J. Greenstadt

On the Reduction of Continuous Problems
To Discrete Form

Abstract: A continuous problem, defined as one involving derivatives or integrals, is to be reduced to a
discrete problem, involving only algebraic or evaluative operations. An approach involving cells instead of
points is taken, and the unknown function is approximated by functional representations, each associated
with one cell and an associated set of parameters. Suitable operations are then defined, each associated
with a particular cell. These operations remove the configuration coordinates from the problem, leaving only
the parameters. Similar operations are defined which link the approximations in adjacent cells, and which
translate certain interface conditions to relations between parameters associated with cells. The entire set of

relations is then the equivalent of the usual difference equations.

A variational algorithm is introduced in order to circumvent certain difficulties associated with matching
equations and unknowns. This also permits the convenient retention of certain “exact conditions’’ associated

with the continuous problem. Some illustrative examples are given.

1. Correspondence between continuous and
discrete problems

The most important class of problems in applied mathe-
matics is that consisting in what we may call the continu-
ous type. In this class are included those problems con-
taining equations which involve the operations of classical
analysis, viz., differentiation and integration. One might
also include any other operations in which limiting pro-
cedures play a role.

The one thing common to all of these limiting opera-
tions of analysis is that none can be performed on a
digital computer, which does not deal with continuously
varying quantities and hence is incapable of taking limits
by finite numerical processes.

For this reason, the universal practice in solving con-
tinuous problems by digital computation is to stop short
of the limit by solving, not the original continuous prob-
lem, but another discrete problem which approximates,
in some appropriate sense, to the continuous problem,
and whose discrete solution approximates to the continu-
ous solution of the continuous problem. By “appropri-
ate,” we mean, in general, that if one were to allow a
characteristic parameter (or parameters) of the discrete
problem to approach its limiting value, then the discrete
problem (and its solution) would go over—in the sense
of a limit—into the continuous problem (and its solu-

tion). Examples of characteristic parameters would be
mesh size, number of terms in a series, time increment,
et cetera.

We may think of the relationship between the corre-
sponding problems as a mapping of the continuous into
the discrete, and vice versa. The difficulty is that there
is (for the class of “proper” limiting procedures) a
unique continuous problem corresponding to an infinite
set of discrete problems, i.e., the mapping from discrete
problem to continuous problem is many-to-one. This is
advantageous in theoretical derivations of continuous
formulations of physical problems, but it leads to an
enormous ambiguity when, conversely, one wishes to map
the continuous problem into a discrete one. For this
reason it is possible to write several difference equations
corresponding to the same differential equation.

It would be very desirable to find some principle, or
procedural guide, which would enable one to map con-
tinuous problems into discrete ones without such a great
ambiguity. Thus by setting certain general requirements
on the discrete formulation, one would be led automati-
cally to the proper set of discrete equations. The exami-
nation of one such general procedure is the subject of
this paper.
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2. General features of “discretization’’

The essence of discretization is the replacement of varia-
bles which have a continuous range, by variables which
have a discrete range, i.e., which are functions of an
integral index of some sort. We shall briefly outline the
two principal methods in use by which this is done.

® A. The Difference Method

The correspondence established by this method, which is
the one most widely used, is as follows:12

(1) The domain D of the independent variables (e.g.,
x¢, a=1,--- N), originally a continuous-point set, is
replaced by a finite set of suitably chosen points {x¢} with
k=1,---,K.

(2) The dependent variable (e.g., ¢(x)), originally de-
fined for an infinity of points {x} is replaced by a discrete
dependent variable ., each of whose values is associated
appropriately with a point x;. (The symbol x;; stands for
the set {x¢}, a=1,.--,N.)

(3) The derivatives of ¢ with respect to the x* are re-
placed by corresponding finite differences, (e.g., oy /ox®
becomes Ay /Ax®).

(4) The integrals of ¢ over any domain of the x-space
are replaced by appropriately weighted sums over the
discrete finite set of values ¢, whose arguments x; are

contained in the domain, (e.g., /1//de becomes > wiy,
v 2

where Jw;.=V).

k
(5) The continuous equations defining the problem are
replaced by a finite set of algebraic equations, equal in
number to the number of unknown values {y}.

(6) The solution value ¢ is presumed to represent the
value of the original function ¢(x,) in an approximate
sense, i.e., by suitably increasing the density of points
Xi, the former values may be brought as close to the
latter ones as desired. Accordingly, the various differ-
ences and weighted sums will approach the corresponding
derivatives and integrals, (e.g., Ay/Ax*—>0y/0x%,
Swidr—> (¢dVx).

k

® B, The Fourier Method

In this method, the correspondence is established as
follows:?

(1) The (continuous) variables x are replaced by a set
of indices vy, v2, -+, vy (written for short as v), each of
which takes on the values 0, 1, 2, - - - (these sequences all
terminate).

(2) The dependent variable ¢(x) is replaced by a
discrete set of coefficients (or parameters) #*, each of
which is a function of the indices v. The mathematical
relation connecting ¢ and § is in terms of a set of known
functions ¢,(x), which are linearly independent and usu-
ally orthonormal over the domain of x. The correspond-
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ing equation for ¢ is:
P(x) =20"¢v(x) . (2.1)

14
(3) The derivatives of ¢ with respect to the x* are com-
puted directly from Eq. (2.1). If we expand the deriva-
tive 9¢,/3x® in terms of the ¢’s, to obtain:

0y
¢ —SC o, (2.2)

oxe %

then we can express the derivative dy/0x® in terms of
the ¢’s:

oy

ox¢

= 6"Co ¢s . (2.3)

(4) The integrals of ¢ with respect to the x* are com-
puted in an entirely analogous manner. If we write:

/ dv(x)d¥x=1, 2.4)
then
/r,b(x)de=20VIv. 2.5)

(5) The continuous equations are replaced by a finite
set of algebraic equations, equal in number to the num-
ber of parameters.

There are difficulties with both of these methods. For
this discussion, the noteworthy ones are as follows:12

Method A:

(1) There is an ambiguity in the replacement of deriva-
tives with differences, particularly where the coefficients
in the differential equation are not constant.

(2) There is no systematic way to form difference equa-
tions near irregular boundaries or interfaces.

(3) It is difficult to carry over into the discrete formula-
tion the proper analogues for certain integral relations
holding in the continuous problem.

Method B:

(1) It is difficult to find basis functions which satisfy
the boundary conditions.

(2) If the function ¢ has strong fluctuations over the
domain D, the convergence of the expansion (2.1) is, in
general, slow.

In some cases, efforts have been made to overcome
the limitations of both of these methods. Some of the
variations from the pure procedures are as follows:

Method A:

(1) Near irregular boundaries, the unknown function is
approximated by a polynomial and made to fit exactly
a number of mesh nodes. This polynomial is then differ-
entiated analytically, and the derivative is then expressed
in terms of the values at the nearby points. However,
there is still considerable ambiguity as regards the number




of neighboring points, the accuracy of the expansion, the
matching of numbers of coefficients with numbers of
points, et cetera, This technique often makes use of cer-
tain “fictitious points” in order to make the differencing
more straightforward.

(2) The usual naive methods of integration, e.g., trape-
zoidal and Simpson’s rules, are modified near boundaries
so as to accord with the difference equations which are
finally adopted. In this way, integral identities (“con-
servation rules”) are maintained.

Method B:

(1) Neither the differential equation nor the boundary
conditions are required to be satisfied exactly, but only
to the “best extent possible,” i.e., in the sense that some
measure of the discrepancy is minimized. We shall adopt
this point of view later in our “method of cells.”*

3. The method of cells

We shall adopt a point of view which in many respects
embodies features of both Methods 4 and B. We shall
divide the domain D into many cells, viz., small sub-
domains, generally as many in number as the mesh nodes
of Method A. However, we shall treat the cells in all
other respects as in Method B.

Let us first consider some preliminary notational
necessities. First the domain D is divided into subdomains
Dy(k=1,---,K). These subdomains (cells) may be of
fairly general shape, and need not be rectangular, tri-
angular, et cetera. In any case, given two cells, they will
or will not share a common interface. If they do, we shall
call them contiguous neighbors. 1If the contiguous cells
happen to be numbered & and m, we shall denote their
common interface by Bign.

In many cases, we shall wish to refer to the contiguous
neighbors of Dy. If we denote the “contiguous neighbor
function” by n(k), then {Dy)} is the set of cells con-
tiguous to Dy. Similarly, {Bina} is the set of interfaces
between Dy and its contiguous neighbors; hence the
perimeter of Dy.

Let the continuous equation of the problem be denoted
by:

£ () =0. (3.1)

We assume that Eq. (3.1), together with the boundary
conditions:

®B(y)=0 (3.2)

specify the solution ¢ uniquely.

Now, in order to accomplish the reduction to a dis-
crete problem, we shall approximate ¢(x) individually
within each cell Dj by a known function of x and certain
parameters 6

P(x)=fu(x, 0). (3.3)

In particular (as in Method B), we may take a linear
function:

Pi(X) =20 v (X) . (3.4)

We note that the set of §’s is different for each cell. The
basis functions ¢, may also be different, although in
many cases they may be the same for each cell. In all
cases we shall assume that sums over v cover the appro-
priate ranges of v (e.g., v=1,---, M, where M, is the
number of #’s in D;).

Clearly, we cannot represent exactly any function of
the general class which satisfy Eq. (3.1), by a formula
such as (3.3), wherein fx(x, 0,) is predetermined in form
so that our only freedom lies in the finite set of parameter
values ¢7. In this fact lies the approximate nature of the
replacement (3.3).

Our ultimate intention, of course, is somehow to re-
place the function y(x) and its continuously ranging
arguments x¢ by the function ¢}, and its discretely ranging
arguments k and v. The analytic equation (3.1) will then
be replaced by a finite set of equations for the parameter
values 6* .

We next apply the operator £ to f in cell Dy and
obtain:

£{fk(x7 Olc)}zpk(x, ek) . (35)

If, by accident, fr(x,0) were an exact solution of (3.1)
in Dy, pr. would vanish, but in general this is not the case.
Further, we cannot in general select values of ¢} which
will make py. vanish identically. We can, however, ask that
pr shall: (a) vanish “to some order”; (b) be “as small as
possible.” Requirement (a) is the one usually drawn upon
in Method A4, while requirement (b) is largely used in
Method B. The great advantage of (b) in the cell method
is that one may derive in an automatic manner a number
of equations just equal to the number of parameters.

4. Variational formulation of cell equations

We shall now consider the way in which we might set up
a variational functional so as to obtain the proper set of
equations for the #Y. These would then be our discrete
equations corresponding to the continuous equation
(3.1).

Our method is to set up a functiondl, i.e., a function of
the 9}, derived from the operator £ and the approxima-
tion f(x,0,),which is to be minimized by the appropriate
selection of the values for 8}, and which would in fact
take on its absolute minimum for the true solution ¢ (x).

There are various ways of doing this, depending on the
form of £. If £ is a self-adjoint, definite operator, then
(3.1) is derivable as the Euler equation of a variational
problem. An example is Laplace’s equation:

_oy Y

= + -0, 4.1
ox? oy* “.1

vy

which is the Euler equation for the ¢(x, y) which mini-
mizes the integral:

T AT AN
-3 ,)1<ax>+<ay> j dxds (4.2)

Hence, we might take for our functional the expression
I in this case.

357
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In the general case, we can always seek to minimize
the integrated square of py itself:

IL,=1 {pk(X 6;) }2dDy, = minimum, all & . (4.3)

There are some important points to be observed here.
One is that the object of an integration over a domain is
to eliminate x from the problem, leaving only the indices
v, k. Further, ¢(x) is eliminated also, leaving only §}. A
second point is that we really should minimize the sum
of all the I, simultaneously, i.e.,

I=>1=>% | {pr(x, 0k) }2dDy = minimum . (4.4)
k k Dy,

However, we now notice that we have carried the
separation of D into { Dy} too far, i.e., we have a separate
representation for each cell, and a separate functional to
minimize independently for each cell. Thus (4.3) and
(4.4) are equivalent.

In order to find a natural means for tying together the
various ¢ 50 as to form a 4 which represents the solution
to (3.1) and (3.2) in D, we draw upon the requirements
laid down by the existence theorems for partial differen-
tial equations.

For the purposes of this argument, we shall assume
that ¢ is an elliptic partial differential operator of the
second order. For this type of operator, the appropriate
uniqueness requirements are that ¢ should be continuous
and have continuous first partial derivatives.

Clearly, we cannot require these rather stringent con-
ditions to hold exactly for our approximation {¢x}, so we
shall set up the following discrete analogue of these con-
ditions and incorporate it into our variational principle.

The continuity of {y;} fails on the interfaces Byn,.. This
failure is measured by the difference

Ckmz [Ebk(x’ ok) _ﬂbm(xs em) ]Bkm . (45)

The discontinuity in the tangential derivative of ¢ along
By is included in Cyn, and is expressed simply as the
tangential derivative of Ciy,, viz., 0Cyn,/07. However,
the discontinuity in the normal derivative must be com-
puted separately as follows:

ka—[ W (%, ) ﬂ (x, om>] (4.6)
a Bym

(The normal derivatives are both taken in the same
direction.)

In order to form the proper functional with these
ingredients, we square Cyn, and Dy, and integrate the
squares over By, as follows:

A
Ikm= —_— {S[/k—ll/m}dekm
2 JBpm
? B ) 2
+ L Ve _ %m B, (4.7)
2 Jegm L On on

The multipliers A and » express the weights we wish to
attach to continuity and to continuity of the derivative.
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Figure 1

Now, when we sum I, over all k and m (without
repetitions) we find that the ¢, are coupled together.
Figure 1 shows how 1, 2, and ¢35, for example, are
linked together by their interface conditions on Bjz, Bas
and Bis.

We add Elkm to J (of (4.4)) to obtain the complete

functional (also denoted by J):

J=%2 {pk(X, Ok)}dek
k JDg

T3S | (Y ¢m}dBion

kmJ Bym

413 {a¢k a‘”’"} B, . (4.8)
Bl on on

We notice now the important fact that J is a function
of the § only:

J=J(6?,0%,---,0%). (4.9)

To obtain the equations for the parameters 8}, we simply
differentiate J with respect to each 6%, and set the result
equal to zero:

o7
00y

Eq. (4.10) are now the equations pertaining to the
discrete problem, and they correspond to Eq. (3.1).

It should be noted, finally, that the assigned conditions
on the boundary of D itself require somewhat different
expressions for Ciy, or Dyy. If the boundary condition is
of Dirichlet type, we must replace (4.5) by:

[C])p=[¥n(x, 0) —A(X) 15, - (4.11)

=0; v=1,---,My; k=1,---,K. (4.10)




If it is of Neumann type, we must have:

s
[ijgk{—"’—"(x, 04) —A(x)} : (4.12)
on By
where the subscript B indicates the interface between
cell Dy and the region outside D. Only those values of k
are included, for which Dy is a boundary cell.

5. Incorporation of auxiliary conditions

In many problems of physical interest, it is of great
importance to preserve certain integral relations (or
other auxiliary conditions) exactly, even though the solu-
tion function ¢, which is required to fulfill these relations,
satisfies the basic equations of the problem only approxi-
mately.

An example of such a relation is Gauss’ Theorem ap-
plied to the Laplacian operator. Let  satisfy Eq. (4.1) in
the interior of D. Then by Gauss’ Theorem:

oy
/v2¢dD=/——dB=0, (5.1)
D B on

where B is the boundary of D. Hence we may require, in
the discrete problem, that

)
f % B0 (5.2)

exactly.

We may actually alter the discrete equations (4.10)
for the 6} in a systematic manner, so that if ¢ satisfy
these altered discrete equations, they will also automati-
cally satisfy the auxiliary relations which have influenced
the alteration.

Let us first write such relations in a more general form,
We first associate with each cell Dy an exact condition
which must be fulfilled. Denote this by Ex{6y). An exam-
ple would be the following:

Ek(ek)5/£{fk(x, 0}5) }de=/pk(X, Ok)de s (53)

Dy Dy

which is distinct from condition (4.4), insofar as we did

not require the integral appearing therein to vanish.
Another possible exact relation would be the following:
{ a'l/k a¢m

km

— —— ¢ dBin=0. 54
on an} i 54

ka(ek, em)E/

B

We may easily incorporate these conditions into the

variational principle by using Lagrange’s Method of

Multipliers. We simply add to the functional J a linear

combination of the Ej and Fy,, with multipliers a; and
Brm. Hence, we have:

T=X:+3 | {3ACE,, +49D? }dBiy,
k

km km
km Bl
+NorEr+ S BimFim - (5.5)
k km

Note that we may have several conditions of each of
the types represented by C, D, E, F, instead of only one

of each. However, we should never require more exact
relations than there are parameters 6}.

Our discrete equations corresponding to the functional
J are as follows:

oJ aJ o
=0; —=E=0; ——
o0y, Oax 0Bm

for all v, k and m.

=Fim=0 (5.6)

6. Remarks on the discrete equations

If we focus our attention on one of the cells, say Dy, we
notice that the set of discrete equations corresponding to
ko is as follows:

al
o0y,

=0; E=0; Fyym=0. (6.1)

Now we notice an interesting property: Because 0{0
enters into J in connection with its contiguous neighbors
only, via Crgm, Drgm and Fiym, the differentiations in
(6.1) will cause to drop out of these equations all 6%
which are not associated with contiguous neighbor cells
Dy (see notational note in Section 3). Hence, after
eliminating ax, and Bren(ey from these equations, the re-
sulting set may be written:

WI:;O (Bkgy en(k()) 5 }\; 7]) =0 5

and we see therewith that the “principal” equations for
g%, involve only the parameters associated with contigu-
ous neighbor cells. Hence, these discrete equations resem-
ble difference equations insofar as the latter also connect
nearest neighbors.

We may regard Eq. (6.2) as a discrete analogue to
(3.1) in the following sense: A differential equation may
be thought of as the expression of a certain connection
between the characteristics of ¢ at “infinitely near”
points. In (6.2), the elements being connected are not
“infinitely near,” but only “near.”

v=1,--,My,,  (6.2)

7. Application to Laplace’s equation—regular cell

We shall now consider a simple example to illustrate the
application of the cell method. We shall consider the typi-
cal cluster of cells as shown in Fig. 2 (overleaf).

For convenience, we have labeled the cells as illus-
trated. Without loss of generality, we can assume the
squares to be 2 units on each side. The coordinate system
for each square will have its origin at the center, and the
x and y coordinates vary between —1 and +1.

We shall expand ¢(x, y) in a series of functions which
form an orthonormal set in each square. These shall be
denoted by {¢u(x)¢pv(y)}. Later, we shall actually use
the sine and cosine functions, but for notational sim-
plicity, we shall defer this. First, we have:

Ur(x, ) =20 () dv(¥) 5 k=0,--+, 4. (7.1)
nv

For the functional J, we shall use expression (5.5),
except that I, shall be given by:

35
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10=%/ {( %o >2 + <a¢0>2 }dxdy. (7.2)
Dy ox oy

The computation of 5, with the help of the orthonor-
mality of the ¢’s, yields the following:

1
=33 {6g° 92"/ b P dx
-1

oTp

1
+08° 05”/ b by}
-1
d¢ do
'=—— or — ). 7.3
(¢ ki > (7.3)
The expression representing the degree of discontinuity
of ¢ between cells is as follows:

LA dum 0 1*
HISOrh— 09 1)
SISO 0090 ]*
TS0 v 0§17} (7.4)

+ -
where ¢ represents ¢(-+1) and ¢ represents ¢(—1).

The expression representing the degree of discontinuity
of 9¢//0n between cells is as follows:

=S {[S(0w), — 08¢ ) ]2
v
SO, -01¢)e)
n

SISO 6, -016,) 1
1 v

- +
+HIZ (08! —0v )12} . (7.5)
v
For exact auxiliary relations, we shall require:
V2ydxdy=0 (7.6)
Dy
and

oy i
< AN >d30i=0; i=1,--,4. (1.7
By; ani ani

In terms of the series (7.1), condition (7.6) becomes:

29g°[1¢;dx+zegV/i¢;dy=o, (7.8)
:nd for (7.7), we have:

2“(05°$;~0*;°<%;):0 (7.92)
SOV, 7 $) =0 (7.9b)
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D2
D3 Do D,
Dy
Figure 2
2(6‘50‘;:1_050;5,’;) -0 ‘ (7.9¢)
"
S(vG, —07 3! ) =0. (7.9d)

v

The first of Eq. (6.1) becomes:

el ‘
29" ::Aﬂaogv+050A0V+Bﬂﬂggv+0'tuB0V
— CuoB9” — 089 Cgy— DyugB9* — 98D g+ Epy , (7.10)
where
1
A,m=/ ¢;¢;{ j;‘ } (7.11)
-1
o e +I +r oY
Buo=M(pupotdupo) +n(¢, ¢, +é,¢;) (7.12)
+ - + o~
Cuo=Adubo 16, bly (7.13a)
-+ -+
Dyus=Adubot 1, $, (7.13b)

1 1
E,W=a{aov bl dx+ B0 ¢.gdy}
-1 -1

+ BorBousp), + Bozduod, -+ BosBovd), + Posduod, . (7.14)

The additional equations are, of course, (7.8) and (7.9).
We shall now assign, for the {¢.}, the sines and cosines
as follows:

Go(x)=1/v2 (7.152)
du(x) =sinpmx , p=2p—1 (7.15b)
¢u(x) =cospmx, w=2p. (7.15¢)




. . . +1
Notice that, in all cases, we may write p= »”—2— , where

the bracket means “the integral part of.” With this nota-
tion, we find for A4, the following result:

2

We find further that Eq. (7.8) is automatically satis-
fied, and that the coefficient of « in (7.14) vanishes.
Hence, a¢ no longer appears in the problem. Further, if
we denote the parity of x by ®(u), we have:

+1 :
Apo=72p8 0 3 p:[“ ] (7.16)

Bus=0, if ®(p) #® (o) (7.17a)
Byp,2q=2A(—1)P¢ (7.17b)
Bap_1,2p-1=2nm2pg(— 1)+ (7.17¢)
Cue=Due=14Byo (7.18)
and

E;y=0if p, v#0, or ®(p) =®(v) (7.19a)
Ezp1,0=(Bo1+Pos) pr(—1)? (7.19b)
Eo,2q-1=(Boz+ Bos) gmr(—1)9. (7.19¢)

We shall assume a simple approximation for ¢, viz.:

Jom= 3 096,() (), (7.20)
1=0

which contains the 4 parameters 69°, §1°, #%! and §1*. The

equations (7.10) and (7.9) reduce to:

400 — (89469 +6%4-65°) =0 (7.21a)
03°=0;°=0§0 (7.21b)
g01 =491=g01 (7.21c)

1
4 (1+ 5 ) gt — (16101 +61) =0.  (7.21d)

The first of these equations is the familiar Laplace
difference equation (in this case, for the mean values
69°). In order to maintain consistency, it is necessary to
require, as indicated in (7.21b) and (7.21c), that
§io=g1o and 691 =0§9*. Hence, these parameters are com-
pletely uncoupled from the interior of D, but are deter-
mined by the boundary conditions alone. In (7.21d), if
n—>c0, Which would impose complete continuity of 8¢ /on
(to the approximation as indicated), we see that {§}'}
also would satisfy Laplace’s difference equation.

8. Laplace’s equation—irregular cell

We shall now analyze a more difficult problem, viz., the
case of an irregular (interface) cell. We shall consider an
irregularly disposed interface between two regions, in
each of which Laplace’s equation is to be satisfied. How-
ever, the interface condition is slightly more complicated
than before. Figure 3 depicts the geometry.

REGION O

Figure 3

We notice that D, has five contiguous neighbors, in-
stead of four, and that one of them (D;) is not in the
same “physical” region as D,.

As far as the functional to be minimized is concerned,
it shall be identical in content with (5.5), but now the
vorious integrals will have to be computed differently.
Starting with I,, we shall have:

f=3 | {2004, (0$u(3)]?
0 wv

D,

+I 3 0weu(x) ), (v)12}dxdy

WV

=% 2 A”VUTHBWH(‘)’T, (81)

pvoT

where
Auror= / (6, (), ()3 (3) $r(2)
Do

+du(x) po(x) P, (¥) b (¥) }dxdy . (8.2)

In order to write the integrals over interfaces in a con-
cise form, we must refine our representation of the
interfaces. Let each boundary segment Bo, be repre-
sented as a parametrized curve as follows:

Bom: x=Un(8), y=vm(s); —1<s<1. (8.3)

The functions i, (s) and »,,(s) are constructed in such
a manner that the point (x, y) moves from one end of the
interface segment to the other in the positive direction
(as indicated by the arrows in Fig. 3) as s varies from
—1 to +1. We may now write any line integral along
By, in the form:
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Ip= / F(x, y)dBom.

Bom
1 . .
=/ Flun(s), vm(s)]Jufn +'v?n ds , (8.4)
-1
. du, dvy,
where u, = , Um=
ds ds

To compute the normal derivative of ¢ on a given
interface, we make use of the well-known formula:
oy oy oy
—=n? —+n¥ — .
on  Max Moy’ (8.3)
where (nj,, n%) is the unit normal to By, and all quan-
tities are calculated on By,,.

The unit normal vector m,, may be calculated in terms
of the vector 7,, tangent to Bo,,. The latter is given by:

Tmz(l'.{m: Q}m)- (86)
The vector:
i — (U2, +02,) 2 (Vm, —lhm) (8.7)

is clearly orthogonal to 7, and is of unit length. Hence:

%=(i¢§,+é;)—%{a}m%—ﬁma—¢}. (8.8)
on ox 0y ) Bym

For convenience, we shall use the same functions
¢u(x) and ¢,(y) within an irregular cell, which were
previously defined over the entire square of which it is a
part. The coefficients §** shall, of course, be different for
the two cells composing a square.

For the interface discrepancies, we shall take:

C0m=[¢0—¢m130m; m=1,...,5 (8.9)

0 0
Do1=[x1 vo ~KII ll/l:l (8.10a)
ony anl Bgp
[ 0
D0m=[ o _ L]; m=2,-5 (8.10b)
onp 0N, Bom

The coefficients x; and «;; represent physical constants
associated with Regions I and II respectively. (For ex-
ample, in heat flow problems, these are conductivities; in
neutron diffusion problems they are reciprocal transport
cross-sections, et cetera.)

I, is given by:

5
o=} 3 S (B, 00 07+Cyn 68 0%

nvoT noT
wroT m=1
+Cym, 057 032+ D), 847 677) (8.1
with:
B‘(L"f”()”= Pop(x) Poo(x) pov(y) por (¥) dBom (8.12a)
Bom
Cm = [ ¢ou(x) dma(x) dov(¥) dmr(¥)dBom  (8.12b)

Bom
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Dim = | ¢uu(*) o (%) $mv(¥) pmr(y)dBom . (8.12¢)

Bom
The expression for Do; corresponding to Eq. (4.6) is
as follows:

Dor= 3 Epy(ki0 —xif), (8.13)
v

where

Epy= (2 +02) {019, (x) du(¥) —tt1pu(x) ¢}, (¥) }P01
(8.14)

Dy; must be squared and integrated over Bo;. We shall
not carry this manipulation out in detail, since the calcu-
lation on Cg,, illustrates the method. Further, we shall
not write the expressions for Dgp,(m=2,--+,5), since
these are quite analogous to (8.13), with the exception
that the {¢,} are now defined in different squares.
The end result of these calculations is a set of equa-
tions similar to (7.10); however, the formulas for the
various coefficients are much more complicated. Never-
theless, there does not appear any difficulty of principle
which would prevent the programming of the general
procedure for an automatic computing machine.

9. Various generalizations
® Nonlinear problems

Two generalizations are possible here: (1) nonlinear
equations with the retention of linear expansions of ¢;
(2) nonlinear representation for ¢ (i.e., nonlinear in
{6¥}). Further, one may have both of these in one prob-
lem. In the case of (1), it is of course necessary to find
a suitable variational functional.

® Several dependent variables

One simply appends an index to ¢, so that one deals with
y?(p=1,.++,P). Naturally, there must be P equations,
but these can also be incorporated into an over-all func-
tional without difficulty in principle.

® Higher dimensions

The only change necessary here is the modification in
the expansion: e.g., y= 3 689, (x) pu(¥) po(2z). Each

o
interface B, still separates two cells, et cetera.

10. Some questions for further investigation

Since the functional J is made to be positive, the result-
ing quadratic form in {0/} has the same property. This
means that the matrix of coefficients of the {64V} is sym-
metric and positive definite. Hence, it should be possible
to set up relatively simple iterative procedures for solu-
tion which may be guaranteed to converge. This, how-
ever, has not yet been carried out.

As far as the convergence of the approximation itself
is concerned, one may expect it to be similar to that of
the classical Rayleigh-Ritz method for a single domain or
a small number of domains. No theorem has been formu-
lated or proved, however, for the present case.




If it is feasible to prepare a program for an automatic
computer to execute this method, the treatment of free
boundaries would be facilitated by the computer’s ability
to set up new difference equations for the new (free)
interface at each time step. It is also conceivable that, by
introducing some ¢, (x, y) which themselves contain dis-
continuities, the free boundaries might be ignored.

Finally, it is possible that inappropriate difference
equations, which violate “conservation laws” (or integral
identities), may, by this characteristic, contain inherent
tendencies to slow convergence when iterative methods
of solution are attempted. The two most obvious defects
of such difference equations are possible “fictitious”
sources and sinks, or “fictitious” interfaces with low
“error transmission” or “error diffusion” characteristics.
It is possible that proper attention to the requirement of
exact integral identities would remove these troubles.
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