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Esaki Tunneling

P. J. Price
J. M. Radcliffe*

Abstract: Tunneling, between propagating electron states, at a semiconductor junction is discussed in terms of

customary quantum transition theory for the matrix elements of the hamiltonian between the states repre-

senting reflection of an electron (in either band) from the junction. The coordinate representation for the

wavefunctions of these states is investigated, and tunneling probabilities (ratios of transmitted to incident

current) are found for the “elastic’’ process proposed by Esaki and for the ‘phonon-assisted’’ processes. It

appears that the tunneling may be described as taking place in a central region of the junction thinner than

the space charge region. Current-voltage characteristics are calculated both for elastic and for phonon-

assisted tunneling.

1. Introduction

Esaki' discovered that p-n junctions made from material
doped to degeneracy have a current-voltage characteristic
with a negative-conductance portion, in the forward
direction, of the kind shown in the accompanying illus-
tration,? and that (in contrast to the second rising portion
of the characteristic) the “hump” part of the character-
istic is not grossly temperature dependent. This phenome-
non (which has been verified, with similar details, in at
least four other laboratories) is believed to represent
majority carrier tunneling, between the bands,? inside the
junction region. Esaki pointed out that the qualitative
features of the characteristic could be simply accounted
for by writing the junction current per unit area as

J=qf [f1(e) —f2(e) 1p1(e) p2(e) Zde (1)

where (see Fig. 1) the f’s are the Fermi functions (rela-
tive to quasi-Fermi levels ¢4, ¢2 differing by gV, where
V is the applied voltage), the p’s are the densities of states
(reckoned relative to appropriately aligned band edges),
and Z represents the quantum-mechanical tunneling rate.
The first positive conductance then correlates with the
form of f;— f., the negative with the form of p1pz.

One may formulate the problem of calculating the tun-
neling rate in the following terms: For a given energy
e=c¢1, let the normalized wavefunctions y;(r) have only
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the wavefunctions of the conduction band of the bulk
crystal (i.e., without the “step” in electric potential at
the junction) as components, and be such that (1| H|¢1)
(where H is the electron hamiltonian with the junction
included) is stationary subject to this constraint and
equal to e;. The set of ¢, in the range of ¢; which is of
interest will represent electrons reflected at the junction.
Similarly let a set 2 be formed for the valence band.
Then the matrix elements

M= (1| H|y2) (2)
give the tunneling rate per unit time as
2a/h) [M12]? 8(e1—e2) (3)

in the usual way.

Kane*¢ has treated the Zener phenomenon?® for a
homogeneous crystal in a uniform electric field, F/q,
extending over a substantially larger distance than (1/F)
times the energy gap plus the band widths. Then the
wavefunctions corresponding to the y, and y. above are
spaced at discrete intervals, aF, in respect of one of their
quantum numbers, and are each appreciable over a finite
distance only. (a is the lattice constant in the field direc-
tion.) Kane calculates a transition probability, in terms
of the matrix elements he obtains, combined in the usual
way with a density of states, p, equal to 1/aF. This pro-
cedure is evidently not justifiable, at least by the standard
proof, since the latter requires the transition rate out of
the initial state to be large compared to the level spacing




divided by Planck’s constant. It is not clear to us, in fact,
that the Zener phenomenon may be described by a defi-
nite transition rate (unless lattice-scattering transitions
between the electronic states are occurring at the same
time).

This difficulty does not arise for the formulation out-
lined above, for a finite junction region in a large crystal,
since the level spacing tends to zero in the usual way as
the size of the crystal tends to infinity, For the case treated
by Kane there is a selection rule on the matrix element:
it is zero unless the component of wavevector parallel to
the junction plane is the same for ¢; and .. For the cor-
responding case with the electric field localized as in the
Esaki junction, the same selection rule holds. The density
of states for a transition to the valence band is therefore
20,/ hve, where Iy and L, are the lengths of the crystal on
each side of the junction, v; and v, the components,
normal to the junction plane, of the electron velocities
corresponding to ; and y». The transition rate is then
| M2 215 /v2#2. Since the electron may be considered to
return to the junction at intervals 2/, /v, there is a defi-
nite tunneling probability

Pyy= (Lls|M1212) . (4)

h21)1’1)2

The expression in parentheses is in fact independent of
5, and l;. Then P is the ratio of transmitted current to
incident current. A calculation of the tunneling proba-
bility by direct solution (using the Green’s function) of
the wave equation has been found to give just the same
result as is obtained, in Section 2, by using (4).

Kane’s matrix element may be applied to Esaki tun-
neling when the junction field is constant (equal to F/q)
in an interval somewhat longer than the region between
the classical turning points for the energy level in ques-
tion (i.e., from the left of x; to the right of x: in Fig. 1).
The conversion from his normalization to ours (with
{ly]2dx=1 in both) gives

V1V2 h\?
M 2= —_ M ane 2; (5
Ml = <aF> [ Micanel )
7 \? (
P=— M ane 2. 6)
(aF) | Mo

Figure 1 Conventional junction diagram for an Esaki diode.
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In the present paper we shall attempt to discuss the
character of the wavefunctions ¢, and ¢. in the coordi-
nate representation, and to calculate the value of the
tunneling probability, idealizing the actual electronic
structure, as Kane does, by taking the bulk wavefunctions
and energy levels to be those of a lightly doped crystal
(i.e., Bloch states and energies, and their forbidden-range
analogs) and the surfaces of constant junction potential
to be parallel planes. This model deviates from the true
situation for tunnel diodes in several obvious, and perhaps
some obscure, ways.5 It has yet to be determined how
far the conclusions of the idealized treatmentsé are merely
somewhat modified quantitatively, and how far new possi-
bilities enter, in practice. We are hopeful that the formu-
Iation described here, if the uncertainties explained below
are resolved, will prove to be flexible and general enough
for the needed extensions of the theory. It is used below
to examine the “elastic process” (corresponding to the
Zener phenomenon) and the “phonon-assisted process”
(in which there is absorption or emission of a lattice
quantum during tunneling?). Presumably it could be used
to treat tunneling involving exchange of energy with other
electrons, if the latter could be described as an Auger
process or as absorption or emission of a plasmon.8

2, Tunneling theory

For the idealized model referred to above, the 4 and -
may be obtained by solving the one-dimensional Koster-
Slater equation,?

0
[e—V(sa)]U(sa)= 3 Ul(s+t)als., @))
t=—c0
where U(x) is (—gq) times the junction electrostatic
potential, for the coefficients U,(sa), Uz(ta) of their ex-
pansions as linear combinations of Wannier functions,°
by an adaptation of the WKB method. The result is

1

1/2 7
Ul(sa)=——<— U ) expli(sni—3x1) —01(sa) ]

2 \ L ui(sa)
(8)
and similarly for U,. In (8),
01(sa) = > a1 (ta) 9

i<s

where «; is the (positive) imaginary part of the solution,
k, of

e—0V[(s—%)a]= ﬁg%eitax (10)

-0
and the sum (9) is over the cells to the right of the classi-
cal turning point (x; in Fig. 1),

de(x)

dx

=Hhue'x (11)

(u and x real), and 7, is zero if the band edge is at the
zone center and «/a if it is at the zone boundary. The
right hand side of (10) is, for « real, the Fourier decom-
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position of the conduction band energy function e°(k).
Obviously, (8) is essentially the same as Eq. (A10) of
Kane’s paper. (The sums (9) of course will be replaced
by integrals over x in evaluating (16).) The solution (8)
was obtained on the assumption that the series (10) con-
verges, and the derivation used is in fact valid only where
the number of terms before the right hand side of (7)
approaches its sum is small compared with [#u/a?F (sa) ]
(where F(x)=d0/dx).1*

We obtain a definite formula for M by assuming that
the two series (10), for the valence and conduction bands,
converge in regions of the junction (i.e., in corresponding
ranges of the forbidden gap) which overlap in the mid-
dle.'2 Then U,U; has a maximum approXimately at the
point x, where

a1(x0) =az(xo) = . (12)

(At the corresponding point in the forbidden range of
the band energy diagram, a;(e) and az(¢) cross.) About
this point, U,U is proportional to

exp[ — (sa—x0)?/b?] (13)
where

2  F(x) (1 1 14
b2 fl (u1 + u2>:c=z0. ( )

When 51=72 (both band edges at the same point in
the zone), we find
b2
Li,

| X (x0) |2 <23‘>‘3XP(—200) (15)

Uila

™
Miyp|2= —
| M| 2

where X ., is the matrix element of x between the two zone
center Bloch states and

Bo="01(x0) +62(x0) . (16)
Then
2
Pio— —T IXCVIZ<M> exp(—260). Qan
UiUz h

The factor exp(—26,) in (17) is of course character-
istic, in one form or another, of all treatments of tunnel-
ing, and should be normally the predominant factor in
expressions such as (17) (see Footnote 5, however). The
length b, measuring the width of the region in which 1
and ¢ overlap, should be ~V (ad), where d represents
the width of the junction.

When 51—n2=m/a then M. is given by a sum, over
the overlap region, in which the terms alternate in sign.
We find,'3 when b2>>a2, 5

Pio(mi—n2=m/a)
P12(")1—772=0)

The exponent in (18) should be comparable with that in
(17). So according to the foregoing treatment a change
in wavevector by =/a, while not actually forbidden, en-
tails a considerable decrease in tunneling probability,
except in junctions which are not many lattice constants

=Q=2exp[—2(xb/2a)2]. (18)




thick.? This is the basis for the conclusion in Section 4
that (according to same model as was assumed above)
the tunneling process with absorption or emission of a
phonon should actually predominate, at least when
b2>>az,

The matrix element for absorption or emission of a
phonon is found in a similar way, by inserting the
electron-lattice interaction terms of H into (2) and in-
cluding the phonon factor in the ¢’s. Transitions between
states with differing &, and &, are possible: the selection
rule is that the y and z components of k+f (where f is
the phonon wavevector) are conserved. There is no “con-
servation of total wavevector” for the x direction, but the
matrix elements are proportional to

exp[ —b2|fo— (ke —ky,)12/4], (19)

where k¢ and k} are the band edge wavevectors, and so
fall off with increasing “change of total wavevector.” This
exponential (19) is thus the analog of the exponential
in (18).

The assumption on which (15), (17) were derived,
that the two series 3&¢exp(isax), SzYexp(isax), con-
verge to real values, ¢, with a non-vanishing common
range, is certainly untrue for a one-dimensional “crystal.”
It is known# 6 14 that the eigenvalues e¢(k), £¥(k) of the
one-dimensional “crystal” hamiltonian are two branches
of a single analytic function e(x) which has a branch
point for a real value of ¢ in the forbidden gap. The Bloch
functions ¢°(k, x), ¢¥(k, x) also are branches of a single
analytic function (x, x) which, for the «’s which give
real ¢’s in the forbidden range, are the unbounded “eigen-
functions” with complex wavevectors. Kohn* has shown
that the Wannier functions fall off asymptotically like
exp(— |x—sa|a), where ay is the distance of the branch
point fromn the real axis of k, so the & must fall off like
exp(—|s|aao). From these facts one infers that the right
hand side of (10) and its valence-band analog converge
respectively for ranges of ¢ which touch at the branch
point energy, their sums being respectively equal to the
two branches of the eigenvalue function £(x), and do not
converge to any real values, ¢, in common.

These facts are proved only for one dimension, how-
ever, from properties of the one-dimensional Schrodinger
operator, such as the fact that there are just two linearly
independent eigenfunctions for each eigenvalue, and it
can not be assumed that they hold for a one-dimensional
section, £(k:), of (k) for a three-dimensional crystal.
The conduction bands of germanium and silicon each
have twice the degeneracy of the one-dimensional case,
in a given direction in k-space, for part of the energy
range. The valence bands also have multiple degeneracy,
but in a different way: if the energy on a line in k-space
at a distance k, from the zone center is ¢(k’) (where k'
is measured along the line from the perpendicular) then
e(x") has a branch point at «"== *ia(k,), and a(ky)—0
when k,—0. It follows?s that, if &, are the coefficients of
the sum (10) for (k'), then if ¥&,z% has a radius of con-
vergence >1 it must diverge at z=explaa(k,)]: We

return to this question briefly at the end of the present
Section.

Now Kane shows that for conduction and valence
bands with band edges at the zone center (specifically,
In Sb), in the approximation that the “k-p interaction”
operates between these two bands but is not appreciable
between them and other bands, a branch point in &(x)
does occur. Therefore the branch point situation is evi-
dently a possible one, for the three dimensional actuality,
and it may conceivably even prevail in general. The dis-
cussion below indicates, however, that the conclusions
from tunneling theory, for the “overlap situation” treated
above and for the branch point situation respectively, are
probably very similar, and the results on the voltage-
current characteristic for practical purposes the same.

Let the branch point be at ko—iay (we take the real
part of ko as zero, for simplicity) and let

F(K):ggViEcv[a(afao)]%‘ . (20)

E., is a constant of order E,. (In Kane’s model, E.,/E;
= (h/2a)t (Egm,) %, where m, is the reduced mass for the
pair of band masses.) The solution (8) prescribes, ac-
cording to (20), that U; and U, tend to zero at xo; but
(8) is not valid in the neighborhood of this singular
point.?¢ In the range of x for which (8) holds, W:(a, sa)
=U,(sa)exp(saa) varies around its maximum (which is
very near the position, x,, of the classical turning point
for energy &1 —=(ia)) as exp[ — (x—x,)2/c?], where

c2/u=2h/F. 21
Where (20) holds, (21) becomes
cz=(x0—x)/(a0~a) . (22)

Since the number of terms before the right hand of (7)
approaches its sum is 7,~1/a(ao—«), the derivation of
(8) becomes invalid where c(ag—a)~1. By (22), this
happens where xo—x, c¢ and at, are roughly equal, and
given by

ci~a(E./F)*~ad?. (23)

For smaller values of xo—x the values of u’ and ¢,
respectively giving the value of Ui(x) according to (8)
and the distance over which the W, having its maximum
at x falls off substantially, are no longer those given by
(11) and (22). However, it can be shown that

a) Eq. (21) continues to hold, for ¢’ and u';
and made plausible that
b) the order of magnitude of ¢’ continues to be that
given by eq. (23).

Since the interband matrix elements of x between
Wannier functions fall off as exp(— |s—#|aap), the ma-
trix element of VU will be

M1y ~(UrUz) zeeC' (%0) 2F (x0) X" /a

O A GG (24)
1112 ll,(.X'o)
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Now, Kane gives
MKane:yaF67€° > (25)

where y is a dimensionless number ~1 (and we have,
legitimately, written his exponent as §y). On converting
his matrix element to our normalization by means of (5),
we see that (24) and (25) agree according to (a) of the
preceding paragraph.

It is not obvious how the branch point type of situation
discussed above would occur where the band edges are
at different wavevectors.* If it does occur, we may con-
jecture that it does so in such a way that there are similar
regions, of similar widths, within which U, exp(saaq)
and U, exp(—saap) are appreciable, but with the same
additional rapidly oscillating factor as leads to (18).
Again, Mz and Py should consequently be reduced by a
significant factor, and by a very considerable factor like
(18) if ¢’>>a. Since the interband matrix elements, be-
tween Wannier functions, of the deformation potential
operator'” must also fall off as exp(— |s—tlaao) in the
branch point case, the theory. for phonon-assisted tunnel-
ing in this case should be related to the theory in the over-
lap case in the same way as the theories for elastic
tunneling are related in the two cases. For the branch-
point case (with the oscillating factor) the matrix ele-
ments for the phonon-assisted process again will be
appreciable over a range of f, which is of order 1/c.

The current-voltage characteristic is derived, in Sec-
tion 4, by taking the matrix elements for phonon-assisted
transitions between given states as all equal. This is justi-
fied in Section 4 by appeal to the overlap case, which re-
sults in (17) and (18).The foregoing discussion indicates,
however, that this constancy of the matrix elements
should hold (so long as d/a is large enough®) for the
branch-point case (provided the latter applies as envis-
aged, with an extra oscillating factor when the band edges
are not coincident in the Brillouin zone). Then the same
characteristic (apart from the absolute magnitude of the
current) is to be expected in either case. On the other
hand, Kane’s matrix element (25) corresponds to an

~absolute magnitude of tunneling probability (and there-

fore of current) greater than (17) by a factor ~d/a; and
a similar relation may be expected for the tunneling
probabilities in the phonon-assisted process.

The foregoing discussion suggests that there may well
be some general validity to the concept of a region in the
middle of the junction, much thinner than the space
charge region when d>>>a, where y,; and ¢ interact.
(One might say that the tunneling takes place in this
region.) One may therefore propose to use the analysis
at the beginning of this Section (i.e. the case where the
series (10) converge to a common range of energies in
the forbidden gap) as a theoretical model, as we do in
Section 4 to treat phonon-assisted tunneling.

*Addded in proof: If there should be a branch point for an intermediate

value of the real part of ¥ (at which ¢ is complex) then one may expect
the solutions (8), for both bands, to apply for values of @ (corresponding
to real ¢) given by the analytic continuations of the series (10). That is,
expect the owerlap situation to obtain,
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The question of the branch points near the valence
band edges in germanium and silicon must, of course, be
dealt with before any satisfactory theory specifically ap-
plying to these substances can be developed. One has
meanwhile no more than an intuitive expectation that
some treatment must exist in which coupled equations for
the degenerate valence bands are solved simultaneously
and which leads to results such as (8) gives for the maxi-
mum value of Y132 —in which results the exponent 6o
has a similar order of magnitude, and depends on the
same physical factors, as in the simple situation without
degeneracy.

3. Current-voltage characteristics for
elastic tunneling

It has been shown earlier that the transfer of charge from
one side of the junction to the other can be characterized
by a tunneling probability P, defined as the ratio of trans-
mitted to incident currents. The current per unit area
flowing in the forward direction is

Ji2=q

o [ di.dk,dk, P(s, ky, k.)
v

L2320 e 11— aleo(b) 1) (26)

X

where f1(e) and f2(e) are the electron distribution func-
tions on the two sides. As indicated in equation (26) the
tunneling probability P depends on the variables of inte-
gration.

The foregoing theory suggests that P may be taken as a
function of k,, k, only, if F is constant over the tunneling
region. It is convenient to use ¢ as a variable of inte-
gration, replacing (9¢/0k.)dk, by de. Then the net cur-
rent density is

q
J:le—lez‘h—

e eLJ1 —JolE Pdk,dkz
o G f()]/ .

27
The integrations over k, and k. are restricted by the fact
that ¢, k, and k. are all conserved in the transition, and

that also the initial and final states belong to the energy
bands. If the constant energy surfaces are spherical,

2m.&1 2my 82
n R

ogk;+k§SMin.[ ]Ek,-(sV, (28)

where &, and g2 are electron energies relative to the band
edges, and

§1+8=E+Es—qV=E, (29)

is the amount by which the bands overlap when a voltage
V is applied across the junction. (See Fig. 1.)

Unless 8o in (17) is not very large, P should fall off
rapidly over the range of the second integral of (27). We
approximate this variation by writing



P=P() exp[—(ac2+(lv2) (ky2+k22)]’ (30)
where
a2 =aohiz/m.F (D

and similarly for a., and find

J=27P,

qFm,

/[fl(E)“fz(ﬁ)]g(&)g(Sz)dS (32)

aph?
where g(g) =1 for £>0, g(g) =0 for £<0, and where
m;, is the reduced mass. P is the tunneling probability
for k,=k.=0. If the two distributions are Fermi-Dirac
ones with Fermi levels ¢1—¢>=gV apart, then fo(e) =
f1(e+qV). Solong as KT<<E,, E; the integral (32) has
a simple form, symmetrical for V>0. For qV<Min.
(E4, Ep), it equals gV. It then remains constant while
qV increases to Max.(E,, E;), and finally decreases to
zero with constant slope —g. It should not be overlooked
that, even with the idealized model and approximations
which lead to this simple result, in (32) P, will decrease
significantly while ¥ increases over the range of interest.

4. Phonon-assisted tunneling

According to the results of Section 2 the component of
the crystal wavevector parallel to the junction plane is
conserved when an electron tunnels directly from one side
to the other. This would forbid, for instance, tunneling
through a junction lying in (100) planes in Ge from
states near the conduction band minima. However, tun-
neling is possible when this change in wavevector can be
taken up by a phonon. It was also noted in Section 2 that
although there is no strict selection rule for the wave-
vector component perpendicular to the junction plane,
even in the idealized model, one would expect the tunnel-
ing rate when there is a large change in this component
to be much smaller (in sufficiently thick junctions) than
it is when the band edges are at the same point in the
zone. This means that if the electron-phonon interaction
is sufficiently strong, then the phonon-assisted tunneling
rate can well exceed the direct tunneling rate through
junctions in (111) planes in Ge and in (100) planes
in Si.8

The fluctuating field due to lattice vibrations couples
Wannier functions from the two bands just as the static
junction field does. Perturbation theory then gives a
tunneling rate directly. There should be distinct phonon
transition processes for the different branches of the lat-
tice mode spectrum. For simplicity we consider here a
single branch only. (The total transition rate, and current,
will be given by a sum over the branches.) Then the inter-
band matrix elements of H, the electron-phonon interac-
tion term of H, between Wannier functions at different
lattice sites is

Do (R RN-’zE( n )’}
or(Ri—Ry) 7\ 2Mo(f) /

x {beexplif-(Ri+Ry) /2] +c.c.} . (33)

Here BCV(R,-—R]-) is the interband matrix element of the
deformation potential operator!? between the Wannier
functions, M is the mass of the unit cell and N is the num-
ber of unit cells in the entire crystal. The matrix element
of H, between initial and final states on the same assump-
tions as lead to (15) (i.e. for the overlap case) is

H _ Do Ui (R)U2(R)S R\
(1| Hz| ) = Nt % 1(R)Ux( )?<7M—m‘>f
X {eif R(1|b|2)+c.c.} (34)

where D., is the interband matrix element of the defor-
mation potential between Bloch states at the zone center
(~ a few ev). We now evaluate this matrix element for
tunneling from a conduction band minimum at k = f, when
the junction plane is perpendicular to f,, which is taken
to lie along the x axis. The transition takes place between
a conduction band state at k=f,+k’ and a valence band
state at k=K”. It is clear from the form of Eq. (34) that
the matrix element will vanish unless f,=k,”"—k;/, f.=
k,” —k.. There is no such precise selection rule for f..
For the same reason as in Section 2, we expect appre-
ciable contributions to (34) from values of f, given by
|fe—fol|<~1/b where b is the distance over which the
wavefunctions of our model overlap appreciably. When
b>>h/(mwri+myvre) it will thus be a good approxi-
mation to replace »(f) by wo=w(fs) and f by f, in (34).
Using the amplitudes U given by Eq. (8), squaring the
matrix element and summing over f., we obtain

M2 =3y, M (f2) |2=
VIE Ni (e o b B o)
8 N1N2 UilUy a 2Ma>0 n(m0)+1
(35)

where n(wg) is the phonon occupation number. (We
ignore the effect on M(f.) of the energy difference
e1—e2: This is unimportant so long as d/a<E;/hw.)
N; and N, are the numbers of unit cells in the » and p
sides respectively. The tunneling probability is now

2Na 27
Pia = W_ﬁ—(ri% M3 (er ez o) (36)

states

In the same way as leads to (32) we obtain, for fo==/a,
V2r Po |Du)* a m,
8 |Xw|? AoomF b M
exp| —ac2(kiy?+k1.2) 1{n(wo) g;
+(1+n(w0))gl}, (37)

where g; = g(g2+fiwn). The net current density is

Pyy=

V2x qPy |Devl? a momy,

4 Bat|Xel® e b M
fde{gig;[nlwe) fL(1—F4) — (1+n(w0)) fL(1—11) ]
+218; [(1+n(w) ) i(1—f;) —n(wo) f;(1—=f1) 1}, (38)
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where g1=g(81), /i=f1(e), f;=F2(e+Hhwo), etc.

The current-voltage characteristic is especially inter-
esting at temperatures such that K7<<#wo. Then n(wo)
< <1 and the only processes possible are those in which
a phonon is emitted. But for this to occur, there must
be an unoccupied state to which the tunneling electron
can go after giving up a quantum of energy to the lattice.
It follows that there will be no appreciable tunneling for
—hwo<qV <Fhuwo. This prediction has recently been con-
firmed for Ge and Si diodes at liquid helium tempera-
tures.” The corresponding current-voltage relation for
voltages near the threshold is obtained by substituting

Sh(e) [1—f1(e+qV —fiwo) 1de (39)

for the integral in (38), for the forward direction, and
similarly for the reverse direction. The integral (39)
reduces to gV —Fhwo when the latter is large compared
to KT. For KT>>Fhwo the integral in (38) is just
(2n(mo)+1) times the integral in (32), and the two
characteristics have the same form. We may make a
rough comparison in general by writing

J(phonon) —  |Du® a me+my
- =n2\/27 —
J(elastlc, m= 7’)2) fla)()ao I Xcvl 2F b M
X (2n(ap) +1)~ Pl 4 m (40)
n ~ —_—
@0 hooEy, b M

This ratio may be expected to be not <<1, and is to be
compared with (18); so the phonon-assisted tunneling
rate should be much higher than the elastic tunneling rate
(for band edges not coincident but with the field in the
direction of the difference of wave-vectors) so long as
b>>a.

Added in proof: G. H. Wannier has drawn our atten-
tion to a paper by Keldysh (Soviet Physics JETP 7T, 665
(1958)) in which the contribution of the electron-pho-
non interaction to the Zener phenomenon is calculated.
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