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Satosi Watanabe

Information Theoretical Analysis
of Multivariate Correlation

Abstract: A set A of stochastic variables, y,, ¥, . . ., ¥n, is grouped into subsets, i1, ., . . . , ux. The correlation

existing in X with respect to the u's is adequately expressed by C= Ek: S{u:)—S(A)=0, where S(v) is the entropy
function defined with reference to the variables y in subset v. For @ g;i—\;en A, C becomes maximum when each
wi consists of only one variable, (n=k). The value C is then called the total correlation in A, C.,{\). The present
paper gives various theorems, according to which C, ,(\) can be decomposed in terms of the partial correla-
tions existing in subsets of A, and of quantities derivable therefrom. The information-theoretical meaning of
each decomposition is carefully explained, As illustrations, two problems are discussed at the end of the

paper: (1) redundancy in geometrical figures in pattern recognition, and (2) randomization effect of shuffling

cards marked ‘“zero” or “one.”

1. Introduction

Since the time of Boltzmann, physicists have repeatedly
encountered quantities of the type

S=—23pilog pi, (1.1)

either as an expression of thermodynamic entropy or as a
quantity closely related to it.! Boltzmann seems to have
noticed that thermodynamic entropy has something to do
with orderliness and disorderliness of elements, and
Szilard? in 1929 pointed out that a decrease of thermo-
dynamic entropy is accompanied by the acquisition of
information. In 1932 von Neumann,® using a quantity
(1.1) as a model of thermodynamic entropy, demon-
strated the irreversibility of observation, in which infor-
mation about the state of a system becomes statistically
less accurate. Less well known, however, is a papert on
atomic nuclei which appeared in 1939, using the quantity
(1.1) in a practical way for the first time as an instrument
deliberately contrived to measure the uncertainty of the
state of a particle, and making clear that it is different
from thermodynamic entropy. This paper may be con-
sidered, in a way, as one of the earliest events which led
to the independence of information theory from thermo-
dynamics.
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In any event the 1939 paper is pertinent to our present
study since it clearly stated that the quantity (1.1), on the
one hand, measures the uncertainty of our knowledge
about the state but, on the other, it also measures the
strength of the correlation (beyond the average inter-
action) among constituent particles., We shall presently
sketch the argument which was then used to justify this
statement and show how it ties in with the present theory.
1t is noteworthy that the relation between information and
correlation was already demonstrated at that early stage
of development of information theory.

In the field of communication theory, as early as 1928,
Hartley expressed the idea that the quantity of informa-
tion might reasonably be defined as the logarithm of the
number of independent signals.> This is obviously a spe-
cial case of (1.1) with equal probabilities, but a formal
information theory in communication based on the quan-
tity (1.1) was developed much later by Shannon® and
others, who adopted the statistical point of view of com-
munication emphasized by Wiener,” Kolmogoroff,® and
others. In communication theory, the relation between
information and correlation was rediscovered in connec-
tion with so-called redundancy. After the nature of re-
dundancy in communication became well understood, the




same notion was again applied to the problem of correla-
tion existing in a collection of stochastic variables. The
importance of this aspect of information theory in the
problem of organization was emphasized with prophetic
zeal by J. Rothstein.? Several other authors have also pro-
posed and tried to use information quantities in analysis
of multivariate correlation, among them W. J. McGill,1°
W. R. Gardner,!! and S. K. Mitra.12

With regard to the correlation existing in a stationary
time sequence of stochastic variables, a convenient quan-
tity W >0, called correlation index of range r, was
introduced,?® which measures the strength of correlation
of length r in excess of the correlation of length r—1. It
was shown that the total correlation can be expanded in
terms of W with r=2, 3, 4.... This applies to an in-
finitely long sequence, on which a segment of a given
length has the same probability of being in a given state,
no matter where this segment is taken.

Another simple case is a set of a finite number of
stochastic variables, whose collective probability distribu-
tion is invariant for any permutation of variables. A
theory enabling one to expand the total correlation among
these variables in terms of partial correlations was put
forward,** in a certain analogy with the expansion in
terms of the W’s.

The present paper is a more general consideration of
correlation where the symmetries among variables which
we have discussed in the last two paragraphs do not
necessarily exist. At the same time, the cases where these
symmetries do exist will also be discussed here as special
cases. Several new theorems are introduced and proven.

Let us go back to the 1939 paper in nuclear physics
and try to explain the main points without using highly
technical notions. Those readers who are not interested in
theoretical physics are advised to proceed from this point
to the next Section. In a nucleus, the nucleons are at-
tracted to each other by two-body mutual potential
(forgetting, for simplicity, the possible many-body poten-
tials). In the Hartree approximation and the Hartree-
Fock approximation, however, these mutual potentials
are replaced by a smoothed-out external potential to
express the average effect of the mutual potentials. In
this fictitious potential, there are quantum states, ¥,
i=1,2,3,..., which can be occupied by a nucleon. In
the Hartree model, each nucleon is supposed to occupy a
definite quantum state. Hence, for each nucleon, p; is zero
or one. Therefore, § of (1.1) becomes zero. On the other
hand, in the Hartree-Fock model, the indistinguishability
of elementary particles is taken into account, and as a
result each particle occupies each of the n lowest quan-
tum states with probability 1/n, where # is the number of
nucleons in the nucleus. Thus, p;=1/n and S=log n.

However, neither the Hartree model nor the Hartree-
Fock model takes into account the two-body correlation
which is beyond the average effect. For instance, if one
wishes to find the average density (probability of pres-
ence) of a particle, the answer may be given fairly cor-
rectly by these simplified models. But if one asks the
conditional probability of presence of one particle at a

certain position, on the hypothesis that another particle is
found at a certain other position, then these simplified
models are bound to give a completely wrong answer,
because the models take into account only the average
force acting on a particle. Such a clustering effect of par-
ticles can take place without changing the average density.
To represent such a correlative (fluctuating) interaction
in theory, one naturally has to allow particles to occupy
the quantum states which are not occupied in the single-
particle model, such as the Hartree and Hartree-Fock
models. This means, for each particle, that the probability
of occupying one quantum state has to be less than 1/n,
or p;<1/n, since more than n states have to be occupied.
This automatically entails §>log n. As we can show very
easily, S can be defined in a form invariant for any unitary
transformation. Hence this result, S>>log », is independent
of the initial approximation, i.e., of the eigenfunctions
used. The expression S—logrn can be considered as a
measure of correlation. For that matter, log n itself can be
considered as a kind of correlation imposed by the Pauli
principle.

In the exact wording of the quoted paper,* “Let the
measure of indeterminacy be called S. § measures the
extent to which the wave function of the nucleus ¥ gives
an indeterminate information regarding the state of a
building block [nucleon].” Thereafter S is defined by a
formula equivalent to (1.1). In another part of the paper,
it is stated that S—1log n “gives therefore a natural meas-
ure for the importance of the fluctuation of force field,
or in other words, for the influence of exchange of energy,
etc.” It is also stated that “through the more exact con-
sideration of strong interaction in pairs of neighboring
particles, the degree of our knowledge of the state of a
particle will become less.” In any event, the double role of
S, once as a measure of uncertainty of the state of a single
particle and another time as a measure of correlation
among particles, was the theme of the paper. In a heavier
nucleus it was estimated in this paper that S=In n+0.73
(natural logarithm unit).

Now the above argument of the paper is in essential
agreement with the point of view of current information
theory, as elaborated in the present paper. The total cor-
relation existing in a set of n variables, y1, y2, ..., Yn, 18
adequately represented by

Cro =SV (y1) +5D (y2) + ... +5@ ()
—S® (y1,¥2,..,Yn). (1.2)

This indeed shows that correlation increases as complexity
of states of individual variables increases or as complexity
of states of the system of variables as a whole decreases.
To be more specific, we have to reinterpret this expression
in a fashion acceptable to quantum mechanics. First, each
SO (y), k=1,2,...,n, corresponds to (1.1). Since all
the nucleons are similar, the sum of the first # terms in
(1.2) is just n times (1.1), where i labels nucleon quan-
tum states. The last term in (1.2) can also be written in
the form of (1.1), but the index i must here refer to the
quantum states of a nucleus as a whole. Since we are dis-
cussing a normal (unexcited) state of a nucleus, the nu-
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cleus is in a definite quantum state. Hence, S™ (y1, ¥2,...,
¥r) =0. Consequently, Coc=nS", We can now see that
S can be used as a measure of correlation, Cio:. Then
n log n is a part of correlation as imposed by the Pauli
principle. In familiar cases of correlation in communica-
tion, an increase of correlation is often attained by a
decrease of ™, but in this example it is attained by an
increase of S,

Actually, this quantum-mechanical interpretation of
(1.2), although perfectly faithful to the true meaning of
S@ and $‘v, does not agree with the way these quantities
should be calculated in conventional statistics (to which
our present paper is devoted). For instance, in the usual
statistics, we always have $™ >8§@) as will be seen later
in (2.20). But this is not necessarily the case in quantum
statistics, which has to be used in interpreting (1.2) for
our nuclear problem. In order to be rigorous, we should
define the information function of an r-body system, not
by a formula of the type (1.1), but by

8§ = —Spur p‘” log p7, (1.3)

where p(" is the r-body density matrix and “Spur” desig-
nates the diagonal sum. A detailed discussion will be given
elsewhere of the quantum-mechanical information func-
tion, (1.3), which mathematically includes the ordinary
information function, (1.1), as a special case and which
was historically put into practical use* even before the
latter was introduced in communication theory.

2. Decomposition of total correlation into
partial correlations

We are given a set of n stochastic variables, y1, ¥2,..., ¥n,
where y;(i=1, 2, ..., n) can take any one of g; different
discrete values. The probability that the variables
Y1, Y2, .. . , Yo take values xy, Xz, . . ., Xy, respectively, will
be denoted by p(y1=x1, y2=xz, ..., yn=X%s), Or simply,
p(x1, X2, ..., x,), or still more simply p(A), where A
stands for

A=(x1, X2, ..., Xn). (2.1)

The symbol A will be used sometimes to designate also the
variables (y1, ¥2,...,Yn) instead of their values (x1, X2,
..., Xn). The probability p()), naturally satisfies

p(V) 20, 22)
() pA)=1, (2.3)

aer

where the summation symbol

91 9o 9n
(E)"=EE---2- (2.4)

The set A of n variables is now divided into two subsets
1 and v respectively containing / and m variables.

phv=¢,

where ¢ is the empty set. It is not hereby implied that
p consists of the first I variables (X1, xz, . . . , X;), but that

pUv=A n=Il+m, 2.5)
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it consists of a set of certain ! variables taken out of
(x1, X2, ..., %s). Then, we have

p(p)=(X)"p(A), (2.6)

ZEV

where the summation is taken with respect to #2 x’s con-
tained in v. Similarly,

p(v)=(2)'p(M). 2.7
Tep
The functions p(r) and p(v) have respectively / and m
arguments, and obey the non-negative condition and the
normalization condition of the type (2.2) and (2.3).
The information carried by n y’s in M is

S =—(Z)"p(A)log p(A), (2.8)
ZeA

where A on the left should be understood as denoting the

variables (y1, ¥2,...,¥») While A on the right for their

values (x1, X2, . . . , X»). Similarly, the information carried

by w and v are given by

S(p)=—(Z) p(p)logp(p), (2.9)
ZEp.

S)y=—(Z)"p(v)logp(v). (2.10)

Zev
It is natural to consider the entropy function of an empty
set of variables to be zero. It is easy to see, by virtue of
Gibbs’ theorem, that

S(AMSS(p)+S(v), (2.11)
where the equality holds if and only if
p(A)=p(p)p(v) (2.12)
for all values of (x1, x2,...,x,). Thus (2.12) can also
be rewritten as
(M)
pirlw= 220 —pv), (2.13)
p(p)
p(x)
p(p|v)=———= =p(p), (2.14)
p(v)

where p(v|u) is the conditional probability for v on the
assumption p. Therefore, from (2.13) and (2.14), it can
be understood that the set p of variables and the set v of
variables are “independent” of, or “uncorrelated” with,
each other. As a consequence, the loss of information
(redundancy) given by

C(A5 p,v) =[8(p) +S()]—8(A) 20 (2.15)

can be used as a measure of the strength of correlation
between p and v. We shall sometimes refer to C(A; , v)
as “correlation existing in A with respect to u and v.”

If one observes the variables contained in u and the
variables contained in v separately, then the information
carried by p and that carried by v are respectively S(x)
and S(v). But on account of correlation between the
variables, the information carried simultaneously by the
variablesin A=puUvis S(A), whichislessthanS(p) +S(v).




The difference is C(A; u, v). One can reinterpret this
quantity in terms of the notion of “ignorance before ob-
servation,” noticing the fact that the “information” is the
decrease in ignorance by the observation. If one has not
observed any of the variables (x1, x2, ..., xs) in A, then
one’s “ignorance” about the values of the variables in u
is expressed by

—(2)tp(p)log p(n) =S(n). (2.16)
zep

Suppose now that one has observed the values of the vari-

ables in v, then the ignorance about the values of the

variables in 4 becomes

—(2)' p(plv) log p(ulv) =8(ulv). (2.17)
L0

The p in S(u|v) stands for the y’s in p while the v in

S(u|v) stands for the x’s in v. Now these observed values

of the variables in v occur with protability p(v). There-

fore, the expected value of S(u|v) is

p(A) p(A)

”8(w|v v)=— m T—— 1
(E}) (u[v)p(v) (E,) P(V)(Eu) () og ()
=S(A)—-S(v). (2.18)

Without any observation, the ignorance about u was S(u)
of (2.16). After the observation of v, the ignorance has
become on the average S(\)—S(v) of (2.18). The de-
crease in ignorance is the information about u provided
by the observation of v and is given by

S(p) =S =S 1=C(A; , v). (2.19)

If the variables in p and the variables in v are mutually
independent, then the observation of the variables of v
would not help in any measure the prediction about the
values of the variables in u. If there is any correlation,
however, this observation of v will provide some informa-
tion about the outcomes of p. This indirect information is
given by (2.19).

Relation (2.11) sets the lower limit to C(A;pu,v),
which is zero. Now Eq. (2.17) serves the purpose of set-
ting the upper limit to it. Since p(u|v) is a probability
distribution for the variables in n, S(u]v) of (2.17) is
non-negative. It becomes zero if and only if p(u|v) =0
or 1. This means that the values of the variables in p are
completely determined by the knowledge of the values
represented by v. Now, since S(p|v) as well as p(v) is
non-negative, S(A) —§(v) in (2.18) is also non-negative:

S(A)—S(v)=0. (2.20)

Equality in (2.20) happens if and only if all S(u]v) (for
v such that p(v)#0) vanish. This means a complete de-
pendence of y on v. Changing the names of x and v, one
obtains also S(A) —S(p) =0, where equality holds if and
only if v is completely dependent on wu. Subtracting
[S(A)—S(v)] from S(p)+S(v), and using (2.20), one
obtains

CA; p,v) <S(w),s (2.21)

where equality occurs when p is completely dependent
onv.

Similarly,
CAp,v)SS(v). (2.22)

Therefore, C(X; i, v) is not larger than the smaller of
S(w) and S(v). It is easy to see that if S(u) is larger than
S(v), then it is impossible for u to be completely depend-
ent on v.

Next, by dividing A into k subsets wi(i=1,2,..., k),
each containing [; variables, so that

paVpeV . Vpe=A,
wnm=¢, i#j, (2.23)
n=ll+lz+ “ e +lk .

we obtain

S(\) < }15 S(ui) . (2.24)

i=1

Equality in (2.24) holds obviously if and only if

p(M)=p(pa)p(p2) . .. P(px) (2.25)
for all possible values of (xi1,%z,...,x,). Thus, the
quantity
5
C(A; pa, pas -+ o5 pe) = 28 (i) —S(2) 20 (2.26)
=1

measures the correlation existing among subsets w1, paz,
., and ug, and becomes zero when they are mutually
independent, in the sense of (2.25).
The quantity C(\; 1, pa, - - -, ux) Will be sometimes
called the correlation existing in A with respect to

B, B2, - -« 5 . Int particolar, if (g1, pe, . . ., pa) becomes
(¥1, Y25 -+ -5 Yu), i€, if h=L=...l,=1, then C(A; p1,
pz, - - . pi ) will be called fotal correlation existing in A:

Ctot()\) =C(As Vi, Y2544 yn)

ﬁS(yi)—S(A). (2.27)

We shall presently see that Ci,:(A) is the largest among
all possible C(A; p1, pi2, - - ., ut), when A is given.
Now taking a given value u;, let us further subdivide it

into subsets v; ;(j=1,2,..., k") such that
vinUvi U oo Ui e=pi
vi,iNvii=¢, jFl. (2.28)

The correlation existing in p; with respect to v; 1, vi,2,..-,
vi, %, Which is given by

K’
Vi) = 5 8(vi, ;) —S() 20 (2.29)

j=1

C(Mi; Vi,1s Vi,25 « « o »

will vanish if and only if

p(pi) =p(vi,1)p(vi2) . ... p(vi,kr) . (2.30)

We can proceed in this fashion until finally each subset

69

IBM JOURNAL » JANUARY 1960




70

consists of only one variable y. At each branching point,
i.e., every time a subset is divided into sub-subsets, a cor-
relation C is defined in the way indicated in (2.29). Sup-
pose that A is divided into the p’s, and the u’s are divided
into the v’s, et cetera, until finally the subsets (x’s) are
divided into the y’s. Then, we have

C5 pas - - ) =2 8() —S(A)

Clpisvan, « ) =ZS(vig) =8 (pa)
)

Clei; yiny - o) = 28 (Yim) =S (1) . (2.31)

Adding all the equations of this type, we obtain
C(A., M1y .. )—i—EC(‘u,, Vil, - » )"" FEPEPEN
i

FSC Vs ) =3 S(m) ~S(A) =Cear (V) . (2.32)
7

m=1
Thus one obtains the following theorem.

Theorem. The set of all variables in consideration is
divided into subsets, and each subset is again subdivided
into sub-subsets, et cetera, until finally the entire set is
branched into individual variables. Then, the sum of all
correlations, each of which is defined with respect to a
branching point, is independent of the way in which this
branching procedure is made and is equal to the total
correlation.

This theorem can also be considered as a prescription
for expanding the total correlation Cio(A) in terms of the
partial correlations of the type: C(pu; vi, v2, .. .). We can
write (2.32) in the form:

Ctot= E Cpartial (/Jv, V1,V2, . . ) s (233)
all

where Copartiar should be taken at every branching point

in the “taxonomical tree” whose stem is A and the periph-

eral branches are individual variables, y.

Figures 1 and 2 illustrate the theorem in a special case,
in which A consists of seven variables, yi,¥y»2,...,¥y7.
First M is divided into three subsets:
p1=(¥1, Y2, ¥3, Ya), pe=(¥s5, ¥7) and uz=ys. Then py is
divided into two subsets: vi=(y1, ¥2,¥s), va=Y4. Fi-
nally, v, and p. are subdivided into individual y’s. Thus
there are four branching points, at which the correlations
are:

C1=C(A; pa, pz, p3) =S(p1) +8(p2) +5(y6) —S(A)
Co=C(p1; v1, va) =S(v1) +S(¥4) —S(p1) ,
Cs=C(v1;¥1, ¥2, ¥3) =S (1) +8(y2) +8(ys) —~S(v1),
Cs=C(p2;¥5, ¥7) =S(¥5) +8(y7) =S (u2) .

Now, the sum total becomes

Ci+Co+Cs+Co=8(y1) +85(¥2) +8(¥5) +8(»4) +S(y5)
+8(¥e) +S(y7) —=S(A) .
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The left-hand side is the sum of correlation at all branch-
ing points in Fig. 1, while the right-hand side is the cor-
relation at the single branching point in Fig. 2, which is,
of course, Ciot(A).

One possible branching scheme is to split off one vari-
able at one time. This means, conversely, that y; and y;
are first grouped together to form a subset (y;y:) and
then y; is added to form a higher subset (y;y:ys), et
cetera. See Fig. 3. Then the theorem can be written as

CL(ywy2); ¥1, y21 FCL(1y2ys) s (o), y.1+ ...
e Oy Y)Y Y2 e Yret), Pl

=C[(y1yz -+ Yn)3 Y1, Y2: Y3, . - - » Yn] =Ciat (M) . (2.34)

A typical term C[(ywz...¥); (ye...¥ra1),¥:] in
this expansion can be interpreted as follows. Suppose a
subset (y1, ¥2, ..., y:,_1) and the variable y, are observed
separately. Then the information carried by them are
respectively S(y1, ¥2,...,¥r_1) and S(y,). But the infor-
mation carried simultaneously by all r variables (y1, yz,

., ¥:) is S(y1, ¥z, ..., ¥,). The decrease in information
is given by C[(y1y2...¥:); (31y2 - .. ¥r1), ¥:]. Alterna-
tively, in terms of “ignorance,” the ignorance about the
value of y, before any observation is S(y,). Now, if one
has observed the values of y1, ¥2 ..., and y,_1, then the
average ignorance about the value of y, is reduced to
S(yl, Y2500, y,-)—S(yl, Yoy ,yr—l)- See (2.18) This
decrease, S(¥,) — [S(¥1, Y2, . > ) =S(¥1, Y2,.. ., Y1) ],
is the information about y, provided by the observation of
Y1, -.., Y1 and is equal to C[(¥1, ¥2, - - ., ¥+); (V1, Y2,

.+ ¥r-1), y-]. Equation (2.34) shows that Ci,(A) can
be expressed as the sum of these terms obtained by gradu-
ally increasing r from 2 to n.

Each term in the decomposition (2.32), or (2.33) of
Cot is guaranteed to be non-negative due to the inequality
(2.11). We can decompose S(A) into terms, each of
which is guaranteed to be non-negative by virtue of the
inequality (2.20). Suppose we make a chain of subsets of
variables pi1, gz, . .., pe=A such that

prlpe <o Lpror<pr=A, (2.35)
where the symbol </ means “C but not =".

Then, due to (2.20) we have

T:=8(p) —S(pic1) 20. (2.36)
Therefore, we obtain a decomposition

SN =8(p1) +Te+Ta+ ... + T, (2.37)

of which each term is non-negative. T; means the increase
in information by observation of variables of y; in addi-
tion to the information obtained from variables of u;_1.

If we take
p1=y1, pe=(y1¥2), pa=(y1y2ys) . . .
oo pe=(y1y2ys ... ¥n), (n=k), (2.38)
then (2.37) becomes




S(A)=8(y1)
+[S(y1, y2) —8(y1)]
+[S(y1, y2, ¥3) =S (¥1, ¥2) ]
e

+[S(Y1,y2,--',J’n)—S()’l}’mw)’n—l)]- (239)

n
Subtracting from both sides 3 S(y;), one obtains formula
i=1

(2.34) with the negative sign.

3. Expansions in terms of average entropy functions
For any function F(r) of an integer argument r, satisfying
F(r)=0, for r<0, (3.1)

we can easily prove a simple mathematical theorem:

7 fn—rt+t—1
F(n)=2( 1 >[F(r)]t forany 1>1, (3.2)
where [F(r) ] is the *! difference defined by
AYF /e
[F(r)le= —721 = < s> (—=1)*F(r—s5). (3.3)
8=0

They are, for instance,

LF(r)Jo=F(r),

LF(r)1=F(r)—F(r-1),
[F(r)]e=F(r)—2F(r—1)+F(r—-2),
[F(r))s=F(r)—3F(r—1)+3F(r—2)—-F(r—3). (3.4)

Another useful expansion of F(n) is

r=1

F(n)=§<’:>[F(r)],., (3.5)

which is equally easy to prove.

Now, coming back to the problem of the preceding
section, we define an “average r-signal information,” S¢”
by

S0 = §M(n) <n>’ (3.6)
r

per
where p is a subset with r variables, and the summation is

taken over all ': ) different subsets of r variables taken

out of the original set A of n variables. It should be men-
tioned here that such an average can be defined in any
arbitrary case, but its usefulness becomes important only
in the cases where the individual S¢’s are not very dif-
ferent from the average.

Suppose we take a subset u with » variables in A, and
subdivide this p into two sub-subsets « and S, respectively,
with s and ¢ variables. Then, from the consideration of
the last section, we have

SN (p) <8O (a) +8D(B), p=aUB, r=s+t. (3.7)

Figure 1 Three-stage polychotomy of states.
A=p1UpaUps=(v1Uv2) UpaUps

= ((y1Up2Uys) Uy U (ysUy7) YUys

=y1Uy2UysUyUysUyesUyr.
"
Y2
7 = Y3
/ m & V2 Y4
A © 7 g Y5
H3 Y
Y7
Figure2 One-stage polychotomy of states.
A=y1Uy2UysUy,UysUysUyr .
4
vz
Y3
A Y4
Y5
Y6
Y7

Figure 3 Polychotomy by splitting of one state at
each stage.

A=(pVUyr)=((vUye) Uyr)
=(((xkUys)Vys) Uy7)
=((({(eVys) Vys) Uye) Uyz)
=(((((rVy3) Uy} Uys) Uye) Uyr)
=((((((y1Vy2) Vys) Uyi} Uys) Uye) Uyr) .
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Now, there are (;) different ways to take (a, 8) in pu.
Thus

SO (u) < [2 5@ (a) (r>
aep s

+ I SH(R) <r>] (3.8)
Bep t

It should be noted that equality in (3.8) requires equality
in all (; ) different relations of the type (3.7). Therefore,
it is an extremely stringent requirement. Now, let us take

the summation over all (;’) different u’s that can be taken
in A. Then,

S5O, {[2 5 (a) ( ')]
per pex WL aep s
Lo /C)) o
Ben !

Now, let us fix our attention on a particular « in (3.9)
and ask how many times this « will appear in the summa-

tion over :f) different u’s. This is the number of y’s that
includes this particular «. Hence, the answer is obviously
(:’l::‘) The right-hand side of (3.9) will then become

[(:::)/(;)]gs<s>(a)
00/ (0)]gse®:

nn—1)...(n—s+1)

n r
(S )/( S) - r(r—1) ... (r—s+1)
n n—s
(/G
Eq. (3.9) becomes

zeows[(0)/ C)lzemeo
[0/ C)Jgsmot

or equivalently, in virtue of (3.6),

T <T@ L&, (3.10)

In virtue of the fact

Thus, we can define an “average correlation”:
C(r;5,t)=S® 4L O SN >0, r=s+t. (3.11)

It should be noted, however, that in marked contrast to
the case of an “individual” correlation, vanishing of an
average correlation is a very strong condition.

IBM JOURNAL *.JANUARY 1960

The total correlation existing in a subset of » variables
Y1, ¥2,..,Yr) is, according to (2.29),

r
COyz...y) =28y =Swyz...y).  (3.12)
=1
The corresponding average total correlation of r-variable
subsets is

C =r§ _Fn) (3.13)

with

_ n

SO= S(y:)/n. (3.14)
i=1

We now notice that we always have
So—g, CO=0, (3.15)

for §(® is zero anyway. Since S and C(" are not de-
fined for negative values of r, we can arbitrarily decide
that they are zero. Thus,

S§n=0, C"=0forr<0, (3.16)

in agreement with (3.1). Actually, we have, in addition to
this, C™ =0. It must be kept in mind that the definition
(3.13) is valid only for non-negative values of r. For
r=—1, for instance, it would give C-1) = —8@}, which is
not what is intended, since C¢-1 is zero by definition due
to (3.16).

Now, according to (3.6) and (3.13), we see that for
r=n, the quantities ¢ and C" are not an “average,”
but the total information and total correlation in A.

S —S(A) =nS® —Cit (M), (3.17)
C® =Ciot(L) =nS® —S(N\). (3.18)

Therefore, substituting §¢ or C for F(r) in (3.2) and
(3.5), we obtain all kinds of expansions of S(A) and
Ciot (M) in terms of § or C(, We shall mention just a
few of them as illustrations. For instance, for n=4, t=4,
Eq. (3.2) gives, with F(r) =8,

S(A) =205 +10(§® —45MW) 4-4(S® —45@) + 65
+ (@ —485® 465 — 45, (3.19)

An interesting expansion is obtained from (3.2) by
putting t=1 and identifying F(r) with C(",

Ci(M) = [C"];
r=1

(C—Cr-1)

M =

T;

"
I

(S —Fn L Fr-n7, (3.20)

M=

7

2

One can immediately recognize that (3.20) corresponds
to the expansion (2.34) which we discussed in some detail
in the last section. The only difference is that Eq. (3.20)
is expressed in terms of “average” information, while
Eq. (2.34) is expressed in terms of information of well-




defined variables, along a chain like one in Fig. 3.

Next, by putting § as F(r) in (3.5), one obtains

S(A) =n§<1>+<;)(§<2> —25w) + (;’)@w —35® +35)

+ <Z>('S"<4>~4§<3>+6§'<2>~4§<1>)+. ... (3.21)

By transferring the first term on the right side to the left
side, one obtains an expression for Cy(\). Each of the
remaining terms on the right side has rather a nice sym-
metrical form, for instance,

(’2’) (5 —230) =X[S(312) ~S(r1) —S(r2) ] (3.22)

(Z) (33*3§2+3§1) =2 [S(y1y2y3) —S(y1y2) —8(y2y3)

—8(¥sy1) +S(31) +S(y2) +85(¥3) 1, et cetera. (3.23)

The summation in (3.22) is to be extended over all pairs
of y’s, and the summation in (3.23) is to be extended over
all groups of three variables. The term in bracket in
(3.22) is obviously —C[(y1y2);¥1,¥2]<0 and repre-
sents the decrease of information due to correlation be-
tween two elements y; and y.. It might be tempting to
consider the quantity in the brackets in (3.23) as repre-
senting the decrease of information due to the correlation
peculiar to a three-element system, (y,yzy3). This inter-
pretation, however, is hardly justifiable since the terms in
expansion (3.21) can be both positive and negative,
although these quantities have a certain formal beauty,
e.g., it can be written for three variables,

"’(2)3 p(x1, Xz, X3)

T3y Ty Tg

X1, X2, X X X X
log p(x1, x2, x3) p(x1) p(x2) p(x3) ) (3.24)
p(x1, x2) p(x2, X3) (X3, X4)
The reason why this expression does not have a profound
meaning is that the quantity

p(x1, x2) p(x2, x3) p(x3, X1)
p(x1) p(x2) p(x3)

which occupies a position comparable to p(x1, x2, X3) in
(3.24), cannot be considered as a probability distribution
for (x, x2, x3) since it does not satisfy the normalization
condition. The expansion of this type has been considered
by Professor R. M. Fano (in an oral presentation at IBM
Research Laboratory).

Consider for example, the case of four binary variables
in which p(xy, x2, x3, X4) is determined by p(0, 1,0, 1)
=p(1,0,1,0)=1/2. Then we obtain S® =1, §2—28t
=—1, B-35@ L350 =41, §:—-456) 4652 —45 =
—1, and the expansion in question (3.21) consists of four
terms and is given by §¥ =—1+4+4—6-+4=+1. This al-
ternation of signs does not allow of any useful interpre-
tation. The expansions (2.32), (2.33), (2.34), (3.20)
have the definite advantage that each term in the summa-

(3.25)

tion has a definite sign, contributing to the total correla-
tion. The expansions such as (3.19) and (3.21) do not
have this advantage.

Before passing to the next section, it may be worth-
while to give further consideration to the “average” cor-
relations to clarify their meaning. To make the argument
concrete, let us take the case n=4 and discuss the expan-
sion (3.20) which may be written

CH=VOLY® LY@ (3.26)
with
Y =S 4.§0-1) _§(N>Q . (3.27)

V) is a special case of (3.11) with t=1. To understand
the meaning of V(7 it is helpful to know when it van-
ishes. In terms of “individual” correlations of the type
(2.19), we have four relations of the form
CL(y1y2ysys); (31y2ys), ¥4]

=8® (y1y2y3) +SM (y4) =S (y1y2y5y:) 20, (3.28)

in which one out of four variables (y1y:ysy.) is singled
out. V@ of (3.27) is the sum of these four relations,
divided by four. Therefore, equality in (3.27) entails
equality in each of the four relations of the type (3.28).
This means that the condition

V=0 (3.29)
implies, in virtue of (2.12),
P(x1, X2, X3, X4) =p(X1X2X3) p(Xs) =p(X2X3%4) p(X1)
=p(X3X4x1) p(x2) =p(xsx1%2) p(X3) ,
(3.30)
which in turn means four equations of the type
p(x1]x2, x3, x4) =p(x1) . (3.31)

Equation (3.31) seems to imply that all four variables are
independent of one another. That this is indeed the case
will presently be seen. By summing over x4 in (3.30), one
obtains
p(x1x2%3) = p(x2x3) p(x1) =p(X3, X1) P(X2)

=p(x1x2) p(x3) . (3.32)

By summing over x;, X2 and x3, one obtains similar ex-
pressions for p(xsxsxs), p(xi1, X3, x4) and p(x1, X2, x4).
These equations give

V=0, (3.33)
By the same token, one obtains from (3.33)

V=0, (3.34)
or equivalently, six relations of the type

p(x1, x2) =p(x1) p(x2) - (3.35)

Substituting (3.35) in (3.32) and again substituting the
resulting relations in (3.30), one obtains finally the rela-
tion of complete independence,
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P(x1x2x3xy) =p(x1) p(x2) p(x3) p(x4) , (3.36)

which means C{¢) =0. This last relation can also be con-
cluded by putting (3.29), (3.33), (3.34) in (3.26).

It is very important to note the relations of the type
(3.35) alone do not imply (3.32) or (3.36). This means
that even if V(® =0, it is quite possible that ¥()7=0 and
V0. What has been proven above is that if V% =0,
then V®) =V () =0, This means, if V(®70, then V(0
and V¥ 5£0. In general, nonvanishing, lower-range aver-
age correlations imply nonvanishing higher-range average
correlation. This situation offers a contrast to the case of
W’s of the next section, where it is possible that the W’s
of higher range can vanish while the W’s of lower range
do not.

In any event, the concept of average correlations be-
comes useful only when all the variables y,y5...,¥»
are more or less on the same footing as in the case of
simultaneous signals. In particular, it is a very natural
concept when the variables are absolutely equivalent in a
statistical sense, i.e., when the probability distribution
remains invariant for any permutation of values of the
variables,

P(y1=x1, vy Yis=Xiy .y, Vis=Xjy« 0, }’n=xn)
=P(Y1=%X1, oo, Yi=Xjs oo, Yj=Xis o . s Yn=Xn)
for any pair (i, j). (3.37)

In this case, all the (;’) r-signal information functions are

equal to one another and to the average. Thus, in such a
case, S(" is not an average, but the actual r-signal infor-
mation. This kind of thing can happen when we apply the
present analysis to a physical system, such as a gas. The
meaning of V(7 is obvious. If one observes any (r—1)
signals and any one signal separately, one obtains respec-
tively information S(- and SV, But if one observes all
these signals together, one obtains only §(. The loss in
information, i.e., correlation, is ¥V (", Expansion (3.20)
or (3.26) can be interpreted as computation of the total
correlation by adding these V(7 starting from one signal
and increasing gradually the number of signals observed.

4, Correlation in stochastic time-sequence

We are given an infinite, one-dimensional (temporal)
series of stochastic variables

3 Y3, V-2, Y150, Y15 Y2, V35« < o+ (4'1)

each having the same domain of g values, such that any
arbitrary segment of n consecutive variables has a unique
and definite probability of having a given ordered set of
values, say (xi1, X2, ..., Xs). This implies that

s Ynsk=Xn),

(4.2)

PY1=X1, ..o, Yn=Xn) =Pp(V1:5=X1, . ...

where & is an arbitrary integer, positive or negative. For
this reason, we shall denote the probability given (4.2)
simply by p(x4,...., x,), or still more simply p®. We
can theoretically divide these » variables in any way we
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wish, and consider the subsets thus produced. All the
formulas of Sections 2 and 3 will also apply to this case.
We are not particularly interested, however, in a subset
consisting of variables scattered here and there on the
one-dimensional line. We are interested in a subset con-
sisting of consecutive variables. The formulas of Section 3
in terms of average entropies for two variables, three
variables, et cetera, are not interesting here, since in the
present case there is a clear definition of distance between
two variables. The relation between y, and y. is thus en-
tirely different, say, from the relation between y; and y100.

Once the probability p™ for n consecutive variables is
given, then all the probabilities p(" for r<n consecutive
variables can be obtained by the use of the recurrence
formula:

p”‘“”(xl, X2y o n ey x,,_l) = E p("’(xl, X2, 0 vy Xno1s xn)
a"ﬂr
= 2 p(n)(x()’ Xiyeons xn—l) .
o
(4.3)

On account of (4.2), the information function of a seg-
ment of length r

S("‘) = (E)Tp(“ (xly LR ] xr) IOg p(r) (xla s xl') (4'4)
o

depends only on r. Similarly, the total correlation existing
in a segment of length

Cr) =pS1) _ g1 (4.5)

depends only on r.

As a consequence, we can use formulas (3.2) and
(3.5) to obtain different expansions of C™ or S™. Par-
ticularly useful are the following three. First, by identi-
fying F(r) with S in (3.2) with =1, one obtains

nSW —CM=§ M = En [SM]; =8 4+ (§@ —5@))
r=1
F(S®-§@) 4, [ 4L (SW-S-D), (4.6)
Identifying F(r) with C(" in (3.2) with t=1, one obtains
n
nSM —§MW =C™ = [C(N];=(25D —~§@))
r=1
H (SO —§OLSD) 4, 4 (SO —FN L §r-D)
b (S S gy, (4.7)

which looks similar to (3.15) but it is very important the
S’s here are not the average but the information function
of a segment of given length. Finally, identifying F(r)
with C(" with t=2, one obtains

n
nS@—S =C M =3 (n—r+1)[CT],

r=1

= (n—1)C® +(n—2) (C® —2C®)

+(n—3)(CH=2C® +CP) 4. ..




+(CM —2C0-1 4. Cn-3))
=(n—1) (2SO —§) + (n—-2) (—S®
+285B—S@® )4,
F(—SO-D428m-D g ), (4.8)

Introducing the “correlation indices” W (" by13

W =—§n428§0-1)_§(r-2), (4.9)

one can write the total correlation and the information
per position as

n
Cm =3 (n—r+1)ww (4.10)

r=2

IM=8m /p— 51 ﬁ f(n—r+1)/nlwm

=2
n
=>[(n—r+1)/njWwmn. (4.11)
r=1
In the last expression, the relation W) =—8M js ysed.

Note: $ =0.

Now let us clarify the meaning of three expansions
(4.6), (4.7) and (4.8) which we have just obtained. In
the first place, the representative term §()—S¢-1 in
(4.6) is non-negative because of the relation (2.20).
Next, A and v are here a sequence of length r and a se-
quence of length (r—1). The letter . stands for one sym-
bol. Therefore, the relation St —S§(-0 =§(\) —S(v) =0
can be interpreted as meaning that the knowledge of the
first (r—1) positions in the sequence completely deter-
mines the last position. In other words, §(" —S$("~1 meas-
ures the further information carried by the last position
over and above the information already given by the first
(r—1) positions. Equation (4.6) can also be obtained
by calculating §™ with the help of the formula

P™ (X1, X2, < v+ Xn) =p MW (x1) p(x2]X1) p(x3] X1%2) X
P(xa|x1xexz) . p(Xa]X1Xa ... X0q) . (4.12)

But this expansion is not particularly interesting since
§ —§r-1) seldom becomes very small. When there is no
correlation whatsoever, S —S§¢~1) will become equal to
S, This expansion has often been used by Shannon.®

Now, turning to (4.7), the representative term
—§M 4+ §-1 4§ s non-negative in virtue of (2.19).
This expansion is exactly the same as (2.34) if (y1y2...ya)
in (2.34) are taken in the chronological order in a time-
sequence. The meaning has already been studied.

Finally, the representative term W (") in (4.10) is also
non-negative for r>2. This can easily be seen by con-
sidering a probability distribution

q(r) (xl’ X2y ony xl') =P(x1, X2y 0oy xr_l)
P(x2, X3, ..., %)
2 (4.13)
p(X2, X3, . .05 Xr1)

Then, the quantity

()Y p (%1, X2, ..., x,) log p (X1, X2, .. ., Xp)
z

—(Z) P (31, %2y . -, %7) lOg @ (X1, X2y -5 X))
z

=80 4 280-1) _§r-2) =W (4.14)

is, In virtue of the Gibbs theorem, non-negative and be-
comes zero if and only if p( and g(” are equal to each
other for all possible values of (x1, Xz, . .., x,). If this is
the case then, from (4.13), we have

p(xh X2, 000y xr) P(x2, X3y oo vy x'r)

= (4.15)
p(x1, X2y o 0o 5 Xri1) p(x2, X35 ..., Xr1
or equivalently
P(Xe X1, Xoy o v, X,m1) =p (0] X25 X35+ -« X,1) . (4.16)

This means that if we predict x, on the basis of the knowl-
edge of (x1,X2,...,x,_1) or the knowledge of (x2, x3,
..., X_1) it does not make any difference. That means
that the knowledge of x; which is r positions prior to x,,
over and above the knowledge of the in-between positions
does not affect the conditional probability about the state
of x,. In this sense, (4.15) means an absence of correla-
tion of range r over and above the correlation of range
(r—1). Therefore, W(" can be considered as a measure
of the strength of correlation of range r. Eq. (4.10) shows
that the total correlation can be written as a sum of W’s
with suitable non-negative coefficients.

If there were no correlation at all, one would have
I =81 in (4.11). Therefore, each term (which is non-
negative) for r>2 under the summation in (4.11) repre-
sents the loss of information per position due to the
correlation or redundancy of range r. We can also write
(4.11) as

[ —s— Lo pawen g 4 (nm )W),
n
(4.17)

The information per position in an infinite sequence is
given by

1) —lim ™ =lim ™ /n | (4.18)

n—>00 N—>c0

where I should be taken from (4.17). If there is an
integer m(2>1) such that

W® —0 for k>m , (4.19)
we can write

I =S50 — S (4.20)

r=2

for this series will break off at a certain place.
If (4.19) is the case, one can also easily show

S =(n—m+1)S™ — (n—m)§™-V
J(0) —g0m) __ §(m-1) (4.21)
If the chain is Markovian, then (4.19) holds for m=2.
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(Usually, W®=£0.) In this case one has from (4.20)
and (4.21),

I —§@ _gay (4.22)

S =(p—1)§@ — (n—2)SW, (4.23)
Another way to look at the situation is to note that
AS™
Ar
because of (2.20), and that

=S _Sr-1>¢ (4.24)

A2S(N)
Ar?

=8N . 2§r-1) LG (r-2) < (4.25)

because of (4.14). This shows that S as a function of
r is a monotonously increasing curve with a gradually
decreasing (convex) slope. There is, therefore, a limiting
slope. Particularly, if (4.19) is true, then the slope re-
mains constant for r>m. The slope, meaning the informa-
tion increase per position, will become I(®) after it has
reached its final value. Thus, I(= =50 — §(m-1) ig easily
understandable.

It is instructive to interpret the formulae thus obtained
once again from the point of view of the degree of our
ignorance regarding the state of a position. We take any
one position in the infinite sequence, say the Qtt position,
and propose to guess the state of this position. Then, the
ignorance (or degree of uncertainty) is given by

g
Ign® =50 =~ p(x0)log p(xp) . (4.26)
Zy=1
Next, suppose that we know already that the preceding
position, i.e., the (—1)st position, was in a certain state,
say, x_1. Then, our ignorance regarding the state of the
Otk position becomes

— Eg 2(x0]x_1)log p(x0|x_1)

- 20: p(x—19 xO) 10g p(x~1’ xO) . (4.27)
z=1 Pp(x1) p(x1)

However, the (—1)st position turns out to be in the state
x_1 with probability p(x_1). Therefore, the ignorance
about the state of the OtP position, on the basis of the
knowledge of the state of the (—1)st position, becomes
on the average

Ign(® =— é p(x_1) é plxa, %) og P, o)
z_,=1 g=1  p(xa) p(x_1)
=S __gay, (4.28)

Similarly, the ignorance about the state of the 0t position
on the basis of the knowledge about the states of r pre-

ceding positions, i.e., (—1)%t, (—=2)24,..., and (—r)tt
positions will be
Ign(r+1) = §(r+1) _ §(n) (4.29)

The decrease in ignorance, i.e., increase in knowledge,
about the state of the 0" position by knowing one more
position in the past is given by

Ign(r) _Ign(r+1) = S(r+1) L2 6(r)  §(r-1) =P (r+1) |
(4.30)

This derivation may serve to give further clarification of
the meaning of the correlation index W(". The condition
W{r+1) =0 means that the additional knowledge about the
(—r)th position does not change our prediction about
the Ot position. The more one learns about the past, the
less our ignorance about the present becomes. The original
ignorance is § (1), the second-stage ignorance is SV — W2,
and the third-stage ignorance is SO — W@ — W) et cet-
era. Thus the minimum ignorance is

(Ign) min =SV — W@ —E& — .. (4.31)

This ignorance represents the uncertainty in guessing the
state of the Oth position with the best knowledge of the
past. The moment the observation determines this state,
this uncertainty disappears, i.e., the ignorance becomes
zero. This decrease in ignorance is the so-called “informa-
tion.” Thus, it is not unexpected that of (4.20) and
(Ign)min of (4.31) coincide. W) represents, on one
hand, the decrease of information due to correlation of
range r, and, on the other hand, the average increase of
our knowledge about the state of a position by knowing
the state r positions prior to it over and above the knowl-
edge about the states of the in-between positions.

It is often stated that if the correlation is of a finite
range, then one can take segments of sufficient length and
treat them as if they were independent. We shall here give
a formula by which one can evaluate the error committed
by such a procedure. Suppose the range is m or less, i.e.,
W® =0 for k>m, and take two consecutive segments of
lengths, n; and ns, such that ny >m, n.>m. The informa-
tion carried by the entire segment of length n=n;+n,,
by the segment of length n; and by the segment of length
ns are, respectively,

m
Sny+ny) — (nl_l_nz)s(l) — 2 (n1+n2-—r+ 1) W(n y

r=2

m
S =y S — 3 (my—r+ 1) W,

r=2

m

SO =SV — 3 (np—r+1)W, (4.32)
r=2

Therefore the correlation omitted in the above procedure

18
S(n) L §ny) _ §(ny+15) — § (r—1D)Wn, (4.33)

r=2

The ratio of the quantity in (4.33) to S™+»2 in (4.32)
gives the fractional error. This fraction becomes, of
course, zero as (n;+n2)—>w, since the correlation (4.33)
does not depend on ny, ng, or n, which is obvious because
the correlation exists in the present case, in the vicinity
of the border of the two segments.




5. Application 1: Redundancy in geometrical figures

In the problem of pattern recognition, it is often impor-
tant to determine the degree of redundancy, i.e., the
degree of possibility of guessing the entire figure by ob-
serving only part of it. The following extremely simple
example may be sufficient to show that the correlation
analysis, as developed in Section 2, can be a useful instru-
ment in unraveling this type of problem.

Suppose one has a square which is divided into four
equal square cells (see Fig. 4). Each cell can be black or
white. Then there are 2¢= 16 different figures. In order to
identify each one of them, let us introduce four variables
¥1, Y2, ¥a, Y4, corresponding to the four cells, in the order
of left-upper, right-upper, left-lower and right-lower cells.
Each variable can be 0 or 1, “0” meaning white and “1”
meaning black, Thus, for instance, (y1=1, y.=1, y;3=0,
¥4=0) or simply (1100) means a horizontal line in the
upper row. If all the 16 figures (letters) are used, there is
no redundancy, for partial knowledge of the figure does
not help to any extent to identify the figure. But if the
alphabet is limited to a fraction of 16 figures, redundancy
appears.

To fix our idea, let us assume that the alphabet consists
of four letters (1100), (1010), (0011) and (0101), i.e.,
upper horizontal line, left vertical line, lower horizontal

Figure 4 Redundancy in geometrical figures.

Simplified example of an application of cor-
relation analysis to problems of pattern recog-
nition.

mufRul"REN"

(1000) (0100) (0010) (0001)

maf"") ENR Ru"N"s

(1100) (0011) (1010) (0101) (1001) (0110)

(0111) (1011) (1101) (1110)

line and right vertical line, and that they are used with
equal probability:

p(1,1,0,0)=p(1,0,1,0)=p(0,0, 1, 1)
=p(0,1,0,1)=1/4, (5.1)
Then obviously we have the total entropy

S(y1, ¥z, ¥3, y1) =2, (5.2)

corresponding to the fact each letter can emit 2 bits of
information. In terms of “ignorance,” this means that
before observation four cases are equally probable and
we have not the slightest idea as to which of the four will
appear. Similarly, the entropy functions of three variables
are all equal to 2, since four different configurations of
three cells can appear with equal probabilities:

S(y2, Y3, ¥4) =S(¥1, ¥3, ¥4) =8 (¥1, ¥2, ¥4)
=S8(¥1, y2, ¥3) =2. (5.3)

But the entropy functions of two variables divide them-
selves into two categories. If the two variables are taken
horizontally or vertically, their entropies are 2.

S(¥1, ¥2) =8(¥3, ¥4} =S(¥1, ¥y3) =S¥, ya) =2 .  (5.4)

Eq. (5.4) is true because there are four possible cases,
(black-white), (white-black), (black-black) and (white-
white), with equal probability. But if the two variables
are taken diagonally their entropies are 1:

S(y1, y4) =8(y2, y3) =1. (5.5)

This is true because, there are only two possible cases,
(black-white) and (white-black). The entropy of one
variable is obviously 1, since black and white appear with
equal probability in each cell:

S(y1) =8(y2) =S(ys) =S(ys) =1. (5.6)
Now the total correlation is
Crot=S8(y1) +5(y2) +8(¥3) +S(ys) ~S(¥1y2ysys)
=1+1+141-2=2. (5.7)

This corresponds to the fact that with p(0) =p(1)=1/2,
one could at best send four bits of information (using the
16 alphabets with equal probabilities). By limiting oneself
to the four letters, however, one sends only two bits. The
difference 4—2=2 is the loss of information, or redun-
dancy.

Now if we divide the set of four variables (y1, ¥z, ¥s, Y1)
into a group of three variables and one remaining varia-
ble, then the correlation corresponding to this “branching”
is independent of the way the division is made and equal to

ClL(y1y295¥4)5 (¥1y2¥3), Y4l
—241-2—1. (5.8)

This means that a group of three variables convey two
bits of information, while one variable conveys one bit
of information, but all together they can convey still only
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two bits of information. This is because variable y, is
completely determined by the other three variables. This
case should be compared with formulae (2.21) and
(2.22), identifying

A= (¥1y2¥3y1)
p=(y1yzys) (5.9)
vV=Yy3.

One sees that equality in (2.22) is holding in this case,
meaning that v is completely dependent on u. However,
equality in (2.21) is not holding here, because p is not
completely determined by v.

More interesting is the case of division of four variables
into two groups of two variables. There are two cases
typified by

Cl(y1y2ysysa); (31¥2), (ysya) ]
=2+42—-2=2 (5.10)
and

CL(yr1yayaya); (y1ya), (¥2ys) ]
=141-2=0. (5.11)

The first case (5.10) means, in the light of (2.21) and
(2.22), that (y,y:) and (ysy.) are mutually completely
dependent. If (31y2) is (black-black), then (y:y.) is
(white-white), and vice versa. If (y1y2) is (black-white),
then (ysy.) is also (black-white), and vice versa, et cetera.
In the second case (5.11), each group (y1y4) or (y2ys)
means a diagonal and can be (black-white) or (white-
black). And even if we know that (y1y.) is one of the
two, say, (black-white), there is still probability 1/2 for
(¥2, y3) being (black-white) and probability 1/2 for
(2, y3) being (white-black). Therefore, this is the case
of complete independence. Case (5.10) is the maximum
correlation and (5.11) the minimum correlation.

Observation of one cell gives only one bit of informa-
tion. Therefore it is sufficient to select two out of four
possibilities but not sufficient to identify the figure. Ob-
servation of two cells diagonally placed gives also only
one bit, therefore not sufficient to identify the entire
figure. But, observation of two cells horizontally or ver-
tically placed gives two bits of information and is suffi-
cient to identify the figure. This is obvious from the
illustration, but it is interesting to see the mathematical
expression of the situation in the foregoing formulas.

One can write various decompositions, according to
(2.32), (2.34) or (2.39), and it is instructive to under-
stand the meaning of each term. However, since it is
rather elementary, we shall not describe them here.

It is also interesting to see the difference between the
present choice of four letters (1100), (1010), (0011),
(0101) and another choice of four letters, say, (1,0, 0,0),
(0,1,0,0), (0,0, 1,0), and (0, 0, 0, 1), each of which
has one black and three white. If the frequency of each of
these four is 1/4, the total information is 2, as before.
The total correlation here is 1.24512, while the total cor-

relation in the former case was 2. In the present case, the
information carried by one cell is 0.81128, as compared
with 1 in the former case. Hence, observation of one cell
is less powerful here in guessing the entire figure than in
the former example. Similarly, the information carried
by two cells is 1.5, no matter which two are taken, i.e., it
is insufficient to identify the figure. In the former exam-
ple, any two cells horizontally or vertically laid carried
two bits, sufficient to identify the figure.

In this section we discussed only the case where the
probability of each letter is equal, but our instruments of
Section 2 are devised so as to cope with more general
cases. It will be useful to consider the coding problem of
geometrical figures, taking advantage of the redundancy
existing in the figures, and assuming a special type of
deformations likely to occur in geometrical figures.

6. Checking of randomizing effect of shuffling

The correlation index W) is not a useful instrument
when there is a correlation of a very large range. For
instance, if a stochastic chain has a hidden periodicity of
very long range, one will have to calculate S and W™
for very large r’s to discover such a periodicity. Calcula-
tion of this kind is impracticable, since the number of
terms to be added in this calculation increases exponen-
tially with r. On the other hand, most of the stochastic
chains studied in scientific and engineering problems have
a small range of correlation. In such a case the correla-
tion index becomes a powerful tool. As an illustration, we
shall describe here an experiment made on the IBM 704
simulating shuffling of cards, in which the correlations are
gradually destroyed as a result of shuffling. The cards bear
the designation “1” or “0”.

The original sequence of binary numbers is a stochastic
chain, but correlation is built in, so that probability is
very high that a segment arbitrarily taken from it has a
pattern:

Let us for a moment assume that the sequence had a rigid
rule (6.1). Suppose we give ourselves a task of guessing
the value xo of the variable y,. Without any preliminary
knowledge of other digits, there is an equal protability
for xo=0 and for xo=1. Now, suppose we know that y_;
was 1, i.e., x_;=1. Then, this position y_; may be, with
equal probability, any one of the four possible positions in
arun of four I's. If y_, is the first, second or third position
in this run, then x, will be 1. If y_; is the last position of
the four, then x, will be 0. Hence, the probability of xo’s
being 1 is now 3/4 and the probability of being 0 is 1/4.
If we know x_; and x_,, then our prediction of x, will be-
come more accurate. Finally, if we know x_q, x_o, x_5 and
X_4, then the prediction of x, is no longer probabilistic, but
deterministic. And further knowledge of x_s will no longer
change our prediction about x,. Therefore, W =0. And
also, W =0, r>6.




Of course, a sequence which strictly obeys the rule
(6.1) is not a stationary stochastic sequence in the sense
of {4.2). The sequence we used, therefore, was produced
by the following probabilistic rules determined by condi-
tional probabilities of range 5:

p(xrlxr—4, Xro3y Xr-2 xr—l)

given below. In the following, = is a constant very smalil
compared with unity.

p(1]0000) =1—¢ p(1[1000) =«
p(1]0001)=1—¢ p(111001) =1—¢
p(1/0010) =« p(1]1010) —¢

p(1)0011) =1—¢ p(1]1011)=1—¢
p(1]0100) =& p(1]1100) =¢ (6.2)
p(1]0101) =1—¢ p(1]1101) =1—¢
p(1]0110) =¢ p(1]1110) =¢

p(110111) =1—¢ p(1]1111) —e

This table is so devised that no matter where a run starts,
it has a high probability of continuing to length 4. The
probability of a run’s ending at a position does not depend
on what happened before the run has started. More pre-
cisely, if a run has lasted for a length r less than 4,
(r=1, 2, 3), then the probability of its continuing one
more place is 1 —e. If a run has lasted four or more places,
then the probability of its terminating by the appearance
of the next place is 1 —e.

The numbers are produced by conditional probabilities
of range 5, which means that the probability of a position
taking a certain value is determined by four preceding
positions, and that the knowledge of one more position
preceding these four does not change this probability.
Therefore, according to the analysis of the preceding
Section, W should be zero.

The shuffling has been done in the following way. Sup-
pose we have a sequence of length N. We divide this
sequence in xz segments in a certain random fashion which
will presently be explained. Then we have the first, sec-
ond,..., (n—1)t, and nt" segments, We reverse the
order and form a new sequence of length N, which is
formed by putting the n segments in the order of the nt?,
(n—1)tr ..., second and first segments taken from the
original sequence. This entire process will be called one
shuffle.

The method of division is as follows. We produce a
sequence of binary numbers by the following Markovian
conditional probabilities, p(xi|x;_1), which are

p(1[0) =y,

6.3
p(1i1)=0, 3

where 7 is small compared with unity. This means that a

run of O’s terminates with the rule of accidental death,
while a run of 1’s always has length one. Now every time
“1” appears at one position, say at the position k, then the
original sequence will cut between the position k and
k+1. The average length of a segment is (1/9) +1,if N
is very large. The number n of segments in a sequence of
length N is a stochastic variable here.

The first task in our experiment on the IBM 704
consisted of producing N=105,000 digits of binary num-
bers obeying (6.2). At each situation, i.e., whenever the
four preceding numbers are given, there are, according
to (6.2), two kinds of events: one, (A), with probability
£, and the other, (B), with probability 1 —e. We produced
each time a random number of appropriate length be-
tween O and 1, and if the number was between O and &,
we took the event of class (A), and if the number was
between ¢ and 1, we took the event of class (B). For the
value ¢=0, we obtain the regular sequence (6.1). If
£=1/2, then the whole process will become completely
random. The case e=1 does not give rise to a stationary
Markov chain, but if the starting sequence is (0101), then
it continues to produce a chain with 0 and 1 appearing
alternately. When we speak of the case e=1 in the fol-
lowing, we shall mean this special case.

If £=0, then, without shuffling, we should have (with

N—w)
W®=(0.18872,
W) =0.12256,
(6.4)
W =0.18872,
W =0.5,
W =0,
and the total correlation per digit (for N—>c0)
6 o0
SWO=3WwWn"n=I1limC{" /n=1, (6.5)
r=2 r=2 n—>9%0

For £=1/2, we should have

W W6 0 = W) =W © =0, S, WD =0 . (6.6)

=2

For ¢=1, we should have

WE =W =W =W =0, § W =1.

r=2

w1,

(6.7)

In actual experiments, we used =1, which corresponds
to (6.7),and e=1/4, 1/8, 1/16, which lie between (6.5)
and (6.6).

The shuffling sequence (6.3) was produced by a method
similar to the one used in producing the main chain of
numbers. The constant » was chosen to be 1/16 in every
experiment. We denote hereafter the number of shuffles
by p. We give here samples of a segment of 32 digits
arbitrarily taken from the actual chain of 105,000 num-
bers, before shuffling (p=0), after three shuffles (p=3),
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and after six shuffles (p=6), with ¢=/16 and p=1/16.
0: 111100001111000011110000111110 (6.8)
1

Il

[

p=3: 111100001110%\1000011IIOO‘IPIIOOOOI (6.9)
M T

p=6: 00000110000111101000100111011100 (6.10)
T 1 I Y R ¢ A

With p=0, there is one irregularity in the 32 digits as

indicated by an arrow in (6.8). With p=3, there are four

irregularities, and with p=6, there are ten irregularities.

By an irregularity is meant a deviation from the rule

(6.2) with £=0.

0.8

N
JAN
AN

AN
L N

]

0.2

In our experiments, we first determined various p("’s
from the actual frequencies of the varieties of segments,
and then calculated each W (r=2, 3, 4, 5, 6) and the

6

total correlation 3! W(" which should become lim C {")/n
r=2 n—>0

in the limiting case N—>c0. We tried e=1, 1/4, and 1/8

for p=0, 1, 2, 3. For ¢=1/16, we computed for p=0, 1,

2,3,4,5,6,7,8,9,and 10.

6
Figure 5 shows how the total correlation 3 W de-
r=2
creases with the number p of shufflings fore=1, 1/4, 1/8,
1/16 in the range p=0 to p—3. Figure 6 shows how the

0.7

Q
05\

0.4 \

N\

0.09 N\
0.08 \\
0.07 \

- £=1/8 2 = |0.06 N
oy o | | \r
L " 10.05
0 1 2 3 0 1 2 3 4 5 6 7 8 9 10

P ——

Figure 5 Destruction of orderliness by three shuffles
of cards marked 1 or 0.

6
The total correlation per digit S W for e=1,

r=2
1/4, 1/8, 1/16 and for p=0, 1, 2, 3. This
shows how the total correlation decreases with
increasing number of shuffles.

I1BM JOURNAL * JANUARY 1960
.

Figure 6 Destruction of orderliness by ten shuffles.

6
The total correlation per digit > W for

r=2
e=1/16 against the number p of shuffles.




Figure 7 Decreuse of orderliness as measured by

6
i (n i = i AR
total correlation S W(" decreases with p for e=1/161in correlation indices by shuffles.

r=2

the domain p=0 through p=10. Figure 7 shows how each The correlation index W against the range
W (r=2, 3, 4, 5, 6) decreases with increasing p for r, for e=1/16. Each curve corresponds to a
e=1/16. value of shuffles p which runs from 0 to 10.

We should expect W® =0 before shuffling, as stated As can be expected, W' with larger r is de-
previously, if the total length N were infinite. We must, stroyed more quickly. For comparison, the
however, expect that the experimental value of W for theoretical values of W for ¢=0 and p=0
a larger value of r will differ from the theoretical value are also plotted.

(which is computed for N—co) for the following two
reasons: (1) Since the number of varieties of segments of
length r is »7, which increases rapidly with r, the number 1
of samples of the segments in a given N-digit chain be-
comes more insufficient for larger . (2) As r increases,
the probability of each variety becomes smaller. But the
function — p log p becomes very sensitive to a small rela-
tive change of p if p itself becomes close to zero. This will
explain why we had in our experiment, for instance,
W ® =0.0001584 instead of zero, i.e., about 10-2?, for
p=0and e=1/16. This W, however, is very small com-

6
pared with the total correlation 3 W =0.6651. The
r=2
reason why W® with ¢=1/16 jumps at p=1 to a much 0.1
larger value, 0.01265, seems to be entirely different. As-
sume, for simplicity, é=0. Then without shuffling, we
should have §( =8¢ =8(=3, which makes W® =
—8(6) 4-28(5) — S yanish. After a very large number of
shuffles, each §( will tend to its maximum, which is r.
This will make W(® vanish again. At in-between stages,
let us denote the increment of S by each shuffle by
AS(™. Then, unless the condition AS® +ASH =2A8
is satisfied at each stage, W® will deviate from the value
zero, viz., it will become positive. Consequently, it can
very well happen that W(® starts from 0 at p=0 and 0.0
becomes non-zero at the intermediate stages and then goes
back to 0 for p—>c0. In our experiment with e=1/16,
W) started from 0.0001584 at p=0, and reached a
maximum, 0.01315, at p=2 and then went down to

LD -—0>-

o5 0

0.0005072 at p=10. See Fig. 7. LA !
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