58

C. M. Melas

A New Group of Codes for Correction
of Dependent Errors in Data Transmission

Abstract: Multiple related errors of any configuration can be automatically corrected by a class of codes

having the property of using two groups of parity bits, one defining the error pattern, the other deter-

mining the location of the errors within the block.

In particular, error bursts can be corrected with a minimum amount of redundancy. Because each parity-

bit group is derived by using maximum-length shift-register sequences, rather than by storing a decoding

table, the implementation of these codes is relatively simple, as shown in an example of a three-bit-wide

burst-correcting code. An example is given of an application of these codes in a data transmission system

where only an even number of bits is likely to be corrupted by a noise burst.

1. Introduction

In transmitting binary data over channels where impulse
noise is present, the errors encountered will generally not
occur at random. Further, the type of modulation em-
ployed tends to produce groups of related errors. In cer-
tain phase-modulation systems, for example, a noise im-
pulse of one-bit duration may produce errors in four suc-
cessive information bits.

N. M. Abramson has described an efficient and easily
implemented code for the correction of single and double
adjacent errors.! Codes for the correction of error bursts
have been proposed by Hagelbarger, Gilbert, Fire and
others.2 3,4

The codes described here will efficiently correct any
number of multiple-error patterns including those caused
by noise bursts. The redundancy can be made as low as
desired without greatly affecting the complexity of the
encoding and decoding equipment. Because the correc-
tors are derived by using two shift-register sequences,
rather than by table lookup, the codes are relatively sim-
ple to implement.

We shall first show that a parity-bit group derived from
the information digits with the use of a maximal-length
shift-register sequence (or m-sequence) generator, as it is
in the Abramson code, will locate almost all multiple-error
patterns within the information block.! Then, a theo-
rem will generalize this result to any m-sequence. To
complete the code, a second group of parity bits, also
derived with an m-sequence generator, is coupled to the
locator group and used in conjunction with the latter to
determine the patterns of the multiple errors to be

IBM JOURNAL * JANUARY 1960

corrected. An example of this code is described in detail
and a simple implementation is suggested.

Specific applications of this class of codes are given
for a modulation system where even errors only are ex-
pected, and codes correcting two and four different types
of related errors are described.

2. The locator sequence

The sequence of parity bits used to determine the error
location is a maximal-length shift-register sequence de-
fined by Eq. (1) and generated as below.

Consider an R flip-flop shift register in which the state
of the first flip-flop at time r+1 is dependent on the state
of two or more of the other flip-flops at time . If this de-
pendence is chosen properly, the shift register will follow
a sequence of 2F—1 distinct binary states. Properties of
these sequences have been described by several investi-
gators.> 8 For example, if R=3, the configuration of
Fig. 1 obtains.

Figure 1 Three-flip-flop m-sequence generator.

Throughout the paper the symbol + will be used to
indicate the exclusive OR rather than the conventional OR
function.

An m-sequence can be generated by flip-flops a, b and
cif

asy1=bi+cy,
b, 1=a, @))
Ct+1:btr

and a, b, ¢ are not all 0.

We can rewrite Eq. (1) as:

a; 3=bs st+ci o 2)
bt+2:at+1’ 3)
Cipo=b; 1=a,. (4)

Substitution of Egs. (3) and (4) in Eq. (2) yields
a;3=a;11a;. (3)

A similar relation holds for b and c¢ flip-flops. Recurrence
Eq. (5) is sufficient to define the m-sequence. In gen-
eral, a sequence of this type of order R can be defined by
the following recurrence formula, involving R consecu-
tive terms:

at+R:at+k1at+1+k2at+2+ "'kR—lat+R~—1’ (6)

where k; is a coefficient of value 0 or 1, and a;, a;,,
a,, p are terms of the sequence. In our example, k;=1,
ks=0. To use the m-sequence in an error-correcting
code, the parity-bit group, P1—Ps, is derived from the
information group, D,—D,, from the following equa-
tions:

a:D +a,Dy+ . .. agPy+agPo+aP3=0, (7
byD+bsDy+ ... b5P+bgPs+ b P3=0, (8)
1D+ coDo+ .. ccgPi+cgPo+c7P3=0,)]

where a,—aq, b;—b;, ¢;—c; are the consecutive states of
flip-flops a, b, and ¢ (Table 1).

After transmission of both groups, the left side of
Eqgs. (7-9) is generated. If no error has occurred during
transmission, the right side of all three equations will be
0, since they are all satisfied. A single error occurring in
any bit B,, including a parity bit, will cause the right side
of the equations to assume the value of the coefficients a;,
b, and ¢, associated with that bit. For example, an error

Table 1
a b c
1 0 0
0 1 0
1 0 1
1 1 0
1 1 1
0 1 1
0 0 1

in D, will make the three equations respectively 0, 1, 0,
as seen in Table 1. Each of seven possible single errors
becomes associated with one distinct combination of a,,
b,, and c,, uniquely locating its position in the message.

Assume now a multiple error has occurred; for exam-
ple, three successive bits, B;, B;,q, B, » are altered by
noise. The right side of each equation then assumes the
value of the sum of the coefficients associated with those
bits. The error locator is then a,+a; 1 +a; 5, by+by 1+
byyg ;e 16440, and Eq. (5) can be used to derive
a relation with the single-error locators of the sequence
chosen. Adding a;,, to both sides of the equation we
have:

g 3+ 9=+ 1+ ;0. (10)
Using Eq. (5) once more:
Ay 3ty 0=0 5 (11)

It is apparent from Egs. (10, 11) that the locator for
triple adjacent errors is equal to the locator of a single
error occurring 5 bits later. The locators for both types
of errors follow the same m-sequence, but are shifted by
five terms. It can be shown in this example that every
type but one of four-bit-wide error-pattern locators
follows the same sequence as the single-error locators,
shifted by different amounts. The single exception in our
example is a 1101 error pattern, defined as a;+a, 1+
a,, 5, that always yields a 0 locator as shown by Eq. (5).
These properties are generalized in Theorems 1 and 2.

Theorem 1 sets an upper limit to the locator sequence
capabilities when used for error-burst correction. A lo-
cator sequence derived from an R flip-flop shift register
can locate all errors caused by a noise burst R bits wide,
and can locate all but one error if the noise burst is R+ 1
bits wide.

Theorem 2 defines a property of m-sequences that
makes them very useful in nonindependent error-cor-
recting codes. Once the coefficient m, . . . my defining the
error type are known, the location of this error within
2E—1] bits is determined by the same sequence for any
my ... mp. The locator sequence defined in Table 1, for
example, can be used as an error-correcting code for any
one predetermined type of error (with the exception
noted in Theorem 1) with no change in its structure. Its
Hamming distance? is three.

o Theorem 1
Let

R—1
s n =0+, €y y (12)
1

be a maximal-length shift-register sequence with terms
a;...a;, or_;. Consider any sequence

Si=ayt+mua; ... Mp_18i p_ 1t R (13)

in which the m;’s are arbitrary but m=0 or m=1.
There is one and only one choice of m,;’s for which
$,=0 for all values of 1.

59

IBM JOURNAL * JANUARY 1960

60

Proof
Adding Egs. (12) and (13) we obtain

Sitai g=ai+a+(ci+my)a + ...
F(Cpor1t+mp_1)a g _1+a; 5, (14)

St:(c1+m1)at+1+ e +(CR—1+mR—1)at+R—1' (15)

If m;=c;, then §,=0. This is the only set of m;s for
which §, vanishes for all values of ¢, since a; ;...
a,, p_, are all independent and all their coefficients must
be 0 if §, is to vanish identically.

o Theorem2

R—1
Let a; R:at+2 ca;; be a maximal-length shift-
1

register sequence (m-sequence). Consider any sequence
St:a,+m1at+1+ cae mR_lat+R_1+mrat+R; (16)

in which all terms are defined as in Theorem 1.

Each sequence §; is actually the m-sequence [Eq.
(12)] shifted by an amount k with respect to the se-
quence of a,, where k is different for each set of m,’s.
Hence,

Si=a; .

There is a one-to-one correspondence between each set
of m;’s and each k.

Proof

The proof will consist in showing that any sum S, is a
term a,,; of the sequence, and that no two sums cor-
respond to the same term a, , 4.

(a) Without loss of generality, Eq. (16) can be re-
written as

$,=a, g+mA g1t Moly oot . Mpay op. (17)

Each term of this sum belongs to the m-sequence defined
by Eq. (12). We can write for each term:

a4 g=a+C18 41t o Cp Gy s (18)
A4 R1=0t41+C18; 2t . . Cr_1Gs4 g (19)
A ppye=0 1o+ Ci@ 3+ ... Cp_18i 4 p11s (20)
At R43=0r 3+ C10; 4+ . Cp_10t LRy (21)
A yop=0;4g+C18; 4 py1. - CRr_1Gs 4081 (22)

Substituting Eqs. (18-22) in Eq. (17):

Si=ay+a; 1(my+cq) +ay o(cy+mycy+my)ap g
(c3+myco+moc,+my)

+ oo ta g(mcg - mocp ot ... mp)

+Sk— 1Rt op—1- (23)

For S, to be a term of the same m-sequence as g, it is
necessary and sufficient that it satisfy Eq. (12) for the
same set of c¢; coefficients.

Let S, S;p1...8;:.r be the values taken by S, for
R+1 consecutive sums with fixed values of m, ... mp,

IBM JOURNAL* JANUARY 1960

defined in Egs. (24-26). Thus

St:a,+mlat+1+m2at+2+ PPN mRaH_R, (24)
St 1= 1Mot ma, gt . MRy gy (25)
Si 4 R=G g MO gyt oo Mgl op. (26)

Then S, belongs to the m-sequence with coefficients
¢y ...Cp_1,if and only if

St+R:St+Clst+l+c2S!+2+ coe CR_lst+R_1. (27)

Substitution of Egs. (24-26) in Eq. (27) yields a poly-
nomial identical to Eq. (23), proving that S, is a mem-
ber of the same m-sequence as its terms.

(b) No two sums S, derived from different values
of m; ... my, but with a common first term a;, map into
the same term a, ., of the m-sequence.

Let us assume the opposite is true, Then we can write,
for two different sets m’; and m”’;.

Si=a+m'a, Moy o .. . Mgl g=0; 1y, (28)
So=ay+m”ya; 1 +m"sa; o ... MR8 p=0; g (29)
Adding Egs. (28) and (29):

a1 (m'y+m”y) +ap o (Ma+m”s) ...+
e ayy g(Mp+m”p)=0. (30)

The right-hand term of Eq. (30) is O for all values of
t, and, since a,, 4 ... 4, are independent, m’;—=m”;.

2. Error pattern determination.
Multiple error-correcting codes

Theorem 2 has shown how each multiple error shifted
the m-sequence of locators with respect to the single
error.

An additional parity-bit group derived from a different
m-sequence can be used for error pattern determination.
If every pattern to be corrected shifts the two sequences
by a different amount, the relative shifts become asso-
ciated with that pattern and are independent of the loca-
tion of the error in the block.

An example of this code is given here using the se-
quence a,+a;,1=a,,, of period 15 as a locator, and
the sequence a;+a; 1 1=a; o of period 3 for the correc-
tion of the four error patterns spanning a maximum of
three bits. The corrector sequences are given in Table 2.
The relative sequence shifts caused by the 11 and 101
errors can be visualized in that table. The corrector-word
1001 01 occurs for a single error in bit 1. Double-adja-
cent errors shift II sequences by 2 positions, and the lo-
cator 1001 now occurs two bit times earlier than the
type-word 01. All 101 errors correspond to a relative shift
of 1 position and a triple error results in a 00 type-word
for all locators.

These relative shifts can be derived directly from the
characteristic equations. For 11 errors

aitap =00 (31) | Relative shift

G+ a; 1= 4y (32) \ a—a=2 positions

Table 2 Corrector sequences for three-bit-wide error-correcting code.

Error starting
in bit 1 11 101 111
P, Py Py P, II, Oy Py P, Py P, 11, Ils Py Py P3 P, I} Il Py Py Py Py 11, 112
1 1001Jo1 o100 1|11 1111/10 001100
2 i 1T00(170 1o01o0/0O1 o011 1|11 000O0T1/00
3 01 1 01 1 1 1 0 1,1 0 0O 0 1 1|0 1 1 0 0 00 O
4 1 01 110 1 i 11 01 1 0O 0 0 1(1 O 01 0 0;0 O
5 01 0 11 0 1 11 110 1 1 0 0 01 1 0O 01 00 O
6 1 01 01 1 01 1 11 0O 01 0 010 1 1 0 0 110 O
7 1 1. 0 140 1 0 0 1 11 1 0 01 0j1 O 1 1.0 0,0 O
8 1t 1 10[/1t0 o000 1/01 1001/t 1 0110]00
9 111 1/11 1000[L0 1T 10001 10T10[00
10 01 1 1/{0 1 o1 0 o1 1 0 1 1 0|1 O 1 1 0 1/0 O
11 0 01 1171 0 0 01 00 1 1 0 1 11 1 1 01 00 O
12 000 1/1 1 100 1[0 0107101 110 1[00
13 1 0 0 00 1 1t 1 0 01 1 I 01t 01 O 1 11 010 O
14 01 0o0/1 0 011001 1 10T1|1 1 1 11100
15 0O 0 1 01 1 1 01 1)1 O 1 1 1 00 1 01 1 110 O
For 101 errors, Table 3 Parity check table for three-bit-wide error-
n (33) correcting code.
oy o= 107 ; i
B ‘Ilijlztl_vle ::)lsfittion D, D, D3 D, Dy D 1, D; Dg Dy II; Py Py P2 Py
@t 2=y s (34) P, X X X X X X X <
For 111 errors, P, X X X X X X X X
4 X X X X
at+at+1+at+2:0. (35) P.3 X X X X
_) P, X X X X X X X
Another group of errors checked by this c.ode is the 0, VREY: % Y < % VIR,
1-11-101-1001 groups, composed of one single, and -
M. X X X X X X X X X %

three types of double errors.

Table 3 shows the parity check table for this code.
Location of parity checks II; and II, was chosen to pro-
vide coherent cross-checking of parity bits.

3. Implementation of the codes

Figure 2 shows how the code can be encoded with rela-
tively simple logical circuits. The state of the m-sequence
flip-flops is shown at bit 1. As the incoming serial infor-
mation is advanced into the shift register, the m-sequence
flip-flops gate the proper information bits to the modulo
2 parity flip-flops. Between bits 6 and 7, an additional
clock pulse is delivered to the locator m-sequence flip-
flops to advance their state past the position allotted to
the II, bit. No information is accepted between bit times
9 and 15, while II, and II, are determined and their
contents are added to the proper p flip-flops. Here II; is
added to P3 and Py, and II, to P, P, and P,.

The contents of parity flip-flops P,_, and II,_, are
shifted out with the nine information digits.

For the decoding operation, essentially the same ele-
ments are used (see Fig. 3). As the data are introduced
in the data register, the parity checks are taken accord-
ing to a procedure similar to the encoding. If all parity

digits are 0, the data are correct and can be shifted di-
rectly out of the register. If an error exists, the following
correction procedure is used.

(1) The initial conditions are those shown in Fig. 3,
wherein the data are shifted in the data register, and both
locator and error-type sequence generators are shifted
synchronously until comparison is detected between the
contents of the P flip-flops and the locator word.

(2) When comparison is indicated, the contents of the
error-type sequence generator are compared with the IT
flip-flops. If they match, a single error is detected, and
the bit in error is in the last position of the data register.
Correction is achieved by adding modulo 2, the contents
of the corrector register to the data register.

(3) If the error-type sequence generator is 00, the cor-
rector register is cleared to 111, and the locator generator
to 0011. Step 1 is repeated, and the triple error corrected
by adding the corrector register to the data register.

61

IBM JOURNAL s JANUARY 1960

(4) If the error-type register does not match the con-
tents of the IT flip-flops, or is not 00, a 11 or 101 error
has occurred. The sequence generator is then shifted
(either once or twice) until it matches the IT flip-flops.
Simultaneously, the locator sequence generator is set to
1111 after one shift, or 0101 after two shifts, and the
error-corrector register is set to 101 or 011. When the
type has been determined, Step 1 is repeated and the
error corrected as before. In all cases the bits in error
will occupy the last positions of the data register.

The total correction process takes, at most, 30 bit
times, and can easily be accomplished without additional
buffering for data transmission at audio frequency rates,
if a high-frequency clock is used for the process. Use of
locator sequences of order higher than R=4 results in a
corresponding decrease in redundancy with a negligible
increase in the complexity of the instrumentation.

This implementation varies little as the message length
increases. The only change would consist in increasing
the data register and the locator sequence generator.

Table 4 lists the number of information and parity bits
for some higher block lengths, as well as recurrence
equations for the locator sequences to be used.

Figure 2 Basic elements of encoder.

LOCATOR
PARITY P P2 P3 Py
AND]_’:AND :[:AND l"’ AND
1 0 0 1
LOCATOR A\A
SEQUENCE GENERATOR .

-/

DATA REGISTER
DATA QUTPUT

1 2 3| 4 51 6 7 8 9

TYPE PARITY
™ Ty
N
AND AND
0 1
ERROR TYPE
SEQUENCE GENERATOR

Table 4 Some three-bit-wide error-correcting codes.

Percent | Info.|Parity

Redundancy| Bits | Bits Locator Sequence

40% 9| 6 |ap4=ayt+a;
12.7% 55 8 la; ¢=a;+a,q,
4% 245 10 oy g=ay+a; 1t ayotaige

1.2% 1011 12

A 410=a+a; 1 3+a 48

4. Code parity-bit efficiency

The parity-bit efficiency can be defined as the ratio of
the number of combinations of parity bits used for error
correction, to the total number of possible combinations.
Six parity bits or 64 combinations are available in the
code just described. Of these combinations, 60 are used
in 15 bits, one to indicate an error-free message.

The efficiency is therefore 6061_1

In general, for a code 2¥1—1 composed of two groups
of K; and K, parity bits, where the period 2¥1—1 of
one group is a multiple of the period 2%2—1 of the

=0.95.

Figure 3 Basic elements of decoder.

LOCATOR
PARITY P P2 P3 Ps

COMPARE

LOCATOR
SEQUENCE GENERATOR (7,
N

CORRECTOR REGISTER

0o 0 1
ADD
DATA REGISTER
DATA i l ‘ ouTPUT
TYPE PARITY
m2
ICOMPARE
1

ERROR TYPE
SEQUENCE
GENERATOR

oG

62 N

IBM JOURNAL s JANUARY 1960

B)NRZ 1 1 1 1 0 0

other, the efficiency can be expressed as

28 (2%i—-1)+1 _ 1 1
E= PR, =1+ K VK, — 2Hy (36)

If K;>K,, the efficiency approaches unity. It is better
than 0.95 for all practical codes.

Let us now examine the case where the two sequences
do not have periods in a submultiple relation. To each
multiple error must now be associated two distinct rela-
tive shifts, depending upon the location of the error in
the block.

The efficiency is thus reduced by half, since one more
parity bit is required for the error-type determination.
It approaches 0.5.

5. Codes for correcting error bursts greater than
three bits in duration

An error burst covering K bits can result in 2%5/2 differ-
ent error patterns, requiring a minimum of K—1 bits in
the error-type group.

While no specific codes for the correction of error
bursts of more than three bits in length are given here,
they can be readily constructed by determining the two
m-sequences to be matched for the desired block length
and error-burst width.

6. Nonindependent errors in binary phase
modulation systems

The interference in many signaling media does not
always take the form of random disturbance (white
noise), but may consist of noise bursts which can last for
one or more bit times, depending on the speed of trans-
mission. The types of errors caused by these bursts de-
pend on the modulation method used to convert binary
data to a form suitable for transmission. In amplitude
modulation, two discrete levels of the carrier are pro-
duced, one for 0’s and the other for 1’s. Similarly, a fre-
quency-modulated carrier will consist of one discrete
frequency for 0’s, and another for 1’s. In phase modula-
tion, however, where the carrier is reversed by 180° at
each binary transition, it is difficult to identify one phase
of the carrier with a 0 and the other with a 1, since no
absolute phase reference exists at the receiver. Rather, a

Figure 4 Single-bit-wide error in NRZ and NRZI
codes.

TRANSMITTED DATA

S O

a)NRZIIOIOO

NRZI 1 0 1 1 1 0

NOISE BURST AT BIT TIME 3

SINGLE ERROR AT BIT 3

NRZI 1 0 0 0 1 © DOUBLE ADJACENT ERROR

AT BIT 3 and 4

phase reversal of the carrier can be defined as a 1, and
the absence of phase reversal as a 0. Since a phase re-
versal corresponds to a binary transition of the trans-
mitted data, the phase-modulated carrier can be said to
transmit binary data coded in NRZI form, whereas am-
plitude or frequency modulation handles data in NRZ
form. Figure 4a shows an example of NRZ and NRZI
coding.

A noise pulse that would cause a single error in NRZ
data causes a double adjacent error if NRZI code is used,
as seen in Fig. 4b. The NRZI code can be derived from
the NRZ code from the consideration that an NRZI bit is
1 if the corresponding NRZ bit and the preceding NRZ bit
are different, and 0 if they are the same. Let D; and B, be
the NRZ and NRZI bits corresponding to the same wave-
form; then

B,=D,+D,_, (37)
B, 1=D+D . (38)

An error in D, will cause an error in both B, and
B, ,. Similarly adjacent errors in D, and D, will af-
fect B, and B, , ».

Table 5
Parity check table for 11-
101 error-correcting code.

D, D, Dy P, P, P; 1I1;
P, X X X

P, X X X
P, X X X
o, X X X X

A code that corrects double adjacent and 101 errors is
therefore the equivalent in NRZI transmission, to a code
that corrects single and double adjacent errors, as pro-
posed by Abramson?! or described in Appendix I. The
locator sequence used in this code can be any m-sequence
according to the desired block length. The error-type
check bit is taken across every other digit, and is always
1 for 11 errors and O for 101 errors.

Table 5 shows an example of this code for a
7-bit block. Parity check IT, is always 1 for double ad-
jacent errors, and always O for 101 errors. The corrector
words are listed in Table 6.

Table 6 Corrector sequence for 11-101 error-cor-
recting code.

Error in P, Py Py I, |Error in P, P, P; II;
D, D, 0 1 0 1| Dy Dy 1110
Dy, Dy 1 0 1 1{ D, D, 0110
Dy Py 1 1 0 1| Dy P, 0 010
P, P, 1 11 1 P Py 1 0 0 0
P, P, 011 1] P 1 01 00
P; 11, 0 0 11

63

IBM JOURNAL * JANUARY 1960

64

Note that this code is cyclical, i.e., an error occurring
in the first and last bits of the word is not corrected as a
double adjacent error. However, a double error occurring
in the last bit of one block and the first bit of the next
can be corrected since the corresponding corrector words
will take the values 0001 and 1001, not encountered in
the previous table. In general, a parity check across the
complete block will detect the occurrence of any odd-
order error.

If the noise burst covers three bits, the following error
patterns are expected in a phase-modulation system: 11,
101, 1111 and 1001. That error group can also be cor-
rected by the code described earlier (Table 2). The cor-
rectors for 1111 errors are identical to the single error
correctors, and the 1001 pattern generates the same cor-
rectors as 111 errors.

Error detection

From Theorem 1 it is apparent that R parity bits derived
from an m-sequence will detect all error bursts up to R
bits in length, since the first multiple error to sct all
parity bits to 0 is of order R+ 1. For example, a six-bit
code with two parity bits will detect single, double adja-
cent, and 101 errors, or all errors caused by an error
burst two-bits wide, whether NRZ or NRZI coding is
used.

The simplicity with which the parity bits can be gen-
erated makes this method attractive where efficient error
detection for transmission systems is required.

Although no exhaustive study of the error-correcting
capabilities of codes involving m-sequence correctors has
been made in this article, it is believed that the versa-
tility of these codes in handling different types of error
patterns, as well as the possibility of their simple imple-
mentation has been demonstrated.

Appendix: A code for the correction of single and
double adjacent errors.

An inverse sequence of correctors generated from R+ 1
flip-flops and of period 28—1 can replace the combina-
tion of a maximal-length inverse-sequence of correctors
generated from R flip-flops and one all-check parity bit,
for correction of single and double adjacent errors. Con-
sider a shift-register sequence defined in terms of the
states of R+1 flip-flops py ... pp, at times ¢ and t+1:

(P tp1=c1(P2)i+ea(ps) et . e () +1, (39)
(P2)i1=(P1) s (40)
(P3)i11=(P2) s (41)
(PR+1)t+1:(I7R)t~ (42)

The coefficients ¢; ... cp_; determine an inverse maxi-
mal length sequence of length 2¥—1, generated by flip-
flops p;...py; flip-flop pp,, is defined by Eq. (42).
Substitution of Egs. (40-42) in Eq. (39) yields

(P i41=¢1(Pg) 11+ C2(Py) 141
+eg(ps)iepit - Cr_1(Pry1)i41+ 1. (43)

IBM JOURNAL * JANUARY 1960

Equation (43) is equivalent to

(p)=ci(py)y+ca(py)i+c3(p5)s
4+ ooiep 1 (Pry) et (44)

which expresses the relation between the flip-flop states
at time 1.

Since (p)s (P2)es (P3)¢- - -(Pr+1), is the corrector
word for a single error occurring at time ¢, Eq. (44) de-
fines the following relation between the bits of this word
for which ¢;=1:

(P1)i+er(py)tea(pa) i+ - - cpo1(Pryn)s=1. (45)

The corrector word for a double adjacent error is ob-
tained by adding modulo 2, the corrector word for single
errors occurring at times ¢ and 1+ 1.

(Pt) 1t {P2) i+ (P2) g1}
{(P:;)r,‘{'(l’g)fﬁ—l} e
{Prs) i+ Pri) gl (46)

Modulo 2 addition of Eqs. (43) and (44) defines the
following relation between the bits of this corrector for
which ¢;=1.

1P+ (P rpayHeilPe) e+ (P3) s 1)
Feal(P) e+ (Py) (g1} + o oo+
Cr 1\ Prp) 1+ Wre1)ip1) =0. (47)

Comparison of Eqs. (45) and (47) indicates that the
corrector words for single errors will always be different
from those for double adjacent errors.

Example
In Table |,
(P1) i 1=(P2) e+ (P3)

Where p,, ps, p; are the correctors derived from Py, Ps,
P, the II; all-check bit can be replaced by a bit P,
such that the corrector derived from (Py) is

(Ps)i41=(p3),- (48)

The parity check table is shown in Table 7, and the cor-
rector sequence is given in Table 8.

For all single errors,
mt+ps+p=1. (49)
For all double adjacent errors,
pitpy+pi=0. (50)
Table 7

Parity check table for
new SEC-DAEC code.

D, D, Dy Py P. Py Py
Py X X% X

P, X X X
Py X X X
P, X X X

Table 8 Single and double adjacent corrector se- References

quences. .

1. N. M. Abramson, “A Class of Systematic Codes for Non-

Double Independent Errors,” Technical Report No. 51, Dec. 30,

Single adjacent ,]1)953‘,/ S;z;nfo;'lc)l Electr‘?lr;ics Lab(t)réto;ies, ISEtarlxl’forl(\i,i Cl?lif.
. D. W. Hagelbarger, “Recurrent Codes: Easily Mechan-

Errors P1 Pz P3 py| Errors Py P2 P3 Py ized Burst Correcting Binary Codes,” Bell System Tech.

D, 1 0 0 0O D,D, 01 0 0 J., 69 (July 1959).

D, 1 1 0 0| D,D, 1 01 0 3. E. N. Gilbert, “A Problem in Binary Encoding,” paper

Dy 011 0 D3P, 110 1 prese‘nted at AMS Meeting, ‘Apr. 29, 1958. . .

P 101 1 PP 1 10 0 4. P. Fire, “A Class of Multiple-Error-Correcting Binary

1 12 Codes for Non-Independent Errors,” RSL-E-2, March

P, 01 01 PyPy 01 11 1959, Sylvania Reconnajssance Systems Laboratory,

P, 0 01 o0 PP, 0 011 Mountain View, Calif.

P, 0 0 0 1 P,D, 1 0 0 1 5. N. Zierler, “Several Binary-Sequence Generators,” Tech-
nical Report No. 95, Lincoln Laboratory, M.L.T., Cam-
bridge, Mass.

6. B. Elspas, “Theory of Autonomous Linear Sequential
Networks,” IRE PGCT, March 1959.
. i 7. R. W. Hamming, “Error Correcting and Error Detecting
Revised manuscript received October 28, 1959 Codes,” Bell System Tech. 1., 29, 147, 1950.

65

IBM JOURNAL * JANUARY 1960

