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Esaki Tunneling 

Abstract: Tunneling, between  propagating electron states, at a semiconductor  junction i s  discussed in terms of 

customary quantum transition theory for the matrix elements of the hamiltonian  between the states repre- 

senting reflection of an electron (in either band) from the junction. The coordinate representation for the 

wavefunctions of these states is  investigated, and tunneling  probabilities (ratios of transmitted to incident 

current) are found for the 'felastic'' process proposed by Esaki and for the "phonon-assisted" processes. It 

appears  that the tunneling may  be described as taking place in a central region of the junction thinner than 

the space charge region. Current-voltage characteristics are calculated both for elastic and for phonon- 

assisted tunneling. 

1. Introduction 

Esakil discovered that p-n junctions made  from material 
doped  to degeneracy have a  current-voltage  characteristic 
with  a  negative-conductance portion, in the  forward 
direction, of the kind  shown  in the accompanying illus- 
tration,* and  that  (in  contrast  to  the second  rising portion 
of the  characteristic)  the "hump" part of the  character- 
istic is not grossly temperature dependent. This phenome- 
non  (which  has been verified, with similar details, in  at 
least four  other  laboratories) is believed to  represent 
majority carrier tunneling, between the bands,3 inside the 
junction region. Esaki  pointed out  that  the qualitative 
features of the characteristic  could  be  simply  accounted 
for by writing the junction current  per unit area as 

J = q S C f l ( e ) - - f Z ( E ) I p l ( E ) P 2 ( E ) Z ~ E  (1) 

where  (see Fig. 1) the f ' s  are  the  Fermi functions (rela- 
tive to quasi-Fermi levels $1, $2 differing by qV, where 
V is the applied voltage),  the p's are  the densities of states 
(reckoned relative to  appropriately aligned band  edges), 
and Z represents the  quantum-mechanical tunneling  rate. 
Tkie first positive conductance  then correlates  with the 
form of f l - f2 ,  the negative  with the  form of plp2. 

One may formulate  the  problem of calculating the  tun- 
neling rate  in  the following terms:  For a given energy 
E =e1, let the normalized  wavefunctions $l(r) have only 
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the wavefunctions of the conduction  band of the bulk 
crystal  (i.e., without  the "step" in electric potential  at 
the  junction)  as components, and be such  that ( $1 I H I q1) 
(where H is the  electron hamiltonian with  the  junction 
included) is stationary subject to this constraint  and 
equal  to el. The  set of q1 in the  range of E~ which is of 
interest will represent electrons reflected at the junction. 
Similarly let a set q2 be formed  for  the valence  band. 
Then  the  matrix elements 

MlZ"($IIHI$2) ( 2 )  

( 2 d A )  l M 1 2 1 2 S ( E l - E 2 )  ( 3 )  

give the tunneling rate  per unit  time  as 

in the usual way. 
Kane4>6  has  treated  the Zener phenomenon3  for a 

homogeneous  crystal in a uniform electric field, F / q ,  
extending over a substantially larger distance than ( 1/F) 
times the energy gap plus the  band widths. Then  the 
wavefunctions  corresponding to the $1 and $2 above are 
spaced  at discrete  intervals, aF, in respect of one of their 
quantum numbers, and  are  each appreciable over a finite 
distance only. ( a  is the lattice constant in the field direc- 
tion.)  Kane calculates a transition  probability, in  terms 
of the  matrix elements he obtains,  combined  in the usual 
way with a density of states, p, equal  to  l/aF.  This  pro- 
cedure is evidently not justifiable, at least by the  standard 
proof, since the  latter requires the transition rate  out of 
the initial state to be large compared to the level spacing 
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divided by Planck's constant. It is not clear to us, in fact, 
that  the Zener  phenomenon  may be described by a defi- 
nite  transition rate (unless  lattice-scattering  transitions 
between the electronic  states are  occurring  at  the same 
time). 

This difficulty does not arise for the  formulation  out- 
lined above, for a finite junction region  in a large  crystal, 
since the level spacing  tends to zero  in  the usual way as 
the size of the crystal  tends to infinity. For  the case  treated 
by Kane  there is a selection rule  on  the  matrix element: 
it is zero unless the  component of wavevector  parallel to 
the  junction  plane is the  same  for  and +2. For  the cor- 
responding  case  with the electric field localized as  in the 
Esaki  junction, the  same selection rule holds. The density 
of states  for a transition  to  the valence band is therefore 
212/12v2, where 11 and 12 are  the lengths of the crystal on 
each side of the  junction, v1 and v2 the components, 
normal  to the  junction  plane, of the electron velocities 
corresponding to  and $2. The transition rate  is  then 
[ M12 1 212/w2h2. Since the electron may be considered to 
return  to  the junction at intervals 211/v1, there is a defi- 
nite tunneling  probability 

The expression in  parentheses is in fact independent of 
ll and 1 2 .  Then P is the  ratio of transmitted current  to 
incident current. A calculation of the tunneling  proba- 
bility by direct  solution  (using the Green's function)  of 
the wave equation has  been found  to give just the  same 
result as is obtained, in  Section 2, by using (4). 

Kane's matrix element  may  be  applied to Esaki tun- 
neling when the junction field is constant (equal  to F / q )  
in an interval  somewhat  longer than  the region between 
the classical turning points for  the energy level in ques- 
tion (i.e., from  the left of x1 to  the right of x2 in  Fig. 1). 
The conversion from his normalization to ours (with 
f I $ 1  2dx = 1 in both) gives 

Figure 1 Conventional junction diagram for an Esaki diode. 
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In  the present paper  we shall attempt  to discuss the 
character of the wavefunctions I,$1 and $2 in the coordi- 
nate representation, and  to calculate the value of the 
tunneling  probability, idealizing the  actual electronic 
structure, as Kane does, by taking the bulk  wavefunctions 
and energy levels to be  those of a lightly doped crystal 
(i.e., Bloch states and energies, and  their  forbidden-range 
analogs) and  the  surfaces of constant  junction potential 
to  be parallel planes. This model  deviates from  the  true 
situation for  tunnel diodes in several  obvious, and  perhaps 
some obscure, ways.5 It has  yet  to be  determined  how 
far  the conclusions of the idealized treatments6 are merely 
somewhat modified quantitatively, and  how  far new possi- 
bilities enter,  in practice. We  are hopeful that  the  formu- 
lation  described here, if the uncertainties  explained below 
are resolved, will prove to  be flexible and  general enough 
for the needed  extensions of the theory. It is used below 
to examine the "elastic process" (corresponding  to  the 
Zener phenomenon)  and  the "phonon-assisted process" 
(in which there is absorption or emission of a  lattice 
quantum  during tunneling').  Presumably it could  be used 
to  treat tunneling involving exchange of energy  with other 
electrons, if the  latter could be described  as an  Auger 
process or as  absorption or emission of a plasmon.8 

2. Tunneling theory 

For  the idealized model referred  to above, the q1 and J12 

may be  obtained by solving the one-dimensional  Koster- 
Slater equation,g 

[ & " ( s U ) ] U ( s u )  = x U[(s+t)u]z,, (7)  

where '0 ( x )  is ( -4) times the  junction electrostatic 
potential, for  the coefficients U1 (sa ) ,  U2( tu) of their ex- 
pansions  as linear combinations of Wannier functions,lO 
by an  adaptation of the  WKB  method.  The result is 

m 

t=-m 

and similarly for UQ.  In (8) , 

01(su) = x a1(tu) 
t<S 

where a1 is the (positive)  imaginary part of the solution, 
K, of 

and  the  sum (9)  is over  the cells to  the right of the classi- 
cal  turning  point (x1 in Fig. 1 ) , 

( u  and x real),  and 71 is zero if the  band edge is at  the 
zone  center  and T / U  if it is at  the  zone boundary. The 
right hand side of (10) is, for K real, the  Fourier decom- 366 
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position of the conduction band energy function z C ( k ) .  
Obviously, (8)  is essentially the  same as Eq. (A10) of 
Kane's paper. (The sums (9) of course will be  replaced 
by integrals  over x in evaluating ( 16) .) The solution (8) 
was obtained on  the assumption that  the series (10) con- 
verges, and  the derivation used is  in  fact valid  only where 
the  number of terms before the right hand side of (7)  
approaches its sum is small compared with [hu/u2F(su) ]* 
(where F ( x )  =d 'O/dx) . l l  

We obtain a definite formula  for M by assuming that 
the  two series ( l o ) ,  for  the valence and conduction  bands, 
converge  in  regions of the junction (i.e., in  corresponding 
ranges of the  forbidden  gap) which  overlap  in the mid- 
dle.12 Then UIUz has a maximum approximately at  the 
point x. where 

a1(xo)  =az(xo)=ao. (12) 

(At  the corresponding  point  in the  forbidden  range of 
the  band energy  diagram, a1(&) and az( E )  cross.) About 
this point, UIUz  is proportional to 

exp[ - (su-xO)Z/b2] (13) 

where 

---(++L) 2 - F ( x o )  . 
A 

(14) bZ 112 2=xo 

When r]l=yz (both  band edges at  the  same  point in 
the  zone) , we find 

where X,,  is the  matrix element of x between the two  zone 
center Bloch states and 

eo=ol(xo) +ez(xo) .   (16)  

Then 

The  factor  exp(  -200)  in (17) is of course character- 
istic, in one  form or another, of all treatments of tunnel- 
ing, and should  be  normally the  predominant  factor in 
expressions such as ( 17) (see Footnote 5 ,  however).  The 
length b, measuring the width of the region in which I,$1 

and overlap,  should  be - V (ad ) ,  where d represents 
the width of the junction. 

When 91- qz=a/a then M12 is given by a sum,  over 
the overlap  region, in which the  terms  alternate in sign. 
We find,l3 when b2>>a2, 5 

The  exponent  in ( 18) should be  comparable with that in 
(17). So according  to  the foregoing treatment a change 
in wavevector  by x / u ,  while not actually forbidden, en- 
tails a  considerable  decrease in tunneling  probability, 
except  in  junctions  which are  not  many lattice  constants 



thick.5 This is the basis for  the conclusion  in  Section 3 
that  (according  to  same model as was assumed above) 
the tunneling  process  with  absorption or emission of a 
phonon should  actually  predominate, at least when 
b2> >aZ. 

The  matrix element for absorption or emission of a 
phonon is found in  a  similar way, by inserting the 
electron-lattice  interaction  terms of H into (2)  and in- 
cluding the  phonon  factor in the 4’s. Transitions between 
states with differing k ,  and k ,  are possible: the selection 
rule is that  the y and z components of  k+f  (where f is 
the  phonon wavevector) are conserved. There is no “con- 
servation of total wavevector” for  the x direction, but  the 
matrix elements are  proportional  to 

exp[-b’21f,-(qz-k;,) 12/4], (19) 

where  k; and k; are  the band edge wavevectors, and so 
fall off with  increasing  “change of total wavevector.” This 
exponential (19) is thus the  analog of the exponential 
in (18) .  

The assumption on which (15) ,  (17) were derived, 
that  the two series 2~; exp(isaK),  xs;exp(isaK), con- 
verge to  real values, E ,  with  a  non-vanishing  common 
range, is certainly untrue  for a  one-dimensional “crystal.” 
It is known4p61 l4 that  the eigenvalues ~ c ( k ) ,  ~ “ ( k )  of the 
one-dimensional  “crystal”  hamiltonian are  two branches 
of a single analytic function E ( K )  which has a  branch 
point for a real value of E in the  forbidden gap. The Bloch 
functions q c ( k ,  x) ,  Q( k ,  x) also are branches of a single 
analytic function + ( K ,  x) which, for  the K’S  which give 
real E’S in the  forbidden range, are  the  unbounded “eigen- 
functions”  with  complex wavevectors. Kohn14 has shown 
that  the Wannier  functions  fall off asymptotically like 
exp( - I x-sa I (YO) ,  where a0 is the distance of the  branch 
point  from  the  real axis of K ,  so the E ,  must  fall off like 
exp( - Islaao). From these facts  one  infers  that  the right 
hand side of (10) and its  valence-band  analog  converge 
respectively for ranges of E which touch  at  the  branch 
point  energy, their  sums being respectively equal  to  the 
two  branches of the eigenvalue function E ( K )  , and  do not 
converge to any  real values, E ,  in  common. 

These  facts  are proved  only for  one dimension, how- 
ever, from properties of the  one-dimensional  Schrodinger 
operator,  such as the  fact  that  there  are just two  linearly 
independent  eigenfunctions for  each eigenvalue, and  it 
can not  be assumed that they hold for a  one-dimensional 
section, E ( k Z ) ,  of E (k)  for a  three-dimensional  crystal. 
The  conduction  bands of germanium  and silicon each 
have twice the degeneracy of the one-dimensional case, 
in  a given direction  in k-space, for  part of the energy 
range. The valence  bands also have multiple  degeneracy, 
but  in a different way: if the energy on a  line  in k-space 
at a  distance k,  from  the zone center is E ( k ’ )  (where k’ 
is measured along the line from  the  perpendicular) then 
E ( K ’ )  has a branch  point  at  K’=*ia(k,),  and a(k,)+O 
when k,+O. It  that, if pS are  the coefficients of 
the  sum ( 10) for ~ ( k ’ ) ,  then if 2t,zS has  a  radius of con- 
vergence > 1  it  must diverge at  z=exp[u(~(k,)]: We 

return  to this  question briefly at  the  end of the present 
Section. 

Now  Kane shows that  for conduction and valence 
bands  with band edges at  the zone  center (specifically, 
In Sb), in  the  approximation  that  the “k -p  interaction” 
operates between these  two  bands but is not  appreciable 
between them  and  other bands,  a branch  point  in E ( K )  

does  occur. Therefore  the  branch point  situation is evi- 
dently  a possible one,  for  the  three dimensional  actuality, 
and  it  may conceivably even prevail  in  general. The dis- 
cussion below indicates,  however, that  the conclusions 
from tunneling theory,  for  the “overlap  situation”  treated 
above and  for  the  branch point  situation respectively, are 
probably very similar, and  the results on  the voltage- 
current characteristic for practical  purposes the same. 

Let  the branch point  be at Ko=iaO (we  take  the  real 
part of K~ as zero,  for simplicity) and let 

F ( K )  = ~ ~ * E , , [ a ( a - a o ) ] * .  (20) 

E,, is a constant  of  order E,. (In Kane’s model, E,,/E, 
= (h /2a )  * (E,m,) -5, where  m,. is the reduced mass for the 
pair of band masses.) The solution (8) prescribes, ac- 
cording to  (20),  that U1 and U z  tend to zero  at xo; but 
( 8 )  is not valid in the neighborhood of this  singular 
point.16 In  the  range of x for which (8) holds, W l ( a ,  sa) 
G Ul( sa) exp (sua) varies around its maximum  (which is 
very near  the position, x,, of the classical turning point 
for energy - E ( h )  ) as exp [ - (x-x,) * / c z ] ,  where 

c2/u=2h/F. (21) 

Where (20) holds, (21) becomes 

c2=(xo-x)/(ao-a). ( 2 2 )  

Since the  number of terms before the right hand of (7) 
approaches its sum is t ,  l / a ( a o - a ) ,  the derivation of 
(8) becomes invalid where c(a0-a) -1. By (22), this 
happens where xo-x, c and at, are roughly equal,  and 
given by 

c? - a ( E , ” / F )  2 --ad2 . (23) 

For smaller values of xo-x the values of u’ and c’, 
respectively giving the  value of Ul(x) according to (8)  
and  the distance  over  which the W1 having  its  maximum 
at x falls off substantially, are  no longer  those given by 
( 11 ) and  (22). However, it can be shown that 

a )  Eq.  (21) continues to  hold,  for c’ and u’; 

b) the  order of magnitude of c’ continues to be that 
and  made plausible that 

given by eq. (23). 

Since the  interband  matrix elements of x between 
Wannier  functions fall off as exp( - Is- t I aao) ,  the ma- 
trix element of ‘0 will be 

3 
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Now,  Kane gives 

Mxane= yaFe-80 , ( 2 5 )  

where y is a dimensionless number - 1 (and we have, 
legitimately, written his exponent  as B o ) .  On converting 
his matrix element to  our normalization by means of ( 5 ) ,  
we see that  (24)  and  (25) agree  according to (a) of the 
preceding paragraph. 

It is not obvious how the  branch  point  type of situation 
discussed above would occur where the band edges are 
at different wavevectors.* If it does occur, we may  con- 
jecture  that it does so in such a way that  there  are similar 
regions, of similar widths, within  which U1 exp(suao) 
and Uz exp( -sua,) are appreciable, but with the  same 
additional  rapidly oscillating factor as leads to (18).  
Again, Mlz and P12 should  consequently be reduced by a 
significant factor,  and by a  very  considerable factor like 
(18) if c'>>a. Since the interband matrix elements, be- 
tween Wannier functions, of the deformation potential 
0perator1~  must also fall off as exp( - Is- t J  aao) in the 
branch point  case, the  theory  for phonon-assisted  tunnel- 
ing  in this case  should be related to  the theory  in the over- 
lap case  in the  same way as the theories for elastic 
tunneling are related  in the two cases. For the branch- 
point  case (with  the oscillating factor)  the  matrix ele- 
ments for  the phonon-assisted process  again will be 
appreciable  over  a range of fZ which is of order l/c'. 

The current-voltage  characteristic is derived,  in Sec- 
tion 4, by taking the  matrix elements for phonon-assisted 
transitions between given states  as all equal.  This is justi- 
fied in Section 4 by appeal to the overlap case, which re- 
sults in ( 17) and ( 18). The foregoing discussion indicates, 
however, that this  constancy of the  matrix elements 
should hold (so long  as d / a  is large enoughs) for the 
branch-point  case  (provided the  latter applies  as envis- 
aged,  with an extra oscillating factor when the band edges 
are not  coincident  in the Brillouin zone).  Then  the  same 
characteristic (apart  from  the absolute magnitude of the 
current) is to be  expected in either case. On  the  other 
hand, Kane's matrix element (25) corresponds to  an 
absolute magnitude of tunneling  probability (and  there- 
fore  of  current) greater than  (17) by a factor -d/a;  and 
a  similar  relation  may be expected for  the tunneling 
probabilities  in the phonon-assisted process. 

The foregoing discussion suggests that  there may well 
be some  general validity to  the concept of a  region  in the 
middle of the junction, much  thinner  than  the space 
charge region when d > > a ,  where $1 and $2 interact. 
(One might say that  the tunneling  takes  place  in  this 
region.) One  may  therefore propose to use the analysis 
at  the beginning of this  Section (Le. the case  where the 
series (10) converge to a common range of energies  in 
the  forbidden  gap) as a  theoretical  model,  as we do in 
Section  4 to  treat phonon-assisted tunneling. 

*Added in   p roof :  If  there  should he a brarrch point  for an intermediate 

the  solutions ( 8 ) ,  for both  hands,  to  apply  for  values  of LY (corresponding 
value  of the  real  part of K (at  which E is  complex)  then  one  may  expect 

to  real E )  given  by  the  analytic  continuations  of  the  series (10). That  is, 
368 expect  the over lap   s i tuat ion to obtain. 

The question of the  branch points near  the valence 
band edges in germanium  and silicon must, of course, be 
dealt  with  before any satisfactory  theory specifically ap- 
plying to these  substances can be developed. One has 
meanwhile no more  than  an intuitive  expectation that 
some treatment must exist in  which  coupled  equations for 
the degenerate  valence  bands are solved simultaneously 
and which  leads to results such as (8)  gives for  the maxi- 
mum value of  -in which  results the  exponent BO 
has a  similar order of magnitude, and depends on the 
same physical factors, as  in the simple  situation  without 
degeneracy. 

3. Current-voltage characteristics for 
elastic tunneling 

It has been shown  earlier that  the  transfer of charge  from 
one side of the junction to  the  other  can be characterized 
by a tunneling  probability P ,  defined as the  ratio of trans- 
mitted to incident currents.  The  current per  unit area 
flowing in the  forward direction is 

dk,dk,,dk,  P(E, kg, k , )  

where f l  ( F )  and f z  ( e )  are  the  electron distribution func- 
tions on  the two sides. As  indicated  in equation  (26)  the 
tunneling  probability P depends on  the variables of inte- 
gration. 

The foregoing theory suggests that P may be taken as  a 
function of k,,  k, only, if F is constant over the tunneling 
region. It is convenient to use e as a  variable of inte- 
gration,  replacing (&/ak,)dk,  by de. Then  the  net  cur- 
rent density is 

The integrations over k ,  and k, are restricted by the  fact 
that E ,  k ,  and k, are all conserved  in the transition, and 
that also the initial and final states belong to  the energy 
bands. If the  constant energy surfaces  are spherical, 

where g1 and g z  are electron energies relative to  the band 
edges, and 

&1+&2=E1+E2--4V--Eo (29) 

is the  amount by which the bands  overlap when a voltage 
V is applied  across the junction.  (See Fig. 1.) 

Unless Bo in (17) is not  very  large, P should  fall off 
rapidly  over the  range of the second  integral of (27).  We 
approximate this variation by writing 
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P = P o e x p [ - ( a , 2 + a , 2 ) ( k , 2 + k , 2 ) l ,  (30) 

where 

ac2 = moA2/m,F 

and similarly for a,, and find 

(31) 

where g ( & )  = 1  for &>O, g(&) = O  for g<O, and where 
m, is the reduced mass. P o  is the tunneling probability 
for k,=  k,=O. If the two  distributions are  Fermi-Dirac 
ones  with Fermi levels +1-+2=qV apart, then ti(&)= 
f l ( & + q V ) .  Solong as KT<<E1, EZ theintegral  (32)  has 
a  simple form, symmetrical for V>O. For  qV<Min. 
( E l ,  Ez), it equals qV.  It  then remains constant while 
qV increases to  Max.(El, E , ) ,  and finally decreases to 
zero with constant  slope -4. It should not be overlooked 
that, even with the idealized model and approximations 
which lead to this  simple  result,  in (32) Po will decrease 
significantly while V increases over  the  range of interest. 

4. Phonon-assisted tunneling 

According to  the results of Section 2 the  component of 
the crystal wavevector parallel to the  junction  plane is 
conserved  when an electron  tunnels  directly from  one side 
to  the other. This would forbid,  for instance,  tunneling 
through a  junction  lying  in (100) planes in Ge  from 
states near  the conduction band minima.  However,  tun- 
neling is possible when  this change in wavevector can be 
taken  up by a phonon. It  was also noted in Section  2 that 
although there is no strict selection rule for  the wave- 
vector component perpendicular to  the junction  plane, 
even in the idealized model, one would expect the tunnel- 
ing  rate when there is a  large change in this  component 
to be much smaller (in sufficiently thick junctions)  than 
it is when  the band edges are  at the same point  in the 
zone. This means that if the  electron-phonon  interaction 
is sufficiently strong, then  the phonon-assisted tunneling 
rate can well exceed the direct  tunneling rate through 
junctions in ( 11 1) planes in Ge  and in (100) planes 
in Si.18 

The fluctuating field due  to lattice  vibrations  couples 
Wannier functions from  the two  bands just as the static 
junction field does. Perturbation theory  then gives a 
tunneling rate directly. There should be distinct phonon 
transition processes for  the different  branches of the lat- 
tice mode spectrum. For simplicity we consider  here  a 
single branch only. (The total  transition rate,  and  current, 
will be given by a sum over the branches.) Then  the inter- 
band matrix elements of H Z ,  the electron-phonon  interac- 
tion term of H ,  between Wannier functions  at different 
lattice sites is 

Here  D,,(Ri-Rj) is the  interband  matrix element of the 
deformation potential between the  Wannier 
functions, M is the mass of the unit cell and N is the  num- 
ber of unit cells in the  entire crystal. The  matrix element 
of H Z  between initial and final states on  the same  assump- 
tions  as  lead to ( 15) (i.e. for the overlap case) is 

x (C'f.R(llbfl2)+C.C.}  (34) 

where D,, is the  interband  matrix element of the  defor- 
mation potential between Bloch states at  the zone center 
(- a  few ev) . We now  evaluate  this matrix element for 
tunneling from a conduction  band  minimum  at k = fo  when 
the junction  plane is perpendicular to fo, which is taken 
to lie along the x axis. The transition  takes  place between 
a conduction band  state  at k=fo+k'  and a  valence  band 
state  at k=k". It is clear from the form of Eq. (34) that 
the  matrix element will vanish unless f ,  = k," - ky), fZ = 

k,"- kz'. There is no  such precise selection rule  for fz. 
For  the  same reason as in Section 2, we expect appre- 
ciable contributions  to  (34)  from values of fz given by 
Ifs-fol<-l/b where b is the distance  over  which the 
wavefunctions of our model  overlap  appreciably. When 
b> > A / (  mcvF1  +m,vp2) it will thus be  a good approxi- 
mation  to replace  w(f) by woEw(fo) and f by fo in (34). 
Using the amplitudes U given by Eq. (8)  , squaring  the 
matrix element and  summing over fz, we obtain 

where n ( ~ )  is the  phonon  occupation  number.  (We 
ignore the effect on M ( f , r )  of the energy difference 
F I - E ~ :  This is unimportant so long  as d/a<E,/Aw.) 
N1 and N 2  are  the  numbers of unit cells in the n and p 
sides respectively. The tunneling  probability is now 
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whereg lSg(&d ,   f lE f l (E) ,  f ; - f z ( e + h o o ) ,  etc. 

The current-voltage  characteristic is especially inter- 
esting at  temperatures  such  that KT<<hoo. Then n ( ~ )  
<<I  and  the only processes possible are those in which 
a phonon is emitted.  But for this to  occur,  there must 
be an unoccupied state  to which the tunneling  electron 
can  go  after giving up a quantum of energy to  the lattice. 
It follows that  there will be  no appreciable  tunneling for 
-hoo<qV<Aoo. This prediction has recently  been  con- 
firmed for  Ge  and Si  diodes at liquid helium tempera- 
tures.7 The corresponding  current-voltage  relation for 
voltages near  the threshold is obtained by substituting 

Sf l (~)   [1- f l (e+qV-Aoo) ld~  (39)  

for  the integral in (38), for  the  forward direction, and 
similarly for  the reverse  direction. The integral (39) 
reduces to q V - h o  when the  latter is large  compared 
to KT.  For KT>>hoo the integral  in (38)  is just 
( 2 n ( ~ )  + 1)  times the integral in (32),  and  the two 
characteristics have  the  same  form.  We  may  make a 
rough comparison  in  general by writing 

J(phonon) IDcv12 a mC+mv =i?V/2rr 
J(elastic, ~ 1 = 7 2 )  hwoc~olX,,1~F b M 

-~ 

I D c V l 2  d m 
~(2n(o~)+l ) - - - - - .  

hooE, b M 

This  ratio may be expected to be  not <<1,  and is to be 
compared with ( 18) ; so the phonon-assisted  tunneling 
rate should  be much higher than  the elastic  tunneling rate 
(for band edges not  coincident but with the field in  the 
direction of the difference of wave-vectors) SO long  as 
b>>a. 

Added in proof: G. H. Wannier  has  drawn  our atten- 
tion to a paper by Keldysh (Soviet  Physics  JETP 7, 665 
(1958)) in which the  contribution of the electron-pho- 
non interaction to  the Zener  phenomenon is calculated. 
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