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Information-Theoretical Aspects 
of Inductive and Deductive Inference 

Abstract: By a straightforward application of Bayes’ theorem of probability, the behavior i s  discussed of 
the credibilities (inductive probabilities) of competing hypotheses as functions of an increasing body of 
relevant empirical data. It i s  shown how the  effect of a  priori credibilities persists in the evaluation  of credibilities 
in general,  except in the important limiting cases investigated. An “inverse H-theorem” i s  mathematically 

demonstrated, according to  which the entropy function defined in terms of the credibilities shows a net  de- 
crease in time. This  decrease i s  not necessarily monotonous in  an  individual case, but i s  monotonous in the 
“expected” behavior of the inductive entropy function. Three machine-simulation experiments of inductive 
inference  on  the IBM 704 are described. The first two concern the classical problem of guessing  the ratio of 
white  and black balls in an urn. The third experiment concerns  guessing a hidden pattern obeyed by a se- 

quence of binary numbers. 

1. Introduction and methodological remarks 

e A .  Need for nmchine sinlulation of inductive process 

Efforts in simulating human cognitive processes on com- reference also to deductive inference. Those readers who 
puting machines have recently shown surprising progress, are not particularly interested in  nonmathematical, me- 
as exemplified by Gelernter’s geometry-problem-solving thodological arguments are invited to pass from this point 
machine’ and Samuel’s checker-playing program.*  One of to  the beginning of Section 2. 
the most interesting features  found in some of these ad- 
vanced programs is that  the computing machine which was 
primarily designed to carry out deductive inference seems 
to be executing some task which constitutes part of in- 
ductive inference. This may easily be observed, for  in- 
stance,  in  the case of Samuel’s checkers program; in which 
various criteria (hypotheses) for winning are evaluated on 
the basis of empirical data obtained by the machine during 
games. Admittedly, the available criteria are first chosen in 
this case by men and given to the machine. 

These newer developments in programming suggest that 
a practical need will  be felt more and more acutely in the fu- 
ture for  a well-founded mathematical  method of executing 
as much as possible of what is called inductive inference, 
including hypotheses testing. A quest of such a  method 
may provide  also  some clue to  the basic methodological 
questions, such as whether a machine can perform the en- 
tire inductive process, including the so-called “creative” 
work which is often considered a necessary ingredient of 
inductive inference. Without pretending to give any ulti- 
mate answers to such basic questions, the present paper is 
intended to be a  contribution to mathematical analysis of 

208 inductive inference as  a whole, making necessarily some 

e B. Conditions for a mathematical model of induction 

The present paper may be considered as a possible mathe- 
matical explication of the  procedures involved in inductive 
inference. No claim is made that  human intelligence actual- 
ly follows or should follow precisely the prescriptions 
derivable from  this explication. Neither is it contended that 
this form of explication covers all the  subtle aspects of in- 
ductive inference. It is only a mathematical model. The 
reader will find, however, that many of the  important 
features of inductive inference are adequately represented 
in this model theory. In the following, we shall mention ten 
important features of inductive inference which any ade- 
quate theory of inductive inference should incorporate  in 
some way or another,  and which the present mathematical 
model indeed does. Admittedly, these ten conditions may 
not be  sufficient but are certainly necessary. 

(1) Role of deductive inference. Inductive inference con- 
tains, as  a necessary ingredient, a  constant  comparison of 
the deductive consequence from  a hypothesis with the ex- 
periment. Accordingly, the model theory of inductive 
inference must permit deductive inference to play a cor- 
responding role within its framework. 
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(2)  Logical refutation bv counterexample. This is the 
most elementary step in inductive inference, in which a 
hypothesis is disqualified when the hypothesis excludes the 
occurrence of a certain event (observed datum) while actual 
experience shows that this forbidden event in fact occurs 
(is observed).  This is the only part of the inductive process 
where deductive logic is the sole arbiter.  It is surprising 
that many philosophical papers are still written at this ele- 
mentary level of consideration. Nevertheless, this process 
of logical refutation must be included in any theory of 
inductive inference. 

( 3 )  Continuous measure of preferential co/Ijiclence  on hy- 
potheses. The essential theoretical difficulty concerning the 
process of inductive inference stems mainly from the  fact 
that there usually exist a great number of, indeed often 
infinitely many, hypotheses which are not logically refuted 
by the available evidence, and which are not necessarily 
unanimous regarding the  outcome of an observation which 
is not yet made known. For this reason, inductive inference 
is often declared to be “logically” ill-founded. It should be 
noted, however, that  in  actual  human inductive inference, 
we usually place preference on  one hypothesis to  another 
even though both are not logically refuted. There seem to 
be two sources for such preference. One of these two sources 
will  be discussed under (5) below. The  other source is the 
fact that the body of evidence is capable  not only of refut- 
ing or not refuting a hypothesis but also of furnishing a 
continuous degree of support  to a hypothesis. For instance, 
suppose that there are two hypotheses H I  and H z ,  and 
that the first hypothesis H I  allows the occurrence of 
two events Dl and D? with nonvanishing probabilities, 
while the second hypothesis H ?  allows only the oc- 
currence of Dn. Suppose further that the actual body of 
evidence consists only of Dt. Then neither H I  nor H s  is 
logically refuted, but we have to place preference on hy- 
pothesis H., for it better fits the experimental data. This 
degree of preference will depend on the probabilities 
placed on Dl and Dz by H I ,  and also the preference of H S  
must be stronger if the number of Dz in  the body of evi- 
dence is larger. This simple example is  sufficient to show 
that we must be allowed to attach a continuous measure of 
preferential confidence, or credibility, or inductive proba- 
bility,3 to each of the competing hypotheses. We shall 
agree on the  convention that the value of credibility equal 
to unity (the largest possible value)  would mean that the 
hypothesis is a ‘‘law’’ and the value equal to zero would 
mean that the hypothesis is totally incompatible with ex- 
perience. A logically refuted hypothesis will have credi- 
bility zero, but  there may be cases where the credibility of a 
hypothesis tends to zero in the limit with an increasing 
body of evidence, even though  the hypothesis is not logi- 
cally refuted. 
(4) Successive approach. The essence of scientific method 

resides not  in discovering an absolute truth but  in suc- 
cessive improvement of knowledge. This is true whether 
the  term “improvement” means the applicability of a 
theory to a broader  domain of experience, or the capability 
of a theory in yielding more precise agreement with the 
experimental measurement within a given domain of  ex- 

perience, or a better fit of the predicted frequency dis- 
tribution of various results with the experimental frequency. 
This basic nature of scientific method must be reflected in 
any theory of inductive inference. Thus it seems natural to 
require that  the theory be based on a procedure by which 
we “modify” or “improve” the  evaluation of credibility in 
the measure as the body of evidence accumulates. In  our 
model, we  use  Bayes’ Theorem as the basis for  the  formula 
for improvement of the evaluation of credibilities. It is not 
contended that this is the only justifiable way to establish 
such a  formula,  but this approach certainly has many attrac- 
tive features. 

( 5 )  Effect of judgme~~t  from broader experience. A test 
of hypotheses must be defined  by some observational op- 
eration,  and such a test must be instrumental in the above- 
mentioned successive improvement of the evaluation of the 
credibilities. However, in this actual  evaluation, enough 
flexibility must be left to accommodate  the  consideration 
originating from  a  broader field of experience, of which 
the test in question represents only a small part. Such a 
flexibility  is needed to permit a unifying structure of a 
“theory” covering a wide area of experience. Such broader 
consideration also serves greatly to invent new hypotheses 
as well as to degrade useless hypotheses before the test. 

(6) Absolute  certainty of validity of hypotlzesis denied. 
No hypothesis should be declared to be a law (i.e., credi- 
bility unity) on the basis of a finite number of observed 
data. This is  closely connected with the  fact that  it is im- 
possible to derive a conclusion (or a hypothesis) for an 
infinite number of cases from the experience of a finite 
number of cases. 

(7) Existence of law with objective validity. Notwith- 
standing  the  remark (6) above, we cannot deny the existence 
of a law (probabilistic or deterministic) governing a limited 
area of experience, for such denial would amount  to re- 
nouncing scientific quest in general. Corresponding to this 
situation, it must be guaranteed that some hypothesis, 
whether or not already considered, reaches credibility unity 
in the limit  where the size of the body of evidence becomes 
infinitely large. And this selection of hypothesis must be 
independent of any preconceived judgment, except in the 
case where there is more  than one “equivalent” hy- 
pothesis. 

(8) Distinction between credibility and confirmnbility. As 
stated under ( 3 ) ,  credibility is the degree of preferential 
confidence. In other words, it is a relative weight among the 
competitive hypotheses. As was  seen in ( 5 ) ,  the credibility 
is bound to be influenced by the experience at large, except 
in the limiting case discussed under (7). Distinct from cred- 
ibility, there must be a certain measure of the degree to 
which a test (which is a series  of the same type of observa- 
tion) confirms a hypothesis individually taken, completely 
independent of the  other hypotheses and of the experience 
outside the test in question. This degree of confirmation 
will  be called confirmability and will  be normalized so that 
it becomes unity when the confirmation becomes “perfect.” 
Although credibility and confirmability are conceptually 
distinct, a high confirmability must  tend to increase the 
credibility. 209 
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(9) Room for new hypotheses. Usually we cannot  from 
the  outset  think of all the possible hypotheses to cope with 
a certain series of experiments. On the  contrary,  a new 
hypothesis usually occurs to a scientist after he has accumu- 
lated a  certain amount of experimental facts. Therefore, 
the model theory of induction  must be such that we can 
add a new hypothesis at  any stage of the process of induc- 
tion and let it compete with the other hypotheses which 
have already been considered. In this case, of course, past 
experience must also be reviewed in  the light of the new 
hypotheses. 

(10) Anti-ergodicity and inverse H-theorem. Inductive  in- 
ference is a process such that  the distribution of weights 
(credibilities) becomes increasingly concentrated on a de- 
creasing number of cases (hypotheses) no matter how  widely 
one  distributes  the weights initially. Loosely speaking, this 
is contrary to the tendency of  an ergodic stochastic chain in 
which, no matter on what case one might put the weight 
initially, the  distribution of weights gradually spreads out 
to all the cases, which are “connected” to the initially 
chosen case. Correspondingly, there must be a theorem show- 
ing the tendency opposite to the  H-theorem if the (induc- 
tive) entropy is defined suitably with the  aid of credibilities. 
As the  H-theorem shows an increase (or nondecrease) of 
the entropy with time, in  a  certain sense of the average 
value, the inverse H-theorem can be expected to show a 
decrease (or non-increase) of the inductive entropy with the 
growth of experience, in  a certain sense of the average. 
It seems that the inverse H-theorem  has deep philosophical 
implications, as  has the usual H-theorem  (entropy principle 
of thermodynamics) proved to have in  the past. But we re- 
frain from philosophizing on this matter here. 

e C. Method based on Bayes’  theorem 

Now  a few more  remarks explaining how these require- 
ments are actually satisfied by the method based on Bayes’ 
theorem. To make these explanations briefly,  let us first 
define some convenient symbols. Let D be the set of all 
possible outcomes of a well-defined observation of a well- 
defined kind of  phenomena; let @(”) be a sequence of the 
outcome of the past v observations of the kind defined in 
connection with D; and let X be the set of hypotheses 
under consideration that allow one  to calculate the de- 
ductive probability of obtaining any one of the elements of 
the set D. Thus aj(.) is the body of evidence so far obtained. 
If two hypotheses give the  same deductive probability dis- 
tribution with respect to a  certain subset of D, we  sha!l 
say that these two hypotheses are probabilistically equiva- 
lent with respect to this subset. We denote by q(”i(H) the 
credibility we attach  to hypothesis H (a member of X) 
on the basis of a3(”). We might have included the cases 
where X contains an infinite number of hypotheses, but 
we confine the discussion to the finite case, since the 
mathematical complications due to infinity  may mar  the 
more important issues. 

The use of the continuous measure @“(H) satisfies Re- 
quirement (3) above. Bayes’ theorem is, in accordance with 
Requirement (4), a  mathematical  formula permitting cal- 

210 culation of q ( ’ i ( H )  from q(”-*)(H) with the help of the vth 
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observed datum and of the deductive probabilities attrib- 
uted to the vth datum by various H’s. The use of deductive 
probablilities here  corresponds to Requirement (1). Bayes’ 
theorem is such that if a hypothesis H gives zero deductive 
probability to the vth observed datum, then q(”)(H) of this 
hypothesis becomes zero no matter what value qcY--I)(H) 
may have. This shows that the process of logical refutation, 
Requirement ( 2 ) ,  is automatically performed by  Bayes’ 
theorem. However, Bayes’ theorem, being a prescription 
for  obtaining q ( ’ ) ( H )  from q(”-l)(H), cannot determine, as 
far  as v is finite, the actual values of the credibilities, leav- 
ing arbitrary  a set of constants, q(O)(H), which may be in- 
terpreted as  the a priori credibilities of hypotheses. Here, 
the  term a priori is to be understood  as “not solely deter- 
mined by @”, i.e., the empirical data of the  observation 
as specified in the definition of 33. We can capitalize on 
this fact to accommodate  Requirement (5) by letting q(O)(H) 
represent the judgment from  a  broader experience. The 
only exception to this general rule (that q(O)(H) are needed 
for evaluation of the values of q(”)(H) with a finite v) is the 
case where the process of logical refutation leaves one  and 
only one hypothesis. This case, however, happens very  sel- 
dom.  The indispensability of the a priori credibilities be- 
comes particularly manifest when there are tw-o hypotheses 
which are probabilistically equivalent with respect to the 
outcome included in 0 3 ‘ ” ) .  In this case, the  ratio of the 
credibilities of these two hypotheses becomes simply the 
ratio of the  a  priori credibilities attached to these hy- 
potheses, which may be evaluated by other tests or by a 
broader  consideration. 

An immediate consequence of the above observation is 
that  no hypothesis can be crowned as the law on the basis 
of a finite size of the empirical data, agreeing with Require- 
ment (6). Indeed, any credibility evaluated on the basis of a 
finite depends on the a priori credibilities, and a change 
in  the  a  priori credibility causes a change in a posteriori 
credibility at a finite stage v. The evaluation of these a  priori 
credibilities may be considered as  a  product of another 
inductive process of broader  range or higher level, but this 
inductive process, again being based on a finite experience, 
can never give definite values of these a  priori credibilities. 

On the  other  hand,  the present paper also allows one to 
draw some comforting conclusions, in compliance with 
Requirement (7). If a set of probahilistically equivalent 
hypotheses is considered as a single hypothesis with regard 
to 33, then we can show that, as  the empirical data accumu- 
late, the credibility of  one  of the hypotheses approaches 
unity, Le., q(”)(H)+l with v + w ,  and the credibilities of 
the remaining hypotheses approach zero, no  matter how 
the  a priori credibilities are given. (For a  more rigorous 
discussion of the  condition for q(”)(I f )+l .  see Section 4.) 
It can also be shown that the credibility of each hypothesis 
becomes less sensitive to the  a  priori credibility as the size 
of the empirical data increases. It should be noted that two 
equivalent hypotheses with regard to a specific observation 
defining D may not be equivalent for another specific ob- 
servation. This will help differentiate two hypotheses and 
determine the preference between them. It may also be 
noted that even if it  is guaranteed that q(”)(H)+l with 



v+m for a  particular H ,  the value of q ( ” ) ( H )  for  a finite v 
depends on  the a  priori credibilities of all hypotheses in X; 
hence an  appropriate evaluation of a  priori credibilities is 
always a  great help when v is finite. 

Section 3 assumes the existence of the limit: q(co)(H) for 
v+m, under  a very lenient condition about a(”,, and 
concludes that the limit must be 0 or 1 ,  if a family of 
probabilistically equivalent hypotheses is counted as one 
hypothesis. On the other  hand, in Section 4, it is assumed 
that  the frequency in @(“I of various events belonging to 
3 has  a definite distribution,  and it  is then shown that this 
limit q(”) (H)  indeed exists and is 0 or 1 ,  provided that  a 
hypothesis whose confirmability (see below) becomes 
unity at the limit is included in X. 

J As regards  Requirement ( 9 ,  it should  be  noted that a 
hypothesis always gives a deductive probability for  the 
occurrence of each possible event included in 3, and  that 
this probability distribution can be compared with the 
actual frequency of occurrence of various events in a(’). 
The present paper gives in Section 5 a nice measure for 
the degree of agreement of these two probability distribu- 
tions (one predicted by H and the other empirical), thus 
offering a method to determine  the confirmability required 
in (8). This confirmability is, of course, different from  the 
credibility, but it will  be shown that if the confirmability 
of a hypothesis becomes unity (its maximum value) in 
a(”), then this hypothesis is bound to be granted 
q(”) (H)  = 1 .  But on  the  other  hand, if none of the hy- 
potheses reaches confirmability unity, then  a hypothesis 
whose confirmability is the highest will reach credibility 
unity. This may be called a “law” since it  is the “best” 
available hypothesis. This is the  reason why  we use 
q(”) (H)  = 1 as the definition of a law. A stricter definition 
of a law would be to require both credibility and con- 
firmability to be unity. It may be noted that  too strong 
reliance on the confirmability at a finite v is misleading, 
since, in contrast to the credibility, the confirmability can 
accidentally become unity at a finite v even though its 
value at v-m is not unity. 

)Objections have been raised to  the application of Bayes’ 
theorem to  the problem of inductive inference. An answer 
to some of these objections will  be presented in a concrete 
example in Section 4C. The gist of the view proposed in 
this paper  in this connection is the extreme flexibility 
which is allowed in evaluating the a priori credibilities. 
They have to depend greatly on the circumstances under 
which the experiments are performed. The a  priori credi- 
bilities can even be altered  in  the middle of a series of ex- 
periments. As a  matter of fact, in  natural science or in 
daily life, all conceivable hypotheses are not usually 
thought of at  the beginning. On the contrary, as a series of 
experiments goes on, a scientist or layman may suddenly 
hit upon  a new hypothesis. This means that the a  priori 
credibility of such hypothesis is zero at the beginning of the 
series of experiments and suddenly takes  a finite value in 
the middle of the series of experiments. In such a case, 
all the  past experiments can be reconsidered in  the light of 
the new hypothesis. This satisfies Requirement (9). 

As far  as  Requirement (10) is concerned, Section 6 will 

give a detailed mathematical  proof based on Bayes’ 
theorem  for the anti-ergodic tendency and  the inverse 
H-theorem. There will also be given an estimate of the  in- 
evitable fluctuations of the inductive entropy about its 
“average” behavior, which satisfies the inverse H-theorem. 

D. Some general considerations 

So far the  outline of  our mathematical model has been 
explained as if every mathematical detail had a factual 
meaning in every inductive process. Of course  in some 
practical cases, the numerical values of the deductive prob- 
abilities as well as those of the credibilities are very difficult 
to evaluate. Even in those cases, the general nature of our 
approach seems to give some insight into the problem of 
inductive inference. Particularly interesting is the way the 
a  priori credibilities intervene in  the  estimation of the 
a  posteriori credibilities when the experience is finite, which 
is always the case with human experience. It should be 
emphasized once more that the  term a  priori here means 
“not directly determined by the observed data 6.3,’’ and 
does not mean “independent of all human experience”. 
Indeed, it is very often  the case that the  a  priori credibilities 
can be derived from the experience of a  broader scope. 
For instance, if the  observation concerns a particular 
phenomenon in  the  domain of pure physics, most physicists 
will agree to give higher a  priori credibilities to those hy- 
potheses which can be expressed in terms of a differential 
equation than  to those hypotheses which cannot.  This 
preference is undoubtedly a result of an inductive process 
based on experience in a broader domain, or at a higher 
level, covering a great variety of physical phenomena. 
Therefore, the determination of the so-called a  priori credi- 
bilities must again be subjected to the process of gradual 
improvement by comparison with the experience at  the 
higher level. This inductive determination on a higher level 
of the a  priori credibilities of a lower level  will again neces- 
sitate  the use of higher level a  priori credibilities. This 
process thus  has to be continued indefinitely along  a long 
ladder of “levels.” If we push this affair further and further 
along this ladder, which might be infinite, it is  very well 
possible that  the hypotheses in question can be formulated 
only in so vague and ill-defined terms that they can only 
be evaluated by a quasi-esthetical criterion, such as  the 
principle of simplicity. It should be reminded that a “higher 
level hypothesis” means  a hypothesis interconnecting and 
synthesizing many lower-level hypotheses. The whole struc- 
ture may thus be compared to a pyramid-like network of 
ladders, of which the top  part can at present be described 
only in  a rather foggy fashion. 

In view of these circumstances, it is usually impossible 
to give a definite numerical value to the  a  priori credibilities, 
and this fact leaves room for what may be called subjective 
elements. Because of the  property (7) mentioned above,  the 
ultimate conclusion will  be free from the subjective pre- 
judgment. However, for  a finite size  of experience, these 
subjective elements can be as great a help as a  hindrance  in 
selecting the right hypothesis. While the credibility cannot 
be completely free from the subjective elements, at a finite V, 
the confirmability has  an objective meaning. 21 1 
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To illustrate some of the  points of our  approach, let US 

take an example analogous to  the  one discussed by N. 
G ~ o d m a n . ~  Let us consider two hypotheses: 

H I :  Copper is electrically conductive, 
Hz: Copper observed on or before December 31, 1960 is 

electrically conductive and copper observed on or after 
January I ,  1961 is  not electrically conductive. 

These two hypotheses are probabilistically equivalent 
with respect to all  the available data  up  to the present. 
Therefore from a purely empirical standpoint, it may be 
argued, they should  be given an equal weight. If H? is 
logically refuted by an observation on January 1, 1961, 
then one  can take  another hypothesis H r 2  similar to H2 but 
with a later  date.  Then, H I  and H t 2  must  be again given an 
equal weight. From  the point of view of the present paper, 
if two hypotheses are probabilistically equivalent, the a 
priori credibility becomes a decisive factor in determining 
their credibilities. These a priori credibilities have to be de- 
termined by an inductive inference of higher level. For a 
scientist, it is perfectly natural  to ask credibilities of the 
following hypothesis K and  of its negation x, although this 
is  not  the unique  question to be asked in this connection. 

K: The content of a basic natural law (or a highly credible 
hypothesis) does not depend on a particular point of time, 
ix., on a  date. 

K:  Negation of K. 
- 

Goodman4  has shown that we can rephrase H I  and H z  in 
such a way that  the time-dependence appears  in a state- 
ment equivalent to H ,  and  the time-independence appears 
in a statement equivalent to Hz.  But  this was done only by 
concealing the time-dependence in a symbolic predicate. 
We are  not interested in syntactical content of a proposi- 
tion, but  in  the pragmatical, extrasyntactical content of 
propositions. Thus HI is pragmatically time-independent 
and H z  is pragmatically time-dependent. 

Now hypothesis K has a perfect match with past ex- 
perience, in the sense that the deductive probability dis- 
tribution (0 and 1 here) and  the actual empirical probability 
distribution coincide. On  the other hand,  it is not so with 
hypothesis E. If hypothesis is true,  then  there is a non- 
vanishing deductive probability that a natural law changes 
on a particular  date,  future or past. But no basic natural 
law is known to have changed in the  past. This  means that 
past experience shows that the events to which the hy- 
pothesis gives nonvanishing probability have not happened. 
Hypothesis K is then  favored,  although neither hypothesis 
is logically refuted. This  corresponds to the example 
quoted  under  Requirement (3). Then K has a perfect con- 
firmability, while a has  not,  and if the a priori credibilities 
for K and r a r e  not extremely different, then  the a posteriori 
probability of K is higher than  that of 

However, K and again may be given a priori credibil- 
ities overwhelmingly in favor of E. Then, this difference can 
offset the empirical evidence in favor of K. In fact,  there 
may be a philosopher who believes that  the hypothesis J 
that everything changes in time enjoys an overwhelmingly 

212 large credibility. This may cause him to attach an extremely 
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large a priori credibility to K. It is in principle possible to 
examine empirically the credibility of J and  that of its 
negation 7 but there always remains an  arbitrary element 
due  to  the a priori credibilities of J and 7. The philosopher 
can  take  advantage of this arbitrariness to increase the 
credibility of J .  

The main  point of this paper as applied to the present 
example is that for any given ratio  of the a priori credi- 
bilities given to K and E, the empirical data sufficiently 
accumulated (if in favor of K )  will  finally  give a higher 
credibility to K than to On the other hand,  it is not de- 
nied that for a finite size of empirical data,  an extremely 
high a priori credibility attached to i? may offset the em- 
pirical data in  favor of K .  This may seem to be an endless 
seesaw game, but it is not  quite so. The reason is that an 
infinitely large empirical data, if available and if in favor 
of K, will give, according to  our theory, a credibility equal 
to unity to K,  no matter how large an a priori credibility 
one may attach to x. This  means that  the see-saw game is 
doomed to end in  accordance with the edict of  the empirical 
data, whatever it may be. As far as K and  Rare concerned, 
one might say that the game (at today’s level of scientific 
knowledge) has advanced so much in favor of K that  one 
can no longer offset it except by “distorting”  the  entire 
picture of the universe to a ridiculous degree. An example 
would be  undue emphasis on a thesis like J ,  which will 
certainly ignore the practicalities of life. The term dis- 
tortion as used here might be best interpreted as  the a priori 
credibilities in flagrant contradiction to the confirmabilities 
determined by experience. 

E. Intent and extent of hypothesis 

So much for the generalities of inductive inference. We 
shall now briefly summarize the  contents of Section 2, 
which deals with deductive inference. We shall first define 
X and D more closely and clarify the function of (a special 
type of) deductive inference. The definitions there will be 
made so that the relationship between the elements of X 
and the elements of D can represent not only the  relation 
between hypothesis and observational datum  but also, to 
some extent, the relation between concept and particular 
object and  the relation between pattern  and individual 
figure. The main  interest  in Section 2 is the information 
balance in the process of deductive inference, whereby the 
information is defined with respect to the individual out- 
come of observation. The knowledge that a certain phe- 
nomenon obeys a certain law contains a certain amount JL 
of information,  but  this is not  enough to identify the  in- 
dividual outcome. For the latter  end, one needs an addi- 
tional information  in  the amount of Jc, which may be  sup- 
plied  by auxiliary conditions, such as  the initial or boundary 
conditions. On  the  other hand,  each law (or hypothesis) 
has its extent, E, which measures essentially how many in- 
dividual outcomes are allowed by the law. Each law has 
also  its intent, J ,  which measures essentially how specific 
and restrictive the law  is. The results of Section 2 are ex- 
pressed by three theorems, IL = J ,  E+J=con- 
stant, where “constant”  means  “independent of which 
hypothesis is the law”. The last  relation shows that  the 



larger the  intent the smaller the  extent. The intent of a law 
or a concept usually means something more semantic, but 
what is called “intent” here may be considered to be the 
numerical aspect of the  “intent”, somewhat in a similar 
way as  the term  “information”  has  both semantic and 
numerical aspects. For instance, the semantic  intent of a 
law. dzy/dx2 = 0, is that the curve is a straight line (among 
other possible curves), but the numerical intent of the 
same law  is expressed as the logarithm of the  ratio of the 
number of all possible curves to the  number of all possible 
straight lines. (In order  to avoid complications due  to con- 
tinuum, we shall interpret differentiations as differences, so 
as  to make everything enumerable). The semantic aspect 
of a hypothesis is actually extremely important in selecting 
the hypotheses to be considered, since  it can be  used as  a 
guide in retrenching X from  the set of all conceivable 
hypotheses to the set of hypotheses of a certain type, mak- 
ing the convergence of credibilities much faster. For in- 
stance, the number of hypotheses which can be expressed 
as &y/dxr = 0, (Y = 0, 1, 2 . . . ) , is extremely small compared 
with the  number of all possible hypotheses, each of  which 
represents any arbitrary class of curves. The semantic in- 
tent is also extremely important in concept building and 
pattern recognition. The semantic intent of a concept is the 
internal bondage existing among  the elements and making 
them cohere as  one family. The stronger, Le., the  more 
restrictive, this bondage is, the smaller the family will be; 
and the numerical intent measures this smallness. 

0 F. Source of information 

It should be clearly understood from the foregoing that  the 
“extent” of a law  is the uncertainty (entropy) regarding 
the  outcome of an individual observation, while the induc- 
tive entropy is the uncertainty regarding the correct hy- 
pothesis. In inductive inference, the credibility starting  from 
a widely spread distribution over many hypotheses gradu- 
ally concentrates on  one hypothesis, as neatly expressed by 
our inverse H-theorem. Thus we are, in some sense, ab- 
sorbing information regarding the correct hypothesis as 
we accumulate empirical data. But through this decrease of 
inductive entropy in inductive process, the evaluation of 
the extent of a law becomes more reliable, Le., the un- 
certainty about the uncertainty about the  outcome of an 
individual observation becomes smaller. Other than these 
two kinds of entropy  functions,  there is a  third kind of en- 
tropy function which, as shown elsewhere,5 increases in the 
process of deductive inference. All of these entropy  func- 
tions represent certain  kinds of information  quantities, 
which are interrelated in  a  certain  intricate fashion. This 
paper gives  very little consideration to this matter, except 
in Section 6E. 

In any event, it is a very interesting future task to investi- 
gate the flow and balance of information in all inductive 
and deductive activities.6 We can, however, immediately 
foresee two difficulties in such an investigation. One of 
them concerns a  question as  to whether the  natural phe- 
nomena in themselves (without preconceived concepts or 
categories) have any definite information  content, which we 
supposedly absorb in  the inductive process. The second con- 

cerns a question as to what is the real source of information 
contained in  a very high level hypothesis, such as  the 
principle of simplicity. Is it really to be found, as  our ex- 
plication may  seem to lead us to believe, in experience? 

As a mild warning against too hasty a mechanistic inter- 
pretation of cognitive processes, let us borrow a few 
words of  wisdom from Gaston Bachelard’ who enounced 
them in an entirely different context: “On ne peut etudier 
que ce qu’on a d’abord r8ve. La science  se forme  plut6t 
sur une riverie  que  sur une experience et il faut bien des 
expkriences pour effacer  les brumes du songe”. The reader 
may be tempted to add either one of the following two re- 
joinders: (1) “Where  there is no experience at all, there 
wi l l  be no reverie either,” or (2)  “Where  there is no dream- 
ing consciousness, there will be no experience either.” 

2. Basic  concepts useful in describing 
deductive inference 

0 A .  Definitions 

We are given two sets of propositions, X { H I ,  H B ,  . . . , 
H I ,  . . . HR.)  and D { D l ,  D?, . . . , Di, . . . D , } ,  and  to each 
element H I  of X are ascribed deductive conditional  proba- 
bilities p(Di  ! H I ) ,  or simply p(i  I I), i = 1 ,  2, . . . , n ,  such that 
p( i  1 I )  is the probability of proposition Di being true when 
proposition H I  is true. These definitions are the  mathe- 
matical basis needed in the following consideration, but 
some  illustrations will be adduced to indicate the  areas to 
which our mathematical formalism is meant to apply. Prop- 
osition Di may be of the following type: By measurement of 
a certain physical quantity in a physical system prepared 
according to a given prescription, one  obtains  a certain 
value, say, Vi. Then HI will be a hypothesis, that is, a 
would-be law,  which is supposed to govern a certain do- 
main of natural phenomena including the  observation  in- 
volved in Di. This is a typical case of hypotheses and rele- 
vant empirical observations. We can also apply the present 
framework of theory, with some necessary caution, to the 
questions of “concepts and  particulars,”  “patterns and 
figures,” and “genera and species.” Proposition H I  may be 
of the type: “The letter is A (abstract concept or pattern),” 
and Di may be a  proposition of the type: “The letter is 
found to be written as a (particular item or figure).” The 
H’s will often be referred to  as hypotheses or patterns, 
and the D’s will  be referred as  data  or items. We assume 
in the present paper that N and n are finite, except in a 
limiting case. In some cases, one H may be a  conjunction of 
more  than one hypothesis. 

In some cases, an observation may find more  than one 
D to be true, if the D’s are not disjoint (not mutually ex- 
clusive). In this case, we can replace ’33 by another D’ 
whose elements are disjoint and can be expressed as  con- 
junctions of elements of D, so that the elements of D can 
be expressed as disjunctions of elements of 23’. If p(i(Z) is 
given  with respect to D, and if Di are independent,  then we 
can calculate p(i I I )  with respect to 9’ from p( i  IZ) with re- 
spect to %. We shall limit ourselves to  the cases where the 
elements of D are disjoint. Thus, we assume 

p(i IZ) 2 0 ;  p ( ~  I r )  = 1 ,  I =  1, 2, . . . , N . i .  (2.1) 
i=l 
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of i ’s ,  but the  actual values of nonzero  components of 
p( i  I I )  are indeterminate. The set of i’s for which p( i  1 I) f O  
for a given I will be called the  domain of I ;  the  number 
of i ’s  in  the  domain will  be called the dimension of I (de- 
noted by W(I) ) .  The  total number of possible patterns,  as 
defined  by their domains (Le., not by the  actual values of 
nonzero p( i  I I ) ) ,  is 2”- I .  However it is often the case, 
for  one reason or another, that N is less than its maximum 
value 2“ - 1 .  This restriction of N often makes the problems 
of deduction and induction manipulable, since 2”-1 is 
usually a prohibitively large number. When the  domains 
of any two patterns of the set X do not overlap, then we 
speak of disjoint patterns. In this case, assuming that  no i 
is uncovered by an H ,  we have 

N 

I x W(I)  =n . 
z=1 

When n and N are given, and further if the N numbers 
W(1), W(2), . . . , W(N) ,  satisfying (2.2) are given, there 
are n ! / W ( l )  ! . . . W ( N ) !  possible sets of disjoint patterns. 
Under similar circumstances, with a less restrictive con- 
dition that the numbers W( I ) ,  W(2), . . . W ( N )  are arbi- 
trary so long as (2.2) are satisfied, the total number of 
possible sets of disjoint patterns will be given by 

s--1 

2 (-l)“k)N(N-k)” . 
k=0 

defined by 

n 

~ ( 0  = -- x p ( i  1 I )  log p( i  I I )  2 0. (2.4) 

The maximum value of HZ), with regard to I ,  is 

(E(I)),, ,ax= log n , (2.5) 

1=1 

if there is a hypothesis such that p(iIZ) =I/#.  Equation 
(2.5) gives the maximum ignorance regarding the outcome 
which can be one of the n possibilities. 

The difference between and E([) ,  i.e., 

J(I)  = log n-E(I) 

called the intent of hypothesis I ,  gives the amount of infor- 
mation regarding the outcome furnished by the knowledge 
that hypothesis H I  and only hypothesis H I  is true. For log 
n is the original ignorance without  any knowledge about 
the hypothesis, and E(I) is the remaining ignorance after 
cognizance is taken of the fact that HI is the law. In this 
sense, J ( I )  may be called the “predictive information con- 
tent,“ or “predictive power” of hypothesis H I .  

In order to determine the  outcome,  one needs a  total 
information in the  amount log n, but  the knowledge of the 
true hypothesis provides an information amount, J( I ) .  

We do not restrict ourselves, however, to the cases of dis- 
joint  patterns in the following. 

Although we can derive various useful results in the 
cases where the values of the  nonzero probabilities p(ilZ) 
are indeterminate, we shall often restrict our discussion in 
this note to the cases where all the probabilities p( i  I I )  are 
given. To handle  the  pattern problems where p( i  IZ) f O  
are indeterminate, it is sometimes useful to assume 

Hence, one needs an additional  information  in the  amount 
log n-J ( I )  = E ( q  to specify the actual outcome. This  in- 
formation is thus the necessary auxiliary information to 
identify an individual, contingent  outcome when the law 
is known. In this sense, it may be said to represent “con- 
tingent”  information. 

To facilitate understanding, the main points of the fore- 
going explanation will be repeated in  the  form of theorems 
with words instead of symbols. First we have 

p(i  I I )  = l/W(Z), if i belongs to the domain of I , 
p(iJI) =O , otherwise . 5 (2.3) (Theorem 1) : ExtentSIntent  =constant, (2.7) 

When a  pattern is treated in this fashion, we shall speak of a 
“homogenized” pattern. We can easily set up experiments, 
as we shall see later in an example in Section 7, so as to 
meet the  assumption (2.3). 

In the general case, where p( i  1 I )  can take any value 
satisfying (2.1), the  number of possible hypotheses H r  can 
be continuously infinite although n is finite. This is a 
very important fact in connection with the  inherent diffi- 
culties of inductive inference. If there are k( > 1) hypotheses 
H I  which have the same probability distribution p(i1Z) for 
all i ’s  in  a subset of D, then we speak of a  k-fold degenerate 
case and these hypotheses are said to be probabilistically 
equivalent in this subset of D. There can of course be more 
than  one set of probabilistically equivalent hypotheses. 

8 B. Intent and extent of hypothesis 

Deductive inference starts with an assumption that  one  and 
214 only one of the hypotheses, H I ,  is true, i.e., it is a “law.” 

where “constant”  means that  it does not depend on I .  
The larger the extent, the smaller the intent.  Next, we have 

(Theorem 2) : Intent  =predictive power of hypothesis, 

(Theorem 3) : Extent =necessary  contingent (2.8) 
information, 

where the predictive power of a hypothesis means the  in- 
formation provided by the hypothesis if it is true, and the 
contingent  information of a hypothesis is the amount of 
information necessary to identify an observed datum D 
when one hypothesis is known to be true. 

The reason why the words “extent” and “intent” are 
used will become clear if we consider the case of a  “homog- 
enized” pattern, (2.3). E(Z) is simply the logarithm of the 
number of cases included in I .  We have here 

E(I) = log W(I) , and 

J(f) = log n/ W(I)  . (2.9) 
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pothesis H I  y a y  be  assigned a weight Q(I )  such that 
Q(Z) 2 0 ,  and LQ(I) = 1 .  Then  the probability given to the 

outcome i will be x Q ( I ) p ( i  I I ) .  The natural generalization 

of “extent” and “intent” will then be 

J =  logn-E , (2.10) 

which refers not to a single hypothesis but to  our proba- 
bilistic knowledge about possible hypotheses. The meanings 
of E and J as predictive power and necessary auxiliary 
information or contingent  information remain the same. 

C. Example I 

Take  a rectangular coordinate system, x,y, in  a plane, where 
x and y can take P discrete values, P being a prime num- 
ber, x,y=O, 1, 2, . . . , P-1. The items considered are 
single-valued functions, y of X, i.e., we assume that there is 
one and only one value of .v for each value of x .  There are 
I Z =  P p  such curves (items),  and the number of possible 
hypotheses is 2 p p -  1 .  It can be shown that there is one-to- 
one correspondence between such a “curve” and  an ex- 
pression 

?;=a~- lxP-1+ap_~xP-2+  . . . +alx+ao, (mod. P )  , (2.1 I) 

where each of a,, ,  a] ,  . . . , UP-], has the same domain  as x 
and y ,  i.e., 0, I ,  2, . . . , P -  1. The expression (2.11) thus 
contains P ’  different cases, as it should. 

Defining “differentiation” by 

f ( x )  = -~ A m )  =f(x+ 1 )  - f (x)  , 
Ax (2.12) 

where f’ is a function of x ,  we can also express any curve 
(2.1 I )  by a  “Taylor” series 

+ . y Y ( x -  1) . . . (x- P f 2 )  
r“-”(o) 
(P - I ) .  

(2.14) 

Here, ~ ( ~ l ( 0 )  is the rth “derivative” of y with respect to 
x at x=O, to which one is allowed to  add any integral 
multiple of P, so that , Y ( ~ ) ( O )  becomes divisible by r! This is 
always possible when P is a prime number, and the co- 

efficient ’9 of x ( ~ - - 1 )  . . . ( x - r + l )  becomes unique, 

and takes any value from 0, 1 ,  2, . . . , P- 1. Thus (2.14) 
can be written 

r !  

b,=O, I ,  2, . . . P-1 , (2.15) 

where the term for r=O under the summation is under- 
stood to mean a  constant bo. 

I n  this expression, there are P coefficients b,, each of 
which can take  any of P different values. Thus (2.13) or 
(2.15) contains n = P p  items. We can thus characterize an 
item (curve) by a sequence of numbers A = (ao, al . . . , 
U K ~ )  or B=(bo, b,, . . . , 

Suppose now the set X of patterns consists of P patterns 
defined by 

(2.16) 

The solution of (2.16) can be written as 

for x > x o ,  and, in particular, for XO= 0, we have (2.14) or 
(2.15) with 

B=(b, , ,  bl, . . . , b T - 1 ,  0,  0 .  . . 0) . (2.17) 

The  pattern (2.16) contains Pr different items (curves). 
Hence, pattern H(r)  defined by (2.16) has  a  domain of 
dimension W(r)  = P. Assuming the  equal probability 
to each curve, Le., assuming the homogeneity hypothesis 
(2 .3) ,  one obtains  the extent and intent of pattern H(r)  
from ( I  .9),  

E(r) = r  log P , 
J(r) = ( P - r )  log P , 1 (2.18) 

satisfying E(r)+J(r )  = P  log P= log n. 
When no knowledge is available about a curve, all P 

Coefficients in A = (a3, al, . . . , at.-,) or in B =  (br, b,, . . . , 
br,-,) are arbitrary, each coefficient  being capable of taking 
any  one of P possible values. If  each curve has  the same 
probability, i.e.,  if we have (2.3),  our ignorance about the 
curve is given by log n = P log P. By the knowledge that a 
curve belongs to H ( r ) ,  the  number of arbitrary coefficients 
is reduced to r,  each coefficient taking one out of P possible 
values. Thus  the ignorance is reduced to r log P. The de- 
crease in ignorance, i.e, information,  due to  the knowledge 
of the pattern H ( r ) ,  is J(r) = ( P - r )  log P, which is the 
predictive power of the  pattern H ( Y ) .  When the  pattern is 
known, then all we need in order  to specify one particular 
curve is to determine r coefficients, bo. b,, . . . , b7--1, which 
allows P‘ combinations. The information which allows one 
to select one  out of P equally probable possibilities is 
E(r) = r  log P. Thus, this quantity is the necessary auxiliary 
information to specify one  particular curve when it is known 
to belong to H ( r ) .  

In deduction of a  particular  solution  from a “natural 
law” expressed by a differential equation 

(2.19) 
215 
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one needs the initial conditions given by r values: 

Y(O), Y’(O), . . * , Y(F’)(o) . (2.20) 
6 

The natural law (2.19) provides information J(r) and  the 
initial conditions (2.20) provides information E(r).  

We shall give an example of curves and their expressions 
in the forms (2.11),  (2.13) and (2.15) for  the case P = 7 .  4 

Figure 1 gives the curve from which we can calculate all 
the derivatives, as shown in Fig. 2. The expansions (2.14) 
and (2.1 1)  are in this case 

5 

3 

y ( x ) = 2 + x + - 2 x ( x ” ) ( x - 2 ) + ~ ~ ~ ” 1 ~ ~ ~ - ~ ~ ~ ~ - ~ ~  

= 2 + 2 ~ ~ + 4 x ~ + 2 . x ~  , (mod. 7 )  . 2 
a. 
A 

This can be  understood as a special case of the law 

Ax 
with initial conditions ’:h 0 1 2 3 4 5 

” A 5 Y 4  , 
0 

y(0) = 2, y“’(0) = 1 ,  y(*’(O) =o , 6 

y@)(O) = 5,  ~ ( ~ ’ ( 0 )  = 6 . . x  

The law provides information  in  the amount (7 - 5 )  log 7, 
while the initial conditions provide information in the Figure 1 
amount 5 log 7, the sum 7 log 7 being just sufficient to Example of a process of deductive inference. 
identify one  out of 7’ possible curves. The ”shaped curve here is expressed  as 

e D .  Example 2 
y=2+2x2+4x3+2x4 (mod. 7 ) .  

There are five urns, of which a  certain  number  contain 
only black balls and the rest contain only white balls. 
The hypothesis H(r)  states that r( =0, 1 ,  2,  . . . , 5) urns 
contain only black balls and (5  - r )  urns  contain only 
white balls. One is supposed to pick one ball out  of  an 
arbitrary urn without knowing which category the  urn be- 
longs to.  The outcome is either black (i= l) or white 
(i = 0). Thus, 

P(1 I r) = 4 5  , 
p ( O ( r ) = ( 5 - - ) / 5  . (2.21) 

In this case n = 2 ,   N = 6 .  Suppose now that H(2) is known 
to be true, i.e., H(2) is the law, then we obtain 

4 2 )  = - (2/5)  log (2/5)   - (3/5)  log (3/5) =0.971 , 
J(2) = log 2+(2/5)  log (2/5)+(3/5)  log ( 3 / 5 )  =0.029 , 
E(2)  +J(2) = log 2= 1 . (2.22) 

In order to obtain  a  unique outcome, we have to know 
which category an urn belongs to. The information amount 
which enables us to answer this last question is obviously 
equal to - (2/5)  log (2/5) -(3/5) log ( 3 / 5 ) ,  since the  prob- 
ability of an  urn being black is 215. Thus we can see that 
this necessary additional  information is exactly equal to 
the “extent” E(r) of (2.22). 

3. Inductive  probability 

e A .  Credibility and Bayes’ theorem as algorithm 

Inductive probabllity or “credibility” should be a measure 
of confidence we place in a hypothesis on the basis of the 

216 observed data. Credibility thus is a  function of past ex- 
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perience, and we should not consider an a priori credibility 
except as  an auxiliary concept, insofar as we are concerned 
with one particular inductive process. Our task is to expli- 
cate this vaguely conceived notion of credibility. 

An experience consists of a sequence a(”) of v consecu- 
tively observed data: a(”) = ( i l ,  i2, . . . , i v ) ,  where i l ,  i 2 ,  . . . , i, 
are the first, second, . . ., vth observed data,  and can be any 
one of the D’s defined in the previous section. On the basis 
of a(”) we attach  to each hypothesis H I  a  certain value 
q ( l [  a(’’)), or simply q ( ” ) ( I ) ,  in such a fashion that q(’)(Z) 
serves “best“ as  an instrument to predict the result of the 
( v + l I t h  observation by the formula: 

p‘”’(i) = = y ( z ) p ( i  11) , (3.1) 

where p(”)( i )  is supposed to be the  probability of Di being 
observed in  the ( ~ + l ) ~ ~  observation. Such  a  quantity q(”)(Z) 
may be considered as  a  more explicit definition of credi- 
bility. However, there seems to be no unique way to expli- 
cate the word “best”  in the foregoing sentence. The follow- 
ing consideration should be considered as  one of the possi- 
bilities. Since ~ ( ~ ) ( i )  must be non-negative no  matter what 
values p(i  11) may have, we have from (3 .1)  

q(”)(l) ‘20 . (3.2) 

Zq(”’(,1) = 1 . (3 .3)  

Also, by summing (3.1) over i ,  we obtain from (2.1) 

I 



1 3 

2 4 

3 3 

4 4 

5 3 

6 2 

i 

I al 
Figure 2 
Deductive inference. 
The values of derivatives are derived fron? the values of y 
taken  from Fig. I .  The information below the stair-shaped 
heavy line is not necessary if the law A5y/Ax5=0 is known. 

The essential feature of inductive inference lies in the 
gradual change or “improvement” of q(’)(l) with v, and 
there seems to be a  sound reason, based on Bayes’ Theorem, 
to assume  the following formula to be an  adequate ex- 
pression of this process of stage-by-stage improvement, 
“stage” here meaning each value of v :  

We shall not try to justify (3.4) but shall adopt (3.4) as 
an algorithm.8 

Using (3.4) as a recurrence formula, we obtain 

where q(O)(I) may be  interpreted as the  a  priori credibility 
of H I ,  which cannot be determined uniquely by the obser- 
vation &(”. As far  as v is finite, the q(% are affected by the 
q(O)’s. A practically unique induction is possible only if 
q(”)(I)  for large v does not depend appreciably on q(O)(I). 
As far as v is finite, one can  permutate il,  i?, . . . i,. in any 
fashion in (3.5) without changing the values of q(”)( l ) .  
However, if v+ 00, we have to be careful about the order of 
(i,,  is, . . . ), since an arbitrary change of the order may 
affect the limiting behavior of q ( ” ) ( I )  for v+m . 

It should be noted that if q(O)(I) = O  for  a  particular H I ,  

then q(“’(1) = O  for this H r  and  for any v. This amounts  to 
ignoring H I  completely from our list X of hypotheses 
from the beginning. Therefore, we assume that q(o)(Z)#O 
for all H I  in X. 

In order that formula (3.5) yield an improvement of 
q(”)(I)  rather than  a meaningless fluctuation, it is necessary 
at least that q ( ” ) ( Z )  with v-+m converge to a certain 
value 

lim q(”)(I) =q(”)(Z) =q( l )  , for each I =  1, 2, . . . ,N . (3.6) 

Our further interest iies in the  conditions  under which the 
limit q ( I ) ,  (3.6), is independent of q(O)(I). Such a considera- 
tion will also reveal how persistently the effect of qCo)(I) 
remains in most cases. Before undertaking to investigate 
this problem let  us first introduce some characterizations 
of the  observation sequence &(”). 

e B. Definition of e(”) and ;J(“) 

a(“) is the sequence (il,  i?, . . . . , i v ) ,  in which the i ’s are 
arranged in the  natural chronological order of a sequence 
of repeated observation. Let e(a(”)), or simply e(”), be 
the set of the D’s included in a(’). Symbolically, e(”)= 
( Di I Di E a(”)). Obviously, one has 

Y +m 

e(t,Ce(z)Ce”C . . . Ce@)C . . . , (3.7) 

and since 

e(”)CD for  any v , (3.8) 

the sequence of e(.) has its limit 

lim e(u)=e(m)=e . (3.9) 
Y +m 

Since e(”) is a discontinuous set, e(”) will become identical 
with e for large enough values of v. Denoting the smallest 
of such v’s by vo, we obtain 

C?(”j=e , for V ~ V O  . (3.10) 
It is sometimes necessary to consider a sequence ob- 

tained from &(”) by omitting  the first (p- 1) elements: 

a(“) -@(~-1)  = (i ,, i ,+l ,  . . .I. (3.1 1) 

The set of D’s included in 63(m)-&(~-1), (3.1 l), will be 
called S,(m), Le., 

5 (m)=e(&(m)”(P-l)); 51(”)=e . (3.12) 

We have to postulate 

S,,(m) =e for any finite p (3.13) 

to make any intelligible discussion possible in our problem. 
This  postulate (3.13) means essentially that if a datum Di 
appears once at a finite position, it will reappear again in a 
position higher than any arbitrary position. 

Next, let 3‘’) designate the set of those H’s for which 
p(i, I I) #O for p = 1, 2, . . . v. Symbolically, 3‘”) = { H I  Ip(i/I) 
# O  for all Di E a(”)}. In other words, 3‘”) is the set of those 
I’s which have nonvanishing probability p(i  I I )  for  the i’s 
included in e(.). $”) is obviously a  function of e(”). 
It follows then that X-$(”) is the set of hypotheses which 
do not allow occurrence of 0 3 ( ” ) ,  i.e., those hypotheses 217 
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which should be  logicaily refuted by a3(’). From this defi- since @ ) ( I )  # O  and the  factor multiplying q(”)(I)  is non- 
nition, it is clear that zero and the denominator  in (3.5) is finite. Eqs. (3.19) and 

(3.21) allow us to write: #’j= ( H r ! q ( ” ) ( I ) # O )  for a 
(3.14) finite v. 

Since there is a lower bound which is the empty set, the 
sequence (3.14) has  a limit. 

lim $(”)=3(”)=J . (3.15) 
Y +m 

If 4 is an empty set, there will  finally be no single surviving 
hypothesis, after logical refutation.  Then  the whole in- 
ductive process is worthless. Hence, we discuss only the 
case where 

$20 Y (3.16) 
from which also follows, in  virtue of (3.14), 

, p # @  . (3.17) 

The statement (3.16) means that there is at least one hy- 
pothesis which  gives nonvanishing deductive probabilities 
p(i  1 I) for all Di E e. Since $(”) is a  discontinuous set, $(”) 

will become 3 for  a large enough v. Denoting the smallest 
of such v by yo’, we have 

J(”)=<g for v>vn‘ . (3.18) 

We obviously have vn’<vo, where v o  is taken  from (3.10) 
since a new member in e(.) may or may not retrench 3”). 
Hence we still can  maintain (3.18) using vo for vn’. 

If there are k (  > 1) hypotheses H I  belonging to 3(”) which 
have the same distribution p(iII)  for  the i’s included in 
e(.), we say that these hypotheses are probabilistically 
equivalent with respect to e(.), and we speak of a k-fold 
degeneracy in e(”). There  can be more than  one set of 
equivalent hypotheses with respect to e(”). 

a C.  Some inzmediate consequences of our algorithm 

The above definition of e(”) and 3‘”) has nothing to  do 
with our specific algorithm (3.4) or (3.6). We shall now con- 
sider some of the consequences that can immediately be 
drawn from this algorithm.  First, we note that the  factor 
p( i l  II)p(izII)  . . . . p ( i , l I )  multiplying q(”)(I)  in (3.5) is zero 
for  a hypotheses I belonging to X-$(”) and nonzero  for 
a hypothesis belonging to $“j. Since $(*)#De(, (3.17), and 
q(n)(I) #O, the  denominator of (3.5) is nonzero. If 3 =@, 
then q(”)( l )  for v >   v n  would become indeterminate. Hence, 
we get 

If we put q(”)(I) = 1 in (3 .3 ,  it follows that the  numerator 
and the  denominator  must be the same, which means that 
$(”I consists of only one hypothesis. Consequently, at  a 
finite v, q(vj(I)  can never become unity except in the case 
where all but one hypothesis has logically been refuted by 
then. 

a D .  The limit of q(’)(I) for v”+m 

It is very important  to note that we cannot  put v =  00 in 
(3.21), for, q(’ ) ( I )#O can gradually tend to zero at the 
limit v--t m . The existence of the limit (3.20) for H I  E X -3 
follows from (3.5). But,  for H I  E $, we have so far no 
guarantee  that  the limit (3.6) exists. We shall see in the 
next section a sufficient condition  for  the existence of the 
limit (3.6). In this section, however, we shall take  the con- 
verse approach  and assume the existence of (3.6) for 
H I  E $ and examine the consequences of this assumption. 
We can then classify the H I  in $ in two classes, namely, 
those for which the limit q(l)  = O  and those for which the 
limit q(I) #O. -We shall denote  the set of the  latter hy- 
potheses by X. Symbolically, X = ( HI I q(I) #O} . Obviously 
KC$, and we have also q(1) = O  for H I  E X--X. 

Now, if q(I) for H I  E 3 exists, it is necessary, according 
to ( 3 3 ,  that for any cl(>O) there exists a vl(>vn) such 
that 

for v > v l  . (3.22) 

Since this must hold for any v(>vl), i, will take all possible 
i ’s  included in 5,,(”) defined in (3.12). Due  to the assump- 
tion (3.13), this means that i ,  will take all i’s included in e. 
I and I” in (3.22) are those included in 3. Eq. (3.22) will 
obviously be  satisfied  if  lim q(”)(I)  =O. Limiting I in (3.22) 

to those belonging to X, we can conclude from (3.22) that 
for any arbitrary eZ( > 0) there exists a  number v 2  such that 

Ip(iy I I )  -Fq(v-lj(If)p(ip ! 1‘1 I < €2 for v >   v 2  , (3.23) 

where I belongs to X and I‘ belongs to 3, and i ,  is any  one 
of the i’s belonging to e. Note: p( i  I I )  < 1. As we assume 
the existence of q ( I ) ,  we have for any arbitrary c3(>0) ,  

Y +a 

q(’ ) ( l )  = O  for H ,  E X-3(”)CX-3 , 
and consequently the limit (3.6) exists and 

q ( I ) = O  for H r E  32-3 . (3.20)  (3.24), 

This means that the process of logical refutation is built p(i i r )  =TqfIr )p ( i l I ’ )  , (3.25) 
in  our formula (3.5). From (3.19) follows that for v > v n  
we can limit I’ in (3.4) and (3.5) only to those I’s  which where i E e, I E X, I‘ E X. Now the lefthand side of (3.25) 
belong to 3. depends on I ,  while the righthand side does not. Hence, 

From the same argument, it follows also that any two I’s, say I I  and I?, belonging to X, must have the 

(3.19) l q ( v j ( o - - q ( ~ )  1 < e 3  for v > v g .  (3.24) 

If both e p  and c3 were zero, one would get from (3.23), 

q(”)(I) #O for  a finite v and 
same distribution. 

218 for H I  E $(“ I  , (3.21) p(i  I Ii) = p ( i  1 1 2 )  , 11, I?  E X, i E e . (3.26) 
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This means that X must consist of a set of probabilistically 
equivalent hypotheses with respect to e. If the degree of 
degeneracy of these hypotheses is k ,  then k will be number 
of elements in X. Now this conclusion has been reached 
with the  assumption that c 2 = 0 ,  e 3 = 0 .  If c2, cQ are  not 
zero, (3.26) will be replaced by 

Ip(iIId-p(iII2) I < e t  , 11, I 2 E  X , (3.27) 

in such a way that we can  make c4 arbitrarily small by 
taking c2 and e3 sufficiently small, i.e.,  by taking v 2  and 
v 3  large enough. In consequence, the conclusion (3.26) 
will hold in the limit. 

As regards the values of q(1) for I belonging to X, we 
can immediately see from (3.5) that 

(3.28) 

Hence q(Z), for H I  E X, depends on q(O)(I) in general. In 
order  that q ( I )  may not depend on q(O)(l), it is necessary 
thus that the set X consist of only one hypothesis, and 
for this hypothesis 

q ( I )  = 1 . (3.29) 

If there is no degeneracy in X with respect to fu from the 
beginning, then (3.29) will always hold. However, it should 
be noted that even if there are degenerate hypotheses in < X  

with respect to 33, they may drop  out of X. The necessary 
condition is that  the hypotheses belonging to X have no  
degeneracy with respect to e. 

E. S U I I ~ U ~ J ,  

Summarizing the foregoing argument, we can conclude 
the following. The two conditions (3.13) and (3.16) being 
always assumed, the existence of the limit, q( I ) ,  independent 
of the  a priori probabilities q(O)(Z), implies that q(1) = O  or 1. 

Before we pass to the next section, it may  be of interest 
to note that the definition of 3‘’). therefore of 3, is made 
solely  with the help of the distinction between p(i  11) = O  
and fO. Therefore, even without the knowledge of the 
precise values of the nonvanishing p(i  1 I), we can define 
3‘’) and 3. This process of retrenching the set of possible 
hypotheses from X to 3 through  the intermediary stages 
3‘”) corresponds to a  gradual elimination of inadmissible 
hypotheses by the counterexamples presented by the ob- 
servation @(”). This is a ‘‘logical’’ process based on the 
concepts of “allowed” and “forbidden.” The  further re- 
trenchment of d to X is possible only by a probabilistic 
consideration, which requires the knowledge of the values 
of nonvanishing p(i I I). It may also be repeated that no  
hypothesis will be given credibility unity at a finite stage, 
except in the case where 3 consists of only one element, 
i.e., except in the case where all but  one hypothesis are 
logically eliminated. Also, if q(O)(I) are cleverly given, then 
q ( ” ) ( I )  will approach q(Z) at  an earlier stage of v. 

4. @ with definite frequency distribution 

A .  Conseque~~ces of definite frequency distribution 

In the preceding section, we assumed the existence of 

q(@(I)  independent of the  a  priori probabilities q(O)(I), and 
concluded that the values of q(”’(I) must then be zero or 
one. In that  argument, we required a minimum property 
of @ ( ” I ,  namely TP(”) =e, (3.13). As regards q ( O ) ( Z ) ,  we 
postulated only q@)(r) # O  for all I .  In this section, we 
require a stronger restriction on aS(”) and shall show that 
q(“)(I) then indeed exists in a certain sense of average. The 
requirement on q(o)(I)  is again only qC0)(Z) f O  for all I. 

Take the empirical sequence = (i,, i z ,  . . . iy) and let 
vz be the number of times Di appears in this sequence of 
length v. We define empirical frequency distribution 
ai‘”’(= 1 ,  2, . . . , 11) by 

ffi(”)=!!! (4.1) 
V 

which obviously satisfy 

ff“”20 , xcyi(’.)= 1 . 

The basic equation (3.5) can be written as 

with 

(4.3) 

(4.4) 

where On will  be understood as meaning “one”. By virtue of 
(3.16) and  the  condition q ( O ) ( I )  Z O ,  the relations (3.2) and 
(3.3) are guaranteed. 

We require of 63‘’) in this section that the appearance of 
outcome Di in @(’) be governed solely  by the independent 
probability Prob. (Di) =y i .  In  this case, we shall say that 
@(“) has a definite frequer~c~l distribution. If we take  one 
single @(’I, the actual frequency ai(”) of Di in it will not be 
exactly yi. However, if  we take  a very large number of 
samples of a(”) (with a finite v), the average of the fre- 
quency cy$”) in this population will  be yt. We shall therefore 
be allowed to write (4.4) as 

to describe the “expected behavior” of q ( ” ) ( I )  for  a finite v. 

from  its “expected” value can be estimated on the basis of 
the following calculation. The fluctuation 6 i  of vi, from its 
expected value v y i  

The deviation of q ( ” ) ( I )  for large v in an individual 

6 i = V j ” v y j  , x6 i=o  
i=l 

(4.7) 

obeys the multinominal distribution, which for large v be- 
comes 

n 

Prob. 6?, . . . , 6,) = [ ( 2 ~ v ) ~ ~ - ~ r I y i ] - i  exp ( - X S i 2 / 2 v y i )  . 
(4.8) i=l 

The expected values of &6,, under the restriction xSi=0, 219 
i=1 
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is  given  by 

6Ji= -vyiy, for iZj; 6i2=vyi(l-y~) . (4.9) 

Consequently, the rms fluctuation of from yi is 

- - 

(4.12) 

where A ( [ ) ,  (I = 1 ,  2, . . . , N )  , are non-negative and not all 
of them are zero. Let the largest value of A ( I )  be denoted by 

Max ( A ( I ) )  = A , , ,  , (4.13) 

and let m be the number of I’s which have this value A,,,. 
Then we have the following lemma. 

lirn G(’)(I)  = l/m for  those I’s (whose number is m )  such 

that A ( I )  =A,,, , 
Y -m 

lim G ( ” ) ( l )  = O  for  other I’s . 
Y +m 

(4.14) 

The proof is almost unnecessary, since if we have for two 
I’s, say Il  and 12, A(Il)  >A(12) ,  then lim [ A ( I , ) / A ( I $ ] ” + ~ .  

By writing (4.6) as 
Y ”tm 

n 

F ( ” V  =[(A(I))l’ , 4 0  =mP(iI41’. 9 (4.15) 
2=0 

we immediately obtain from (4.3) and (4.14) 

(4.16) 

for those I‘s for which A(Z) =A,,,. The summation x’ is 
also extended only over such I’s. We have also 

lim q(”)(I)  = O  
Y -+m 

(4.17) 

for those I’s for which A(I)  #A,,,. If there are k degenerate 
I’s for which A ( I )  =A,,,, then these k I’s belong to the 
class of I’s under  consideration with respect to (4.16). 
However, conversely A(I,)  = A(Iz )  =A,,, does  not neces- 
sarily imply that I ,  and I z  are probabilistically equivalent. 
,$ is characterized by A(I) # 0, and X by A(I) =A,,,,,. X-$ 
and ,$-X are respectively characterized by A(I) = O  and 

Now if there is only one I for which A(I )  =A,,,, then 
O#A(I)  #Am,,. 

q(”)(I) becomes independent of q ( O ) ( Z )  and 

220 lim q(’)(Z) = 1 or 0 . (4.18) 
V- 
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The fact that X does  not necessarily consist of proba- 
bilistically equivalent hypotheses may seem to be at vari- 
ance wilth the conclusion of the last section, where X 
consisted of probabilistically equivalent hypotheses. This 
apparent discrepancy stems from the fact that in  the last 
section we assumed the uniform convergence of q(1) for 
any arbitrary obeying only (3 .13) ,  while in this section 
we  have: proved the convergence of average q(I )  for an 
“expected” a j C v )  obeying a  particular probabilistic law 
given by the 7’s. The convergence of q ( I ) ,  as assumed in  the 
last section, is a  more stringent notion than  the convergence 
considered in this section. However, this rather delicate dis- 
cussion becomes unnecessary if X contains  a hypothesis 
for which yi=p(i  11). For, in this case, as we shall see later 
in Section 5 ,  the relation A ( / )  =A,,, is satisfied only by 
those hypotheses which are statistically equivalent in e 
satisfying yi =p(i  i I) .  

Summarizing the results, we can say, under the assump- 
tion (3.16), that if the empirical sequence has a definite 
frequency distribution, then as far as the expected behavior 
is concerned the limits 

(4.19) 

exist and their values are 0 or given by (4.16). In par- 
ticular, if there is only one I for which A(I)  =A,,,,, then 
the limits are either 0 or 1 .  See Section 6 for  the  fluctuations 
about this expected behavior in this case, in particular, 
(6.22) and (6.26). 

e B. Example 1 

It is known that  an urn  contains  a very large number N of 
balls, of which some are white and the rest are black. There 
are N +  1 possible hypotheses H I  (I= 0, 1, 2, . . . N ) ,  namely, 
H I :  The urn contains I white balls and N - I  black balls. 

The experiment consists in taking one ball from the urn, 
determining its color and replacing it back into the urn. 
There are thus two possible data, or events: 

Dl: The ball is white, 
D2:  The ball is black. 

Suppose we repeated v experiments, and obtained VI 

times DL and v2 times D2. The problem is to  obtain the in- 
ductive probability for H I .  We have here 

p(D11 I) :=- , p(D2 I/) = 1 -- I I 
N N ’  

(4.20) 

Since N is extremely large, let us  put 

(4.21) 

(4.22) 

Then q’.”)(x) dx represents the total sum of those q ( ” ) ( Z )  
whose argument I lies between I and I f N  dx. There are 
N dx such I’s. Summation over I can be replaced by an 
integral, so that  for instance, 



(4.24) 

Now the  distribution  function multiplying q(@(x) in (4.24) 
is,  when normalized, 

which has  its maximum at 

x=” 
V l + V ?  . 

The average and the higher moments of (4.25) are 

(4.25) 

(4.26) 

(4.27) 

For large vl>>l, 

( x )  + 
VI + V? 

showing 

(4.29) 

((x*)-(x)*)”*O . (4.30) 

This means that for  a very large number of trials, v = v I  
+ v 2 >  vl>>l, the  distribution f (x )  is sharply concentrated 
about the mean value X = ~ ~ ( ~ ) = V I / ( V ~ + V ? ) .  Therefore, if 
q(O)(x) is continuous in the vicinity of this point, we obtain 
from (4.24) 

which  is the same as (4.23, or in terms of the variable I, 

(4.32) 

which does not depend on q(O)(l) any longer. 

observation is then,  according to (3.1), 
The probability of obtaining the event DI in the (v+ l ) ’< lr  

Coming back to the general case, the  statement that 
(4.31) or (4.32) is true for large v1 (therefore large v), im- 
plies already that a l ( Y ) = v 1 / ( v l + v 2 )  converges for large I ! ,  

see (4.29). If v, becomes extremely large, then (4.24) will 
become 

4(”)(X) = G(s-cu, )  , (4.35) 

where 6(.v-aI) is to be considered to be zero except in  a 
small vicinity of width l j N  of al ,  in which  it takes value 
of the order of N.  Therefore, (4.32) becomes 

q(m) ( I )  = 1 , (4.36) 

for  the particular I which  gives the maximum value of 

a1 log “ + ( I  I -a,)  log 1 -~ N ( :> (4.37) 

provided there is only one such I. And for the remaining Z’s, 
we shall h:lve 

q(”’(I) = 0 . (4.38) 

e C. E . w t w l e  2 

The following problem is an example that could be ad- 
duced as an argument against the use of the Bayes Theorem 
in inductive inference.“ The  author,  on the other  hand, 
would  like to present here his defense of the use  of the 
Bayes Theorem. The experiment consists in determining 
the “head” or  “tail” of a coin after tossing it. The experi- 
ment is repeated with the same coin. The D consists of 
“head(0)” and “tail(l)”.  The hypotheses in question 
are two :  

H ( F )  : 7/rc coitl i s  ( I  jdsificrl, double-headed one. 

H(C) : Thc coir1 i s  N gctrl~irrr orre. 

Thus: 

p(OIF)=l,l)(IlF)=0,p(OIG)=p(l~G)=1/2 . (4.39) 

Suppose we tossed v times and have gotten heads all v 
times. What is the minimum value of v for us to be reason- 
ably convinced that H ( F )  is true?  To make  the problem 
more concrete, what is the minimum value of v to make 
q(”) (F)  larger than 10 times as large as q(”)(G)? Now the 
argument against the Bayes Theorem  runs somewhat as 
follows. The a  priori probability (taken as a statistical fre- 
quency in the real population of‘ all coins genuine and falsi- 
fied) for  a coin to be double-headed is extremely small, 
say, IO-?”, i.e., q(u)(F)/q(U)(G) = Therefore the solu- 

p‘”(D1) = F ~ ” ) ( I ) ( D I  I I )  =m2 V I +  1 3 

which  is the same as the mean value given in (4.27). q‘”(G) - 

(4.33) tion for v of inequality 

-~ q(”’(F) > 10 

When v2=0,  that is, when v observations have consecu- with 
tively  given the same event Dl. then the probability of ob- 
” 

taining Dl in the next observation is, according to (4.33), ___. d”)(F) - 4”’W - - ~ ~ ~ 2 ”  . 2“ 
I ,  q‘”’(C) q(“)(G)(1/2)’ 

p(V)(D,) =E 
v+2 ’ (4.34) is 

(4.41) 

(4.42) 22 1 which is Laplace’s law of succession. v270 . 
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Now, the opponent of the Bayes Theorem says that  any 
reasonable man will be convinced of H(F) after  a small v, 
say, 6 or 7 at most. The Bayes Theorem is therefore un- 
reasonably prudential. 

However, this argument is based on a wrong interpreta- 
tion of the  a  priori credibility: which depends greatly on 
the entire circumstances under which the experiment is 
made.  If,  for instance, one goes to a  nearby grocery store 
and takes  a penny from  an  arbitrary cash register, then 
the  a  priori credibility for this penny to be double-headed 
is extremely small, as  a result of which it will take indeed a 
very large v for  a reasonable man to decide that the  coin 
is false. But if a professor of psychology comes to a subject 
of his experiment, to test human behavior in inductive in- 
ference, then  there is a great deal of probability that the 
professor uses a variety of tricks and gimmicks. Therefore, 
the values of q(O)(F)/q(O)(G) cannot be too small. The Bayes 
Theorem gives v27 if q(o)(F)/q(0)(G) = 1/10, which may not 
be too far  from  a realistic situation. 

The subject, of course, does not use a  mathematical 
formula to make his decision. However, we can attempt  to 
translate his mental process more or less in terms of mathe- 
matical formulae and give some interpretation. An out- 
standing  feature of the  actual situation is that the  a  priori 
credibility does not have a fixed value. As a  matter of fact, 
if a psychology professor starts this experiment before a 
subject, the  latter at the beginning may even not think of 
such a possibility as  a double-headed coin. That means the 
a priori credibility q(O)(F) at the beginning is practically 
zero. But suddenly the possibility of such a hypothesis may 
occur to the subject, and  thus q(O)(F) jumps from zero to 
a finite value. And further, guessing the  motivation of the 
professor, the subject may still increase the value of q(O)(F) 
during the course of the experiment. This kind of consider- 
ation has  nothing to  do with the  gradual change of q(’ ) (F)  
with the  accumulation of the empirical data 63, and there- 
fore must be  attributed to q(O)(F). If  the coin is taken  arbi- 
trarily from  a grocery store cash register, the subject would 
not increase q(O)(F) so much as with the coin taken out of 
the psychology professor’s pocket. 

An interesting fact here is that the  a priori credibility 
can change, even in the middle of the experiments. A similar 
argument  has previously been used  by the author  to repudi- 
ate Loschmidt’s objection to the H-theorem.’O 

5. Confirmability 

A. Comparison of predicted frequency and 
observed frequency 

Equation (4.3) shows that q ( ” ) ( I )  is equal to q ( ” ) ( I )  times an 
empirical weight proportional to F ( ” ) ( I ) .  The larger the 
F(’)(Z) is, the  more  the hypothesis HI is confirmed by experi- 
ments. For this reason, we may use 

1 n 

- log F(’)(z) = log I I [ p ( i l ~ ) l ~ * ( ~ )  (5.1) 
2=0 

n 

= 2 a i ( ~ )  log p(il1) (50) , (5.2) 
i=1 

as a measure of confirmation (per observation) of hypothe- 
sis HI by experiments up to the vth observation. 

The quantity (5.2) takes its maximum value 

if there is a hypothesis which  gives 

p( i  1 I )  =:ai(”) for all i . (5.4) 

Therefore, the quantity 

is a convenient measure of confirmation. and will  be called 
confirmability of hypotheses I at stage v. Indeed, we have 

0 5  C(””(1) 5 1 , (5.6) 

and C(”)(I) = 1 if and only if the “perfect match” (5.4) 
takes place. Further, one gets C(”)(I)  = 0, if and only if there 
occurs an observed datum Di which is prohibited by hy- 
pothesis H I ,  Le., there is an i for which a i ( ” ) # O  and 
p(i I I )  -0. In other words, C(”)(I) = O  for  a logically  ex- 
cluded hypothesis. 

If  has  a definite frequency distribution  as expressed  by 
(4.1 l ) ,  then C(’) will converge to 

(5.7) 

It is  of importance to note that if there is one and only 
one I which makes a perfect match, (5.4) with v =  00, then 
that Hr will finally win out with q(I )  = 1, since such HI will 
certainly make A ( I ) ,  (4.1 5), maximum. However, the hy- 
pothesis HI which is given credibility unity as v-00 does 
not necessarily exhibit a perfect matching. If two hypotheses 
are statistically equivalent in e and show both perfect 
matching, then their final credibilities will be proportional 
to their respective a  priori credibilities; see (3.28). 

Another  quantity which may be  used for  the same pur- 
pose as C(’)(I) is 

6. Inverse H-theorem for inductive entropy 

0 A. Statement of  theorems 
By the use of inductive probability distribution q(”)(1), one 
can define an “entropy”  function 

U(’ )=  + p ( I )  log q(’)(I)  , (6.1) 
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which measures the uncertainty about  the hypotheses. The 
largest possible value of U ( ” )  is log N which corresponds to 
the case where q ( “ ) ( I )  assigns an equal probability to all 
hypotheses in X. Its smallest value is zero, which means 
that  one of the hypotheses is true  and all the rest are false. 
We can prove the following two theorems, which in  a sense 
express a tendency of the U(’)-function which is opposite 
to the H-theorem. 

Theorem: I f  q ( ” ) ( I )  has a limit for v+ 00 independent ofq(o)(I) ,  
atld if the logicul refutation leaves more thun one 
hypothesis, fhen 

U V )  > U(m) = 0, v =finite . (6.2) 

Theorem: I f  the empirical data has a definite frequency dis- 
tribution,  then  except for a finite number of the 
first vulues of v, U(’) is “expected” to decrease 
monotonously, i.e., 

U(@!< - U(”) ,  for v < p  . (6.3) 

The first theorem is obvious, since U(‘)>O because of 
the remark in the last  paragraph of Section 3 C and U r n )  = O  
due  to (3.29). The term “expected” in the second theorem 
is used in  the sense of (4.6), hence (6.3) represents an 
“average” behavior of U(’) in many series of experiments. 

In  an individual series a(”) of experiments. the U‘”) will 
fluctuate about the monotonously decreasing curve, be- 
cause of the effect discussed in (4.9),  (4.10). Later in this 
section an estimation of this fluctuation for large v will be 
made for the case U(”) = 0 and shown to decrease with v. 

B. Proof of secorzd theorem 

The premise of the second theorem is that q(”)  is  given, 
as in (4.6), by 

n 

A ( I ) = n [ p ( i l I ) ] * , ,  O<A(I)<l . (6.6) 

In these expressions, v can be considered as a  continuous 
variable, and -dU(”)/dv will represent the  information gain 
per stage regarding the right hypothesis. We shall demon- 
strate that  for v larger than a certain lower bound, 

i=0 

du‘”’<O , 
dv - 

from which (6.3) follows. It should be noted that the hy- 
potheses which do not belong to 3 have A ( I )  =0, hence 
q ( p ) ( I )  = O  for v >  1 according to the present approximation. 

Taking  any  one Io of the hypotheses belonging to X 

as standard, we introduce new variables P(I )  and x(])  by 

P(I)  is a measure of the  a  priori credibility and x(Z) is a 
measure of the confirmability. x([)  = 1 for I belonging to X. 
Then, it is  easy to see that we can write 

with 

X ( ” )  = Z b ( I ) x y I )  
I 

(6.10) 

(6.11) 

Y(Y) = ? P ( I ) x y I )  log FP(I) )xyI ’ )  - 
I 

X P ( I ) X ” ( I )  log P(1)x”fI) , (6.12) 
I 

where the  summation with regard to I extends over 3. 
Then, the derivative: 

dU(V) 
” 

d v  
- [X(’)(dY(”’/dv) - (d?W/dv)  Y‘”’]/(X‘”’)~ (6.13) 

becomes 

log [P(I)x”(I)l In Ix(I’)/x(I)l . (6.14) 
Adding to this expression another expression obtained 
from (6.14) by an interchange of I and I‘, one  obtains 

Now if log [P(Z)//3(1’)] and log [x(I)/x(Z’)] have the same 
sign, then we have obviously 

(6.16) 

If log [P(I)/P(I’)] and log [x(I)/x(I’)] are nonzero and have 
opposite signs, then we have again (6.16) for v satisfying 

(6.17) 

If log [P(r)/P(I’)]=O, and log [x(l)/x(I’)]#O, then (6.16) 
holds for any v. If log [x(I)/x(I’)]=O, then 

(6.18) 

no matter what value log [P( I ) /P(Z ’ ) ]  may have. Therefore, 
we conclude from (6.13,  (6.16), (6.18) 

(6.19) 

for v large enough so that (6.17) is satisfied for those pairs 
( I ,  1’) which have different x’s. For a finite v larger than  the 
lower bound set by this consideration, relation (6.19) can 
be interpreted as  the “expected” behavior of U“).  Thus 
the inverse H-theorem is proved. Further, if all the hy- 223 
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potheses are given equal a priori credibilities, then  the 
lower bound of determined by (6.17) becomes zero. Hence, 
the theorem is true  for  any v. 

C. Evnluation ofj2uctuations 

If we use a single experimental series a(”) to calculate U(”) 
with the help of the empirical a’s, then the value of U(’) is 
bound to show some fluctuation about the “expected” 
curve of U(”. However, since the fluctuation of  the em- 
pirical a’s, as was shown in (4.10), decreases with increasing 
v, it can be expected, a t  least within a certain limitation, 
that the fluctuation of U(”)  about the  smooth curve also 
becomes very small for large v. As an example, we shall 
now  give an estimate of the  order of magnitude of the fluc- 
tuation of U(”) for large v in the case where U(”)--tO as 

This last condition means that in the expression of U ” ) ,  
(6.1), one  of the q ( v ) ( I ) .  say, q(”)(I0) becomes very close to 
unity for larger v, and all the remaining q( ” ) ( i )  become close 
to zero. Because of the nature of the function x log x, the 
contribution to U V )  from q(”)(Zo) then becomes negligible 
compared with the  contributions from other q(”)(I) ,  IZZO. 
In the same way, in the expression of the small fluctuation 
6U(”) of U ” ) :  

V + P .  

we can ignore  the  term  corresponding to lo. In the  denomi- 
nator of the expression, (4.3), of q ( ” ) ( I ) ,  the term cor- 
responding to I’=Zo will be very large compared with the 
other terms. Therefore, we can write (4.3) as 

from which follows 

(6.22) 

with 

C,(r)= Inp(ijI)-  Inp(iJZo) . (6.23) 

With the  aid of (4.9), we derive from (6.22) 

(6.24) 

=x~L’i(i)Ci(Z’) - (~~~C~(I))(~Y~C~(Z’)) z z . (6.25) 

he other  hand, (6.21) shows that the  order of mag- t 
nitude of q( ” ) (Z )  can be written (putting vi=vyi and as- 
suming q(O)(I) =? q(O)(I0)) 

q ( v ) ( I )  , e - v G ( I )  (6.26) 

224 with 

G(i)  = --xycCi(Z) . (6.27) 
2 

where G ( I )  must be positive because 9(“’(l) with I#Io  be- 
comes very small for large v. From (6.24) and (6.25), 
we obta.in 

6q(”)(fiCiq(”)(Z’) c- D(I ,  Z’)v exp { -v[G(I )  fG(Z’)]) . (6.28) 

Substituting (6.26) and (6.28) in the  square of (6.20), 
we obtain 

_____ 

exp { - v[C(I )  +G(I’)ll . (6.29) 

The square of the  entropy U!”)  itself  is, according to (6.26), 

exp I -v[G(I) +G(I’)l 1 . (6.30) 
Therefore we  see that  both U(”) and its fluctuation tends 

to zero with increasing v? as was expected. It is true that 
( 6 U ( v ) ) ’ 2  vanishes more slowly  with increasing v than 
(U(”))* ,  but this should not be disconcerting, since the in- 
ductive entropy U p ) ,  in the same way as the physical 
entropy,  does  not change its usefulness if one adds to it an 
arbitrary  constant. For instance, we can use V(’)= (log 
N -  U(”))/Iog N as a convenient measure of “certainty”. 
Then  the fluctuation of V ” )  is  very small compared with 

V V )  itself for large v. 
The above discussion refers to the case where ,X consists 

of only one hypothesis Io .  If X consists of more than  one 
hypothesis, the  situation is not so simple. 

~. 

0 D. Decrease versus non-increase of entropy 

Next, we can ask whether U(”)  can reach its minimum value 
at a finite v. This will happen if and only if there is a number 
v1 such that dU(“)/dv=O for v>vl. To investigate this ques- 
tion,  one should first note that  the factor P(i)x”(I)P(I‘)x”(I’)  
in (6.1 5 )  is always nonzero at a finite v. Therefore, dU(“) /dv  
becomes zero only if (6.1 8) is the case for all pairs (I, Z’) 
in 3. For I = I ‘ ,  (6.18) is self-evident. For Z#Z’, (6.18) holds 
if x ( l )  =x(Z’) and/or 

P(0iPCI’) =[.m/x(ol“  . 
This last equation, for a pair x(0 #x(I’ ) ,  may happen to 
hold for a  particular value of v, but then it will not hold 
any value of v larger than  this value. Therefore, in  order 
that dU(’)/dv=O may hold for v>vl, it is necessary and 
sufficient that x(I)  =x(Z’) for all pairs  in 3. However, as 
we have seen before, the I’s belonging to X have the 
largest. value of the x’s. Hence, the condition is  satisfied 
only if 3 =X. If this is not  the case, then dU(’)/dv will tend 
to zero only with v-m . At this limit, x”(4 in (6.15) for Z 
not belonging to .X will vanish because x(I)  < 1, and  the 
terms corresponding to two 1’s both belonging to X will 
vanish because then In [x(Z’) /x(I ) ]  =O. Hence, U(’) reaches 
its minimum value only at  the limit v- m , except in a 
special case X = 9. In this last case, dU(”/dv=O for  any 
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v> I .  Of course, this conclusion, as well as other results 
discussed here, is based on (4.6). 

e E. Uncertainty about law and uncertainty about outcome 

It should be noted that 

(6.31) 

represents the  information gain per stage regarding the 
limiting hypothesis, Le., the law. 

The uncertainty or ignorance U(” )  regarding hypotheses 
should not be confused with the uncertainty regarding the 
outcome of an individual observation as estimated at stage 
v. This last quantity should be expressed by 

(6.33) 

in accordance with (2.10) and (3.1). A similar but different 
quantity is 

<E(I)  > ( v )  = -Fq(l , ) ( f )  X p ( i  ! 1) log p( i  1 I )  , (6.34) 

which may be characterized as  the expected value of the 
extent of the law. It is obvious  that both quantities converge 
to the same value with v-m,  namely the extent of the 
limiting hypothesis. If the hypotheses are disjoint in  the 
sense that  for a given i, there is only one I such that 
p(i 1 I) ZO, then 

z 

E(’) = fJ(”)+ <E(I) > ( v )  , (6.35) 

but (6.35) does not hold in general cases. 
The largest possible value of (6.32) is  log n. If the a priori 

probabilitv q ( O ) ( [ )  is such that p(O)(i) = l/n, then E(”)  will  be 
log n. In such a case, we have 

E ( ” ) < E ( ” )  - , v =  1 ,  2, . . . . (6.36) 

This is, in a sense, comparable to the result (6.2). How- 
ever, in  a general case one cannot expect any definite 
tendency in the behavior of E(”) as a function of v. An ex- 
pression corresponding to (6.15) becomes in this case 

The fact that E(“) does  not show a definite tendency with 
regard to v in  a general case may seem disconcerting, for as 
we accumulate observational data one must become more 
“reliable” with regard to the  outcome of the  future observa- 
tion.  This disconcerting impression stems from a confusion 
between the concepts of “uncertainty”  and “confirma- 
bility.” “Uncertainty” here merely measures the statistical 
spread in a, and E ( “ )  is a kind of average of this uncertainty, 
whereby the averaging is made with the help of q ( ” ) ( f ) ,  

which at a finite v still strongly depends on  the a  priori 
estimation q ( o ) ( f ) .  

A possible measure for  the empirically accumulated in- 
formation regarding the  outcome of an observation may be 
obtained by a  quantity like 

:c(Wq(V) [log n+&(i/O logp( i141  , (6.38) 

but no simple theoretical foundation  can be put forward to 
justify a  formula of this kind. 

7. Simulated experiments on IBM 704 

e A .  First urn problem 
The urn contains ten balls, of which a  certain  fraction 
Io/10 are white and the remaining fraction CIO-Zo)/10 are 
black. The observation consists of taking one ball from  the 
urn, determining its color  and  returning it to the urn (n = 2). 
The considered hypotheses are eleven in number ( N =  1 l ) ,  
and are of the  type: 

H ( f ) :  Z balls out of the ten are white, and the remaining 
( I O - - I )  halls are black, f = O ,  1, 2, . . . , IO. 

H(Io)  is the correct hypothesis, Le., the law to be discovered. 
The process under investigation is one in which the credi- 
bilities  of hypotheses gradually concentrate on H(Io)  as the 
number of observations increases. If we assign 0 and 1, 
respectively, to white and black, then we have 

p(011) =I/lO, p(1  If) =(lo-f)/ lO . (7.1) 

The machine simulation consists of producing the num- 
bers 0 and 1 randomly at the ratio of IO/ (  10“lo). For this 
purpose,  a well-tested random number  producing  program 
has been utilized. The assumption of “definite distribution” 
is thus secured. 

The first series of experiments was carried out with l o  = 3. 
LJnder this condition, H(0) and H(10) will  be “logically” 
refuted sooner or later, since H ( 0 )  contradicts  the  appear- 
ance of one white ball and H(10) contradicts the appearance 
of one black ball. Thus X consists of H(r) with I=O, 1, 2, 
. . . , 10 and <$j consists of H ( f )  with I = I ,  2. . . . , 9. AS rz- 
gards the a  priori credibilities, we have tried three different 
cases: ( i)  equal a priori credibilities are given to all eleven 
hypotheses; (ii) deliberately, a higher a  priori credibility 
is  given to a wrong hypothesis H(7), viz., q@)(7) = 12/22 
and q ( o ) ( f )  = 1/22 for 1 2 7 ;  (iii) a higher a  priori credibility 
is given to the right hypothesis, viz., q(O’(3) = 12/22 and 
q ( “ ) ( f )  = 1/22 for 1 2 3 .  The experiments were continued in 
each case until the  observation  number v became 500 or 
more. The same sequence of random  numbers was used in 
all three cases. In this sequence, X was retrenched to $ 
with v= 5. 

The smallest number v u  for which the inductive entropy 
satisfies the  condition, 

U(”)<O.Ol for v>vo , (7.2) 

was found to be v o = 3 3 0  in case (i), v o =  330 in case (ii) 
and v o  = 258 in case (iii). The smallest number v 1  for which 
the credibility for the correct hypothesis satisfies the 
condition, 225 
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q(”(3) >0.99 for v >  v1 , (7.3) 

was found to be vl = 258 in ( i ) ,  v1 = 258 in (ii) and v =  115 
in (iii). Outside these slight numerical differences, the be- 
havior of the different quantities was the same in all 
three cases. 

The random sequence up to v=500 contained 149 whites 
(0’s) and 351 blacks (l’s), the ratio of the whites to the  total 
number being 0.298 instead of 0.3. The confirmabllity 
C(”(3) of H(3) serves also as  a measure of this ratio in this 
case and gave 0.999984 at v = 500. 

Figs. 3, 4 and 5 refer to the experiment of case (ii), i.e., 
the case where a high a priori credibility is  given to a wrong 
hypothesis H(7). Figure 3 describes the behavior of the 
credibilities for  the  correct hypothesis H(3) ,  for  the wrong 
hypothesis H(7) on which a high  weight has initially been 
placed, and for  the hypothesis H(2) which is an immediate 
neighbor of the correct hypothesis. Since p(i  12) is numeri- 
cally close to p(i  [ 3), the chance is high that q(’)(2) remains 
relatively large compared with other hypotheses whose I is 
more removed from 3. q(”)(3), starting from 1 /22 = 0.04545 
at v=O,  becomes definitely larger than 0.9 from v=203 
on. q(”)(7), starting  from 6/11 =0.54545 at v = O  be- 

comes definitively  less than 0.1 from v=6 on. The quantity 
q(”(2). starting from 0.04545 at v = 0, rises to higher values, 
including a maximum value 0.57003 at v = 75, but decreases 
finally to become  definitively  below 0.1 after v = 202. Rough- 
ly speaking, after v = 200, everything smoothly settles down 
towards the limiting situation.  At v=500, ~ ( ” ( 2 )  =0.131090 
X lop5, q(”(3)  =0.999986, q(”(7) < 

In Fig. 4 the full lines show q ( ” ) ( I )  for all eleven values 
of I for v=O, v = 8 ,  v=32 and v=128. At v=O, an out- 
standing weight is placed on I = 7. This effect still remains 
slightly at v = S ,  but the weight  is already shifted towards 
the smaller values of I .  At v=32, the  entire weight is con- 
centrated in the region of I=2, 3, 4 and 5. At v =  128, I=3 
is already very large compared with others,  although I = 2  
and I=:4 still survive. For larger values of v, of course, 
I=3 becomes overwhelmingly large at  the expense of all 
others. The broken line shows the confirmability C(”)(l), 
I=O, 1 ,  2, . . . , 10 at v =  128. It is 0.999962 for I=3. 

Fig. :S shows the inductive entropy U ” )  as  function of v. 
The curve, of course, is the result for one particular  random 
sequence. If one  took  an average of many such sequences, 
one would obtain  a smoothly decreasing curve. 

Figure 3 
Urn Problem 1. 
The credibilities q ( “ ) ( I ) ,  f o r  I = 2, 3 a d  7, as functions of v. I = 3 is the corrt7ct hypothesis. The a priori  credibilities are: q(O’(2) = 
~ ( ~ ’ ( 3 )  =0.04545, q(Oj(7) = 0.54545. 

0.9 ’.OI 
I I 
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e R. Second urn problem 

In the foregoing example, there was included in X a hy- 
pothesis which is identical with the hidden law. In other 
words, there was an I for which C ( ” ~ ( I )  will become unity 
as v--, m , i.e., a perfect matching is realized for this I .  In 
terms of A’s of (4.15), this means that there is only one I 
for which A ( I )  takes the maximum value and  that this maxi- 

mum value is equal to the empirical counterpart &P, 

see (4.15) and (5.4). 
In the next example there is no hypothesis which cor- 

responds exactly to the hidden law. That means there is 
no I for which C(”)( I )  will become unity for v-m.  How- 
ever, the experiment will  be so arranged that there will  be 
one I for which A ( I ) ,  of (4.9), will be larger than for any 
other A(1)’s. In this case, according to (4.18), the credibility 
of this particular I will  become unity in spite of the fact 
that its confirmability never becomes unity. 

The random  number  production is such that Ioj10 be- 
comes 1!3, i.e., “0” and “ 1 ”  are produced randomly at the 
ratio of 1 and 2. The set X of hypotheses is the same as in 
the preceding example. We can reinterpret this new problem 

2=0 

Figure 4 
Urn Problem 1. 
The  full lines represent the credibilities q(’)(l), .for v=O, 8, 
32, 128, as functions of I .  The weight shifrs from I = 7  to 
1 = 3 ,  and finally I = 3 only renluins. The broken line gives 
the confirmability G P ) ( I ) ,  at v =  128, (.function qf ’ l ) .  C(”)(i 
= O  for I = O  and 10, for  they are “logically excluded.” k 
v+ m , both q ”(3) and C(”)(3) brconw unify in this case. 

1.01 , /’ 
, -_ 

‘1 
It 

I I- 

by assuming that the  urn  contains 30 balls, of  which 10 are 
white. The hypotheses are artificially restricted to the fol- 
lowing types: 

H(I): 31 hulls out of the 30 are white and 30-31 balls are 
bluck. /=0 ,  I ,  2, . . . , 10. 

Then, the hypothesis nearest to the truth will be H(3), 
which means that there are 9 white balls. This H(3) is ex- 
pected to obtain credibility unity at large values of v. 

Under the circumstances described above, we have 

~ 1 o = 1 / 3  , a1=2/3 , 
p(013)=0.3 , p(113)=0.7 , 
p(0/4)=0.4 , p(1  )4)=0.6 , 
from which follows 

(7.4) 

A(3) =0.52776 , A(4) =0.52415 , (7.5) 
C(”’(3) =0.99593 , C(”I(4) =0.98534 . 
Therefore, we can see that H(3) and H(4) are in a good 
competition. A slight fluctuation of oca(") and a,(”), from the 
limiting value 113 and 2/3  can swing the balance between 
q(”’(3) and q(”l(4). In particular, if at a certain number v, 
C(”’(3) and C(.)(4) happen to be equal, then H(3) and H(4) 
are equally well “confirmed.” Therefore we can expect, as 
in formula (3.28), that for such a v, the  ratio of 4(’)(3) 
to q(”)(4) simply becomes the  ratio of the a priori credibil- 
ities, @)(3) and 4(O)(4). In one of the experiments, in which 
q(”’(3) was put equal to 12/22 and all other  a  priori credi- 
bilities were put  equal to 1/22, we happened to have at 
v = 470, 

C(lin)(3) =0.991504, C(470)(4) =0.991535 . (7.6) 

Thus, H(4) was slightly better “confirmed” than H(3). At 
this point, the credibilities were 

q(”O)(3) =0.922382, ~ ( ~ ” ) ( 4 )  =0.0776184 . (7.7) 

The ratio is 11.884, while q(O)(3)/q(O)(4) = 12.000. The slight 
difference in favor of H(4) is due  to the fact that C(470)(4) is 
larger than C(*’O)(3). 

The experiments described in Fig. 6 is the case where all 
the  a  priori credibilities are equal, q(O)(I )  = 1 / 1 1 .  At v =  1000, 
the confirmabilities were found to be 

C(lflon)(3) =0.995035, C(1000)(4) =0.986962 . (7.8) 

The discrepancy of these values from their respective theo- 
retical limiting values is of the order of 0.1%. The credi- 
bilities of H(3) and H(4) at v =  1000 were 

q(10”0)(3) =0.995536, q(loo0)(4) =0.446419 X IOp2 . (7.9) 

It goes without saying that the convergence q(v)(3)-+1 is 
much slower here than in the previous case. This can be 
seen by comparing Fig. 4 and Fig. 6. 

0 C. Kochen’s pattern-recognition 

This problem is an  attempt  to make  a  computing machine 
guess a hidden pattern existing in a sequence of binary 
numbers. The items, Le., the elements of D, are different 
binary numbers of five digits, n=32. The number of pos- 
sible patterns (hypotheses) are 2”- I =4,294,967,295. But 227 
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Figure 5 
Urn Problem 1. 
The inductive entropy function Uc") as a furrction of v in an expcrirnent,  illustrating the "Inverse H-Tlzeorenz." 

29 



Figure 6 
A case in  which  the credibility of one hypothesis 
tends to unity although its confirmability tends to a 
value less than unity. 
(Unfortunatel.y, this fact cannot be seen clearly OM the scale 
used here.) The  full lines are the credibilities, the  broken line 
is  the confi~mabilit~~  at v =  1000. Comparison with Fig. 4 
will show how corwergence is worse i n  this case. 

I I- 

Figure 7 
Kochen's pattern problem. 
The correct hypothesis is (XlXXO). The a priori credibility of each of 243 hypotheses is put equal to 11243. q(")(l) and C(")(l) 
are the credibility and the  confirmability of the correct hypothesis (XIXXO). q("'(2) is the credibility of  a wrong hypothesis 
( X X X X O ) ,  which however cannot be "logicall-v" excluded. The scale of ~ ( " ' ( 2 )  is amplified by  factor 10 as compared with that of 
q(")(l). The confirmability of the wrong hypothesis (XXXXO) is exactly 314 of C(")(l), therefore is  not entered in the chart. 

I v- 
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Kochen’s choice of patterns is such that a pattern can be 
expressed as  a  ternary  number of five digits, in which a digit 
can be occupied by 0, 1 or X. The meaning of such a  ternary 
number as  a  pattern is that the symbol .X‘ is allowed to take 
the value 0 or 1 .  For instance, (00x11) contains two items 
(0001 1) and (001 1 I ) .  This is  very much the same as the 
idea used in the expression (2.17). The number of hy- 
potheses becomes then N = 36 = 243, which is  still  very large, 
but considerably smaller than 2” - 1 .  The dimension W(I )  
of hypothesis I is 2“, where a is the number of X’s  in the 
ternary expression of the hypothesis. Under the  “homo- 
geneity assumption,” (2 .3 ,  the extent and intent of the 
hypothesis are given by E(I) = log W(I) =a,  and d(1) = 

log L - = ( j - a ) .  
W(Z) 

Kochen’s original problem is to make a  computing ma- 
chine guess the hidden hypothesis when the machine is 
shown various numbers, together with information  as to 
whether the numbers do or do not belong to the hypothesis. 
Kochen’s ingenious methods to make the machine behave 

Figure 8 
Kochen’s pattern problem. 
The full lines  represent the  different  paths by which the in- 
ductive  entropy U(’) decreased in ten different  runs.  The a 
priori credibilities are q ( O ) ( I )  = 11243. The  broken line rep- 
resents the average of these  ten  experimental values. The 
broken  dotted line represents  the average of ten other ex- 
perinzental values of U(“)  based  on the a priori probabilities 
q(al(l) = W ( I ) / x  W(I’). After v =  10, there is  practicallv  no 
difference. I’ 
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intelligently in this guessing game are quite  remarkable and 
are expected to be published before long. In  Kochen’s ex- 
periment., the machine is often shown a number which does 
not belong to the  pattern and is informed to this effect. 
In  our experiment, however, which is a model of the 
methods of natural sciences, the machine is shown only the 
numbers which do belong to the hypothesis. In order to 
conform with the homogeneity assumption, the numbers 
belonging to the hypothesis are shown to the machine in a 
random fashion with equal frequency for each  number. 

In the series  of experiments described here, the true hy- 
pothesis (law) is X l X X O  which contains 8 different items, 
and these numbers are given to the machine at random with 
equal probabilities. The a  priori credibilities q(O’(0, I =  1 ,  
2, . . . , 243 are, in one experiment, assumed to be uniform, 
;.e., @)(I )  = 1/243 for each I .  In another experiment q(O)(I) = 

W ( I ) / x  W(l’). But, as expected, this difference in the a 

priori probabilities is  effaced  very quickly as  the observa- 
tion accumulates. The credibility of the right hypothesis 

It 

Figure 9 
Kochen’s pattern problem. 
This graph  shows the  detail of the dependence of U(”) on v, 
which looks almost like an  exponential decrease. The a priori 
probabilities ure q(” ) ( l )  = 1 ‘243. This is not  an average 
curve; it  represents the  actual values of an individual run. 

I u- 
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1 Figure IO 
~ Kochen’s pattern problem. 

~ The theorem (6.25) is  illustrated. 

The quantities E(’), (6.21), and (E(Z))(v),  (6.23) plotted 
against v. The apriori Credibilities are q(O)(I) = W(Z) /x  W(Z’). 

I ’  

falls within 0.1% of unity after v= 12 in all the runs. The 
inductive entropy U V )  decreases almost exponentially after 
v=7 and becomes less than 0.001 after v = 15 or 20. See 
(6.30). The confirmability is a stringent test for any  hypoth- 
esis, and C(’)(I) of the  correct hypothesis, Le., C ( X I X X 0 )  is 
still 0.983 at v =  184. But there is no  doubt  that C(’)(XlXXO) 
becomes unity at a very large v. In the present experiment, 
hypothesis (XXXXO)  is not logically refuted, since all the 
specimens of ( X l X X O )  are also specimens of (XXXXO).  
This hypothesis (XXXXO)  belongs to 3 of the experimental 
data 03 ensuing from the law (XlXXO). In one experiment, 
q(”)  of (XIXXO)  increased almost uniformly with v, while 
q(”)  of ( X X X X O )  increased a little at lower values of v but 
finally disappeared with further increasing values of v. 
C(”) of (XXXXO)  is just 3/4 of C(’) of (XIXXO), therefore 
remains finite. This means the credibility of (XXXXO)  be- 
comes zero, while its confirmability remains finite. The 
product of confirmability and credibility may  be a good 
conservative measure of the goodness of a hypothesis. 
The results are plotted in Fig. 7. The a priori probabilities 
of all the 243 hypotheses are set equal to 1/243. The hy- 
pothesis I =  1 is the  correct  one, Le., (XlXX0) ; 1=2  means 
a wrong hypothesis (XXXXO) .  

The behavior of the inductive entropy is depicted in 
Figs. 8 and 9. No exception has been observed to the mo- 
notonous decrease of L““) in any individual case in this 
problem. 

The  quantity E(”) defined in (6.32) and (6.33), and 
< € ( I )  >(.I defined in (6.34) are plotted in Fig. 10. These 
quantities roughly correspond to the ignorance regarding 
the individua! outcome at stage v. The a priori credibilities 
here are given to be proportional to the dimension of each 

hypothesis, i.e., q(O)(Z) = W(Z)/x W(Z’). This means, accord- 
ing to (6.33), 

p(o)(i\ =X W(l)p( i  11)’ 2 w(z’) , 

I ’  

I 
(7.10) 

IC 

where p(i 1 I )  is l/  W(I)  if I includes i ,  and is zero otherwise. 
The numerator x W(l)p( i  I I) will then become a number 

of hypotheses including a given item, i.e., z5=32.  The de- 
nominator is equal to 

+(:)25=(2+2)5=1024 . 

Hence, p(O)(i) = 1/32 = 1 in. This satisfies the condition  under 
which the theorem given in (6.36)  was derived. We can 
indeed observe in Fig. 10 that relation (6.36) is satisfied. 
Both E(‘) and < E(Z) > (”1 converge, as was predicted, to 
the extent E(Z) of the  correct hypothesis, which is  3. 

Acknowledgment 
The  author would like to  thank Manfred ICochen and 
Samuel Winograd for stimulating discussions he had with 
them concerning various problems closely related to the 
present work. It is also his pleasure to note that the critical 
comments by William Hanf were valuable in preparing the 
final version of the manuscript. Finally, he owes sincere 
thanks  to William Kopka  for carrying out beautifully the 
tedious job of programming and running on the IBM 704 
the simulated experiments described in Section 7. 

References and Footnotes 
1. H. L. Gelernter, Proceedings o f  the First International Con- 

ference on Information Processing, UNESCO, Paris, 1959. 
(To be published). 

2. A. L. Samuel, IBM Joltrnal of Research and Development, 3, 
210  (1959). 

3. It is  well  known that Carnap devoted a great  deal of  work 
to the  subject  of  inductive  probabilities-R. Carnap, Logical 
Foundation ofProbability, Univ. of Chicago  Press,  1950. The 
present  paper  does  not  necessarily  conform with Carnap’s 
theoretical  framework. 

4. N. Goodman, Fact, Fiction and Forecast, Harvard Univer- 
sity Press,  Cambridge,  Mass.,  1955. 

5. S. Watanabe, Reviews u j  Modern Physics, 27, 179  (1955). 
See, in particular,  Section 6 on  irreversibility of inference. 

6. R. Ruyer  has  made  some  interesting  remarks in this  con- 
nection.  See R. Ruyer, Cyberndtique et I’origine de l’infor- 
mation, Flammarion,  Paris,  1954. 

I .  Gaston  Bachelard, “La psychanalyse du feu” (Collection 
Psychologie, NRF, Gallimard,  Paris,  1938),  p. 50. 

8. For  applications  of  this  formula in physics,  see S. Watanabe, 
up. cir., p. 180. 

9. The  author’s  tnanks are due  to  Dr.  Manfred  Kochen  for 
mentioning  this  interesting  example to him. 

10. S. Watanabe, op. cit.; in particular, Section  4. 
11. Manfred  Kochen, ms to be  published. 

Original  tnanuscript received June 12, 1959 
Revised  manuscript received January 22, 1960 23 1 

IBM JOURNAL - APRIL 1960 


