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A New Group of Codes for  Correction 
of Dependent Errors in Data Transmission 

Abstract: Multiple related errors  of any configuration  can be automatically corrected by a class of codes 

having the property of using two groups of parity bits,  one defining the error pattern, the  other deter- 

mining the  location  of  the  errors within the block. 

In particular, error bursts  can be corrected with a minimum amount of  redundancy. Because each parity- 

bit group is derived by using maximum-length shift-register sequences, rather than by storing a decoding 

table, the implementation of these  codes is relatively simple, as shown in an example of a three-bit-wide 

burst-correcting  code. An example is given of an application of these  codes in a data transmission  system 

where only an even  number of bits is likely to be corrupted by a noise  burst. 

1. Introduction 

In  transmitting binary data over channels where impulse 
noise is present, the  errors  encountered will generally not 
occur  at  random.  Further,  the type of modulation em- 
ployed tends to produce groups of related errors.  In cer- 
tain phase-modulation systems, for example,  a noise im- 
pulse of one-bit duration  may prod,uce errors in four suc- 
cessive information bits. 

N. M. Abramson  has described an efficient and easily 
implemented code  for  the  correction of single and  double 
adjacent  err0rs.l Codes for  the  correction of error bursts 
have  been  proposed by Hagelbarger, Gilbert,  Fire  and 
others.2?3,4 

The codes  described here will efficiently correct  any 
number of multiple-error patterns including  those  caused 
by noise  bursts. The  redundancy  can be made as low as 
desired without greatly affecting the complexity of the 
encoding and decoding equipment. Because the correc- 
tors are derived by using two shift-register  sequences, 
rather  than by table  lookup,  the codes are relatively sim- 
ple to implement. 

corrected. An example of this code is described in detail 
and a  simple  implementation is suggested. 

Specific applications of this class of codes are given 
for a  modulation system where even errors only are ex- 
pected, and codes  correcting  two and  four different types 
of related errors  are described. 

2. The locator sequence 
The sequence of parity bits used to  determine  the  error 
location is a maximal-length  shift-register  sequence de- 
fined by Eq. (1) and  generated as below. 

Consider an R flip-flop shift register  in which the  state 
of the first flip-flop at time t+  1 is dependent  on  the  state 
of two  or  more of the  other flip-flops at  time t .  If this de- 
pendence is chosen  properly, the shift register will follow 
a  sequence of 2 R -  1 distinct binary states.  Properties of 
these sequences have been  described by several investi- 
gators.5~ For example, if R=3,  the configuration of 
Fig. 1 obtains. 

We shall first show that a parity-bit group derived from 
the  information digits with the use of a maximal-length 
shift-register  sequence (or m-sequence) generator, as it is 
in the  Abramson code, will locate almost all multiple-error 
patterns within the  information block.1 Then, a theo- 
rem will generalize  this  result to  any m-sequence. To 
complete the  code, a  second group of parity bits, also 
derived  with an m-sequence generator, is coupled to  the 
locator  group  and used in conjunction  with the  latter  to 

58 determine  the  patterns of the multiple errors  to be Figure 1 Three-flip-flop rn-sequence generator. 
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function. 

c if 
An m-sequence can be generated by flip-flops a, b and 

at+l=bt+ctj 
bt+1=at, ( 1 )  
ct+1=btt 

and a, b, c are  not all 0. 

We  can  rewrite Eq. (1) as: 

at+,=bt+2+ct+,r ( 2 )  

bt+2=at+13 (3) 

ct+,=bt+1=at. (4) 
Substitution of Eqs. (3) and (4) in Eq. ( 2 )  yields 

a t + 3 = a t + l + a t *  ( 5 )  

A similar  relation  holds for b and c flip-flops. Recurrence 
Eq. (5) is sufficient to define the m-sequence. In gen- 
eral, a sequence of this  type of order R can be defined by 
the following recurrence  formula, involving R consecu- 
tive terms : 

a,+R=a,+kla,+l+k,a,+,+ * * kR-lat+R-l, ( 6 )  

where k j  is a coefficient of value 0 or 1, and a,, a,+], 
a,+n are  terms of the sequence. In  our example, k , = l ,  
k,=O. To use the m-sequence in an error-correcting 
code, the parity-bit group, PI- Pa, is derived from  the 
information  group, Dl-D, ,  from  the following equa- 
tions: 

a,D1+a2D,+ . . . a,P,+a,P,+a,P,=O, (7) 

b,D,+b,D,+ . . . b,P,+b,P,+b,P,=O, (8) 

c,D,+c,D,+ . . .c,P1+c,P,+c,P3=0, (9) 

where al-a7, b,-b,, c1-c7 are  the consecutive  states of 
flip-flops a, b, and c (Table 1 ) . 

After transmission of both groups, the left  side of 
E q s .  (7-9) is generated. If no  error  has  occurred  during 
transmission, the right  side of all three  equations will be 
0, since  they are all satisfied. A single error  occurring in 
any bit B,, including a parity bit, will cause  the  right  side 
of the  equations  to assume the value of the coefficients a,, 
b,, and ct,  associated with that bit. For example, an  error 

Table I 

U b C 

1 0 0 
0 1 0 
1 0 1 
1 1 0 
1 1 1 
0 1 1 
0 0 1 

becomes associated with one distinct  combination of at, 
b,, and c t ,  uniquely  locating its position in the message. 

Assume now a  multiple error  has  occurred; for exam- 
ple, three successive bits, B,,  B,+, ,  B++,  are altered by 
noise. The right  side of each  equation  then assumes the 
value of the sum of the coefficients associated with  those 
bits. The  error  locator is then a,+at+l+a,+2, b t+bt+l+  
bt+,, c ,+c ,+l+c ,+z ,  and  Eq. ( 5 )  can be used to derive 
a  relation  with the single-error locators of the sequence 
chosen. Adding at+, to  both sides of the  equation we 
have : 

~ , + 3 + ~ , + , = ~ ~ + ~ , + 1 + ~ , + , .  (10) 

at+:j+at+2=at+w (11) 

Using Eq. (5) once  more: 

It is apparent  from Eqs. ( 1 0 ,  1 1 )  that  the  locator  for 
triple  adjacent  errors is equal  to  the  locator of a single 
error  occurring 5 bits later. The locators for  both types 
of errors follow the  same m-sequence, but  are shifted by 
five terms. I t  can be shown  in  this  example that every 
type  but one of four-bit-wide error-pattern  locators 
follows the  same sequence  as the single-error  locators, 
shifted by different amounts. The single exception in our 
example is a 1101 error  pattern, defined as U,+U,+~+ 

at+3, that always yields a 0 locator  as  shown by Eq. (5). 
These properties are generalized in Theorems 1 and 2. 

Theorem 1 sets an  upper limit to the  locator sequence 
capabilities when used for error-burst  correction. A  lo- 
cator sequence  derived from  an R flip-flop shift register 
can locate all errors caused by a  noise  burst R bits  wide, 
and  can locate all but  one  error if the noise burst is R+ 1 
bits wide. 

Theorem 2 defines a property of m-sequences that 
makes them very  useful  in nonindependent error-cor- 
recting codes. Once  the coefficient ml . . . mR defining the 
error type are  known,  the location of this error within 
2R-1 bits is determined by the  same sequence for any 
ml . . . mR. The  locator sequence defined in Table 1,  for 
example,  can be used as an error-correcting code  for any 
one predetermined type of error  (with  the exception 
noted  in Theorem 1 )  with no change  in its structure.  Its 
Hamming  distance7 is three. 

0 Theorem I 
Let 

R - 1  

a,+,=a,+C. cja,+j (12) 
1 

be a  maximal-length  shift-register  sequence  with terms 
u t . .  . C I ~ + ~ R - ~ .  Consider any  sequence 

St=at+mlat+l * * f mR-lat+R-lS'at+,, ( 1 3 )  

in which the mi's are  arbitrary  but m=O or  m= 1. 

St=O for all values of t .  59 
There is one  and only one choice of mi's for which 
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Proof defined in Eqs. (24-26). Thus 

Adding Eqs. (12) and (13) we obtain 

S,+at+R=a,+at+(c,+ml)a,+,+ * * 

+ ( c R - l + m R - l ) a , + R - l + n t + R ,  (14) 

St=(cl+m,)at+,+ . . . +(c&1+mR_1)at+&”. (15) 

If mi=ci, then S,=O. This is the only set of  mi’s for 
which St vanishes for all values of t ,  since at+, . . . 
a,+R-l  are all  independent  and all their coefficients must 
be 0 if St is to vanish identically. 

0 Theorem2 

R-1 

Let a t + R = a t + z  c p t + i  be a maximal-length shift- 

register sequence  (m-sequence) . Consider any sequence 

St=at+mlat+l+ . . . mR”lat+R”l+mrat+R, (16) 

in which all terms are defined as in Theorem 1. 
Each sequence S, is actually the m-sequence [Eq. 

(12)] shifted by an  amount k with  respect to  the se- 
quence of a,, where k is different for  each set of mi’s. 
Hence, 

1 

There is a  one-to-one  correspondence between each  set 
of  mi’s and  each k .  

Proof 

The proof will consist in showing that  any  sum St is a 
term at+k of the sequence, and  that no two sums cor- 
respond to  the same term at+k. 

(a) Without loss of generality, Eq. ( 16) can be re- 
written as 

St=at+R+mla,+R+l+m,at+R+2+ . . mRat+2R* (17) 

Each  term of this sum belongs to  the m-sequence defined 
by Eq. (12). We  can write for each term: 

at+R=at+clat+l+ . . * C R - l a t + R - l 9  (18) 

at+R+l=at+l+clat+2+ + * CR-lat+R, (19) 

at+R+2=at+2+clat+3+ * * * cR-lat+R+19 (20) 

a t + E + 3 = a t + 3 + c 1 a t + 4 +  . * * CR-1ut+R+29 (21) 

at+2R=at+R+clat+R+l . CE-lat+3R-l. (22) 
Substituting Eqs. ( 18-22) in Eq. ( 17) : 

St=a,+a,+,(m,+c,)  +at+2(c,+m1c1+m,)+at+, 
(c3+mlc2+m2cl+m3) + . . . + a , + ~ ( m ~ c ~ - ~ + r n ~ c ~ - ~ +  . . . mn) 
+SR-lmRat+2R-l. (23) 

For St to  be a term of the  same m-sequence as aj,  it is 
necessary and sufficient that it satisfy Eq. (12) for the 
same  set of cj coefficients. 

Let St, St+? . . . S t + R  be the values taken by S, for 
60 R + 1 consecutlve sums  with fixed values of ml . . . mR, 

St=at+mlat+l+m2at+2+ * * * mRat+R? (24) 

S,+l=at+ltmlat+2+mat+3+ * * + mRat+R+19 (25) 

S t + R = a t + R + m l a t + R + l +  . * * mRat+2R* (26) 

Then St belongs to  the m-sequence with coefficients 
c1 . . . cn-,, if and only if 

S,tR=S,+c,S,+1+c,S,+_of . . . CR“1St+R”I .  (27) 

Substitution of Eqs. (24-26) in Eq. (27) yields a poly- 
nomial identical to  Eq. (23), proving that St is a  mem- 
ber of the  same m-sequence as its terms. 

( b )  No two sums S, derived from different values 
of m, . . . mR,  but with a  common first term a,, map  into 
the same  term at+k of the m-sequence. 

Let us assume the opposite is true,  Then we can write, 
for two different sets rn‘* and mr‘+ 

S1=at+m’iat+l+m’,at+2.. . m‘Rat+R=at+k, (28) 

S2=at+m”lat+l+m”2at+2+ . . . m‘‘Rat+R=at+k. (29) 

Adding Eqs. (28) and (29) : 

a,+l(m’l+m’r,) +at+“m’2+m’’2) . . . + . . . a,+R(m’R+m‘‘R) =O. (30) 

The right-hand term of Eq. (30) is 0 for all values of 
t ,  and, since a,+,a.. . a t + R  are independent, mr6=mfrp 

2. Error pattern determination. 
Multiple error-correcting codes 

Theorem 2 has  shown  how  each  multiple error shifted 
the m-sequence of locators  with  respect to  the single 
error. 

An additional  parity-bit group derived from a different 
m-sequence can be used for  error  pattern determination. 
If every pattern  to be corrected  shifts the two sequences 
by a different amount, the relative shifts become asso- 
ciated with that  pattern  and  are independent of the loca- 
tion of the  error in the block. 

An example of this code is given here using the se- 
quence a,+at+l=at+4 of period 15 as  a  locator, and 
the  sequence C X , + C X ~ + ~ = C X ~ + ~  of period 3 for  the correc- 
tion of the four error patterns spanning a maximum of 
three bits. The  corrector sequences are given in Table 2. 
The relative  sequence  shifts  caused by the 11 and 101 
errors  can  be visualized in that table. The corrector-word 
1001  01 occurs for a single error in bit 1. Double-adja- 
cent  errors  shift II sequences by 2 positions, and the lo- 
cator 1001 now occurs  two bit times earlier than  the 
type-word 01. All 101 errors correspond to a  relative shift 
of 1 position and a  triple error results in a 00 type-word 
for all locators. 

These relative shifts can be derived directly from  the 
characteristic  equations. For 1 1  errors 

%+%+l=at+2 

at+a,+,=at+4. 
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Table 2 Corrector  sequences for  three-bit-wide error-correcting code. 

Error  starting 
in bit 1 11 101 111 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

1 0 0 1  
1 1 0 0  
0 1 1 0  
1 0 1 1  
0 1 0 1  
1 0 1 0  
1 1 0 1  
1 1 1 0  
1 1 1 1  
0 1 1 1  
0 0 1 1  
0 0 0 1  
1 0 0 0  
0 1 0 0  
0 0 1 0  

- - - - - - - - - - -. 0 1   0 1 0 1  
1 0   1 0 1 0  
1 1   1 1 0 1  
0 1   1 1 1 0  
1 0   1 1 1 1  
1 1   0 1 1 1  
0 1   0 0 1 1  
1 0   0 0 0 1  
1 1  1 0 0 0  
0 1   0 1 0 0  
1 0   0 0 1 0  
1 1   1 0 0 1  
0 1  1 1 0 0  
1 0  0 1 1 0  
1 1   1 0 1 1  

_"" 

- - - - - - - - - - - - 

For 101 errors, 

"t+'Yt+2="t+1=at+i (33 )  Relative shift 

a/+a/+,=at+S.  (34) a-a= 1 position t 
For 111 errors, 

at+a/+,+at+,=o. (35) 

Another  group of errors checked by this code is the 
1-11-101-1001 groups,  composed of one single, and 
three types of double errors. 

Table 3 shows the parity  check  table for this code. 
Location of parity  checks n, and n, was chosen to  pro- 
vide coherent cross-checking of parity bits. 

3. Implementation of the codes 

Figure 2 shows how the  code  can be encoded  with  rela- 
tively simple logical circuits. The  state of the m-sequence 
flip-flops is shown at bit 1. As the incoming  serial infor- 
mation is advanced into  the shift register, the m-sequence 
flip-flops gate the proper  information bits to  the  modulo 
2 parity flip-flops. Between bits 6 and 7, an additional 
clock pulse is delivered to the locator m-sequence flip- 
flops to advance their  state past the position allotted to 
the IT, bit. No information is accepted between bit  times 
9 and 15, while IT1 and n2 are  determined  and  their 
contents are  added  to  the  proper p flip-flops. Here  IT^ is 
added to P3 and P,, and n2 to P , ,   P ,  and P,.  

The  contents of parity flip-flops P l - ,  and  IT^-^ are 
shifted out with the nine information digits. 

For  the decoding operation, essentially the  same ele- 
ments are used (see Fig. 3). As the  data  are  introduced 
in the  data register, the parity  checks are  taken  accord- 
ing to a procedure similar to the  encoding. If all parity 

1 1   1 1 1 1  
0 1   0 1 1 1  
1 0   0 0 1 1  
1 1   0 0 0 1  
0 1   1 0 0 0  
1 0  0 1 0 0  
1 1   0 0 1 0  
0 1   1 0 0 1  
1 0   1 1 0 0  
1 1  0 1 1 0  
0 1   1 0 1 1  
1 0 .   0 1 0 1  
1 1   1 0 1 0  
0 1   1 1 0 1  
1 0   1 1 1 0  

._ - - - - - - - - - - - 

1 0   0 0 1 1  
1 1   0 0 0 1  
0 1   1 0 0 0  
I O  0 1 0 0  
1 1   0 0 1 0  
0 1   1 0 0 1  
1 0  1 1 0 0  
1 1  0 1 1 0  
0 1   1 0 1 0  
1 0   1 1 0 1  
1 1   1 0 1 0  
0 1   1 1 0 1  
1 0   1 1 1 0  
1 1   1 1 1 1  
0 1  0 1 1 1  

0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  

P , x x  x x x x x  X 

p2 x x  x x x x x  X 

P ,  x x  x x x x x  
-~ 

X 

p4 x x  x x x x x  
111 x x   x x   x x   x x   x x  
n , x   x x   x x   x x   x x  x 

digits are 0, the  data  are  correct  and  can be shifted  di- 
rectly out of the register. If an  error exists, the following 
correction  procedure is used. 

(1) The initial  conditions are those  shown  in  Fig. 3, 
wherein the  data  are shifted  in the  data register, and  both 
locator  and  error-type sequence  generators are shifted 
synchronously  until  comparison is detected between the 
contents of the P flip-flops and  the locator  word. 

( 2 )  When  comparison is indicated, the contents of the 
error-type sequence generator  are  compared with the TI 
flip-flops. If they match, a single error is detected, and 
the bit in error is in the last  position of the  data register. 
Correction is achieved by adding  modulo 2,  the  contents 
of the  corrector register to  the  data register. 

(3) If the  error-type sequence generator is 00, the cor- 
rector register is cleared to 1 11, and  the  locator  generator 
to 001 1. Step 1 is repeated,  and  the triple error corrected 
by adding the  corrector register to  the  data register. 61 
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(4)  If  the error-type register does not match  the con- 
tents of  the n flip-flops, or is not 00, a 1 1  or 101 error 
has  occurred. The sequence  generator is then shifted 
(either once or twice) until it  matches the II flip-flops. 
Simultaneously, the  locator  sequence  generator is set to 
1 1 1 1  after one shift, or 0101 after two shifts, and the 
error-corrector register is set to 101 or 01 1 .  When the 
type  has been determined,  Step 1 is repeated and  the 
error corrected as before. In all cases the bits in error 
will occupy the last positions of the  data register. 

The  total correction process takes, at most, 30 bit 
times, and  can easily be accomplished without  additional 
buffering for data transmission at audio  frequency  rates, 
if a  high-frequency clock is used for the process. Use of 
locator sequences of order higher than R=4 results in a 
corresponding  decrease in redundancy with a negligible 
increase in the complexity of the  instrumentation. 

This  implementation varies little  as  the message length 
increases. The only  change would consist in increasing 
the  data register and the  locator  sequence  generator. 

Table 4 lists the number of information and parity bits 
for some higher block lengths, as well as recurrence 
equations for the  locator  sequences to be used. 

Figure 2 Basic elements of encoder. 

L O C A T O R  
PARITY p4 p3 p2 p, 

0 - 1  

LOCATOR 
SEQUENCE  GENERATOR 

W 

D A T A  REG1 S T E R  
OUTPUT 

h 
I 

0 1 

, 
E R R O R  TYPE 
SEQUENCE  GENERATOR 

62 

IBM JOURNAL JANUARY 1960 

Table 4 Some three-bit-wide error-correcting codes. 

Percent 
Redundancy 

40 % 
12.7 % 

4% 
1.2% 

Info.  
Bits 

9 
55 

245 
101 1 

~ 

Parity 
Bits 

6 
8 

10 
12 

Locator  Sequence 

at+4=at+at+l 
at+,=at+at+1 
at+,=a,+at+,+a,+,+at+7 
at+10=at+at+3+at+s 

4. Code parity-bit efficiency 
The parity-bit efficiency can be defined as the  ratio of 
the  number of combinations of parity bits used for  error 
correction, to  the  total number of possible combinations. 
Six parity bits or 64 combinations are available in the 
code just described. Of these combinations, 60 are used 
in 15 bits, one to indicate an error-free message. 

60+ 1 
The efficiency  is therefore 7 =0.95. 

In general, for a  code 2k1- 1 composed of two groups 
of K, and K ,  parity bits, where the period 2% -1  of 
one  group is a multiple of the period 2K2-1 of the 

Figure 3 Basic elements of decoder. 

COMPARE 

;7 LOCATOR 

CORRECTOR  REGISTER 

DATA REG1 S T E R  

TYPE PARITY 

COMPARE 

SEQUENCE 
ERROR TYPE 

GENERATOR 



other,  the efficiency can be expressed as 

2K2(2R1--1)+1 = 1  I 
1 I 

E= (36) 

If KI)>K,, the efficiency approaches unity. It is better 
than 0.95 for all practical codes. 

Let us now  examine the case where the two  sequences 
do  not  have periods  in  a  submultiple  relation. To each 
multiple error must  now be associated two distinct  rela- 
tive  shifts,  depending upon  the location of the  error in 
the block. 

The efficiency is thus reduced by half, since one  more 
parity bit is required for  the  error-type  determination. 
I t  approaches 0.5. 

2 K l + K 2  2‘v+K2 2x1 . 

5. Codes for correcting error bursts greater  than 
three bits in duration 

An  error  burst covering K bits can result in 2K/2 differ- 
ent  error  patterns,  requiring a  minimum of K -  1 bits in 
the  error-type group. 

While no specific codes for  the  correction of error 
bursts of more  than  three bits in  iength are given here, 
they can be  readily  constructed by determining the two 
m-sequences to be  matched for the desired block  length 
and  error-burst width. 

6. Nonindependent errors in binary phase 
modulation systems 

The interference  in many signaling media  does not 
always take  the  form of random  disturbance  (white 
noise), but may consist of noise bursts which can last for 
one or more bit times,  depending on  the speed of trans- 
mission. The types of errors caused by these bursts  de- 
pend  on  the modulation  method used to  convert binary 
data to a form suitable for transmission. In  amplitude 
mod’ulation,  two  discrete levels of the  carrier  are pro- 
duced, one  for 0’s and  the  other  for 1’s. Similarly,  a fre- 
quency-modulated carrier will consist of one discrete 
frequency  for O’s, and  another  for 1’s. In phase  modula- 
tion,  however,  where the  carrier is reversed by 180” at 
each binary transition,  it is difficult to identify one phase 
of the  carrier with  a 0 and  the  other with  a 1,  since no 
absolute  phase reference exists at  the receiver. Rather, a 

Figure 4 Single-bit-wide error in NRZ and NRZl 
codes. 

T R A N S M I T T E D   D A T A  

m 
.)NRZ 1 1 0 1 0 0 

N R Z I  1 0 1 1 1 0 

1 NOISE BURST  AT B I T  T IME 3 
i I 

J I 
b)NRZ 1 1 1 1 0 0 S I N G L E  E R R O R  A T  B I T  3 

N R Z I  1 0 0 0 1 0 D O U B L E   A D J A C E N T  E R R O R  
AT B I T  3 a n d  4 

phase  reversal of  the  carrier can  be defined as a 1,  and 
the absence of phase reversal as  a 0. Since  a  phase  re- 
versal corresponds to a  binary  transition of the trans- 
mitted data,  the phase-modulated carrier  can be  said to 
transmit binary data coded  in NRZI  form, whereas am- 
plitude  or  frequency  modulation handles data in NRZ 
form.  Figure 4a shows an  example of NRZ  and  NRZI 
coding. 

A noise pulse that would cause  a single error in NRZ 
data causes a  double adjacent  error if NRZI  code is used, 
as seen in Fig.  4b. The  NRZI  code  can be  derived from 
the  NRZ  code  from  the consideration that  an  NRZI bit is 
1 if the corresponding NRZ bit and  the preceding NRZ bit 
are different, and 0 if they are  the same. Let  D,  and Bt be 
the  NRZ  and  NRZI bits  corresponding to  the  same wave- 
form;  then 

Bt=Dt+Dt-1 (37) 

B,+,=&+D,+1. (38) 

An  error in D, will cause an  error in both B, and 
B,+,. Similarly adjacent  errors in D, and Dt+ l  will af- 
fect B ,  and B,+2 .  

Table 5 
Parity check table for 11- 
101 error-correcting code. 

D, D, D3 P I  p 2  p, nl 
P I X X  x 
P, x x  X 

p, x x  X 
r I I  x  x x x  

A code  that  corrects  double adjacent and 1 0 1  errors is 
therefore  the equivalent  in NRZI transmission, to a code 
that corrects single and  double  adjacent  errors,  as  pro- 
posed by Abramsonl  or described in Appendix I. The 
locator  sequence used in this code  can be any m-sequence 
according  to  the desired block  length. The  error-type 
check bit is taken across  every other digit, and is always 
1 for 11 errors  and 0 for 1 0 1  errors. 

Table 5 shows an example of this code  for a 
7-bit block. Parity  check HI is always 1 for  double ad- 
jacent  errors,  and always 0 for 1 0 1  errors. The  corrector 
words are listed in Table 6. 

Table 6 Corrector  sequence for 11-101 error-cor- 
recting code. 

Error in P1 P2 P, nI1 ]Error in Pl p, p3 n1 
D I D 2  0 1 0  1 
D , D 3  1 0   1 1  
D 3 P l  1 1  0 1 
P I P ,  1 1 1 1  
P,P ,  0 1   1 1  
P 3 r 1 1  0 0  1 1  

D I D ,  1 1   1 0  
D , D ,  0 1   1 0  
D 3 P 2  0 0 1 0  
P, P3 1 0 0 0  
P, n1 0 1 0 0  
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Note  that this code is cyclical, i.e., an  error  occurring 
in the first and last  bits of the word is not corrccted  as a 
double adjacent  error. However,  a  double error  occurring 
in the last bit of one block and  the first bit of the  ncxt 
can be corrected since the corresponding corrector words 
will take the values 0001 and 1001, not encountercd in 
the previous table. In general, a parity check  across the 
complete block will detect  the  occurrcncc of any odd- 
order  error. 

If the noise burst covers three bits, the following error 
patterns  are expected in a  phase-modulation system : 1 1 ,  
101, 11 11 and 1001. That  error  group  can also he cor- 
rected by the  code described  earlier (Table 2 ) .  The  cor- 
rectors for 11 11 errors  are identical to  the single crror 
correctors,  and  the 1 0 1  pattern generates the  same cor- 
rectors as 11 1 errors. 

Error detection 

From  Theorem 1 it is apparent  that K parity bits derived 
from  an m-sequence will detect all error bursts  up to I< 
bits in  length,  since the first multiple error  to  set a11 
parity bits to 0 is of order R+ 1 .  For example,  a six-bit 
code with  two parity bits will detect single, double adja- 
cent,  and  101  errors,  or all errors caused by an  error 
burst two-bits  wide, whether NRZ or NRZl coding is 
used. 

The simplicity with which the  parity bits can he gen- 
erated makes this method attractive  where efficient error 
detection for transmission systems is required. 

Although  no exhaustive  study of the error-correcting 
capabilities of codes involving m-sequence correctors  has 
been made in this article, it is believed that  the versa- 
tility of these  codes  in  handling  different types of crror 
patterns, as well as the possibility of their simple implc- 
mentation  has been demonstrated. 

Appendix: A code for the  correction of single and 

An inverse  sequence of correctors generated lrom R +  1 
flip-flops and of period 2R-1 can  replace  the combina- 
tion of a  maximal-length inverse-sequence of correctors 
generated from R flip-flops and  one all-check parity  bit, 
for correction of single and double adjacent errors. Con- 
sider  a  shift-register  sequence defined in  terms of the 
states of R + 1  flip-flops p1 . . . pni- ,  at times t and t + l :  

double adjacent errors. 

Equation (43) is equivalent to 

( / ~ l ) , . = c , ( / J : i ) r + c , ( / ~ , ) , + c , ( P , ) t  
+ . . . c,i-l(Pn+l)f+l,  (44) 

which cxpresses the relation  between the flip-flop states 
at timc 1. 

Sincc ( p l ) ( ,  (/A,)!, ( p : j ) f . .  . ( P ~ : + , ) ~  is the  corrector 
word for a single error  occurring  at time t ,  Eq. (44) de- 
fines the following relation  between the bits of this  word 
for which cj= 1 : 

(P1)l+cl(p,)/+c,(p*)t+ . . . C R - l ( P R + l ) t = 1 .  (45) 

The  corrector  word  for a double  adjacent  error is ob- 
tained by adding modulo 2, the  corrector  word for single 
crrors  occurring  at times t and t + l .  

:(Pl) ,+(Pl)t+ll  { ( P , ) r + ( P 2 ) t + , I  

{ ( P : 3 ) / + w f + l I . .  * 
: ( ~ , ~ + l ) ! + ( ~ ~ + l ) t + l l .  (46) 

Modulo 2 addition of Eqs. (43) and  (44) defines the 
following relation between the bits of this corrector  for 
which cj= I .  

:(Pl),+(Pl),+l}+cl.:(P3),+(P3)t+l} 

CIi-1 ~ ( ~ ~ . , - 1 ) 1 + ( / ~ ~ ~ + 1 ) t + l }  =0. (47) 
+c2{(P4)t+(P4)(+1)+ * + 
Comparison of Eqs. (45)  and  (47) indicates that  the 
corrector words for single errors will always be different 
lrom those for double adjacent  errors. 

EXur?lple 

In Tahlc 1 ,  

( / ~ 1 ) ~ . ~ ~ = ( ~ 2 ) t + ( / 7 : { ) ~ .  

Where p l ,   p 2 ,  p ,  are the correctors derived from P,, P,, 
f:{, the l r l  all-check bit can be  replaced by a bit P, 
such  that  the  corrector derived from ( P , )  is 

(P4) 1+1= ( P 3 )  ,. (48 1 
The parity  check  table is shown  in Table 7, and  the cor- 
rector sequence is given i n  Table 8. 

For all single errors, 

P + / J : ; + / ~ l = l .  (49) 

For all doublc  adiaccnt errors, 

(P3)t+l=(P2)t ,  (41 1 
(Pn+dt+l.=(Pn)t. (42) 

The coefficients c1 . . . c12"l determine  an inverse  maxi- 
mal length  sequence of length 2I<- l ,  generated  by flip- 
flops p 1  . . . ps;  flip-flop pn+l is defined by Eq. (42).  
Substitution of Eqs. (40-42) in Eq. (39) yields 

(~l)t+l=c1(~3)t+1~C2(~4)t+l 

64 +%(Pdt+1+  * * % - l ( P R + l ) t + , + t .  (43) 
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Table 7 
Parity check table for 
new SEC-DAEC code. 
___~___" ~~~~ " 

D ,  D ,  D.1 P ,  P ,  P, P., 
P l X X  x 
P,  x x  X 

p:, x x  X 

p4 x x  x 

. " . 



Table 8 Single and double adjacent corrector se- 
quences. 

Double 
Single adjacent 
Errors p 1   p z  p 3  p 4  Errors P I  PZ P3 PZ 

Dl 1 0 0 0  
DZ 1 1 0 0  
D3 0 1 1 0  
PI 1 0 1 1  
p2 0 1 0 1  
p3 0 0 1 0  
p4 0 0 0 1  

DID2 0 1 0 0  
DZD3 1 0 1 0  

PIP2 1 1 0 0  

p3p4 0 0 1 1  
P4DI 1 0 0 1  

D3p1 1 1 0 1  

p2p3 0 1 1 1  

Revised manuscript received October 28, 1959 
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