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Information  Theoretical Analysis 
of Multivariate  Correlation 

Abstract: A set X of  stochastic variables, yl, yz, . . . , y,,, i s  grouped  into subsets, pl, pZr . . . , pk. The correlation 

existing in X with respect  to the p’s is adequately expressed by C= S ( p ~ ( ) - S ( h ) 2 0 ,  where S(v )  i s  the entropy 

function defined  with reference to the variables y in subset V. For a given X, C becomes maximum  when each 

p i  consists of only one variable,  (n=k). The value  Cis then called fhe fofal correlation in X, CtOt(X). The present 

paper gives various theorems, according to which CtOt(M can be decomposed in terms of the partial correla- 

tions existing in subsets of X, and of quantities derivable therefrom. The information-theoretical meaning of 

each decomposition is carefully explained. As illustrations, two problems are discussed at the  end of the 

paper: (1) redundancy in geometrical figures in pattern recognition, and (2) randomization effect of shuffling 
cards marked ”zero” or  “one!’ 

k 

i=1 

1. Introduction 

Since  the  time of Boltzmann, physicists have repeatedly 
encountered  quantities of the type 

s=-xpi log pi , (1.1) 
i 

either as an expression of thermodynamic  entropy or as  a 
quantity closely related to it.1 Boltzmann seems to have 
noticed that thermodynamic entropy has  something to do 
with  orderliness  and  disorderliness  of  elements,  and 
Szilard2 in 1929 pointed out  that a  decrease of thermo- 
dynamic  entropy  is  accompanied by the acquisition of 
information. In 1932 von N e ~ m a n n , ~  using a  quantity 
(1.1) as  a model of thermodynamic  entropy,  demon- 
strated the irreversibility of observation, in which  infor- 
mation about the state of a system becomes statistically 
less accurate. Less well known, however, is a paper4  on 
atomic nuclei which  appeared in 1939, using the quantity 
( 1.1 ) in a  practical  way for the first time  as an instrument 
deliberately contrived to measure the uncertainty of the 
state of a particle, and making  clear that it is diflerenr 
from thermodynamic  entropy. This paper may be con- 
sidered, in a way, as  one of the  earliest events which led 
to the independence of information  theory from thermo- 

66 dynamics. 

In  any event the 1939 paper is pertinent to  our present 
study since it  clearly  stated that  the quantity ( 1.1 ) , on  the 
one  hand, measures the uncertainty of our knowledge 
about  the  state  but,  on  the  other, it also measures the 
strength of the correlation  (beyond  the  average  inter- 
action) among  constituent particles. We shall presently 
sketch  the  argument which was then used to justify this 
statement and show  how  it ties in with the  present  theory. 
It is noteworthy that  the relation between information and 
correlation was already  demonstrated at  that  early stage 
of development of information  theory. 

In the field of communication  theory,  as  early as 1928, 
Hartley expressed the  idea  that the quantity of informa- 
tion might reasonably be defined as  the  logarithm of the 
number of independent signals5 This is obviously a spe- 
cial case of (1.1) with equal probabilities, but a formal 
information  theory in communication based on  the  quan- 
tity ( 1.1) was developed much later by Shannon6 and 
others,  who  adopted the statistical point of view of com- 
munication emphasized by Wiener,? Kolm~goroff,~ and 
others. In communication  theory,  the  relation between 
information and correlation was rediscovered in connec- 
tion  with so-called redundancy. After  the  nature of re- 
dundancy in communication  became well understood, the 
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same notion was again applied to  the problem of correla- 
tion existing in  a  collection of stochastic variables. The 
importance of this aspect of information theory  in the 
problem of  organization was emphasized  with prophetic 
zeal  by 3. R0thstein.O Several other  authors  have also pro- 
posed and tried to use information quantities  in analysis 
of multivariate  correlation, among them W. J. McGill,lo 
W. R. Gardner,Il  and S. K. Mitra.12 

With  regard  to  the correlation existing in  a stationary 
time sequence of stochastic  variables,  a  convenient quan- 
tity WCr)> 0, called correlation index of range r, was 
introduced,l3 which measures the  strength of correlation 
of length r in excess of the correlation of length r -  1. It 
was shown that  the  total correlation  can be expanded  in 
terms of W ( r )  with r=2, 3,4. . . . This applies to  an in- 
finitely long  sequence, on which a segment of a given 
length has  the  same probability of being in a given state, 
no  matter  where this  segment is taken. 

Another simple  case is a  set of a finite number of 
stochastic  variables, whose collective probability  distribu- 
tion is invariant for any permutation of variables. A 
theory enabling one  to expand  the total  correlation  among 
these variables  in terms of partial correlations was put 
forward,14 in a certain analogy  with  the  expansion in 
terms of the W’s.  

The present paper is a more general  consideration of 
correlation  where the symmetries among variables  which 
we have discussed in  the last two  paragraphs  do  not 
necessarily exist. At  the  same time, the cases where these 
symmetries do exist will also be discussed here  as special 
cases. Several new theorems are  introduced  and proven. 

Let us go back to  the 1939 paper  in  nuclear physics 
and  try  to explain the main  points  without using highly 
technical  notions. Those  readers who are not  interested  in 
theoretical physics are advised to proceed from this  point 
to the next  Section. In a nucleus, the  nucleons are at- 
tracted  to  each  other by two-body mutual potential 
(forgetting, for simplicity, the possible many-body poten- 
tials).  In  the  Hartree approximation and  the  Hartree- 
Fock approximation,  however, these mutual potentials 
are replaced  by  a  smoothed-out external potential to 
express the average effect of the  mutual potentials. In 
this fictitious potential, there  are  quantum states, qi, 
i = l ,  2, 3, . . . , which can be  occupied by a  nucleon. In 
the  Hartree model, each nucleon is supposed to occupy  a 
definite quantum state. Hence,  for  each nucleon, pi is zero 
or one. Therefore, S of ( 1 .1  ) becomes zero. On  the  other 
hand, in the  Hartree-Fock model, the indistinguishability 
of elementary  particles is taken into  account,  and as a 
result  each  particle  occupies  each of the n lowest quan- 
tum  states with  probability l/n, where n is the  number of 
nucleons in  the nucleus. Thus, pi= l /n and  S=log n. 

However,  neither the  Hartree model nor  the  Hartree- 
Fock model  takes into  account  the two-body correlation 
which is beyond  the  average effect. For instance, if  one 
wishes to find the average  density (probability of pres- 
ence) of a  particle, the answer may be given fairly cor- 
rectly by these simplified models. But if one asks the 
conditional  probability of presence of one particle at a 

certain  position, on  the hypothesis that  another  particle is 
found  at a certain  other position,  then  these simplified 
models are bound to give a  completely  wrong answer, 
because  the  models  take into  account only the average 
force acting on a particle. Such a  clustering effect of par- 
ticles can  take place without changing the average density. 
To represent such a  correlative  (fluctuating)  interaction 
in  theory,  one  naturally  has  to allow  particles to occupy 
the  quantum states  which are  not occupied  in the single- 
particle  model, such as the  Hartree  and  Hartree-Fock 
models. This means, for  each particle, that  the probability 
of occupying one  quantum  state  has  to be less than l/n, 
or pi < l / n ,  since more  than n states  have to be occupied. 
This automatically  entails S>log n. As we can  show very 
easily, S can be defined in a form  invariant  for any unitary 
transformation. Hence this  result, S>log n, is independent 
of the initial  approximation, Le., of the eigenfunctions 
used. The expression S-log n can be considered as a 
measure of correlation. For  that  matter, log n itself can  be 
considered as a  kind of correlation imposed by the  Pauli 
principle. 

In  the exact  wording of the quoted paper,4 “Let the 
measure of indeterminacy be called S. S measures the 
extent to which the wave function of the nucleus + gives 
an  indeterminate information  regarding  the  state of a 
building  block [nucleon].”  Thereafter S is defined by a 
formula equivalent to ( 1 .1  ) . In  another  part of the paper, 
it is stated  that  S-log n “gives therefore a natural meas- 
ure  for  the  importance of the fluctuation of force field, 
or  in  other words, for  the influence of exchange of energy, 
etc.” It is also stated that  “through the more  exact con- 
sideration of strong interaction  in  pairs of neighboring 
particles, the  degree of our knowledge of the  state of a 
particle will become less.” In any  event, the  double role of 
S, once as a measure of uncertainty of the state of a single 
particle  and  another time  as  a  measure of correlation 
among particles, was the  theme of the paper. In  a  heavier 
nucleus it was estimated in this paper  that S=ln n+0.73 
(natural logarithm unit). 

Now  the above argument of the  paper is in essential 
agreement with the  point of view of current  information 
theory,  as  elaborated  in the present  paper. The  total cor- 
relation existing in  a  set of n variables, yl, yz, . . . , yn, is 
adequately  represented by 

Ctot=S(l)(yl) + S ( l ) ( y z )  + . . . + S ( l ) ( Y , )  
” S ( ” ) ( Y l ,  Y z ,  . . , Y n ) .  (1.2) 

This  indeed shows that  correlation increases  as complexity 
of states of individual  variables  increases or as  complexity 
of states of the system of variables  as  a whole decreases. 
To be more specific, we have to  reinterpret this expression 
in  a  fashion  acceptable to  quantum mechanics. First,  each 
S(I) ( y k ) ,  k =  1 ,  2, . . . , n, corresponds to ( 1.1). Since all 
the nucleons are similar, the  sum of the first n terms in 
( 1.2) is just n times ( 1 .1  ) , where i labels nucleon quan- 
tum states. The last  term  in (1.2) can also be written  in 
the  form of ( l . l ) ,  but the index i must  here refer to the 
quantum  states of a nucleus  as  a whole. Since we  are dis- 
cussing  a normal  (unexcited)  state of a  nucleus, the  nu- 



clew is in  a definite quantum  state. Hence, Sin) (yl,  YZ, . . . , 
y n )  =O. Consequently, Ctot=nS(l).  We  can now see that 
S(1) can be used as  a measure of correlation, Ctot. Then 
n log n is a part of correlation as imposed by the  Pauli 
principle. In familiar cases of correlation  in  communica- 
tion, an increase of correlation is often attained by a 
decrease of S i n ) ,  but  in this  example it is attained by an 
increase of W ) .  

Actually, this quantum-mechanical  interpretation of 
(1.2), although perfectly faithful  to  the  true meaning of 
S(1) and S n ) ,  does not agree  with the way these  quantities 
should  be  calculated in conventional  statistics (to which 
our present paper is devoted).  For instance,  in the usual 
statistics, we always have S(n)  >_S(*), as will be  seen later 
in (2.20). But  this is not necessarily the case in quantum 
statistics,  which has  to be used in  interpreting ( 1.2) for 
our nuclear problem. In  order  to  be rigorous, we should 
define the  information  function of an r-body system, not 
by a formula of the type ( l . l ) ,  but by 

S(S) = -Spur p(7)  log p(7) , (1.3) 

where p ( 7 )  is the r-body  density matrix  and “Spur” desig- 
nates the diagonal sum. A  detailed discussion will be given 
elsewhere of the  quantum-mechanical  information  func- 
tion, (1.3), which  mathematically  includes the  ordinary 
information  function, ( 1.1 ), as a special  case and which 
was historically put  into practical use4 even  before the 
latter was introduced  in  communication  theory. 

2. Decomposition of total correlation into 
partial correlations 

We  are given a set of n stochastic variables, yl, y2, . . . , y, ,  
where yi(i= 1, 2, . . . , n )  can  take  any  one of gi different 
discrete  values.  The  probability  that  the  variables 
y l ,  y z ,  . . . , y ,  take values XI, x 2 ,  . . . , xn, respectively, will 
be  denoted  by p ( y 1 = x 1 , y z = x ~ ,  . . . ,y ,=x , ) ,  or simply, 
p ( x l ,  xz, . . . , x,), or still more simply p (  X), where X 
stands for 

hE(Xl ,XZ, .  . . ,x,). (2.1 1 
The symbol X will be used sometimes to designate also the 
variables (yl, y z ,  . . . , yn) instead of their values (XI, XZ, 
. . . , x, ) .  The probability p ( h ) ,  naturally satisfies 

P ( X >  2 0  3 (2.2) 

(X)” P(X) = 1 , 
XEh 

where  the  summation symbol 

The set X of n variables is now divided into two  subsets 
p and v respectively containing E and rn variables. 

, ~ u ~ = h ,  pnv=$, , n = l + m ,  (2.5) 

where + is the  empty set. I t  is not hereby  implied that 
68 p. consists of the first 1 variables ( x l ,  X Z ,  . . . , XL), but  that 
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it consists of a set of certain 1 variables taken  out of 
(x1, xz, . . . , x , ) .  Then, we have 

where  the  summation is taken with  respect to rn x’s con- 
tained in v. Similarly, 

(2.7) 

The functions p ( p )  and p (  V )  have respectively 1 and m 
arguments,  and obey the non-negative  condition and  the 
normalization  condition of the  type (2.2) and (2.3). 

The  information  carried by n y’s in X is 

where h on  the left  should be understood  as  denoting the 
variables (yl,  y2, . . . , yn) while X on  the right for their 
values ( x 1 ,  x z ,  . . . , x,). Similarly, the  information  carried 
by p and v are given by 

(2.10) 

It is natural  to consider the  entropy  function of an  empty 
set of variables to be zero. It is easy to see, by virtue of 
Gibbs’  theorem, that 

where  the equality  holds if and only if 

for all values of ( x 1 ,  xz, . . , , x , ) .  Thus (2.12) can also 
be rewritten  as 

(2.13) 

(2.14) 

where p (  v I p )  is the conditional  probability for v on  the 
assumption p. Therefore,  from (2.13) and (2.14), it  can 
be  understood that  the  set p of variables and  the  set v of 
variables are “independent” of, or  “uncorrelated” with, 
each other. As a  consequence, the loss of information 
(redundancy) given by 

can be used as a measure of the  strength of correlation 
between p and V. We shall  sometimes refer  to c(X; p, v )  
as  “correlation existing in h with  respect to p and v.” 

If one observes the variables  contained in p and  the 
variables  contained  in v separately, then  the  information 
carried by p and  that  carried by v are respectively S ( p )  
and S(V). But on account of correlation between the 
variables, the  information  carried simultaneously  by the 
variablesinX=pUvisS(h),whichislessthanS(p)fS(v). 



servation,"  noticing the  fact  that  the "information" is the 
decrease  in ignorance by the observation. If one  has  not 
observed any of the variables ( X I ,  x 2 ,  . . . , x,) in X, then 
one's "ignorance" about  the values of the variables in p 
is expressed by 

(2.16) 

Suppose  now that  one  has observed the values of the vari- 
ables  in V, then the ignorance about  the values of the 

Similarly, 

C(h;  p, v )  < S ( v ) .  (2.22) 

Therefore, C(h;  p, V )  is not  larger  than  the smaller of 
S ( p )  and S ( Y ) .  It is easy to see that if S ( p )  is larger than 
S( V )  , then it is impossible for p to be  completely  depend- 
ent  on v. 

Next, by dividing X into k subsets pi(i= 1, 2, . . . , k ) ,  
each containing Zi variables, so that 

variables  in p becomes p l U p 2 u . .  . u p k = X ,  

- ( Z ) ~ P ( ~ l ~ ) ~ o g P ( P l v ) = S ( p . ( v ) .  (2.17) pinpj=+, i#i ,  
XEP n = l l + l z f . .  . + l k ,  

The p in S(p1 v )  stands  for the y's in p while the v in 
S(pl  Y) stands  for  the x's in Y. Now these observed values we obtain 

of the variables in v occur with  probability p ( v ) .  There- k 

fore,  the expected  value of S(p1 V )  is S(X) I 2  S ( p d .  
i=l 

(2.23) 

(2.24) 

=S(h) - S ( v )  . (2.18) 

Without any observation, the ignorance about p was S(p )  
of (2.16). After  the observation of Y, the ignorance has 
become on  the average S ( h )  - S ( v )  of (2.18). The de- 
crease in ignorance is the  information  about p provided 
by the observation of v and is given by 

S(p )  - [S(X) -S(v) I  =C(X; p, v). (2.19) 

If the variables in p and  the variables  in v are mutually 
independent, then the observation of the variables of v 
would not  help in any measure the prediction about  the 
values of the variables in p. If there is any correlation, 
however,  this  observation of v will provide  some informa- 
tion  about  the outcomes of p. This  indirect  information is 
given by (2.19). 

Relation (2.11) sets the lower limit to C(h;  p, V )  , 
which is zero. Now  Eq. (2.17) serves the purpose of set- 
ting the  upper limit to it.  Since p ( p 1  v )  is a  probability 
distribution for  the variables  in p, S ( p /  v )  of (2.17) is 
non-negative. It becomes zero if and only if p ( p L ( v )  =O 
or 1.  This means that  the values of the variables in p are 
completely  determined by the knowledge of the values 
represented by v. Now, since S(p1 v) as well as p ( v )  is 
non-negative, S ( h )  - S ( v )  in (2.18) is also non-negative: 

S ( X ) " S ( v ) 2 0 .  (2.20) 

Equality  in (2.20) happens if and only if all S(p1 v )  (for 
v such  that p (  V )  #0) vanish. This  means a  complete  de- 
pendence of p on V .  Changing the names of p and V, one 
obtains also S( X) - S ( p )  2 0 ,  where  equality  holds if and 
only if v is completely  dependent on p. Subtracting 
[S(h) - S ( V ) ]  from S ( p )  + S ( V ) ,  and using (2.20), one 
obtains 

Equality in (2.24) holds obviously if and only if 

P ( x )  = P ( P l ) P ( P 2 )  . * P(Pk)  (2 .25)  

:m all possible values of ( X I ,  x2,  . . . , x,) .  Thus,  the 
quantity 

k 
C(h;  p l ,  p2, .  5 p k )  x S ( p i )  - S ( h )  2 0  (2.26) 

i=1 

measures the correlation existing among subsets p1, p2, 

. . . , and pk, and becomes zero when  they are mutually 
independent,  in the sense of (2.25). 

The  quantity C(X; p l ,  p2, . . . , p k )  will be  sometimes 
called  the  correlation  existing  in X with  respect to 
pl, pz, . . . , pk. In  particular, if ( p 1 ,  pz, . . . , p k )  becomes 
( y l , y z , .  . . , y,), i.e.,  if Z1=Z2=. . . L = l ,  then C(X; PI, 
p2, . . . pk ) will be called total correlation existing in X: 

CtOt(X) =C(X; Y1,  Y 2 ,  * * . 7 Y n )  

11. 

= x S ( y i )  -S(h). (2.27) 
i=1 

We  shall  presently see that Ct,t(X) is the largest among 
all possible c(h; pl, p2, . . . , p k )  , when X is given. 

Now taking  a given value pi, let us further subdivide it 
into subsets v i , j ( j =  1, 2, . . . , k')  such  that 

Vi , luVi ,2u  . . . uVi,k,=pi 3 

v i , i n v i , z = + ,  i#l. (2.28) 

The  correlation existing in pi with  respect to vi, 1, vi, 2 ,  . . . , 
which is given by 

k' 
C ( p i ; V i , l ,  V i , 2 , .  . . . ,Vi,k,)=I:S(Vi,j)-S(~.i)20 (2.29) 

j=1 

will vanish if and  only if 

p(p i )=p(V j , l )p (V i ,P )  * . . . p ( V i , k ' )  (2.30) 

(2.21) We can proceed  in this fashion  until finally each subset 69 
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relation C is defined in  the way indicated  in (2.29). Sup- 
pose that X is divided into  the p’s, and  the p’s are divided 
into  the Y’S, et  cetera, until finally the subsets (K’s) are 
divided into  the y’s. Then, we have 

C(X; p1,. . .) = x S ( p i )  -%X) 

c ( p i ; V i l ,  . f .) = z S ( V i j ) - S ( p i )  

i 

i 
. . . . . . . . . . . . . . . . .  
C ( K 1 ;  Yu, . . .) zS(ylm) - S ( K l ) .  (2.31) 

Adding all the equations of this  type, we obtain 
rn 

C(X; p1, . . .) + 2 c ( p i ;  V i l ,  . . .) + . . . 1 

i 
9a 

+)=C(Kl; y11, . . . .) = S(ym) - S ( h )  = C t o t ( x ) .  (2.32) 
1 m= 1 

Thus  one  obtains  the following theorem. 
Theorem. The  set of all  variables  in  consideration is 

divided into subsets, and  each subset is again  subdivided 
into sub-subsets, et  cetera, until finally the  entire set is 
branched into individual  variables. Then,  the  sum of all 
correlations,  each of which is defined with  respect to a 
branching  point, is independent of the way  in  which  this 
branching procedure is made  and is equal to the  total 
correlation. 

This  theorem  can also be considered  as  a  prescription 
for expanding the  total correlation Ctot( X) in terms of the 
partial correlations of the  type: C ( p ;  VI,  VZ, . . .). We  can 
write (2.32) in  the  form: 

C t o t =  2 Cpartial (p; ~ 1 3 ~ 2 3  . . 2 (2.33) 
a1 1 

where Cpartial should  be taken  at every branching point 
in the “taxonomical tree” whose stem is X and  the periph- 
eral branches are individual  variables, y. 

Figures 1 and 2 illustrate the  theorem in  a special case, 
in which X consists of seven variables, y1, yz, . . . , y7. 
First X is divided into  three subsets: 
PI= (YI, YZ,  y3, y4), pz= (y5, y7) and p3’y6. Then p1 is 
divided into two  subsets: vl=(yl,  yz,  y3), Yz=y4. Fi- 
nally, v1 and p z  are subdivided into individual y’s. Thus 
there  are  four branching  points, at which the correlations 
are: 

Cl=c(X; pl, p.2, p3) =S(pl) +S(pZ) +S(y6) -S(X) 9 

Cz=C(p1; Vl, Y Z )  =S(v1)  +S(Yd -SoLl1), 

c3=c(Y1; Y l t  Y Z ,  Y3)=S(Yl) +S(yZ)  +S(YS)-S(Vl) 3 

C4=C(pz; Y5,  Y7) =S(y5)  +S(y7) - S ( p z ) .  

Now, the  sum  total becomes 

Cl+Cz+C3+C4=S(Yl) +S(YZ) +S(Y3) +S(Y4) +S(Y5) 

70 +S(Y6) +S(Y7) -S(h). 

” 

relation at  the single branching  point  in  Fig. 2, which is, 
of course, Ctot( X ) .  

One possible branching scheme is to split off one vari- 
able  at  one time. This means,  conversely, that y1 and y2 
are first grouped together to  form a  subset (ylyz) and 
then y3 is added to  form a  higher  subset (y1y2y3), et 
cetera. See Fig. 3. Then  the  theorem  can be written as 

C[(y,yz); Y1,  Y z l  +C[(Y1YzY3);  (YlYZ), Y . J +  . . . 
. . . +C[(YlYZ. . . Yn);(Yl, yz . . . yn-l), Y n l  

=C[(ylYz . 1 ~ n ) ;  YI,  Y Z ,  ~ 3 ,  . . ., ~ n l  =ctot(h) . (2.34) 

A  typical term C[(ylyz . .  . yr) ;   (y lyz . .  . yl.-l),y,1 in 
this expansion can be interpreted as follows. Suppose  a 
subset (yl,  yz, . . . , Y , . - ~ )  and  the variable yr are observed 
separately. Then  the  information  carried by them are 
respectively S(y1,  yz, . . . , Y , - ~ )  and S(y,.). But the  infor- 
mation  carried simultaneously by all r variables (yl ,  yz, 
. . . , yr)  is S(yl,  y2, . . . , y,.). The decrease in  information 
is given by C[(yly2. . . y?);  (ylyz. . . Y ~ - ~ ) ,  y,.]. Alterna- 
tively, in  terms of “ignorance,” the ignorance about  the 
value of y. before any observation is S(y,). Now, if one 
has observed the values of yl,  yz . . . , and yv-l, then  the 
average ignorance  about  the value of yI. is reduced to 
S(YI, YZ,  . . . , yr)  --S(YI,  YZ, . . . , ~ ~ - 1 ) .  See (2.18). This 
decrease,S(y,)-[S(yl,y~, . . . , y  r)--S(Yl,Yz,. . . , y r - l ) l ,  
is  the  information  about yr provided by the observation of 
YI, . . . , yr-l and is equal  to C[(yl, Y Z ,  . . . , Y ? ) ;  (YI, Y Z ,  

. . . , y.]. Equation (2.34) shows that Ctot(X) can 
be expressed as  the  sum of these  terms  obtained by gradu- 
ally increasing r from 2 to n. 

Each  term in the decomposition (2.32),  or (2.33) of 
Ctot is guaranteed  to be non-negative due  to  the inequality 
(2.1 1 ) .  We can decompose S(X) into  terms, each of 
which is  guaranteed  to be  non-negative by virtue of the 
inequality (2.20). Suppose we make a chain of subsets of 
variables pl, p z ,  . . . , pk=X such  that 

pl<pZ<. . . <pk-l<pk=X 9 (2.35) 

where  the symbol < means ‘‘c but not =”. 
Then,  due  to (2.20) we have 

T i = S ( p i )  --S(pi-1) 2 0  . (2.36) 

Therefore, we obtain a  decomposition 

S(X) =S(/Ll) +TZ+T3+. . . +Tk, (2.37) 

of which each  term is non-negative. Ti means  the increase 
in  information by observation of variables of pi in addi- 
tion to  the  information obtained from variables of 

If we take 

pl=yl,  pZ= (YlYZ),  P3=(YlYZY3) . * 
. . . pk’(ylYZY3. . Yn) 9 (n=k), (2.38) 

then (2.37) becomes 
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+"" 
+ [S(YI,  YZ, - 9 ~ n )  --S(YlYz, . , ~ n - 1 1 1 .  (2.39) 

n 
Subtracting  from  both sides x S(yi) , one  obtains  formula 

(2.34) with the negative sign. 
i=1 

3. Expansions in terms of average entropy functions 

For  any  function F ( r )  of an integer argument  r, satisfying 

F ( r )  =O , for r i O  , (3.1) 

we can easily prove  a  simple mathematical  theorem: 

where [F( r )  I t  is the ttll difference defined by 

They  are,  for instance, 

CF(r) Io=F(r) ,  

[ F ( r ) l ~ = F ( r ) - - F ( r - l ) ,  

[ F ( r ) ] , = F ( r )  - 2 F ( r -  1)   +F(r-2) ,  

[F(r)]a=F(r)-3F(r-l)+3F(r-2)-F(r-3). (3.4) 

Another useful  expansion of F ( n )  is 

which is equally easy to prove. 

Now,  coming  back  to  the  problem of the preceding 
section, we define an  "average r-signal information," s(r) 
by 

where p is a  subset  with r variables, and  the  summation is 

taken over all different subsets of r variables taken 
out of the original set X of n variables. I t  should be men- 
tioned here  that  such  an average can be defined in any 
arbitrary case, but its usefulness becomes important only 
in  the cases where the individual D r ) ' s  are  not very  dif- 
ferent  from  the average. 

Suppose we take a subset p with r variables in A, and 
subdivide  this p into two sub-subsets a and p, respectively, 
with s and t variables. Then,  from  the consideration of 
the last  section, we have 

S r ) ( p )  < S ( . ) ( a )  + S c t ) ( p ) ,  p=aup ,  r = s + t .  (3.7) 

(3 

y7  

Figure 2 One-stage polychotomy of states. 
~ ' Y 1 U Y 2 U Y 3 U Y 4 U Y 5 U Y 6 U y 7  

h 

\ Y6 
\ y7 
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different ways to  take (a, p )  in p .  
Thus 

It should be noted that equality in (3.8) requires equality 

in all (i) different relations of the type (3 .7) .  Therefore, 
it is an extremely stringent requirement. Now, let US take 
the summation over all different p’s that can be taken 
in X. Then, 

(3.9) 

Now, let us fix our attention on  a particular a in (3.9) 
and ask how many times this will appear in the summa- 
tion over ( :) different p’s. This is the number of p’s that 
includes this particular a. Hence, the answer is obviously 
(:I,“). The right-hand side of (3.9) will then become 

In virtue of the fact 

n(n-1 ) .  . . ( n - s + l )  

Eq. (3.9) becomes 

I or equivalently, in virtue of (3.6) ) 

S(r) < S ( S )  +SO).  (3 .10)  

Thus, we can define an “average correlation”: 

C ( r ;  s, t )  = S ( S )  +S(Q - S ( r )  20 , r=s+t . (3.11) 

It should be noted, however, that in marked  contrast  to 
the case of an “individual” correlation, vanishing of an 

72 average correlation is a very strong condition. 
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The total correlation existing in  a subset of r variables 
y 1 ,  y 2 ,  . . , y r )  is, according to (2.29), 

r 
C$:\(YIYZ- . . Y ? )  x S ( Y ~ )  - - S ( Y ~ Y ~  . . . ~ 7 )  . (3.12) 

The corresponding average total correlation of r-variable 
subsets is 

i=l 

- C(r) = r S ( l )  - S ( r )  ) 

” 

(3 .13)  

with 
n - 

S(1) = x S ( y i ) / n  , (3.14) 
i=1 

We now notice that we always have 

S(0) =o , C(0) =o , - 
(3 .15)  

for S o )  is zero anyway. Since S(r) and c(r) are not de- 
fined for negative values of r, we can arbitrarily decide 
that they are zero. Thus, 

s ( ~ ) = o ,  C(r) = O  for r I O  ) (3.16) 

in agreement with (3 .1 ) .  Actually, we have, in addition to 
this, C(l) = O .  It must be kept in mind that  the definition 
(3.13) is valid only for non-negative values of r. For 
r=  - 1, for instance, it would give c(-1) = - S I ) ,  which is 
not what is intended, since C(-l) is zero by definition due 
to (3.16). 

Now, according to (3.6) and (3 .13))  we see that  for 
r =n, the quantities Scr) and -d (T )  are not an “average,” 
but  the total information and total correlation in A. 

- 

- 

=S(X) =113(1)-Ctot(X) , 
a n )  =Ctot(h) =nS(1) -S(X) . 

(3.17) 

(3 .18)  

Therefore, substituting S ( r )  or ??(r) for F ( r )  in (3 .2)  and 
(3.5), we obtain all kinds of expansions of S(X) and 
&(A) in terms of S(r)  or c(r). We shall mention just a 
few of them as illustrations. For instance, for n=4,   t=4,  
Eq. (3.2) gives, with F ( r )  =F(“), 

- 

S ( X )  =2Os(1) + lO(s(2) -4S(l))   +4(3(3)  -43(2)+63(1) 

+(s(4)-4S(3)+6S(2)-4S(1)). (3.19) 

An interesting expansion is obtained from (3.2) by 
putting t =  1 and identifying F ( r )  with c(.). 

n 
CtOt(X) = 2 c m 1 1  

7= 1 

n x (Z(r)-E(r-l)) 

x [S(1’ -S(r )  + 3 r - 1 ) ]  . (3 .20)  

r= 2 

n 

r=2 

One can immediately recognize that (3.20) corresponds 
to the expansion (2.34) which we discussed in some detail 
in the last section. The only difference is that Eq. (3.20) 
is expressed in  terms of “average” information, while 
Eq. (2.34) is expressed in terms of information of well- 



defined variables, along  a  chain  like one  in Fig. 3. 

Next, by putting s(r) as F ( r )  in  (3.5), one  obtains 

S(A) =&1,+ (SC’) -23(1)) + (I) - (~)(S(3)-33.I2)+3Sil)) 

+ ( ~) (S i4 ) -43r3)+6~ iz ) -43 ( l ) )+ .  . . . (3.21) 

By transferring  the first term  on  the  right side to the  left 
side, one obtains an expression for (&(A). Each  of the 
remaining terms  on the  right side has rather a nice sym- 
metrical form,  for instance, 

(;) (3(2)-2s(1)) = ~ [ S ( Y I Y Z )  - S ( Y I )  -S(y2)1 (3.22) 

(;) ( s 3 - 3 ~ * + 3 ~ ~ ) = s [ S ( Y l Y Z Y s )  ” s ( Y l Y 2 )  ” ( Y 2 Y 3 )  

- S ( Y ~ Y I )  + S ( Y I )  +S(YZ) + S ( y 3 ) 1 ,  etcetera. (3.23) 

The summation in (3.22) is to be extended over all  pairs 
of y’s, and  the summation in (3.23) is to be extended  over 
all groups of three variables. The  term  in bracket in 
(3.22) is obviously -C[ (y1y2);  y l ,  y z ]  5 0  and repre- 
sents the decrease of information due  to correlation be- 
tween two elements y1 and y z .  It might be tempting to 
consider the  quantity in the  brackets in (3.23) as  repre- 
senting the decrease of information  due  to the  correlation 
peculiar  to  a three-element system, ( y 1 y 2 y 3 ) .  This  inter- 
pretation, however, is hardly justifiable since  the  terms in 
expansion (3.21 ) can be both positive and negative, 
although these quantities  have  a  certain formal beauty, 
e.g., it can be written for  three variables, 

p ( x l ,  X Z ,  x 3 )  
XI, x29 2s 

P ( X 1 ,  xz, ~3)P(Xl )P(XZ)P(X3)  

P(X1, X d P ( X 2 ,  X 3 1 P ( X 3 ,  x 4 )  
log . (3.24) 

The reason why this expression does not have  a profound 
meaning is that  the quantity 

P ( X 1 ,  X 2 ) P ( X 2 1  X 3 ) P ( X 3 ,  X l )  

P ( x 1 ) P ( x z ) P ( x 3 )  
9 (3.25) 

which  occupies a position comparable  to p(xl, xz, x 3 )  in 
(3.24),  cannot be considered as a probability distribution 
for (x1, x 2 ,  x g )  since  it does not satisfy the  normalization 
condition. The expansion of this type has been considered 
by Professor R. M. Fano  (in  an oral  presentation at  IBM 
Research Laboratory). 

Consider for example, the case of four binary variables 
in which p ( x l ,  x2,  x3, x 4 )  is determined by p ( 0 ,  1, 0, 1) 
= p (  1,0,  1,O)  =1/2.  Then we obtain S(l) =1,  sz-2s1 

- 1, and  the  expansion in question (3.21) consists of four 
terms  and is given by S(4)=-1+4-6+4=+1. This al- 
ternation of signs does not allow of any useful interpre- 
tation. The expansions (2.32),  (2.33),  (2.34),  (3.20) 
have  the definite advantage that each  term in the  summa- 

=-I,  33-33(2)+33(1)=+1,  s4-4s(3)+6S(2)-45(1)= 

tion  has a definite sign, contributing to the  total correla- 
tion. The expansions such  as  (3.19)  and  (3.21) do not 
have this advantage. 

Before passing to  the next section, it may be worth- 
while to give further consideration to the “average” cor- 
relations  to  clarify  their meaning. To make  the argument 
concrete, let us take the case n=4  and discuss the expan- 
sion (3.20) which may be written 

c {;{ = V(4)  + V(3)  + V ( 2 )  , ( 3.26) 

with 
” - 

V(r) =,y(1) +S(V-l) “ S ( r )  2 0  . (3.27) 

V ( T )  is a special case of (3.11 ) with t =  1. To understand 
the meaning of V(f‘), it is helpful to know when it van- 
ishes. In terms of “individual” correlations of the type 
(2.19), we have four relations of the  form 

a(Y lYzY3Y4) ;  (Y lYZY3) ,  Y 4 1  

= S ( 3 )  ( ~ 1 ~ 2 ~ 3 )  + S ‘ ’ ) ( Y ~ )  -S(4) ( ~ 1 ~ 2 ~ 3 ~ 4 )  2 0 ,  (3.28) 

in which one out of four variables (yly2y3y4) is singled 
out. V(4) of (3.27) is the sum of these four relations, 
divided by four.  Therefore, equality in (3.27) entails 
equality in each of the  four relations of the type (3.28). 
This means that the  condition 

V(4) =o (3.29) 

implies, in virtue of (2.12), 

P ( X 1 ,  xz, x3, x 4 )  =p(x1xzx3)p(x4)  =P(xzx3x4)p(xi)  

= p ( x 3 x 4 x 1 ) p ( x 2 )  =P(x4x lxz )P(x3) ,  

(3.30) 

which in  turn means four equations of the type 

P(XllX2, x3, x41 =p(x1). (3.31) 

Equation  (3.31) seems to imply that all four variables are 
independent of one another. That this is indeed the case 
will presently be seen. By summing  over x4 in  (3.30),  one 
obtains 

P(xlxZx3)  =p(xZx3)p(xl)  =p(x31 x l ) p ( x Z )  

“ P ( X 1 X Z ) P ( X 3 ) .  (3.32) 

By summing over x l ,  xz and x3, one obtains  similar ex- 
pressions for ~ ( X Z X Z X B ) ,  p ( x 1 ,  x3, ~ 4 )  and p ( x 1 ,  XZ, x4) .  

These  equations give 

V(3)  =o . (3.33) 

By the  same token, one obtains from  (3.33) 

V(2)  =o (3.34) 

or equivalently, six relations of the type 

P(X1, x z )  = P ( x l ) P ( x z )  (3.35) 

Substituting (3.35)  in  (3.32)  and again substituting the 
resulting relations in  (3.30),  one obtains finally the  rela- 
tion of complete  independence, 73 
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p(x1x2x3x4)=p(xl)p(xz)p(x3)p(xa), (3.36) 

which  means Ctz’, =O. This last relation can also be con- 
cluded by putting (3.29),  (3.33),  (3.34)  in  (3.26). 

It is very important  to note  the relations of the type 
(3.35) alone do not  imply (3.32)  or  (3.36).  This means 
that even if V ( 2 )  =0, it is quite possible that V ( 3 ) # 0  and 
V(4)#0. What has been proven  above is that if V 4 )  =0, 
then V ( 3 )  = V ( z )  =O. This means, if V(z)#O, then V(3)#O 
and V(4)#0 .   In  general, nonvanishing, lower-range  aver- 
age correlations imply nonvanishing higher-range average 
correlation.  This  situation offers a  contrast to  the case of 
W s  of the next section, where  it is possible that the W s  
of higher range can vanish while the W’s of lower range 
do not. 

In any event, the concept of average  correlations be- 
comes useful only when all the  variables y l ,  y2 . . . , y n  
are  more  or less on  the same  footing  as in the case of 
simultaneous signals. In particular,  it is a very natural 
concept  when the variables are absolutely equivalent in a 
statistical sense, i.e., when the probability distribution 
remains  invariant for  any permutation of values of the 
variables, 

p(y1=x1, . . . , y i=x i ,  . . , y j ,=x j ,  . . , y n = x n )  

=p(y1=x1 ,  . , y i = x j , .  . . , y j = x i , .  . , y n = x n )  

for any  pair ( i ,  j )  . (3.37) 

In this case, all the r-signal information functions  are 
equal  to  one  another  and  to  the average. Thus, in  such a 
case, S ( I )  is not  an average,  but the  actual r-signal infor- 
mation.  This kind of thing  can happen when  we  apply the 
present analysis to a physical system, such as  a gas. The 
meaning of V ( r )  is obvious. If one observes any (r-  1) 
signals and  any  one signal separately, one obtains  respec- 
tively information and S(1). But if one observes all 
these signal3 together,  one  obtains  only S T ) .  The loss in 
information, i.e., correlation, is V ( r ) .  Expansion (3.20) 
or  (3.26)  can be interpreted as computation of the total 
correlation by adding  these V ( 7 ) ,  starting  from  one signal 
and increasing gradually the  number of signals observed. 

4. Correlation in stochastic time-sequence 

We  are given an infinite, one-dimensional (temporal) 
series of stochastic variables 

(3 

. . , Y-3,  Y-2,  Y-1,  Yo, Y 1 ,  Y 2 ,  Y 3 ,  . * . 9 (4.1) 

each having the  same domain of g values, such  that  any 
arbitrary segment of n consecutive variables has  a  unique 
and definite probability of having  a given ordered  set of 
values, say ( X I ,  x2, . . . , x,). This implies that 

p ( y l = x l ,  . . , Yn=Xn)   =P(Yl+k=xl ,  . . Yn+k=Xn), 
(4.2) 

where k is an  arbitrary integer, positive or negative. For 
this  reason, we shall  denote the probability given (4.2) 
simply by p ( x l ,  . . . . , xn), or still more simply p( la ) .  We 

74 can theoretically divide these n variables in any way we 
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wish, and consider the subsets thus produced. All the 
formulas of Sections 2  and 3 will also  apply to this case. 
We are  not particularly  interested, however, in a subset 
consisting of variables  scattered  here  and there  on  the 
one-dimensional line. We  are interested in a subset con- 
sisting of consecutive variables. The  formulas of Section 3 
in  terms of average  entropies for two variables, three 
variables, et  cetera, are not  interesting  here,  since in the 
present case there is a  clear definition of distance between 
two variables. The relation between y 1  and yz  is thus en- 
tirely different, say,  from  the relation between y1 and y100. 

Once the probability p ( n )  for n consecutive variables is 
given, then all the probabilities p ( r )  for r 5 n  consecutive 
variables can be obtained by the use of the  recurrence 
formula: 

P ( ~ - ’ ) ( x ~ ,  ~ 2 , .  . . , ~ n - 1 )  x p(n)(xl, XZ, . . 9 Xn-19 X, )  
-”n 

= x p ( A )  (xo, x1, . . . , xz” . 
X0 

(4.3) 

On account of (4.2),  the information function of a seg- 
ment of length r 

S(.r) = - ( x ) r p ( r )  (Xl, . . . , x,) log p(‘) (XI, . . . , x,.) (4.4) 

depends  only on Y. Similarly, the  total correlation existing 
in a segment of length 

4z 

=) .S ( l )  - S ( T )  (4.5) 

depends only on r .  
As a  consequence, we can use formulas (3.2) and 

(3.5)  to obtain different expansions of C(n)  or S(n) .  Par- 
ticularly  useful are  the following three. First, by identi- 
fying F ( r )  with P r )  in (3.2) with t= 1 ,  one obtains 

Iz 

n S ( l ) “ C ( n ) = S ( n ) =  t o t  2 [S(r)ll=S(l)+(S(Z)-S(l)) 

+ (S(3)-S(*)) + . . . . + (S(”) -S(”-I)). (4.6) 

r= 1 

Identifying F ( r )  with in (3.2) with t= 1, one obtains 

n 
nS(l)-S(W = C ( n )  t o t  = 2 [ c c ‘ ) ] l = ( 2 S ( 1 ) - S ( 2 ) )  

+ (S (1 )  -S(W +S(2,) +. . . + (S(1) - S ( r )  +S(“l)) 

r = 1  

which looks similar to (3.15) but it is very important  the 
S‘s here are  not  the average but  the  information function 
of a segment of given length.  Finally,  identifying F ( r )  
with U r )  with t = 2 ,  one obtains 



+ (CC") -2ccn-11 +CW-3)) 

= ( n - l ) ( 2 S ( 1 ) - - S ( ~ ) ) + ( n " 2 ) ( - S ( ' )  

+2s(z)-s(3))+. . . 
+ ( - S ( n - 2 )  +2S("-1) "S(n)  1.  (4.8) 

Introducing  the "correlation indices" W ( r )  b 1 3  Y 
W ( V )  = " s ( 0  +2S("l) -s (r -2)  

one can  write  the  total  correlation and  the  information 
per position as 

c!;: = 2 ( n - r + l ) W ( r )  (4.10) 

I(W=S(n)/n=S(l) - 2 [ (n--] .+1)/n]W~'~ 

(4.9) 

r=2 

n 

7= 2 

n 
= [(n-r+l)/nJW(r).   (4.11) 

In  the last  expression, the relation W ( l )  = -S( ' )  is used. 
Note: S(0) =O. 

r=1 

NOW let us clarify the meaning of three  expansions 
(4.6),  (4.7) and (4.8) which we have just obtained. In 
the first  place, the representative  term S ( r ) - S ( ~ - l )  in 
(4.6) is non-negative because of the relation (2.20). 
Next, h and v are  here a  sequence of length r and a se- 
quence of length ( r -  1).  The letter p stands  for  one sym- 
bol. Therefore, the  relation S ( r ) - . ! P r - l )  = S ( h )  - S ( Y )  =o 
can be interpreted as meaning that  the knowledge of  the 
first (r- 1) positions in the sequence  completely deter- 
mines the last position. In  other words, S(r) -S(r-- l )  meas- 
ures the  further  information carried  by the last  position 
over and above the  information already given by the first 
( r -  1) positions. Equation (4.6) can also  be  obtained 
by calculating S n )  with the help of the  formula 

p ( " ) ( x 1 ,  Xz, . . . , x,) = p  (x 1)P(~zl~1)P(~3l~1~2) x 

P(xalxlxzx3) . . . P(Xn]X1X2 . . . xn-1). (4.12) 

But  this  expansion is not  particularly  interesting  since 
S ( 7 )  - S(r-l) seldom becomes very small.  When there is no 
correlation whatsoever, S(') -S(r-1) will become equal  to 
S(l) .  This expansion has often been used by Shannon.6 

Now,  turning to (4.7),  the  representative  term 
-S(T)+S(r - - I )+S( l )  is non-negative  in virtue of (2.19). 
This  expansion is exactly the  same  as (2.34) if (y1y2.. . y n )  
in (2.34) are  taken in the chronological order in a time- 
sequence. The meaning has already been studied. 

Finally, the representative  term W ( 7 )  in (4.10) is also 
non-negative for 1-22. This can easily be seen by con- 
sidering  a  probability  distribution 

q ( r ) ( x l ,  xz, . . . ,x,.> =P(xl, xz, . . . ,x?.-1) 

P ( X 2 ,  x3, . . . , x,.) 
P ( X 2 ,  x3,. . . , x,.-1) 

X . (4.13) 

Then,  the  quantity 

+(E)' P(') (Xl, xz, . . . , x,) log p ( r )  (Xl, xz, . . . , x,) 

- ( 2 ) F  P ( 7 )  (Xl, xz, . . . , x,) log q ( T )  (Xl, x2, . . . , xr) 
= - S ( r )  +2SC'-l, " S ( T - 2 )  =W(7) (4.14) 

X 

X 

is, in  virtue of the Gibbs theorem, non-negative and be- 
comes zero if and only if and qcr) are  equal to each 
other  for all possible values of (xl, xp, . . . , x,.). If this is 
the case  then, from (4.13), we have 

P ( X 1 ,  x 2 3  . . - , x,) P(Xz, x39 . . . 7 X l )  

P(X1, X n ,  . . . ,x" P(X2, x3,. . . , Xr-1) 

- - (4.15) 

or equivalently 

P ( X ~ ] X I ,  XZ, . . . , ~ ~ - 1 )  = p ( x r I x z ,  ~ 3 , .  . . , x r - 1 ) .  (4.16) 

This  means  that if we predict x,. on  the basis of the knowl- 
edge of (XI, XZ, . . . , xr-l)  or  the knowledge of (XZ, x3, 
, . . , ~ ~ - 1 )  it does not  make any difference. That means 
that  the knowledge of x1 which is r positions prior  to x,., 
over  and above the knowledge of the in-between positions 
does not affect the conditional  probability about  the  state 
of x,.. In this sense, (4.15) means an absence of correla- 
tion of range r over and above the correlation of range 
(r- 1 ) .  Therefore, W r )  can be considered  as  a  measure 
of the strength of correlation of range r. Eq. (4.10) shows 
that  the  total correlation can be  written  as  a sum of W's 
with  suitable  non-negative coefficients. 

If there were no  correlation  at all, one would have 
Z(n)=S(l) in (4.11). Therefore,  each  term  (which  isnon- 
negative) for r 2  2 under  the  summation  in (4.1 1 )  repre- 
sents the loss of information  per position due  to  the 
correlation or redundancy of range r. We can also write 
(4.11) as 

I ( % )  =S(1) - - [ W(n)  +2W(n-l) + . . . + (n- 1) W(2,]  . 1 
n 

(4.17) 

The information per position in  an infinite sequence is 
given by 

[ (m) =lim I ( n )  =lim S ( n ) / n  , (4.18) 
n+m n+m 

where  should be taken  from (4.17). If there is an 
integer m (  2 1) such that 

W(k)=O for k>m , (4.19) 

we can write 
m 

z(m) - 2 W ( Q  (4.20) 
r=2 

for this series will break off at a  certain  place. 
If (4.19) is the case, one  can also easily show 

S(")=(n"m+l)Sc")-((n"m)Sc~~-l), 

I ( m )  = S ( n a )  - S ( n z - 1 ) .  (4.21) 

If the  chain is Markovian,  then (4.19) holds for m=2. 75 
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(Usually, W ( z ) # O . )  In this case one  has  from (4.20) 
and (4.21), 

I ( m )  =S(% -S(l) (4.22) 

S(n) (n-  l)S(z) - (n-2)S(1).  (4.23) 

Another way to look  at the situation is to  note that 

(4.24) 

because of (2.20), and  that 

___ = ~ ( r )  -2sc.r-1) +2~('-2) <o A2S(') 
- (4.25) 

because of (4.14). This shows that S(?) as  a function of 
r is  a  monotonously  increasing  curve  with  a  gradually 
decreasing (convex) slope. There is, therefore,  a limiting 
slope. Particularly, if (4.19) is true, then the slope re- 
mains  constant for r>m. The slope, meaning the informa- 
tion increase  per position, will become after  it  has 
reached its final value. Thus, =S(*) -S(m-l) is easily 
understandable. 

It is instructive to  interpret the formulae  thus obtained 
once again from  the point of view of the degree of our 
ignorance  regarding the  state of a position. We  take  any 
one position in the infinite sequence,  say the 0 t h  position, 
and propose to guess the  state of this position. Then, the 
ignorance (or degree of uncertainty) is given by 

Ar2 

I Ign(1) =S(1) - 2 P(xo)logP(xo). (4.26) 
xo= 1 

Next, suppose that we know already that  the preceding 
position, i.e., the (- 1) s t  position, was in a  certain  state, 
say, xl. Then,  our ignorance  regarding the  state of the 
0 th position becomes 

B 
- 2 P ( ~ o l ~ - l ) l o g P ( ~ o l x - l )  

xo=l  

(4.27) 

However, the ( - ] ) s t  position turns out to be in  the  state 
x 1  with probability ~ ( x - ~ ) .  Therefore, the ignorance 
about  the  state of the Oth position, on  the basis of the 
knowledge of the state  of the ( - l ) s t  position, becomes 
on  the  average 

=S(2) -S(1). (4.28) 

Similarly, the ignorance about  the  state of the 0 t h  position 
on  the basis of the knowledge about the states of r pre- 
ceding positions, i.e., (- 1 )  s t ,  (- 2) nd, . . . , and ( - r )  th  

positions will be 
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The decrease in ignorance, i.e., increase in knowledge, 
about  the  state of the Oth position by knowing one  more 
position in the past is given by 

IgnCr) -Ign(T+1) = -S(r+1) +2S(r) -,"(r-1) W(r+l)  . 
(4.30) 

This derivation may serve to give further clarification of 
the meaning of the correlation  index W ( r ) .  The condition 
W(.r+l) =O means that  the additional knowledge about  the 
( - r )  th  position does not change our prediction about 
the Oth  position. The  more  one  learns  about  the past,  the 
less our ignorance  about  the  present becomes. The original 
ignorance is the second-stage ignorance is S(l) - W Z ) ,  

and  the third-stage  ignorance is S(1) - W ( * )  - W 3 ) ,  et cet- 
era.  Thus  the minimum  ignorance is 

(1gn),~,=S(1) - W ( Z )  - w(3) - . . . . . . . (4.31) 

This ignorance  represents the uncertainty in guessing the 
state of the Oth position with the best knowledge of the 
past. The  moment  the observation  determines this state, 
this uncertainty  disappears, i.e., the ignorance becomes 
zero.  This  decrease in ignorance is the so-called "informa- 
tion." Thus, it is not unexpected that of (4.20) and 
(Ign) min of (4.31) coincide. represents, on  one 
hand,  the decrease of information due to  correlation of 
range r,  and, on  the  other  hand,  the average  increase of 
our knowledge about the state  of a position by knowing 
the  state r positions prior to it over  and above  the knowl- 
edge about  the states of the in-between positions. 

It is often stated that if the correlation is  of a finite 
range, then  one  can  take segments of sufficient length and 
treat them  as if they were independent. We shall here give 
a formula by which one  can evaluate the  error committed 
by such a  procedure. Suppose the range is m or less, i.e., 
W ( k )  =O for k>m, and  take two consecutive segments of 
lengths, nl and n2, such  that nl>m, n2>m. The informa- 
tion  carried by the entire  segment of length n=nl+n2, 
by the  segment of length nl and by the  segment of length 
n2 are, respectively, 

S(nl+nz)=(nl+n2)S(1)- x ( n l + n 2 - r + 1 ) W ( r ) ,  
9n 

r=2 

rn 
S(%) =nlS(l) - 2 (n l - r+  1 )  W T ) ,  

+=2 

9n 
S(%) =n,s(1) - 2 (n2-r+l) W ( ? ) .  (4.32) 

r=2 

Therefore the  correlation  omitted in the  above procedure 
is 

9n 
S(%) +S(%) " S ( % + W  = 2 ( r -  1) W(V).  (4.33) 

r=2 

The ratio of  the quantity in (4.33) to S(n~+nz) in (4.32) 
gives the fractional error.  This  fraction becomes, of 
course, zero as ( nl + n2)  +a, since the correlation (4.3 3 ) 
does not depend on nl, n2, or n, which is obvious because 
the correlation exists in the present case, in the vicinity 
of the border of the two segments. 



5. Application 1: Redundancy in geometrical figures line and right  vertical line, and  that they are used with 

In  the  problem of pattern recognition, it is often impor- equal probability: 

tant  to  determine  the degree of redundancy, i.e., the p (  1, 1,0,0) = p (  1,0, 1,O) = p ( O ,  0, 1, 1) 
degree of possibility of guessing the  entire figure by ob- 
serving  only part of it. The following extremely  simple = p ( O ,  1,0, 1) =1/4. (5.1) 
example may be sufficient to  show  that  the  correlation 
analysis, as developed in Section 2, can be a  useful  instru- 
ment in  unraveling  this  type of problem. 

Suppose one  has a square which is divided into  four 
equal  square cells (see  Fig. 4). Each cell can be black or 
white. Then there are 24’  16 different figures. In  order to 
identify each  one of them, let us introduce  four variables 
y l ,  y 2 ,  y3,  y 4 ,  corresponding to  the  four cells, in the  order 
of left-upper,  right-upper, left-lower and right-lower cells. 
Each variable can be 0 or 1, “0” meaning  white and “1” 
meaning  black, Thus,  for instance, ( y 1 =  1, y 2  = 1 ,  y 3  =0, 
y4=O) or simply (1 100) means  a  horizontal  line  in the 
upper row. If all the 16 figures (letters)  are used, there is 
no  redundancy, for partial knowledge of the figure  does 
not help to  any  extent  to identify the figure. But if the 
alphabet is limited to a fraction of 16 figures, redundancy 
appears. 

To fix our idea,  let us assume that  the  alphabet consists 
of four  letters (llOO),  (lolo),  (0011) and (OlOl), i.e., 

Then obviously we have  the  total  entropy 

S(y1, Y Z ,   Y 3 ,   Y 4 )  =2, (5.2) 

corresponding to the fact  each letter can emit 2 bits of 
information. In terms of “ignorance,”  this means  that 
before  observation four cases are equally  probable and 
we have not the slightest idea as to which of the  four will 
appear. Similarly, the  entropy  functions of three variables 
are all equal  to 2, since four different  configurations of 
three cells can appear with equal probabilities: 

S ( Y 2 ,   Y 3 ,   Y 4 )  =s(Yl, Y 3 ,   Y 4 )   = S ( Y l ,  Y 2 ,  Y 4 )  

=s(Yl, y2, Y 3 )  =2 . (5.3) 

But the  entropy  functions of two  variables  divide  them- 
selves into two  categories. If the two  variables are  taken 
horizontally or vertically, their entropies are 2.  

S ( Y 1 ,   Y 2 )  =s(Y3, Y 4 )   = S ( Y 1 ,  Y 3 )  = S ( Y z ,   Y 4 )  =2. (5.4) 

upper horizontal  line, left vertical line,  lower  horizontal Eq. (5.4) is true because there  are  four possible cases, 
(black-white) , (white-black) , (black-black) and (white- 
white), with equal probability. But if the two  variables 
are  taken diagonally  their  entropies are 1: 

S ( Y 1 ,  Y 4 )  =S(Yz,  Y 3 )  = 1 . (5.5) 
Figure 4 Redundancy in geometrical figures. 

This is true because, there are only  two possible cases, 
Simplified  example of an application of Cor- (black-white)  and  (white-black).  The  entropy of one 
relation analysis to Problems Of Pattern recog- variable is obviously 1, since black and white appear with 
nition. equal probability in  each cell: 

83 
(0000) 

V m a B  

S(Yd =S(Yz )  = S ( y 3 )  = S ( y 4 )  = 1  . (5.6) 

Now  the  total  correlation is 

C t o t = S ( y d  + S ( Y 2 )  + S ( Y 3 )   + S ( Y , )   ” s ( Y l Y Z Y 3 Y 4 )  

=l+l+l+l-2=2. (5.7) 

This corresponds to  the  fact  that with p ( 0 )  = p (  1) = 1/2, 
one could at best send four bits of information  (using  the 
16 alphabets with equal  probabilities). By limiting oneself 

El dancy. 

to the  four letters,  however, one sends  only two bits. The 
difference 4-2=2 is the loss of information, or redun- 

Now if we divide the set of four variables ( y l ,  y 2 ,  y3,  y4)  
into a group of three variables and  one remaining  varia- 
ble, then  the correlation  corresponding to this  “branching” 
is independent of the way the division is made  and  equal  to 

(1100)  (0011)  (1010)  (0101) (1001)  (0110)  

1 (0111)  (1011)  (1101)  (1110) 
CC(Y1YzY3Y4) ;   (Y lY2Y3) ,   Y41  

I =2+1-2=1. ( 5 . 8 )  

(1111) 

This  means  that a group of three variables  convey  two 
bits of information, while one variable conveys one bit 
of information, but all together  they can convey still only 77 
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two bits of information.  This is because  variable y4 is 
completely  determined by the  other  three variables. This 
case  should  be compared with formulae (2.21) and 
(2.22), identifying 

A =  (YlYZY3Y4) 

p= (YIY2Y3) (5.9) 

v=y4. 

One sees that equality  in (2 .22)  is holding in this  case, 
meaning that v is completely dependent  on p. However, 
equality  in (2.21) is not holding  here, because p is not 
completely  determined by V .  

More interesting is the case of division of four variables 
into two groups of two variables. There  are two cases 
typified by 

CC(Y1YzY3Y4);  (YlYZ),  (YBY4)l 

=2+2-2=2 (5.10) 

and 

c[ (YlYZY3Y4) ; (YlY4) 9 (Y2y3) 1 
=1+1-2=0.   (5 .11)  

The first case (5.10) means, in  the light of (2.21) and 
(2.22), that (y1y2) and (y3y4) are mutually completely 
dependent. If (ylyz) is (black-black),  then (yay4) is 
(white-white),  and vice versa. If (yly2) is (black-white), 
then (y3y4) is also (black-white) , and vice versa,  et  cetera. 
In  the second  case (5.11), each  group (ylyl) or (y2y3) 
means a diagonal and  can be (black-white)  or (white- 
black).  And even if we know  that (nu4)  is one of the 
two, say, (black-white) , there is still probability 1/2 for 
(yz, y3) being (black-white)  and probability 1/2 for 
(yz, y3) being (white-black).  Therefore, this is  the case 
of complete  independence. Case (5.10) is the  maximum 
correlation and (5.1 1) the  minimum correlation. 

Observation of one cell gives only one bit of informa- 
tion. Therefore  it is sufficient to select two out of four 
possibilities but  not sufficient to identify the figure. Ob- 
servation of two cells diagonally placed gives also only 
one bit, therefore  not sufficient to identify the  entire 
figure. But,  observation of two cells horizontally or ver- 
tically placed gives two  bits of information  and is  suffi- 
cient to identify the figure. This is obvious from  the 
illustration,  but it is interesting to see the  mathematical 
expression of the situation  in the foregoing  formulas. 

One  can write  various  decompositions,  according to 
(2.32),  (2.34) or (2.39), and it is instructive to  under- 
stand  the meaning of each term.  However,  since it is 
rather elementary, we shall  not  describe  them  here. 

It is also interesting to see the difference between the 
present  choice of four letters (llOO), ( l o l o ) ,  (OOll), 
(0101 ) and  another choice of four letters,  say, (1,0,0,0), 
(0, 1, 0, 0), (0, 0,  1, 0) ,  and (0,  0,  0, l ) ,  each of which 
has  one black and  three white. If the frequency of  each of 
these four i s  1/4, the  total information is 2 ,  as  before. 

78 The  total correlation here is 1.24512, while the total  cor- 

relation  in the  former case was 2. In  the present case, the 
information  carried by one cell is 0.81128, as compared 
with 1 in the  former case. Hence, observation of one cell 
is less powerful here in guessing the  entire figure than  in 
the  former example. Similarly, the  information  carried 
by two cells is 1.5, no  matter which  two are  taken, i.e., it 
is insufficient to identify the figure. In  the  former exam- 
ple, any two cells horizontally or vertically laid  carried 
two  bits, sufficient to identify the figure. 

In this  section we discussed only the case where  the 
probability of each  letter is equal, but our instruments of 
Section 2 are devised so as to  cope with more general 
cases. It will be  useful to consider the coding  problem of 
geometrical figures, taking advantage of the  redundancy 
existing in the figures, and assuming a special type of 
deformations likely to  occur in  geometrical figures. 

6. Checking of randomizing effect of shuffling 

The correlation index W ( r )  is not a useful instrument 
when there is a correlation of a  very  large  range. For 
instance, if a  stochastic  chain has a  hidden  periodicity of 
very long range,  one will have  to calculate S(?) and W ( + )  
for very  large r’s to discover such a  periodicity.  Calcula- 
tion of this kind is impracticable,  since the  number of 
terms  to be added  in this  calculation  increases  exponen- 
tially with r. On  the  other  hand, most of the stochastic 
chains  studied  in scientific and engineering  problems have 
a  small range of correlation. In  such a case the correla- 
tion index becomes a  powerful tool. As an illustration, we 
shall  describe  here an experiment made  on  the  IBM 704 
simulating shuffling of cards,  in  which the correlations are 
gradually  destroyed as a  result of shuffling. The  cards bear 
the designation “1” or “0”. 

The original  sequence of binary numbers is a  stochastic 
chain,  but  correlation is built in, so that probability is 
very  high that a  segment  arbitrarily taken  from it has a 
pattern: 

. . . . . .  0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1  ...... 
( 6 . 1 )  

Let us for a moment assume that  the sequence had a rigid 
rule (6.1). Suppose we give ourselves a task of guessing 
the value x0 of the variable yo. Without any  preliminary 
knowledge of other digits, there is an  equal probability 
for x0=0 and  for xo= 1.  Now, suppose we know that y-1 
was 1, i.e., = 1. Then, this  position  may  be,  with 
equal probability, any  one of the  four possible positions in 
a run of four 1’s. If y - ~  is the first,  second or third position 
in  this run,  then x. will be 1. If y-l is the last  position of 
the  four, then x. will be 0. Hence,  the probability of xo’s 
being 1 is now 314 and  the probability of being 0 is 1/4. 
If we know and x 2 ,  then our prediction of x. will be- 
come  more  accurate. Finally, if we know x-1, x-2, x-3 and 
x-4, then the prediction of x. is no longer  probabilistic, but 
deterministic. And  further knowledge of will no longer 
change  our prediction about x,, . Therefore, W (6) = 0. And 
also, W ( ? )  =0, r>6.  
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Of course,  a  sequence  which  strictly obeys the  rule run of 0's terminates with the  rule of accidental death, 
(6.1) is not a stationary stochastic  sequence in  the sense while a run of 1's always has length one. Now every time 
of (4.2). The sequence we used, therefore, was produced "1" appears  at  one position,  say at  the position k ,  then  the 
by the following probabilistic  rules  determined  by  condi- original  sequence will cut between the position k and 
tional  probabilities of range 5 :  k t  1. The average  length of a segment is ( l / p )  + 1, if N 

is very  large. The  number n of segments  in  a  sequence of 
length N is a  stochastic  variable  here. 

given below. In  the following, E is a constant very  small The first task in  our experiment on  the  IBM 704 
compared with  unity. consisted of producing N =  105,000 digits of binary  num- 

bers  obeying (6.2). At  each situation, i.e., whenever the 

~(xYIxr-4, x r - 3 9  X r - 2 ,  xr-1) 

p(110000)=1-& , p(1(1ooo)=E 

p(1~0001)=1"E , p(ll1001)=1"E 

p(1~0010)=E , p (  1 I 1010) ==E 

p(1~0011)=1"E , p ( l ( l o l l ) = l - E  

p (  1 loloo) = E  , p (  1 IllOO) = E  

p(1~0101)=1"E , p( l l l lO l )= l "E  

p (  1101 10) = E  , p( l l l l 10 )=& 

p(lJ0111)=l--E , p ( l l l l l l ) = E  

(6.2) 

This  table is so devised that  no  matter where  a run  starts, 
it  has a  high  probability of continuing to length 4. The 
probability of a  run's  ending at a  position  does not depend 
on  what  happened before the  run  has  started.  More  pre- 
cisely, if a run  has lasted for a  length r less than 4, 
( r =  1, 2, 3 ) ,  then  the probability of its continuing one 
more place is 1 - E .  If a run  has lasted four  or  more places, 
then  the probability of its  terminating by the  appearance 
of the next place is 1 - E .  

The  numbers  are produced by conditional  probabilities 
of range 5, which  means that  the probability of a  position 
taking  a certain value is determined by four preceding 
positions, and  that  the knowledge of one  more position 
preceding  these four does not change  this  probability. 
Therefore, according to  the analysis of the preceding 
Section, W ( @  should be zero. 

The shuffling has been done in the following way. Sup- 
pose we have a  sequence of length N.  We divide this 
sequence  in n segments in a certain  random fashion  which 
will presently be explained. Then we have  the first, sec- 
ond, . . . , ( n  - 1 ) th, and nth segments. We reverse the 
order  and  form a new sequence of length N ,  which is 
formed by putting  the n segments  in the  order of the nth, 
( n -  l)th, . . . . , second and first segments taken  from  the 
original  sequence. This  entire process will be called one 
shuffie. 

The method of division is as follows. We produce a 
sequence of binary numbers by the following Markovian 
conditional  probabilities, ~ ( X L  [ x k - l ) ,  which are 

where p is small compared with  unity. This  means  that a 

(6.4) 

four preceding numbers  are given, there are, according 
to (6.2), two kinds of events: one, (A) ,  with  probability 
E ,  and  the  other, (B) , with  probability 1 - E .  We  produced 
each  time a random  number of appropriate length be- 
tween 0 and l ,  and if the  number was between 0 and E, 
we took  the event of class (A),  and if the  number was 
between E and 1, we took  the event of class (B) .  For  the 
value E =O, we obtain  the regular  sequence (6.1 ) . If 
E = 1/2, then the whole process will become completely 
random.  The case E = 1 does not give rise to a stationary 
Markov chain, but if the  starting sequence is (OIOI), then 
it continues to  produce a chain with 0 and 1 appearing 
alternately. When we speak of the case E = 1 in  the fol- 
lowing, we shall mean this  special case. 

If E =O, then,  without shuffling, we should have (with 

N-+co) 

W(') = 0.18872 , 
W ( 3 )  =0.12256 , 

W(4) = 0.18872 , 
W ( 5 )  

W ( G )  =O , 

and  the  total  correlation per  digit (for N-too) 
6 2 W ( r ) =  x W ( r ) =  l imC(" ) /n=1 .  

On 

t o t  (6.5) 
TY2 T=2 n-m 

For E = 1/2, we should have 
6 

W(2) = W(3) =W(4) =W(5)=W(6)  = O ,  W ( r )  =O . (6.6) 
r=2 

For F = 1, we should have 

W ( z )  = 1 W(3) = W(4) = W(5) = W(6)  = O  , 2 W ( r )  = 1 . 6 

7= 2 

(6.7) 

In  actual experiments, we used E = 1, which corresponds 
to (6.7), and ~ = 1 / 4 ,  1/8, 1/16, which lie between (6.5) 
and (6.6). 

The shuffling sequence (6.3) was produced by a method 
similar to the one used  in  producing the main chain of 
numbers. The  constant 7) was chosen to be 1/16 in  every 
experiment. We  denote  hereafter  the  number of shuffles 
by p .  We give here samples of a segment of 32 digits 
arbitrarily taken  from  the  actual  chain of 105,000 num- 
bers, before shuffling ( p - 0 ) ,  after  three shuffles (p=3), 79 
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I P- I P- 

Figure 5 Destruction  of  orderliness by three shuffles 
of  cards  marked 1 or 0. 

The total  correlation per  digit x W ( r )  for E = 1, 

1/4,  1/8, 1/16 and for p=O, 1, 2, 3. This 
shows  how the  total correlation decreases with 

6 

r = 2  

80 increasing number of shufles. 
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6 

total  correlation 2 W(r) decreases with p for ~ = 1 / 1 6  in 

the domain p = 0 through p = 10. Figure 7 shows how each 
W ( r )  ( r=2 ,  3, 4, 5,  6 )  decreases with increasing p for 
e=1/16. 

r=z 

w e  should expect Wc6) = O  before shuffling, as stated 
previously, if the total length N were infinite. We must, 
however, expect that  the experimental value of W(r) for 
a  larger  value of r will differ from  the theoretical value 
(which is computed for N+co ) for  the following two 
reasons: (1) Since the number of varieties of segments of 
length r is nr, which increases rapidly with r, the number 
of samples of the segments in a given N-digit chain be- 
comes more insufficient for larger r. ( 2 )  As r increases, 
the probability of each variety becomes smaller. But the 
function - p  log p becomes very sensitive to a  small rela- 
tive change of p if p itself becomes close to zero. This will 
explain why we had in our experiment, for instance, 
w(6)=0.0001584 instead of zero, i.e., about 10-39, for 
P = O  and ~ = 1 / 1 6 .  This W(@, however, is very small corn- 

Figure 7 Decrease of orderliness a s  measured by 
correlation indices by shuffles. 

The correlation index W(r) against the range 
r,  for E = 1/16. Each curve  corresponds to a 
value of shuffles p which runs from 0 to 10. 
A S  can be expected, W(r) with larger r is de- 
stroyed more  quickly. For  comparison, the 
theoretical values of W(r) for E =O and p = O  
are also plotted. 
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