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Introduction 

For many years the  methods of thermodynamics  have 
been successfully used to describe the transition  between 
the  normal  and superconducting  states.l  Recently,  a 
number of measurements have been made of the super- 
conducting  properties of alloys containing  controlled 
amounts of impurities.2-4 This  paper is concerned  with 
developing  a thermodynamic  treatment of the variation 
of free energy  in a dilute  supercond,ucting alloy using 

l composition as a parameter  and, in particular, discusses ’ two possible dependences of the  free energy on compo- 

One possibility is the assumption of a  linear  variation ‘ of the  free energy  with  composition,  which is equivalent 
1 to assuming that  each  atom  added  has  an effect inde- 

pendent of those previously  added. This hypothesis  re- 
’ sults in  the prediction of a first-order  transition in the 
1 absence of field for dilute alloys and  an infinite slope of 

critical field at  the critical temperature.  The  conventional i thermodynamic  treatment assumes a  second-order  transi- 
tion  and a finite slope. 

A second approach is to assume that a second-order 
transition and a  finite  initial  slope of the critical field at 
the  transition  temperature  are established properties of 
dilute superconducting alloys. In this case it is shown 
that  there is a  cooperative  interaction due  to  solute atoms 
even in  the  range of very  high  dilution. 

General thermodynamic relations 
In discussing the effect of diluting an initially pure super- 
conductor,  we will assume that specification of the tem- 
perature T ,  external  magnetic field H ,  and  the  atom 
percent solute  (the element  present  in smallest amount) 
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types of  variation of the Gibbs free energy with 
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alloys have a superconducting  second-order  transi- 

tion, there is a long-range interaction among solute 

atoms,  even in limits of high dilution. 

x, describes the  state of a  specimen. The  “Gibbs  free 
energy per mole” g, of a  system  with  these  parameters is 

g ( H ,  T ,  x) =u-ST-mH, 

where u is the  internal energy per mole, s is the  entropy 
per mole, and rn is the magnetization per mole. From 
thermodynamics it follows that 

dg=-sdT-mdHfpdx .  (1) 

The  function p is called the chemical  potential and is de- 
fined as being equal  to (681 S x )  T, H .  

Consider now the transition from  the  superconducting 
to  the  normal state, i.e., the s-n transition. The  criterion 
that  the two  phases  be  in  equilibrium at a given magnetic 
field, temperature,  and composition is that  the  free ener- 
gies of the two  phases be equal. Therefore, if expressions 
may be found  for  the  free energies in the  normal  and 
superconducting  states, the  equation 

g,(T, H ,  x >  = g , ( T ,  H ,  x )  

fixes the  surface  on which the phases are in  equilibrium 
in T ,   H ,  x space. For increments of temperature, field, 
and composition  which  result in moving from  one  point 
on  the s++n surface  to  another, we obtain  from Eq. 1 : 

dg,=-ss,dT,-mndH,.+~*,dx 

=dg,~=-ss,dT,-mm,dH,+p,dx. 

This  equatioa implies: 
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and 

(%)T =- (%).( 
Here H ,  is the field at which the s-n transition occurs 
for a given composition and  temperature. Similarly, T ,  
is the  temperature  at which the s e n  transition occurs 
at a given composition and field. (This is not  the usual 
definition of T,, nor is it  the definition that we shall use 
in the  remainder of the  paper.) 

If it is assumed that  the magnetic moment  and sus- 
ceptibility of the  normal metal is negligible for all mag- 
netic fields, temperatures,  and compositions, and if in  ad- 
dition we assume the superconducting  phase is always 
perfectly  diamagnetic,  then 

m = - - H  2) 

47r ’ 
and  from Eqs.  2 and 4, 

varies  linearly with composition at a fixed temperature. 
Since  this  hypothesis is equivalent to  the “dilute-solution 
approximation” which  has been widely used in  thermo- 
dynamics literature  (see  Reference 5, for  example), we 
shall introduce  the assumptions  in the customary manner 
in the  form of the  equations 

p,=w,(T) +RT[lnx-In( 1-x)] (10) 

and 

ps=w,( T )  +RT[lnx-ln( 1 - x ) ] ,  (11) 

where  the  functions w n ( T )  and w,( T )  are unspecified 
except  in that they  depend  only on  the  temperature.  The 
fact  that  the chemical  potentials do  not depend on field 
follows from  the assumptions made  about  the magnetic 
behavior of the  normal  and superconducting phases. The 
form of these equations follows from  the assumption that 
each solute atom substituted into  the system has  the  same 
effect as the  atoms previously substituted,  except for a 
change  in  the  entropy of mixing reflected in the second 
term.  An example of the meaning of such  equations 
would be  where the only effect of dilution was the addi- 
tion or depletion of “free”  electrons in  the  metal, in 
which  case the  functions w(T) would be proportional to 
the  Fermi energies of the electrons of the  normal  and 
superconducting  states. 

Subtracting Eq. 11 from  Eq. 10 and using Eq. 7, we 

and see that the entropy of mixing terms cancel, and thus 

If it is found  that when the critical  magnetic field is 
plotted  against temperature  the slope at  zero field, 
( S H J S T ) ,  H c = O ,  is finite, then these equations imply 
that  the s-n transition is second-order  in the absence of 
field. Thus 

Similarly, observing that  the initial  slope ( S H , / S x )  T , H  =,,, 
is finite implies 

It can be shown that if the slope of the critical  tem- 
perature with  composition ( S T , / S X ) , ~ , ~  , is finite, then 
a  second-order  transition implies Eq. 9, and conversely 
Eq. 9 implies a  second-order  transition. To prove  this 
statement it is sufficient to show that  the difference in 
chemical potential is zero  if,  and only if, the difference 
in entropy is zero, and  to show that  the slope of the 
critical field with temperature is finite if, and only if,  the 
slope of critical field with  composition is finite. Equa- 
tion 3 shows the  former relation, and  Eq. 5, the latter. 

The dilute-solution approximation 

One possible assumption  regarding the variation of the 
Gibbs potential  with  composition is that  the difference 

From  the  latter  equation it can  be seen that if at a given 
temperature  there is a  composition at which the critical 
field of the dilute  solution is zero (i.e., H,(x’, T )  =0) 
while the  pure  material is superconducting  (i.e., 
H,( 0, T )  > 0 )  , then  the chemical  potential of the  super- 
conducting  metal is less than  that of the  normal metal at 
that  temperature. Experimentally  this is frequently found 
to be the case.2-4 If at  that  same  temperature  the slope 
of the critical temperature with  composition is finite and 
nonzero,  then by Eq. 3 we see that even in  the absence 
of applied field the difference in entropy between the two 
phases is nonzero  at  the transition. In  other words, in- 
stead of a  second-order  transition  in the absence of field 
the transition is first order.6 

The  occurrence of a  first-order  transition  in the ab- 
sence of field could, of course,  be  detected by observing 
a latent  heat in the transition.  Moreover, certain  other 
limiting features of the behavior of the  critical field and 
critical temperature would  also  be observable. From 
Eq. 7 we see that,  at a fixed temperature,  the slope of the 
critical field versus  composition would be  negative and 
infinite at  the  point where the critical field was zero. 
Similarly, by Eq. 6, the slope of the critical field with 
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temperature would be infinite at  the same  point. If upon 
sufficient dilution, the critical temperature is depressed 
to absolute zero (i.e., T , ( x )  = 0 ) ,  then since the  Nernst 
heat theorem states that the entropy difference between 
the two  phases must vanish at  absolute  zero, we see from 
Eq. 3 that  the slope of the critical temperature must be 
negative and infinite at  that limit. 

From these  considerations we see that  the dilute-solu- 
tion approximation, when  applied to dilute,  nonmag- 
netic superconductors, predicts at least  two features 
which are not usually considered to be  characteristic of 
superconductors. These  features  are a first-order  transi- 
tion in the absence of field and  an infinite initial  slope of 
the  critical field with temperature. It should be added 
that  at least for alloys which have T ,  depressed only  a 
small amount below the T ,  of the  pure  material,  rather 
careful experiments would be required to see these two 
effects. Figure 1 shows the predicted  variation of critical 
field with  composition for indium alloys near  the transi- 
tion temperature of pure indium. As can be seen, the 
curvature leading to  the infinite slope of critical field oc- 
curs largely below 1 gauss, which is in the  order of the 
earth‘s magnetic field. The  latent  heat which is calcu- 
lated for transitions in alloys in the absence of field is 
also small and would require  rather  careful experiments 
to detect. 

Alloys with second-order transitions 

Since there  are  no experiments which show these two 
features  and, in fact,  the available data seems to indi- 
cate  that  the transition is actually  second order.  The 
work of Doidge7  with  tin-indium alloys, for example, 

Figure 1 Dependence of critical field  on composi- 
tion. 
The  experimental  data are  the  criticul field of 
pure  indium and  the  transition temperature o f  
an In-Hg alloy  containing 0.505 at. c /o  Hg. 
The  intercept  points are preliminary  data  frotn 
Reference 4.  

shows a  linear  slope of critical field with temperature  at 
critical fields of approximately 0.25 gauss. It is only  nat- 
ural  to question  whether the dilute-solution  approxima- 
tion can be applied to the  phenomena of superconduc- 
tivity. It is perhaps better to turn  to  the problems of con- 
structing a form  for  the chemical  potential  which will 
predict  a  second-order  transition  in the absence of field. 

We shall find it convenient to  rephrase  our criteria 
slightly for a  second-order  transition  in terms of the free- 
energy difference in the absence of field. If at a fixed 
temperature  there exists a composition x’ at which the 
critical field is zero (i.e., H,.(x’, T )  =0) while the  pure 
material is superconducting (i.e., H,(O, T )  > O ) ,  we re- 
quire for the  two phases to be in  equilibrium at  the 
point x‘: 

g,, (x! ,  7’) - g, (x’, 7’) = 0. 

Furthermore,  from  the definition of the chemical  poten- 
tial and  the necessary requirements for a second-order 
transition, the following equation must also hold at  any 
composition and  temperature  at which there is a  second- 
order  transition: 

It  can be seen that the simplest polynomial  expression for 
the difference in free energy that will predict a second- 
order transition is 

where x’( 7’) is the composition at which the  normal  and 

Figure 2 Dependence of the difference in Gibbs 
free energy on composition. 
The  experimental  data are f o r  pure  indium 
and the transition temperature of an In-Hg 
alloy containing 0.505 at. % Hg. The inter- 
cept  points tire preliminary  data from  Refer- 
ence 4.  

I 1 TEMPERATURE 3.38YK 
1 1 I I r 

t 

11 

TEMPERATURE 3.385OK 

q!;~-~ . 

F O R M   P R E D I C T E D  BY D I L U T E  

.o 0.1 0.2 0.3 0.4 0.5 0.6 

: O M P O S I T I O N ,   A T O M I C  PERCENT  MERCURY 25 

IBM JOURNAL’JANUARY 1960 



superconducting phases are at equilibrium in the absence 
of field, and C ( T )  is a  function of temperature which 
may be determined by requiring that Eq. 14 give cor- 
rectly the  free energy of the pure material. It can  be seen 
from Eq. 14  that the requirement for a second-order 
transition in the absence of field leads to the conclusion 
that,  in  contrast to  the dilute-solution approximation, 
the critical field, rather than  the Gibbs free energy, is 
linear with composition. This, in  fact, has been an implic- 
it assumption made in constructing limiting laws obeyed 
by dilute, superconducting alloys. In the Appendix an 
expression with the form of Eq. 14 is developed using a 
number of these limiting laws. 

Differentiation of Eq. 14 with respect to  the percentage 
of solute yields an expression for the difference in chemi- 
cal potential: 

pLn-p8=2C(T)x’(T) - 2 C ( T ) x .  (15) 

When this expression is compared with Eq. 12 it can be 
seen that the difference in chemical potential in this case 
has a linear relationship to the percentage of solute. It 
should be pointed out  that this is not simply a linear 
“correction,” but  rather that the magnitude of the two 
terms  on  the right of the equation must become equal at 
the critical temperature, i.e., at x = x ’ ( T ) ,  regardless of 
the magnitude of x ’ ( T ) .  Just as an equation for  the dif- 
ference of chemical potential which is independent of 
composition (such as Eq. 12) indicates that each solute 
atom substituted has an effect independent of those pre- 
viously substituted, an expression such as Eq.  15 points 
out the essential cooperative nature of dilution. 

Conclusion 
In Figures 1  and  2 the variations of critical field and dif- 
ference  in free energy are compared for the two cases. 
The dil’ute-solution assumption, in addition to predicting 
an infinite initial field with composition, implies a first- 
order transition in the absence of field and an infinite 
initial slope of critical field with temperature. On  the 
other  hand,  the second compositional variation was de- 
duced by requiring that  the transition be second order 
and the initial slope of critical field with temperature  be 
finite. 

The experiments which have been reported in the lit- 
erature show no examples of either of the two features 
implied by the dilute-solution approximation, although 
only a limited number of superconductors and solutes 
have been carefully studied. The situation might be that 
the linear variation of free energy holds true for some 
solutes, e.g., solutes having a magnetic spin, as suggested 
by Suhl and Matthias.8 The other variation would then 
hold for other solutes, e.g., Group B elements dissolved 
in Group B superconductors. In the last analysis the 
choice between these two cases must be made for indi- 
vidual superconductors and solutes by precise measure- 
ments near the critical temperature. 

Appendix 

26 It should be pointed out  that Eq. 13 is  of a form con- 
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venient for calculating the entropy and heat capacity as 
explicit functions of composition. We shall obtain these 
expressions for small impurity contents using several 
limiting laws which have been suggested as representing 
the behavior of dilute alloys. We assume the “similarity 
principle,” that is, that all the alloys obey the same equa- 
tions for the reduced critical field, He(  T ,  x) /H, (O,  x), 
in terms of the reduced temperature, T / T , ( x ) .  Using the 
parabolic dependence of critical field on  temperature for 
simplicity: 

and  the “law of corresponding states”9: 

H,(O, x) =ffT,(x), 

where 01‘ is independent of composition, we can obtain 
on differentiation with respect to composition: 

6 H r  - ( T , x ) = c Y - ( x )  1 +  - 
sx s T p  8X [ ( T , r x ) ) ’ ]  ‘ 

Since we are interested in alloys with small amounts of 
impurities, we use a result of Chanin, Lynton and  Serin,2 
who found that  for small compositions the slope of criti- 
cal temperature versus composition is linear (i.e., 
6TC/6x=D, a  constant). In  the last factor on  the right 
we can substitute for T,(x) the critical temperature of 
the  pure material. Our expression now is a  function of 
temperature only and contains only constants character- 
istic of the  pure material and the slope of critical tem- 
perature with composition, i.e., 

X ( T ) = o r D  SX [ 1+ (&)‘I. 
Integration yields an expression of the  form of Eq.  14: 

Differentiation by temperature gives the difference in 
entropy: 

X [s ( T ,  0 )  +x-- 
6 6 H r  
6T 6x ( T I  

Similarly for the difference in  heat capacity: 

c,-c,= - 4x 

+ E[  477 sx 
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