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The Wave Equation in a Medium in Motion 

Abstract: A model for the transverse vibrations of a tape moving between a pair of  pulleys is  devised using a 

variational procedure. It is  shown by means of energy-type  integrals that the  energy  of  that  portion of the 

tape  between the pulleys i s  not conserved, but that there i s  a periodic transfer of energy  into and out of the 

system.  The solution for the wave equation is  then constructed by a method which makes use of functional 

equations. The solution i s  observed to be periodic in time, and a modal decomposition of it is derived. A soh- 
tion is  also derived for the case of forced vibrations at  the pulleys, and a class of forcing vibrations which 

cause unbounded solutions a s  time increases is  isolated. In  an  appendix, a boundary layer effect i s  considered 

which occurs when the velocity of the tape through the pulleys approaches the sound speed of the tape. 

1. Introduction 

In this paper* we  will consider the transverse vibrations of 
a tape which  is  moving  between a pair  of  pulleys a dis- 
tance 1 apart. We consider the tape to be represented by 
an elastic string of given linear density and have  in  mind 
the situation indicated in Fig. 1. The tape (string) is 
drawn through the pulleys  with  velocity v. We  wish to 
determine the motion of the portion of the tape between 
the pulleys. In particular we inquire into the effect  which 
v has upon this motion. 

In Section 2 we show  how to derive the equations 
describing the transverse vibrations of the tape. The 
method for doing this makes  use of Hamilton’s principle, 
which  is a classical variational technique.= These equa- 
tions are not new.  Because of the interest in the physical 
situation which  they  model,  however, and because they 

tion  mentioned. In Section 3 we show that there is a con- 
tinued transfer of energy from that portion of the tape 
between the pulleys  and the tape outside of them. This 
energy transfer implies that the vibrations of a tape which 
is under motion can have larger amplitudes than the 
vibrations of a fixed segment of tape. 

In Section 4 we show  how the problem can be solved. 
We do this by deriving formulas for extending the defini- 
tion of the initial values of the tape motion. The solution 
is then  exhibited as a simple linear functional of these 
extended initial values. The procedure thus produces an 
algorithm with  which  the solution may  be  explicitly  com- 

I are not especially  accessible, we include the brief  deriva- , 

*The investigation presented here was begun while the author was  a mem- 
her of the staff of the Bell Telephone Laboratories. The author is grateful 
to E. Post of the Bell Telephone Laboratories for bringing  this problem 
to his attention, and to R. C. Prim of the Bell Telephone Laboratories for 

36 permission, to continue this work and to publish it. 
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Figure 1 

puted. In Section 5 we show  how the methods of Section 4 
enable one to write down a modal decomposition of the 
solution. The modal representation shows that the motion 
of the tape is periodic in time and furnishes a second 
procedure for computing the solution to the problem. 

In Section 6 we consider the case of forced vibrations 
introduced at  the pulleys and show  how to solve the prob- 
lem in this case. From  our solution of the problem in this 
case, we are able to conclude that a large class of forcing 
motions can lead to unbounded solutions. Our solution in 
this case demonstrates explicitly the way in which the 
solution becomes large. In particular, by specializing the 
end conditions to be harmonic, we are able to obtain the 
resonant frequencies of our problem. These resonant fre- 
quencies  must  be  considered  in the design of the pulley 
system. We also consider the passage of a splice through 
the system  and point out the possibilities of a splice  caus- 
ing resonance. 

In the Appendix we consider the situation when the 
velocity of the tape approaches the sound speed of the 
tape. We  show that  a boundary-layer phenomenon occurs 
in such an event and indicate how the solution may  be 
approximated in this case. 



2. The equation of motion 

Derivation 

To obtain the equation of motion, we  will  use Hamilton's 
principle,  which states that the variation of the time inte- 
gral of the kinetic  minus the potential energy of a segment 
at the  tape is zero. See  Fig. 2.  

If u ( x ,  t )  is the transverse displacement of the tape at 
position x at time t ,  then the velocity of the segment of 
tape at position x and time t is Du(x, t ) / D t  or 

Ut+Xtuz=Ut-vuZ. (2 .1 )  

Thus the kinetic  energy of the segment of tape between 
x1 and x2 is 

K= 1;; p [ v 2 + ( ~ t - v u Z ) 2 ] d ~ ,   ( 2 . 2 )  

where p is the linear density of the tape. 

The potential energy of this  segment  is 

where q is the tension.  Hamilton's  principle  now states 

jItZ JIX2 

{ p [ v 2 + ( ~ t - ~ ~ z ) 2 ] - q ~ , 2 } d X d t = 0 .  (2 .4 )  

Applying the Euler operator 

a a  a a  a 
at aut ax au, au 
" 

to  the integrand in ( 2 . 4 )  gives us the equation of motion: 

Utt-2vuxt+(v2-c2)U,,=0,  (2.6) 

if v is a constant, or 

utt-2vuzt+ (v2-c~)u,,-bu,=O (2 .7 )  

if v is a non-constant function of time. Here c= ( q / p ) *  is 
the sound speed. A dot represents time differentiation. TO 
the equation of  motion, we append the boundary condi- 
tions 

u(0 ,  t )  = u ( l ,  t )  = o ,  (2.8) 

which represent the fact that there is no transverse motion 
of the tape at the pulleys. 

A transformation 

If we make the transformation 

a a a 
" -v-+-, 
at a t  aT t = T ,  

the equation of motion becomes 

uTT-C2u&=o 9 (2 .10)  

while the boundary conditions become 

Figure 2 

X 

U ( Z ) T ,  T )  = U ( l + v T ,  T )  = o ,  (2 .11)  

for v constant, and 

for v a non-constant function of time. 

3. Energy considerations 

Energy 

From Section 2 we  may write the energy of the tape 
(between the puIleys) as 

w = + j  { p [ v 2 + ( ~ t - ~ ~ s ) 2 ] + q ~ Z 2 } d ~ .  (3 .1)  

Thus 

I 

Using the equation of motion, (3 .2 )  can be written as 

- 2 ~ '  - uZ2dx} . 
d"t i' (3 .4 )  

This expression is not in general zero. This may  be  seen 
in the following  way. By adjusting the initial values 

uZt = k' (x), the expression for d W / d t  at t = 0 may  be made 
non-zero. We may  also arrange that d W / d t  be continuous 
so that dW/d t  is not zero for small t. We  will  see  below 
that u is periodic. Thus dW/d t  is periodic and then dW/d t  
is non-zero in general. 

U(X, 0 )  h ( x ) ,  ut(X, 0 )  k ( x ) ,  u,(x, 0) h ' ( ~ ) ,  and 
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From this we may  conclude that  the energy of the 
portion of the  tape between the pulleys is not conserved; 
i.e., there is a continual  and periodic transfer of energy 
from  the system outside the pulleys to  that  part of the 
tape between the pulleys. Thus we see that  the  amplitude 
of the  motion with vf 0 can  under certain  conditions  be 
very much  larger  than  the  amplitude  when v is zero  for 
the  same initial  conditions. 

0 Uniqueness 

The uniqueness of the solution to this  problem is well 
known. We merely remark  that various  integrations and 
use of the  equation of motion enable the following identity 
to be derived: 

(3.5) 

This identity implies the uniqueness of the problem when 
c>v, according to a well-known argument. 

4. The solution of the  equation of motion 

In this section we will show  how to write down  the solu- 
tion to  the problem using the decomposability of the 
solution into waves traveling  in  two  directions. We will 
use the  equation written in (6, T )  coordinates. 

0 Constant v 

We write 

u ( [ ,  7)  =f([+cT> + 8 ( & C T )  (4.1) 

The first relation  in (2.1  1 ) gives 

 UT) =-g(br), U=V+C,  b=v-c (4.2) 

or 

Inserting this into (4.1) gives 

(4.3) 

(4.4) 

The section relation  in (2.11) inserted into (4.4) gives 
a  periodicity  condition on f( t )  , viz., 

or 

f ( ~ )  = f ( ~ + d ) ,  with a= -. 2c 
(4.6) 

c- v 
Let h ([) and k ( [ )  be respectively the initial  value and 

initial velocity of u ( [ ,  T). Then  from (4.4) we have 

(4.7) 

If we let 

K ( [ )  = do 3 

then (4.8) yields 

(4.9) 

(4.10) 

By adding (4.7) and (4.10), and  then  subtracting  them, 
we obtain two expressions for f([) - f ( O ) .  Equating these 
two expressions for f([) gives 

This is not a  relation between the initial data because 
b<O, and h ( [ )  and k ( ( )  are given only for OC<<Z. 

Applying the periodicity  condition (4.6) to either  mem- 
ber of (4.1 1 ) gives 

h ( t )  +IC([) =h(f+aZ) + K ( ( + a l ) .  (4.12) 

This is not a  relation  between the initial data because 
a>2. If we let F=h+K, G=-h+K, and P=b/a, we 
get from (4.11) and (4.12) 

F ( 6 )  =F(t+aO +G(P%). (4.13) 

The question of existence is thus reduced to extending 
the initial data h ( [ )  and k ( [ )  so that (4.13) is satisfied 
for all [. If this is done,  the solution is from (4.4). 

(4.14) 

To show that we can extend h ( [ )  and k ( [ )  so that 
(4.13 ) is satisfied for all [, we proceed as follows. F(  e )  
and G ([) are  known for [ in (0 , l ) .  As [ varies in ( O , I / p ) ,  
pe varies  in (0, I ) .  Thus as the  argument of G (in (4.13) ) 
varies in (0, I )  (where G is known),  the  argument of F 
(in (4.13) ) varies  in (0, I / / ? ) .  Thus we know F on 
(l//?, 0 ,  (recall P= ( b / a )  <O) .  

Now  the length of the interval ( I / p ,  I )  is 

(4.15) 

Thus since F has period al, we know F everywhere, and 
by (4.13) we know G everywhere; i.e., the initial data 
can  indeed be appropriately extended.  Using (4.1) and 
(4.13) and implementing the extension argument, a  pro- 
cedure  for computing u ( x ,  t) is at  hand. 

Variable v( t )  

We  proceed  as  in the case of constant v. Then let 

U([, T ) = f ( [ + C T )  + g ( [ - c T ) .  (4.16) 38 and 
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The first relation in (2.12) gives 

f [ a ( T ) T l = - g [ b ( T ) T ]  9 

a(.) =- v(o)da+c , 

b( . )=-  v ( a ) d a - c .  

: lT 
: lr 

Let 

b ( T ) T = f ,  

and  let 

T = w ( t )  

be its inverse. Then (4.17) becomes 

A t )  =-f{aCw(t)lw(t)l 

= - f [ t + 2 c w ( t ) ]  . 
Thus 

u ( t ,  7) = f ( t + C T ) - f [ [ - C T + 2 C w ( t - C r ) ]  . 
NOW  the second  relation in (2.12) gives 

f ~ ~ ~ T ) T + ~ ~ = f ( b ( T ) T + ~ + 2 C ~ [ b ( ~ ) ~ t 2 ] } . .  

This implies 

fCt+2cw(t) + I ]  =f[t+Z+2ctw(t+Z)] , 
which may be written as 

f r x + 2 c w ( x " ) ] = f ~ x + 2 c w ( x ) ]  . 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

This is the  analogue of the periodicity condition  in (4.6). 

Now continuing  exactly  as in  the case of constant v, we 
may obtain  our solution  provided the following  analogue 
of (4.13) can be used to extend our initial  data, viz., 

F ( 8  = G [ h ( t ) l =  F{X( t )  + 2cw[h( t )  - 11 1 . (4.25) 

Here X(x) is the inverse function of y + c w ( y ) .  

It is not clear when h and k can be extended in accord- 
ance  with (4.25). However, we  may  note  that when  this 
is possible, the values of h and k at the extended  argu- 
ments are those of h and k on  the interval (0, I) . Thus  at 
any  point (t, T ) ,  the solution u ( t ,  T )  is the usual linear 
combination of some of the values of h and k on (0, I ) .  

5. Modal representation (constant VI 
From  the periodicity  condition (4.6) for f ( 0 ,  we have 

To determine f,, the knowledge of f([) or h+K on  an 
interval  larger than (0, Z) is required.  We have 

If fn=Un+iTn,  & = U , + U - ~ ,  and tn=Tn-T-n 9 

then (5.2) can be  written  as 

In  the x ,  t coordinates, this becomes 

"t, (sm - x- sin 2 x ) ]  cos 2 at . 2nn 
f f l  ( b / a ) f f l  f f l  

(5.4) 

This clearly illustrates the  modal behavior of the solu- 

tion.  It also shows that u has period -= - f f l  2cl 
a ~ 2 - v ~  in t. The 

numbers f n ,  u,, T ~ ,  s,, and tn can readily be determined 
from (5.1), after  the initial data is extended from (0, I) 
to (0, al )  in accordance with (4.13) and  the extension 
argument immediately  following (4.13). 

6. The  response of the tape to forcing motions 
at  the pulleys 

In  this  section we will consider our  tape  to be  subject to 
forced motions at its  ends (the  pulleys).  We will show 
how  to solve the  problem  in this case. We will also show 
that a large class of forcing motions can lead to un- 
bounded  motions of the tape. In  particular  we will see 
that  certain  harmonic motions of the ends are  in this 
class. The  latter situation is the  phenomenon of resonance. 

We will use the ([, T) coordinates. 
Since our  problem is linear and since the solution with 

zero  boundary conditions is periodic and bounded, we 
may take as  initial data 

h ( t )  = k ( [ )  =o . (6.1) 

At  the boundaries we take 

u(vT, 7) =$1(.) 

u ( v T t l ,  T ) ' $ Z ( T )  9 (6.2) 

with + I ( T ) = = = & ( T ) = O  for T < O ,  and with & ( T )  and 
+2( T )  continuous  for all T.3 



Let 
where Z3= [ - a b 7 1  [ + C T  and Zg= [ - 7 1  . t " C T  

U ( t 9  7)  = f ( t + c T )  + g ( t - C T )  (6.3) 

Applying (6.2) to (6.3) we may obtain As T+W, the number of terms in these sums  gets 
larger and tends also to infinity. To illustrate the possi- 
bilities let us consider what happens at  the midpoint of 

(6'4) the tape; i.e., let t=vT+l/2. From  (6.8) we obtain 

with g(x) to be determined from 

40 

The solution to (6.5) is 

bT b 

Now the arguments of $1 in these sums (during sum- 

ments in the two  sums  have a phase difference of one-half 
this value, Z/2[ ( b - a ) / b Z ] .  It is clear that by adjusting 
the sign and/or amplitude of $I(x) as x varies, the ex- 
pression  in (6.9) will tend to infinity  with T.  Thus  a large 

' (6'6) class  of  end conditions will lead to solutions  which  grow 
as large as one pleases  as  time approaches infinity. If in 
particular 

+1(~)=sin0~,  0~=(rr/cl)(v-c)*=(2rr/Z) -, 

o, x > o  mation) move in steps of I[ (b -a ) /bZ]  while the argu- 

where & = [ 51 and Z2 = [ 
All summations are to proceed  up to the integral part of a-b 

- -$] 62 

the upper limit of summation. Since b =v-c<O, we see 
that f(x) =O for x<O. 

Thus we have 

(0,  t-cr>o 
[- CT<O , (6.7) 

where 

Zj=[-7],andZ6=[$-_I]. [ " C T  t - C T  

Since we are interested in determining when as r be- 
comes large, the solution becomes large, we assume that 
T > ~ / ( c - v ) .  This implies that [ - c T < O ,  and simplifies 
(6.7). Suppose further  that &=O. Then 

(6.10) 

then ~ ( t ,  T )  will gradually  become  as large as one desires 
by taking T sufficiently large. Thus O= (rr/cZ) (v- c)' is 
a resonant frequency of the system. Indeed we see that the 
free vibration frequency, 2aa/aZ, found in Section 5, is a 
resonant frequency. The advantage in obtaining the reso- 
nant frequencies from an  exact  expression, (6.9), of the 
solution is that one need not be content with a statement 
that the solution tends to infinity  with time, but can see 
exactly how this happens. In particular he can compute 
the time it takes for the soIution to reach a given  ampli- 
tude. This attribute could  be of importance in  specific 
design  problems. 

The passage of a splice 

Since a splice  causes a bump to exist  on the piece of tape, 
the passage of splice through the pulleys  may  be inter- 
preted  by  choosing & ( T )  and &( T )  to be step functions 
which are zero then equal to  the extra thickness of a 
splice and then zero again. If d is the length of the splice, 
then $1 and will each be non-zero over an interval of 
d / v  in duration. The form of the solution shows that 
u ( t ,  T )  will  be a linear combination of the added thick- 
ness  of a splice  with 5 1  for coefficients. Since the argu- 
ments in the sums  in (6.7)  are taken in increments of 
1 all = 2cZ/ (c- v) 2,  we see that the larger c is (the smaller 
this increment) the more non-zero terms will appear. 
In particular we see that the number of non-zero terms 
will be proportional to the time, a/v, that it takes a splice 
to pass through a pulley,  divided by the increment of 
summation; i.e., 
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( d / v )  dc number  of terms in the summation, that is, hdc/2vl for 
" 

[ 2 C Z / ( C - V ) 2 ]  2vl 
for large c (large tape  tension). 

large c. 
If a succession of splices passes through the system, a 

situation  where the solution grows verv large  might de- 
Thus  the solution will vary in some repetitive manner velop. This  may be seen by examining (6 .8 ) .  For although 

and having values in integral multiples of the  added +1=0 or h, the frequencies of splices might be just of the 
thickness of a splice. The maximum  amplitude will be form  that  the negative (or positive)  terms in (6 .8)  pre- 
proportional to  the added thickness of a splice, h, times the dominate in number. 

I "  

Appendix: Boundary layers 

In this appendix we show how the  formalism of boundary- In ( A - 1 ) ,  let 
layer  theory arises in our problem. 

For constant v our equation is 
C2-v2'E(v+C). (A-4) 

For  the left  boundary (x=O) , let 
Utt=(c2-v2)Urx+2vu.~t.  (A-1 1 X=ES. (A-5 1 
The characteristics of this equation are  the straight lines 
whose slopes are 

rn=v+-c. (A-2 1 
This  equation is then always hyperbolic. We note, how- 
ever, that when v+c-, the equation cannot satisfy the 
boundary  value  problem. For in this case, the  solution of 
the  formal limit equation is 

U=cY(x) +P(x+2c t ) ,  (A-3 1 
a standing  wave  plus a wave  moving  with  velocity 
2c= v +c. The boundary  conditions and initial  condition, 
u =h (x), imposed only on (A-3)  would already yield 
U = h ( x )  . Thus  the solution of the  formal limit equation 
(as v+c-) cannot satisfy all the conditions of the origi- 
nal problem.  This  comes about because one family of 
characteristics becomes the set of straight lines with  zero 
slope. In  the theory of singular perturbations,  boundary 
value  problems are considered which, when certain for- 
mal limits are taken, become unable to satisfy all the 
conditions  they  formally did. Here we do  not  have a 
singular  perturbation,  but still we have a boundary-layer 
effect. 

We anticipate on physical grounds that the  solution will 
approach a  standing wave and  a wave with velocity 2c, 
as  in (6 .3 ) .  Thus we do  not want to  make (A-3) into 
U = h  ( x ) ,  a  standing wave only. This means that we 
should refrain  from making U satisfy the boundary con- 
ditions, and add to U a term of importance near  the 
boundaries. This suggests the boundary-layer  transforma- 
tion. 

Letting +(s, t )  = lim U ( E S ,  t ) ,  we get from (A-1) 
&+O 

O=+sa++st. ( A 4  

Then 

+ = y ( t )  + S ( s + t )  = y ( t )  +s - + t  . (: ) 
For  the right  boundary ( x = l ) ,  let 

l-x=Eu, $, = lim u(l-Eu, t )  . 
Then 

&+O 

Hence, 

(A-10) 

We expect u to  be approximated by U + + + $I as E + 0. 
Since we expect u to  approach a  standing wave plus a 
wave of velocity 2c, then S ( t )  +[( t )  should  tend to zero 
with E .  As a  first  approximation  let us set them to zero. 

Applying the initial  conditions u = h ( x ) ,  ut=x(x) ,  we 
get 

and 

2CP'(X) + S f  (e) +?j (e) = x ( x )  . (A-12) 41 
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We  integrate ( A - 1 2 )  and  write  the  result as 

2CP(X) + & S  ( ; ) -e7 (+) = L ( x ) .  (A-13) 

(: ) 

Equating,  we  get 

8 - +  
Applying  the  boundary  conditions  to U-/-++,/, gives 

(k) T ( +  + e) 
a ( 0 ) + / 3 ( 2 c t ) + 8 ( t ) + 7 ]  - St =-0 ,  (A-14) 

and -I-cr(O) cs (+ + -$) +(%) +a!(/) 

a(Z) + P ( l + 2 c t )  f 8  - + t  + 7 ] ( 1 )  -0 . (: 1 (A-15) =- $ ( ; ) + $ 7 ( e ) + z L ( x ) .  1 

(A-16) Solving  these  two  equations for P ( x )  gives respectively 

and 

I f  we can  solve  these  two  equations for 8 and 7, we  insert 
the  result in (A-13)  to  determine p. Then  (A-11) gives 
4x1.  
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