R. E. Jones, Jr.

A Thermodynamic Treatment of Dilute

Superconducting Alloys

Introduction

For many years the methods of thermodynamics have
been successfully used to describe the transition between
the normal and superconducting states.! Recently, a
number of measurements have been made of the super-
conducting properties of alloys containing controlled
amounts of impurities.2-* This paper is concerned with
developing a thermodynamic treatment of the variation
of free energy in a dilute superconducting alloy using
composition as a parameter and, in particular, discusses
two possible dependences of the free energy on compo-
sition.

One possibility is the assumption of a linear variation
of the free energy with composition, which is equivalent
to assuming that each atom added has an effect inde-
pendent of those previously added. This hypothesis re-
sults in the prediction of a first-order transition in the
absence of field for dilute alloys and an infinite slope of
critical field at the critical temperature. The conventional
thermodynamic treatment assumes a second-order transi-
tion and a finite slope.

A second approach is to assume that a second-order
transition and a finite initial slope of the critical field at
the transition temperature are established properties of
dilute superconducting alloys. In this case it is shown
that there is a cooperative interaction due to solute atoms
even in the range of very high dilution.

General thermodynamic relations

In discussing the effect of diluting an initially pure super-
conductor, we will assume that specification of the tem-
perature T, external magnetic field H, and the atom
percent solute (the element present in smallest amount)
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x, describes the state of a specimen. The “Gibbs free
energy per mole” g, of a system with these parameters is

g(H,T,x)=u—sT—mH,

where u is the internal energy per mole, s is the entropy
per mole, and m is the magnetization per mole. From
thermodynamics it follows that

dg=—sdT —mdH + udx. (1)

The function u is called the chemical potential and is de-
fined as being equal to (8g/8x) ¢, g.

Consider now the transition from the superconducting
to the normal state, i.e., the s<>n transition. The criterion
that the two phases be in equilibrium at a given magnetic
field, temperature, and composition is that the free ener-
gies of the two phases be equal. Therefore, if expressions
may be found for the free energies in the normal and
superconducting states, the equation

g,(T,H,x)=g (T, H,x)

fixes the surface on which the phases are in equilibrium
in T, H, x space. For increments of temperature, field,
and composition which result in moving from one point
on the se»n surface to another, we obtain from Eq. 1:

dg,=—s,dT,—m, dH .+ n,dx
=dg,=—sdT,—mdH ,+ p,dx.

This equation implies:

sn—Ss [ 8H, )
m,—m, 8T /,’ 2)
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pn—ps 8T,
S"—Ss —’( Sx >H 2 (3)

P — Mg 3H,
my,—m; ‘< 8x >T’ (4)
and

SH,\ _  [8H,\ [T,
( 5 )T ~*(§T—>,(§‘)H' )

Here H, is the field at which the s<>n transition occurs
for a given composition and temperature. Similarly, T,
is the temperature at which the se»n transition occurs
at a given composition and field. (This is not the usual
definition of T, nor is it the definition that we shall use
in the remainder of the paper.)

If it is assumed that the magnetic moment and sus-
ceptibility of the normal metal is negligible for all mag-
netic fields, temperatures, and compositions, and if in ad-
dition we assume the superconducting phase is always
perfectly diamagnetic, then

=L
ms= 4 H,
and from Egs. 2 and 4,
v SH

Sp— 8= — 'Z:;Hc <8—T0‘)m H (6)
and

v 8H,
g — Rg= 4 Hc( Sx )T. (7)

If it is found that when the critical magnetic field is
plotted against temperature the slope at zero field,
(8H,/3T),, g =0, is finite, then these equations imply
that the s<>n transition is second-order in the absence of
field. Thus

T

Similarly, observing that the initial slope (8H,,/8x) 1, Hy=0s
is finite implies

H, /8H
§p— S, =— —ﬁ( c) =0, at H,=0. (8)
@

_ H, (8H,\ _ B
Bn—HRe=— v <'_8;')T =0, at H,=0. (9)

It can be shown that if the slope of the critical tem-
perature with composition (8T,/8x) H,=0 » s finite, then
a second-order transition implies Eq. 9, and conversely
Eq. 9 implies a second-order transition. To prove this
statement it is sufficient to show that the difference in
chemical potential is zero if, and only if, the difference
in entropy is zero, and to show that the slope of the
critical field with temperature is finite if, and only if, the
slope of critical field with composition is finite. Equa-
tion 3 shows t}}e former relation, and Eq. 5, the latter.

The dilute-solution approximation

One possible assumption regarding the variation of the
Gibbs potential with composition is that the difference

IBM JOURNAL * JANUARY 1960

varies linearly with composition at a fixed temperature.
Since this hypothesis is equivalent to the “dilute-solution
approximation” which has been widely used in thermo-
dynamics literature (see Reference 5, for example), we
shall introduce the assumptions in the customary manner
in the form of the equations

P =w,(T)+RT[Inx—In(1—x)] (10)
and
pe=wy(T) +RTInx—In(1—x)), (11)

where the functions w,(T) and w,(T) are unspecified
except in that they depend only on the temperature. The
fact that the chemical potentials do not depend on field
follows from the assumptions made about the magnetic
behavior of the normal and superconducting phases. The
form of these equations follows from the assumption that
each solute atom substituted into the system has the same
effect as the atoms previously substituted, except for a
change in the entropy of mixing refiected in the second
term. An example of the meaning of such equations
would be where the only effect of dilution was the addi-
tion or depletion of “free” electrons in the metal, in
which case the functions w(7T) would be proportional to
the Fermi energies of the electrons of the normal and
superconducting states.

Subtracting Eq. 11 from Eq. 10 and using Eq. 7, we
see that the entropy of mixing terms cancel, and thus

_ _ v 8H,
un—us—wnm—wsm——IW—HG(W)T. (12)

Integration of this equation yields
(Hn_p‘s)x:{wn(-T) - WS(T) }x
=SL{H62(x, T)—H2(0,T)}. (13)
™

From the latter equation it can be seen that if at a given
temperature there is a composition at which the critical
field of the dilute solution is zero (i.e., H,(x’, T)=0)
while the pure material is superconducting (i.e.,
H,(0,T)>0), then the chemical potential of the super-
conducting metal is less than that of the normal metal at
that temperature. Experimentally this is frequently found
to be the case.2-t If at that same temperature the slope
of the critical temperature with composition is finite and
nonzero, then by Eq. 3 we see that even in the absence
of applied field the difference in entropy between the two
phases is nonzero at the transition. In other words, in-
stead of a second-order transition in the absence of field
the transition is first order.6

The occurrence of a first-order transition in the ab-
sence of field could, of course, be detected by observing
a latent heat in the transition. Moreover, certain other
limiting features of the behavior of the critical field and
critical temperature would also be observable. From
Eq. 7 we see that, at a fixed temperature, the slope of the
critical field versus composition would be negative and
infinite at the point where the critical field was zero.
Similarly, by Eq. 6, the slope of the critical field with




temperature would be infinite at the same point. If upon
sufficient dilution, the critical temperature is depressed
to absolute zero (i.e., T,(x)=0), then since the Nernst
heat theorem states that the entropy difference between
the two phases must vanish at absolute zero, we see from
Eq. 3 that the slope of the critical temperature must be
negative and infinite at that limit.

From these considerations we see that the dilute-solu-
tion approximation, when applied to dilute, nonmag-
netic superconductors, predicts at least two features
which are not usually considered to be characteristic of
superconductors. These features are a first-order transi-
tion in the absence of field and an infinite initial slope of
the critical field with temperature. It should be added
that at least for alloys which have T, depressed only a
small amount below the T, of the pure material, rather
careful experiments would be required to see these two
effects. Figure 1 shows the predicted variation of critical
field with composition for indium alloys near the transi-
tion temperature of pure indium. As can be seen, the
curvature leading to the infinite slope of critical field oc-
curs largely below 1 gauss, which is in the order of the
earth’'s magnetic field. The latent heat which is calcu-
lated for transitions in alloys in the absence of field is
also small and would require rather careful experiments
to detect.

Alloys with second-order transitions

Since there are no experiments which show these two
features and, in fact, the available data seems to indi-
cate that the transition is actually second order. The
work of Doidge? with tin-indium alloys, for example,

Figure 1 Dependence of critical field on composi-
tion.
The experimental data are the criticdl field of
pure indium and the transition temperature of
an In-Hg alloy containing 0.505 at. % Hg.
The intercept points are preliminary data from

shows a linear slope of critical field with temperature at
critical fields of approximately 0.25 gauss. It is only nat-
ural to question whether the dilute-solution approxima-
tion can be applied to the phenomena of superconduc-
tivity. It is perhaps better to turn to the problems of con-
structing a form for the chemical potential which will
predict a second-order transition in the absence of field.

We shall find it convenient to rephrase our criteria
slightly for a second-order transition in terms of the free-
energy difference in the absence of field. If at a fixed
temperature there exists a composition x’ at which the
critical field is zero (i.e., H,(x’, T)=0) while the pure
material is superconducting (i.e., H,(0,7)>0), we re-
quire for the two phases to be in equilibrium at the
point x”:

(¥, T) —g(x, T)=0.

Furthermore, from the definition of the chemical poten-
tial and the necessary requirements for a second-order
transition, the following equation must also hold at any
composition and temperature at which there is a second-
order transition:

8
M= M= g‘ lguv_gsJ:()-

It can be seen that the simplest polynomial expression for
the difference in free energy that will predict a second-
order transition is

¢, —2,=C(T)[x' (1) —xr-':—s”:Hf, (14)

where x’(7') is the composition at which the normal and

Figure 2 Dependence of the difference in Gibhs
free energy on composition.
The experimental data are for pure indium
and the transition temperature of an In-Hg
alloy containing 0.505 at. % Hg. The inter-
cept points are preliminary data from Refer-

Reference 4. ence 4.
[ l f | w I ' ' 1859
TEMPERATURE 3.385°K ) TEMPERATURE 3.385°K
>0 8
3 * - V3
(%] o
2 FORM PREDICTED BY DILUTE w o
2 \ SOLUTION APPROXIMATION S
U » FORM CONSISTENT WITH
~ 5 \ SN . // E‘g Ao SECOND ORDER TRANSITION
— [SSNTT)
o \\\\
2 zZz 4 \ FORM PREDICTED BY DILUTE
@ \ w N . SOLUTION APPROXIMATION
O]
< w 2 — N
[§) (-4
= FORM CONSISTENT WiTH pre \
s SECOND ORDER TRANSITION u
S 0 | o 0 \,
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4 0.5 0.6
COMPOSITION, ATOMIC PERCENT MERCURY

COMPOSITION, ATOMIC PERCENT MERCURY

25

IBM JOURNAL * JANUARY 1960




26

superconducting phases are at equilibrium in the absence
of field, and C(T) is a function of temperature which
may be determined by requiring that Eq. 14 give cor-
rectly the free energy of the pure material. It can be seen
from Eq. 14 that the requirement for a second-order
transition in the absence of field leads to the conclusion
that, in contrast to the dilute-solution approximation,
the critical field, rather than the Gibbs free energy, is
linear with composition. This, in fact, has been an implic-
it assumption made in constructing limiting laws obeyed
by dilute, superconducting alloys. In the Appendix an
expression with the form of Eq. 14 is developed using a
number of these limiting laws.

Differentiation of Eq. 14 with respect to the percentage
of solute yields an expression for the difference in chemi-
cal potential:

fin— pg=2C(T)x’(T) —2C(T) x. (15)

When this expression is compared with Eq. 12 it can be
seen that the difference in chemical potential in this case
has a linear relationship to the percentage of solute. It
should be pointed out that this is not simply a linear
“correction,” but rather that the magnitude of the two
terms on the right of the equation must become equal at
the critical temperature, i.e., at x=x"(T), regardless of
the magnitude of x’(T). Just as an equation for the dif-
ference of chemical potential which is independent of
composition (such as Eq. 12) indicates that each solute
atom substituted has an effect independent of those pre-
viously substituted, an expression such as Eq. 15 points
out the essential cooperative nature of dilution.

Conclusion

In Figures 1 and 2 the variations of critical field and dif-
ference in free energy are compared for the two cases.
The dilute-solution assumption, in addition to predicting
an infinite initial field with composition, implies a first-
order transition in the absence of field and an infinite
initial slope of critical field with temperature. On the
other hand, the second compositional variation was de-
duced by requiring that the transition be second order
and the initial slope of critical field with temperature be
finite.

The experiments which have been reported in the lit-
erature show no examples of either of the two features
implied by the dilute-solution approximation, although
only a limited number of superconductors and solutes
have been carefully studied. The situation might be that
the linear variation of free energy holds true for some
solutes, e.g., solutes having a magnetic spin, as suggested
by Suhl and Matthias.8 The other variation would then
hold for other solutes, e.g., Group B elements dissolved
in Group B superconductors. In the last analysis the
choice between these two cases must be made for indi-
vidual superconductors and solutes by precise measure-
ments near the critical temperature.

Appendix
It should be pointed out that Eq. 13 is of a form con-
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venient for calculating the entropy and heat capacity as
explicit functions of composition. We shall obtain these
expressions for small impurity contents using several
limiting laws which have been suggested as representing
the behavior of dilute alloys. We assume the “similarity
principle,” that is, that all the alloys obey the same equa-
tions for the reduced critical field, H (T, x)/H,(0, x),
in terms of the reduced temperature, T/T,(x). Using the
parabolic dependence of critical field on temperature for
simplicity:

H(T, x)=H,(0,x)| 1 T \|
c y X) = c ,x)[ _(m>] s

and the “law of corresponding states™®
H,(0, x) =aT(x),

where « is independent of composition, we can obtain
on differentiation with respect to composition:

SH =T () T \2
=5 O TE) |

Since we are interested in alloys with small amounts of
impurities, we use a result of Chanin, Lynton and Serin,?
who found that for small compositions the slope of criti-
cal temperature versus composition is linear (i.e.,
8T,/6x=D, a constant). In the last factor on the right
we can substitute for T,(x) the critical temperature of
the pure material. Qur expression now is a function of
temperature only and contains only constants character-
istic of the pure material and the slope of critical tem-
perature with composition, i.e.,

8H T \2

Integration yields an expression of the form of Eq. 14:

2u—g= SL[HC(T, 0) +x 3”" (T)]
i

Differentiation by temperature gives the difference in

entropy:
(1) ]

SH, S SH,
X[ 3T ox (T)]

o 8H,
Sp—S8s= -47[HC(T, 0)+x 5%

Similarly for the difference in heat capacity:

Tov § 8H, 2
_477[ = (T,0) +x g == (T)]

24, (T)]
.x

82 82 SH.(T)
{STZ dx ’

+—-[H (T,0) +x
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