I//)p(i/ |1//)

I (6.37)

() :
n X(I,) IOg I/EH B(I///)x,,([///)p(i | [Nl)

The fact that E does not show a definite tendency with
regard to v in a general case may seem disconcerting, for as
we accumulate observational data one must become more
“reliable” with regard to the outcome of the future observa-
tion. This disconcerting impression stems from a confusion
between the concepts of ‘“‘uncertainty” and ‘“‘confirma-
bility.”” “Uncertainty” here merely measures the statistical
spread in D, and E® is a kind of average of this uncertainty,
whereby the averaging is made with the help of ¢™(I),

which at a finite » still strongly depends on the a priori
estimation ¢‘9(/).

A possible measure for the empirically accumulated in-
formation regarding the outcome of an observation may be
obtained by a quantity like
ZcOna ) llog n+Zp(11) log pi1D] 5 (6.38)
but no simple theoretical foundation can be put forward to
justify a formula of this kind.

7. Simulated experiments on IBM 704

® A. First urn problem

The urn contains ten balls, of which a certain fraction
1,/10 are white and the remaining fraction (10—/o)/10 are
black. The observation consists of taking one ball from the
urn, determining its color and returning it to the urn (n=2).
The considered hypotheses are eleven in number (N=11),
and are of the type:

H(): I balls out of the ten are white, and the remaining
(10=1) balis are black, [=0, 1, 2, . . ., 10.

H(I) is the correct hypothesis, i.e., the law to be discovered.
The process under investigation is one in which the credi-
bilities of hypotheses gradually concentrate on H(fo) as the
number of observations increases. If we assign 0 and 1,
respectively, to white and black, then we have

p(01D =1/10, p(1|I)=(10—1)/10 . (7.1)

The machine simulation consists of producing the num-
bers 0 and 1 randomly at the ratio of Io/(10—1o). For this
purpose, a well-tested random number producing program
has been utilized. The assumption of “‘definite distribution™
is thus secured.

The first series of experiments was carried out with Ip=3.
Under this condition, H(0) and H(10) will be “‘logically”
refuted sooner or later, since H(0) contradicts the appear-
ance of one white ball and H(10) contradicts the appearance
of one black ball. Thus JC consists of H(I) with /=0, 1, 2,
..., 10and g consists of H(I) with I=1,2,...,9. As re-
gards the a priori credibilities, we have tried three different
cases: (i) equal a priori credibilities are given to all eleven
hypotheses; (i) deliberately, a higher a priori credibility
is given to a wrong hypothesis H(7), viz., ¢®(7) =12/22
and q©(J) =1/22 for I57; (iii) a higher a priori credibility
is given to the right hypothesis, viz., ¢ (3) =12/22 and
g"(I)=1/22 for I=3. The experiments were continued in
each case until the observation number » became 500 or
more. The same sequence of random numbers was used in
all three cases. In this sequence, JC was retrenched to
with »=35.

The smallest number », for which the inductive entropy
satisfies the condition,

U"<0.01 forv>w,, (7.2

was found to be vo=330 in case (i), »,=330 in case (ii)
and v,=258 in case (iii). The smallest number », for which
the credibility for the correct hypothesis satisfies the
condition,
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¢(3)>0.99 forv>w , (7.3)

was found to be »;=258 in (i), »1 =258 in (ii) and »v=115
in (iii). Outside these slight numerical differences, the be-
havior of the different quantities was the same in all
three cases.

The random sequence up to v =500 contained 149 whites
(0’s) and 351 blacks (1’s), the ratio of the whites to the total
number being 0.298 instead of 0.3. The confirmability
C™(3) of H(3) serves also as a measure of this ratio in this
case and gave 0.999984 at v=500.

Figs. 3, 4 and 5 refer to the experiment of case (ii), i.e.,
the case where a high a priori credibility is given to a wrong
hypothesis H(7). Figure 3 describes the behavior of the
credibilities for the correct hypothesis H(3), for the wrong
hypothesis H(7) on which a high weight has initially been
placed, and for the hypothesis H(2) which is an immediate
neighbor of the correct hypothesis. Since p(i|2) is numeri-
cally close to p(i|3), the chance is high that ¢(2) remains
relatively large compared with other hypotheses whose 7 is
more removed from 3. ¢("(3), starting from 1/22=0.04545
at »=0, becomes definitely larger than 0.9 from »=203
on. ¢®(7), starting from 6/11=0.54545 at v=0 be-

Figure 3
Urn Problem 1.

comes definitively less than 0.1 from »=6 on. The quantity
g (2), starting from 0.04545 at v =0, rises to higher values,
including a maximum value 0.57003 at »=75, but decreases
finally to become definitively below 0.1 after » =202. Rough-
ly speaking, after » =200, everything smoothly settles down
towards the limiting situation. At » =500, ¢/(2) =0.131090
X107, g (3) =0.999986, ¢ (7) <107,

In Fig. 4 the full lines show ¢’(I) for all eleven values
of I for v=0, »=8, v=32 and »=128. At »=0, an out-
standing weight is placed on /=7. This effect still remains
slightly at »=38, but the weight is already shifted towards
the smaller values of /. At v=32, the entire weight is con-
centrated in the region of I=2, 3, 4 and 5. At v=128, I=3
is already very large compared with others, although /=2
and I=4 still survive. For larger values of v, of course,
I=73 becomes overwhelmingly large at the expense of all
others. The broken line shows the confirmability C(1),
1=0,1,2,...,10at v=128. It is 0.999962 for /=3.

Fig. 5 shows the inductive entropy U as function of ».
The curve, of course, is the result for one particular random
sequence. If one took an average of many such sequences,
one would obtain a smoothly decreasing curve.

The credibilities (1), for 1=2, 3 and 7, as functions of v. I =3 is the correct hypothesis. The a priori credibilities are: q©(2) =

q©(3) =0.04545, g(7) =0.54545.
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® B. Second urn problem

In the foregoing example, there was included in 3C a hy-
pothesis which is identical with the hidden law. In other
words, there was an I for which C®(I) will become unity
as y— o, l1.e., a perfect matching is realized for this /. In
terms of A’s of (4.15), this means that there is only one /
for which A(/) takes the maximum value and that this maxi-

mum value is equal to the empirical counterpart Haf"’,

=0
see (4.15) and (5.4).

In the next example there is no hypothesis which cor-
responds exactly to the hidden law. That means there is
no I for which C™ (1) will become unity for v— «. How-
ever, the experiment will be so arranged that there will be
one [ for which A(I), of (4.9), will be larger than for any
other A(I)’s. In this case, according to (4.18), the credibility
of this particular I will become unity in spite of the fact
that its confirmability never becomes unity.

The random number production is such that 7,/10 be-
comes 1/3, i.e., ““0” and “1” are produced randomly at the
ratio of 1 and 2. The set 3C of hypotheses is the same as in
the preceding example. We can reinterpret this new problem

Figure 4

Urn Problem 1.

The full lines represent the credibilities q¢"(I), for v=0, 8,
32, 128, as functions of I. The weight shifts from I1=17 to
I=3, and finally =3 only remains. The broken line gives
the confirmability C(I), at v=128, (function of I}. C(I)
=0 for I=0 and 10, for they are ‘“‘logically excluded.” At
v— oo, both ¢'*(3) and C®(3) become unity in this case.

1.0

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

/
0.1

Q) (1), a0128)])

by assuming that the urn contains 30 balls, of which 10 are
white, The hypotheses are artificially restricted to the fol-
lowing types:

H(I): 31 balls out of the 30 are white and 30—3I balls are
black. I=0,1, 2, ..., 10.

Then, the hypothesis nearest to the truth will be H(3),

which means that there are 9 white balls. This H(3) is ex-

pected to obtain credibility unity at large values of ».
Under the circumstances described above, we have

(I0=1/3 N a1=2/3 N
p(0]3)=03 , p(1]3)=0.7,
p(0|4 =04, p(1]4)=0.6, (7.4)
from which follows
A(3)=0.52776 , A(4)=0.52415 , (7.5)

C)(3)=0.99593 , C(4) =0.98534 .

Therefore, we can see that H(3) and H(4) are in a good
competition. A slight fluctuation of o’ and o, from the
limiting value 1/3 and 2/3 can swing the balance between
g (3) and g™ (4). In particular, if at a certain number »,
C®(3) and C(4) happen to be equal, then H(3) and H(4)
are equally well “confirmed.” Therefore we can expect, as
in formula (3.28), that for such a », the ratio of ¢‘”(3)
to ¢©'(4) simply becomes the ratio of the a priori credibil-
ities, ¢ (3) and ¢®(4). In one of the experiments, in which
g (3) was put equal to 12/22 and all other a priori credi-
bilities were put equal to 1/22, we happened to have at
v=470,

CU™(3) =0.991504, CU™(4) =0.991535 . (7.6)

Thus, H(4) was slightly better “confirmed” than H(3). At
this point, the credibilities were

g™ (3) =0.922382, q“(4)=0.0776184 . (7.7

The ratio is 11.884, while ¢(®(3)/q®(4) = 12.000. The slight
difference in favor of H(4) is due to the fact that C#(4) is
larger than C#9(3),

The experiments described in Fig. 6 is the case where all
the a priori credibilities are equal, ¢@ (I} =1/11. At v=1000,
the confirmabilities were found to be

C000(3y =0.995035, C1°0(4)=0.986962 . (7.8)

The discrepancy of these values from their respective theo-
retical limiting values is of the order of 0.1%,. The credi-
bilities of H(3) and H(4) at »=1000 were

q10(3) =0.995536, qU09(4) =0.446419 X 1072 .  (7.9)

It goes without saying that the convergence ¢ (3)—1 is
much slower here than in the previous case. This can be
seen by comparing Fig. 4 and Fig. 6.

® C. Kochen’s pattern-recognition problem'

This problem is an attempt to make a computing machine
guess a hidden pattern existing in a sequence of binary
numbers. The items, i.e., the elements of D, are different
binary numbers of five digits, #=32. The number of pos-
sible patterns (hypotheses) are 2"—1=4,294,967,295. But
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Figure 5
Urn Problem 1.

The inductive entropy function U™ as a function of v in an experiment, illustrating the “Inverse H-Theorem.”
30
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Figure 6

A case in which the credibility of one hypothesis
tends to unity although its confirmability tends to a
value less than unity.

(Unfortunately, this fact cannot be seen clearly on the scale
used here.) The full lines are the credibilities, the broken line
is the confirmability at v=1000. Comparison with Fig. 4
will show how convergence is worse in this case.

q(")(1), cO1000) (1)

Figure 7
Kochen’s pattern problem.

The correct hypothesis is (X1XX0). The a priori credibility of each of 243 hypotheses is put equal to 1/243. g™ (1) and C(1)
are the credibility and the confirmability of the correct hypothesis (X1XX0). g (2) is the credibility of a wrong hypothesis
(XXXX0), which however cannot be ““logically” excluded. The scale of ¢(2) is amplified by factor 10 as compared with that of
q(1). The confirmability of the wrong hypothesis (XXXX0) is exactly 3/4 of C®(1), therefore is not entered in the chart.
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Kochen’s choice of patterns is such that a pattern can be
expressed as a ternary number of five digits, in which a digit
can be occupied by 0, 1 or X. The meaning of such a ternary
number as a pattern is that the symbol X is allowed to take
the value 0 or 1. For instance, (00X11) contains two items
(00011) and (00111). This is very much the same as the
idea used in the expression (2.17). The number of hy-
potheses becomes then N =3%=243, which is still very large,
but considerably smaller than 2"—1. The dimension W(I)
of hypothesis 7 is 2¢, where a is the number of X’s in the
ternary expression of the hypothesis. Under the “homo-
geneity assumption,” (2.3), the extent and intent of the
hypothesis are given by E(J)= log W(I)=a, and (J) =

n -
W ={(5—a).

Kochen’s original problem is to make a computing ma-
chine guess the hidden hypothesis when the machine is
shown various numbers, together with information as to
whether the numbers do or do not belong to the hypothesis,
Kochen’s ingenious methods to make the machine behave

log -

Figure 8

Kochen’'s pattern problem.

The full lines represent the different paths by which the in-
ductive entropy U™ decreased in ten different runs. The a
priori credibilities are q©®(I) =1/243. The broken line rep-
resents the average of these ten experimental values. The
broken dotted line represents the average of ten other ex-
perimental values of U based on the a priori probabilities

intelligently in this guessing game are quite remarkable and
are expected to be published before long. In Kochen’s ex-
periment, the machine is often shown a number which does
not belong to the pattern and is informed to this effect.
In our experiment, however, which is a model of the
methods of natural sciences, the machine is shown only the
numbers which do belong to the hypothesis. In order to
conform with the homogeneity assumption, the numbers
belonging to the hypothesis are shown to the machine in a
random fashion with equal frequency for each number.
In the series of experiments described here, the true hy-
pothesis (law) is X1XX0 which contains 8 different items,
and these numbers are given to the machine at random with
equal probabilities. The a priori credibilities (1), I=1,
2, ..., 243 are, in one experiment, assumed to be uniform,
i.e., g(1) =1/243 for each I. In another experiment ¢g‘®(I) =

W(I)/% W(I'). But, as expected, this difference in the a

priori probabilities is effaced very quickly as the observa-
tion accumulates. The credibility of the right hypothesis

Figure 9

Kochen’s pattern problem.

This graph shows the detail of the dependence of U™ on v,
which looks almost like an exponential decrease. The a priori
probabilities are q")(I)=1,243. This is not an average
curve, it represents the actual values of an individual run.
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Figure 10

Kochen's pattern problem.

The quantities E®, (6.21), and (E(I))", (6.23) plotted
against v. The a priori credibilities are g"(I) = W(I) J2W(I).
The theorem (6.25) is illustrated. r

falls within 0.19} of unity after =12 in all the runs. The
inductive entropy U decreases almost exponentially after
v=7 and becomes less than 0.001 after »=15 or 20. See
(6.30). The confirmability is a stringent test for any hypoth-
esis, and C(I) of the correct hypothesis, i.e., C(X1XX0) is
still 0.983 at v =184. But there is no doubt that C(X1XX0)
becomes unity at a very large ». In the present experiment,
hypothesis (XXXX0) is not logically refuted, since all the
specimens of (X1XX0) are also specimens of (XXXX0).
This hypothesis (XX XX0) belongs to § of the experimental
data B ensuing from the law (X1XX0). In one experiment,
g of (X1XXO0) increased almost uniformly with », while
g™ of (XXXX0) increased a little at lower values of » but
finally disappeared with further increasing values of ».
C™ of (XXXXO0) is just 3/4 of C of (X1XX0), therefore
remains finite. This means the credibility of (XXXXO0) be-
comes zero, while its confirmability remains finite. The
product of confirmability and credibility may be a good
conservative measure of the goodness of a hypothesis.
The results are plotted in Fig. 7. The a priori probabilities
of all the 243 hypotheses are set equal to 1/243. The hy-
pothesis /=1 is the correct one, i.e., (X1XX0); /=2 means
a wrong hypothesis (XXX X0).

The behavior of the inductive entropy is depicted in
Figs. 8 and 9. No exception has been observed to the mo-
notonous decrease of U® in any individual case in this
problem.

The quantity E® defined in (6.32) and (6.33), and
< E(I)y> defined in (6.34) are plotted in Fig. 10. These
quantities roughly correspond to the ignorance regarding
the individua! outcome at stage ». The a priori credibilities
here are given to be proportional to the dimension of each

hypothesis, i.e., g@(I)=W(l) /2 W(I’). This means, accord-
ing 1o (6.33), r

PO =ZI‘ WDl )/ § w{) (7.10)

where p(i|1) is 1/W(I) if I includes i, and is zero otherwise.
The numerator gW(I)p(iU) will then become a number

of hypotheses including a given item, i.e., 2°=32. The de-
nominator is equal to

5>2' 5) ‘ 5)23 2022 <5>2 2¢
(0 +<1 2°2+<2 ' +<3) VY

5
+<5>25:(2+2 5=1024 .

Hence, p©@(i) = 1/32=1/n. This satisfies the condition under
which the theorem given in (6.36) was derived. We can
indeed observe in Fig. 10 that relation (6.36) is satisfied.
Both E® and <E(I)>¢ converge, as was predicted, to
the extent E(J) of the correct hypothesis, which is 3.
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