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W. L. Miranker

The Wave Equation in a Medium in Motion

Abstract: A model for the fransverse vibrations of a tape moving between a pair of pulleys is devised using a

variational procedure. It is shown by means of energy-type integrals that the energy of that portion of the
tape between the pulleys is not conserved, but that there is a periodic transfer of energy into and out of the
system. The solution for the wave equation is then constructed by a method which makes use of functional

equations. The solution is observed to be periodic in time, and a modal decomposition of it is derived. A solu-
tion is also derived for the case of forced vibrations at the pulleys, and a class of forcing vibrations which
cause unbounded solutions as time increases is isolated. In an appendix, a boundary layer effect is considered

which occurs when the velocity of the tape through the pulleys approaches the sound speed of the tape.

1. Introduction

In this paper* we will consider the transverse vibrations of
a tape which is moving between a pair of pulleys a dis-
tance [ apart. We consider the tape to be represented by
an elastic string of given linear density and have in mind
the situation indicated in Fig. 1. The tape (string) is
drawn through the pulleys with velocity v. We wish to
determine the motion of the portion of the tape between
the pulleys. In particular we inquire into the effect which
v has upon this motion.

In Section 2 we show how to derive the equations
describing the transverse vibrations of the tape. The
method for doing this makes use of Hamilton’s principle,
which is a classical variational technique.? These equa-
tions are not new. Because of the interest in the physical
situation which they model, however, and because they
are not especially accessible, we include the brief deriva-
tion mentioned. In Section 3 we show that there is a con-
tinued transfer of energy from that portion of the tape
between the pulleys and the tape outside of them. This
energy transfer implies that the vibrations of a tape which
is under motion can have larger amplitudes than the
vibrations of a fixed segment of tape.

In Section 4 we show how the problem can be solved.
We do this by deriving formulas for extending the defini-
tion of the initial values of the tape motion. The solution
is then exhibited as a simple linear functional of these
extended initial values. The procedure thus produces an
algorithm with which the solution may be explicitly com-
mion presented here was begun while the author was a mem-
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to E. Post of the Bell Telephone Laboratories for bringing this problem
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puted. In Section 5 we show how the methods of Section 4
enable one to write down a modal decomposition of the
solution. The modal representation shows that the motion
of the tape is periodic in time and furnishes a second
procedure for computing the solution to the problem.

In Section 6 we consider the case of forced vibrations
introduced at the pulleys and show how to solve the prob-
lem in this case. From our solution of the problem in this
case, we are able to conclude that a large class of forcing
motions can lead to unbounded solutions. Our solution in
this case demonstrates explicitly the way in which the
solution becomes large. In particular, by specializing the
end conditions to be harmonic, we are able to obtain the
resonant frequencies of our problem. These resonant fre-
quencies must be considered in the design of the pulley
system. We also consider the passage of a splice through
the system and point out the possibilities of a splice caus-
ing resonance.

In the Appendix we consider the situation when the
velocity of the tape approaches the sound speed of the
tape. We show that a boundary-layer phenomenon occurs
in such an event and indicate how the solution may be
approximated in this case.




2. The equation of motion

® Derivation

To obtain the equation of motion, we will use Hamilton’s
principle, which states that the variation of the time inte-
gral of the kinetic minus the potential energy of a segment
at the tape is zero. See Fig. 2.

If u(x, t) is the transverse displacement of the tape at
position x at time ¢, then the velocity of the segment of
tape at position x and time ¢ is Du(x, t) /Dt or
Ui+ Xl =t — VU, . 2.1)

Thus the kinetic energy of the segment of tape between
x1 and xg is

1'2 1
K- / 5 pLo v ?Jdx, 22)
2.

1

where p is the linear density of the tape.

The potential energy of this segment is

Zy 1
V= / —qu,2dx , 2.3)
e 2
where g is the tension. Hamilton’s principle now states

ty (%
8/ f {p[V2+ (us—vu,) 2] —qu.?}dxdt=0. (2.4)
t Jn
Applying the Euler operator

2
2.2 0 8 o 25
ot du: ox Ouy, u

to the integrand in (2.4) gives us the equation of motion:?
Ute— 2Vt + (V2— ) U =0, (2.6)
if v is a constant, or

Wer— 20Uz + (V23— €2) thpe— DUtz =0 (2.7)

if v is a non-constant function of time. Here c=(gq/p)? is
the sound speed. A dot represents time differentiation. To
the equation of motion, we append the boundary condi-
tions

u(0,t)=u(l, t)=0, (2.8)

which represent the fact that there is no transverse motion
of the tape at the pulleys.

® A transformation

If we make the transformation

¢ G
x+ | v(o)de=§, o 2 ,
o ox o¢
(2.9)
t=7, -a—=’0 2 + —,
ot of T
the equation of motion becomes
Urr—C?uge=0, (2.10)

while the boundary conditions become

Figure 2

u

u(vr, v) =u(l+v7, 7) =0, (2.11)

for v constant, and

u (/T’v(o‘)dcr, -r> =u <l+ /T'v(o)du, 'r)=0 ,  (2.12)

for v a non-constant function of time.
3. Energy considerations
o Energy

From Section 2 we may write the energy of the tape
(between the pulleys) as

1
-1 / (pL%+ (ts— 1) 7] + qus} . (3.1)

Thus

dw 1 d [
7 - = 24 (c2—v2) u,2—2vu,u; ldx
dt 2”d:£[”‘ (et o) :
(3.2)

1
=p / [ututt+(c2—'v2)uxuxt—'vuguxt—vuxu"]dx .
o

Using the equation of motion, (3.2) can be written as

i
dd_l’:’ =P/ {[ue—vu] [ 20U+ (€2 —¥?) ez ]
0

+le2— 02ty }dx . (3.3)

Equation (3.3) can by integration by parts be brought
into the form

aw

__ P 2_c2 2 —u,?
— "~ {v[v2—c?] [u2(l, t) —u.2(0, 1) ]

d 11
—2v? o /uxzdx} . (3.4)
o

This expression is not in general zero. This may be seen
in the following way. By adjusting the initial values
u(x, 0) = h(x), u(x,0) = k(x), u(x,0) = h'(x), and
uz=k'(x), the expression for dW/dt at t=0 may be made
non-zero. We may also arrange that dW/dt be continuous
so that dW/dt is not zero for small 1. We will see below
that u is periodic. Thus dW /dt is periodic and then dW/dt
is non-zero in general.
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From this we may conclude that the energy of the
portion of the tape between the pulleys is not conserved;
i.e., there is a continual and periodic transfer of energy
from the system outside the pulleys to that part of the
tape between the pulleys. Thus we see that the amplitude
of the motion with ¥50 can under certain conditions be
very much larger than the amplitude when v is zero for
the same initial conditions.

® Uniqueness

The uniqueness of the solution to this problem is well
known. We merely remark that various integrations and
use of the equation of motion enable the following identity
to be derived:

l
?j?/ (w4 (c2—v2)u,2]dx=0. (3.5)
0

This identity implies the uniqueness of the problem when
¢>v, according to a well-known argument.

4. The solution of the equation of motion

In this section we will show how to write down the solu-
tion to the problem using the decomposability of the
solution into waves traveling in two directions. We will
use the equation written in (£, v) coordinates.

e Constant v

We write

u(g, 7y =f(é+cr)+g(é—cr). (4.1)
The first relation in (2.11) gives

flar) =—g(br), a=v+c, b=v—c 4.2)

or

g(r)=—f (ﬁ])—) . (43)

Inserting this into (4.1) gives

u(, ) —f(E+or) (—Z—(é—cﬂ) . (4.4)

The section relation in (2.11) inserted into (4.4) gives
a periodicity condition on f(#), viz.,

flar+1) =f <—Z—(b-r+l)> (4.5)
or

f(7)=f(r+eal), with a= 2¢

(4.6)

c—v

Let h(£) and k(&) be respectively the initial value and
initial velocity of u(&, 7). Then from (4.4) we have

h(E) = (&) —1 (—‘f—) (4.7)

and
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k@ _, a (a
O _r+ 2 f(b s>. (48)
If we let
¢
K($)=/ k(c") do , (4.9)

then (4.8) yields

K@) =f(£) +f(-Z— s) —2/(0). (4.10)

By adding (4.7) and (4.10), and then subtracting them,
we obtain two expressions for f(£) —f(0). Equating these
two expressions for f(£) gives

h(£) +K(£)=—h <% s) +K (_:L g) . (4.11)

This is not a relation between the initial data because
b<0, and h(§) and k(£) are given only for 0< </

Applying the periodicity condition (4.6) to either mem-
ber of (4.11) gives

h(€)+K (&) =h(+al) +K({+al). (4.12)

This is not a relation between the initial data because
a>2. If we let F=h+K, G=—h+K, and 8=b/a, we
get from (4.11) and (4.12)

F(§) =F({+al) +G(BE). (4.13)

The question of existence is thus reduced to extending
the initial data A(£) and k(£) so that (4.13) is satisfied
for all £, If this is done, the solution is from (4.4).

u(é, 7) =% I:h(§+cr) +K(§+cr)—h <~Z—($~CT)>

~K <%(§—cr)>] . (4.14)

To show that we can extend h(£) and k(£) so that
(4.13) is satisfied for all £, we proceed as follows, F(£)
and G(¢§) are known for £in (0,1). As ¢ varies in (0,1/8),
Bé& varies in (0, I). Thus as the argument of G (in (4.13))
varies in (0, !) (where G is known), the argument of F
(in (4.13)) varies in (0,//B). Thus we know F on
/B, 1), (recall B=(b/a)<0).

Now the length of the interval (I/(, 1) is

1 b—a
l <1—7g——> =l< 3 >=xxl. (4.15)

Thus since F has period ol, we know F everywhere, and
by (4.13) we know G everywhere; i.e., the initial data
can indeed be appropriately extended. Using (4.1) and
(4.13) and implementing the extension argument, a pro-
cedure for computing u(x, t) is at hand.

® Variable v (1)
We proceed as in the case of constant v. Then let

u(é, ) =f(é+ter)tg(é—cr). (4.16)




The first relation in (2.12) gives
fla(r)7]=—glb(7)7],

a(r)=ifrv(a)da+c s 4.17)
T Jo

b(")=l/T’U(a)d0’—c .

Let

b(z)r=t, (4.18)
and let

T=w(1) (4.19)

be its inverse. Then (4.17) becomes
g(t) =—falw()Iw(1)}
=—f[t+2ew(t)] .
Thus
u(é, 7)=f(f+cr) —flE—cr+2ew(é—cr)]. (4.21)

Now the second relation in (2.12) gives

(4.20)

fla(ry s+ =f{b(z)r+1+2cw[b(r)r+1]}.. (4.22)
This implies
FLt+2ew(t) +11=f[t+1+2ctw(t+1D) ], (4.23)

which may be written as
fIx+2ew(x—D1=flx+2ew(x)]. (4.24)
This is the analogue of the periodicity condition in (4.6).

Now continuing exactly as in the case of constant », we
may obtain our solution provided the following analogue
of (4.13) can be used to extend our initial data, viz.,

F(&)=G[MET=FAE)+2cw[A(H)—11}.  (4.25)
Here A(x) is the inverse function of y+cw(y).

It is not clear when 4 and & can be extended in accord-
ance with (4.25). However, we may note that when this
is possible, the values of 4 and & at the extended argu-
ments are those of 7 and k on the interval (0, /). Thus at
any point (£, 7), the solution u(£, 7) is the usual linear
combination of some of the values of & and & on (0, ).

5. Modal representation {constant v)

From the periodicity condition (4.6) for f(£), we have

(&)= 2 fa €Xp ( 2n7;z£ )

fam % &) exp (— —2—’%’?—>ds : (5.1)

To determine f,, the knowledge of f(§) or 2~+K on an
interval larger than (0, /) is required. We have

2nzi

u(t, 'r)=§fn[eXp< (E+c T))

~exp<2n' (&— CT))] (5.2)

If fo=0ntitn, Sn=0n+0on and thi=7n—7T_n,

then (5.2) can be written as

u(é, 7) =§] I:sn <cos

s (5.3)
. nm
—t, <sm - (£4+c7) —sin (b/ )al —(¢- CT))]
In the x, t coordinates, this becomes
i 2nw 2n
t)= X
u(x, t) ? I: <cos ] X—COS ———— (b/a)al )
. 2nw . 2nzw 2nw
—tp | SI — X— SIN ——— X cos —— at
al (b/a)el al
(5.4)

hd . 2nrw . 2nm
-+ —8 | sin — x—sin ———Xx
? [ " ( al (b/a)al )

2nw 2nw . 2nw
—ta| cos =— x—cos ————x ) | sin ——at .
al (b/a)el al
This clearly illustrates the modal behavior of the solu-

2Cl —~in t. The

. . ]
tion. It also shows that u has period z_
a

numbers f,, ox, T, sn, and t, can readily be determlned
from (5.1), after the initial data is extended from (0, )
to (0, al) in accordance with (4.13) and the extension
argument immediately following (4.13).

6. The response of the tape to forcing motions
at the pulleys

In this section we will consider our tape to be subject to
forced motions at its ends (the pulleys). We will show
how to solve the problem in this case. We will also show
that a large class of forcing motions can lead to un-
bounded motions of the tape. In particular we will see
that certain harmonic motions of the ends are in this
class. The latter situation is the phenomenon of resonance.

We will use the (£, 7) coordinates.

Since our problem is linear and since the solution with
zero boundary conditions is periodic and bounded, we
may take as initial data

h(§)=k(£)=0. (6.1)
At the boundaries we take

u(vr, 7) =¢1(1)

u(vr+l, 7) =¢2(7), (6.2)

with ¢1(7) =¢2(7) =0 for <0, and with ¢;(+) and
¢2(7) continuous for all 7.2

(§+c1) —cos ——— (b/ ) " (é— CT))
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Let
u(é, 7y =7f(+er)+g(é—cr). (6.3)
Applying (6.2) to (6.3) we may obtain

)= <i> —g(—b— x), (6.4)
a a

with g(x) to be determined from
#(3)-+(-7)
a
b
=8(x)—g[x+l(1— 7)] . (6.5)

The solution to (6.5) is

0, x>0
=72 x+nal Zy ! ]
g(x) S ¢y o S s x+ne LAY
0 b o b a

x<0, (6.6)

where Z;= —-_—x and Z,= _b_ — _x_
al aa ol

All summations are to proceed up to the integral part of
the upper limit of summation. Since b=v—c<0, we see
that f(x) =0 for x<0.

Thus we have

wlf, )= <$+cr> E¢ <(b/a)($—il;cr)+nal)

b a

é—crtnal Z £—cr+nal 1
En ()2 (50,
0,&—cr>0

+E¢ ((b/a)(£+CT)+nal _i)

£—c¢<0, (6.7)

‘where

Z3= - "b_ £+CT ’ Z4= [‘_b_ - i £+CT ]’
a al aa a ol

Zs= —_ S—CT :], andZe= —é— - E_CT .
al au al

Since we are interested in determining when as 7 be-
comes large, the solution becomes large, we assume that
>1/(c—v). This implies that £—c+<0, and simplifies
(6.7). Suppose further that ¢>=0. Then

(b/a) (£+cr) +nal >
b

+E¢1<£ C1-b+nal>’

M(S,T)-—- 2¢ <

(6.8)
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where Z3= —i iter and Zs=| — f-er .
a al al

~As 70, the number of terms in these sums gets
larger and tends also to infinity. To illustrate the possi-
bilities let us consider what happens at the midpoint of
the tape; i.e., let £=v7+1/2. From (6.8) we obtain

l Z l ]
u<1)7'+7,7'>=—2¢1<7+-i; +—n:—'>

) nal
+ — 4+ 6.9
2 d1 <'r+ b + A ) (6.9)

where Z,= [— ﬁ——b—] and Zs=|:—‘ —bl—i] .
2a

Now the arguments of ¢; in these sums (during sum-
mation) move in steps of /[ (b—a) /b?] while the argu-
ments in the two sums have a phase difference of one-half
this value, I/2[(b—a) /b%]. It is clear that by adjusting
the sign and/or amplitude of ¢1(x) as x varies, the ex-
pression in (6.9) will tend to infinity with 7. Thus a large
class of end conditions will lead to solutions which grow
as large as one pleases as time approaches infinity. If in
particular

¢1(7) =sin o1, o=(w/cl)(v—c)2=2x/1) ——122— ,
a—b

(6.10)

then u(£, v) will gradually become as large as one desires
by taking 7 sufficiently large. Thus o=(x/cl) (v—c)?is
a resonant frequency of the system. Indeed we see that the
free vibration frequency, 27a/«al, found in Section 5, is a
resonant frequency. The advantage in obtaining the reso-
nant frequencies from an exact expression, (6.9), of the
solution is that one need not be content with a statement
that the solution tends to infinity with time, but can see
exactly how this happens. In particular he can compute
the time it takes for the solution to reach a given ampli-
tude. This attribute could be of importance in specific
design problems.

& The passage of a splice

Since a splice causes a bump to exist on the piece of tape,
the passage of splice through the pulleys may be inter-
preted by choosing ¢:(7) and ¢2(7) to be step functions
which are zero then equal to the extra thickness of a
splice and then zero again. If d is the length of the splice,
then ¢; and ¢. will each be non-zero over an interval of
d/v in duration. The form of the solution shows that
u(£, v) will be a linear combination of the added thick-
ness of a splice with *+1 for coefficients. Since the argu-
ments in the sums in (6.7) are taken in increments of
|ad| =2¢l/(c—2)?, we see that the larger ¢ is (the smaller
this increment) the more non-zero terms will appear.
In particular we see that the number of non-zero terms
will be proportional to the time, /v, that it takes a splice
to pass through a pulley, divided by the increment of
summation; i.e.,




(d/v) dc
[2¢l/(c—v)2] 2wl
for large ¢ (large tape tension).

Thus the solution will vary in some repetitive manner
and having values in integral multiples of the added
thickness of a splice. The maximum amplitude will be
proportional to the added thickness of a splice, A, times the

number of terms in the summation, that is, hdc/2vl for
large c.

If a succession of splices passes through the system, a
situation where the solution grows very large might de-
velop. This may be seen by examining (6.8). For although
¢1=0 or h, the frequencies of splices might be just of the
form that the negative (or positive) terms in (6.8) pre-
dominate in number.

Appendix: Boundary layers

In this appendix we show how the formalism of boundary-
layer theory arises in our problem.

For constant v our equation is
U= (C2—V2) U+ 2Vt . (A-1)

The characteristics of this equation are the straight lines
whose slopes are

m=v=¥c. (A-2)

This equation is then always hyperbolic. We note, how-
ever, that when v—c—, the equation cannot satisfy the
boundary value problem. For in this case, the solution of
the formal limit equation is

U=a(x)+B(x+2ct), (A-3)

a standing wave plus a wave moving with velocity
2¢=v+c. The boundary conditions and initial condition,
u=nh(x), imposed only on (A-3) would already yield
U=Hh(x). Thus the solution of the formal limit equation
(as v—>c—) cannot satisfy all the conditions of the origi-
nal problem. This comes about because one family of
characteristics becomes the set of straight lines with zero
slope. In the theory of singular perturbations, boundary
value problems are considered which, when certain for-
mal limits are taken, become unable to satisfy all the
conditions they formally did. Here we do not have a
singular perturbation, but still we have a boundary-layer
effect.

We anticipate on physical grounds that the solution will
approach a standing wave and a wave with velocity 2c,
as in (6.3). Thus we do not want to make (A-3) into
U=h(x), a standing wave only. This means that we
should refrain from making U satisfy the boundary con-
ditions, and add to U a term of importance near the
boundaries. This suggests the boundary-layer transforma-
tion.

In (A-1), let
c2—v2=¢e(v+c). (A-4)
For the left boundary (x=0), let
x=es. (A-5)
Letting ¢ (s, t) = lim u(es, t), we get from (A-1)
O=chsst st . o (A-6)
Then
d=v(t) +8(s+1t)=y(t) +3 (—-:— +t>. (A-T)
For the right boundary (x=1), let
l—x=c¢o, ¢y =limu(l—ea,1). (A-8)
Then e
0=yYoo— Yot - (A-9)
Hence,
£ Fu(a+0) =E0) + (’:" +t> . (a0

We expect u to be approximated by U+¢ -y as e—0.
Since we expect u to approach a standing wave plus a
wave of velocity 2¢, then 8(¢) +£(¢) should tend to zero
with e. As a first approximation let us set them to zero.

Applying the initial conditions u=~h(x), u;=x(x), we
get

a(x) +B(x) +38 (i> +9 < l:x ) =h(x),  (A-11)

and

208 (x) +8' (i> +n’ (—’1> ~x(x). (A-12)

41

IBM JOURNAL «%JANUARY 1960




We integrate (A-12) and write the result as

2B (x) +e8 <i> —e < I-x > =L(x).
€ &

Applying the boundary conditions to U--¢+y gives

(A-13)

a(0) +B(2et) +8(1) +9 <—1 +t> =0, (A-14)
&

and

oz(l)+,8(l+2ct)+8<i +t>+77(1) =0. (A-15)

Solving these two equations for 8(x) gives respectively

X l x
B(x)=-3 <—2_c> -7 (7 + ;)a(())

and
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I x—1 x—1
o5 (L+ 20y (5L e

Equating, we get

5 <i> . <L + _x_>
2c¢ € 2c
i x—1 x—1
Fa(0)-=8 <? + 7 > +77< 70 >+04(1)

e [ x £ l—x 1
LN s _ — L(x).
20<e>+2c‘n< £ >+2c )
(A-16)

If we can solve these two equations for § and 5, we insert
the result in (A-13) to determine 8. Then (A-11) gives
a(x).

3. These assumptions are made for technical reasons. One of
these reasons is that we wish to avoid discontinuous
(weak) solutions of the wave equation.
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