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On the Reduction of Continuous  Problems 
To Discrete Form 

Abstract: A continuous problem, defined as one involving derivatives or integrals, i s  to be reduced to a 

discrete problem, involving  only  algebraic or evaluative operations. An approach involving cells instead of 

points is taken, and the unknown function i s  approximated  by functional representations,  each associated 

with one cell and  an associated set of parameters. Suitable operations are then defined, each associated 
with a  particular cell. These operations remove the configuration coordinates from the problem, leaving  only 

the parameters. Similar operations are defined  which  link the approximations in adjacent cells, and which 

translate certain interface conditions to relations  between parameters associated with cells. The entire set of 

relations is then the equivalent of the usual difference equations. 

A variational  algorithm is introduced in order to circumvent certain difficulties associated with matching 
equations and unknowns. This also permits the convenient retention of certain ”exact conditions” associated 

with the continuous problem. Some illustrative examples are given. 

1. Correspondence between continuous and 
discrete problems 

The most important class of problems  in  applied mathe- 
matics is that consisting in  what we may call the continu- 
ous type. In this class are included  those  problems  con- 
taining  equations  which involve the operations of classical 
analysis, viz., differentiation and integration. One might 
also include any other operations in which  limiting  pro- 
cedures  play  a  role. 

The  one thing common  to all of these  limiting opera- 
tions of analysis is that  none  can be performed  on a 
digital computer, which  does not deal  with  continuously 
varying  quantities and hence is incapable of taking limits 
by finite numerical processes. 

For this  reason, the universal  practice in solving con- 
tinuous  problems by digital computation is to  stop  short 
of the limit by solving, not  the original continuous  prob- 
lem, but  another discrete problem  which  approximates, 
in  some appropriate sense, to  the  continuous problem, 
and whose discrete  solution  approximates to  the continu- 
ous solution of the  continuous problem. By “appropri- 
ate,” we mean,  in general, that if one were to allow  a 
characteristic  parameter  (or  parameters) of the discrete 
problem  to  approach its limiting  value, then  the discrete 
problem (and its solution) would go over-in the sense 
of a limit-into the  continuous problem (and  its solu- 

tion). Examples of characteristic parameters would be 
mesh size, number of terms  in a series, time increment, 
et  cetera. 

We may think of the relationship  between the  corre- 
sponding  problems  as  a mapping of the  continuous  into 
the discrete, and vice versa. The difficulty is that  there 
is (for  the class of “proper” limiting procedures) a 
unique  continuous problem  corresponding to  an infinite 
set of discrete  problems, i.e., the  mapping  from discrete 
problem to  continuous problem is many-to-one. This is 
advantageous in theoretical  derivations of continuous 
formulations of physical  problems, but it leads to  an 
enormous ambiguity  when,  conversely, one wishes to  map 
the continuous  problem into a discrete  one. For this 
reason it is possible to write  several difference equations 
corresponding to  the  same differential equation. 

It would be very  desirable to find some  principle, or 
procedural guide, which would enable one  to  map con- 
tinuous problems into discrete  ones without  such a great 
ambiguity. Thus by setting  certain  general  requirements 
on  the discrete formulation,  one would be  led automati- 
cally to  the  proper set of discrete  equations. The exami- 
nation of one  such general procedure is the subject of 
this  paper. 
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2. General  features of "discretization" 

The essence of discretization is the replacement of varia- 
bles which have a continuous range, by variables  which 
have a discrete  range, i.e., which are  functions of an 
integral  index of some sort.  We shall briefly outline the 
two principal  methods  in use by which  this is done. 

A .  The Difference  Method 

The correspondence established by this method, which is 
the one most widely used, is as follows:lla 

( 1) The  domain D of the independent  variables (e.g., 
x", a= 1 , . . * , N )  , originally a continuous-point  set, is 
replaced by a finite set of suitably  chosen  points {x;} with 
k = 1 ,  ... , K .  

( 2 )  The dependent  variable  (e.g., #(x)), originally de- 
fined for  an infinity of points {x} is replaced by a discrete 
dependent  variable # l c ,  each of whose values is associated 
appropriately with a point xk. (The symbol xic stands  for 
the set {x;}, a = l  , - - 9 N . )  

( 3 )  The derivatives of # with  respect to  the x" are re- 
placed by corresponding finite differences, (e.g., a#/ax. 
becomes A#/Ax.). 

(4) The integrals of # over any  domain of the x-space 
are replaced by appropriately weighted sums over  the 
discrete finite set of values #li, whose  arguments x k  are 

contained  in the  domain, (e.g., /$dvx becomes ZWJ&, 
where ~ w I ~ = =  V )  . 

(5) The  continuous equations defining the problem are 
replaced by a finite set of algebraic  equations, equal in 
number  to  the number of unknown values { # J ~ } .  
(6) The solution  value #k is presumed to represent the 
value of the original function I/(&) in an  approximate 
sense, i.e., by suitably  increasing the density of points 
XI(, the  former values may be brought as close to  the 
latter ones as desired. Accordingly, the various differ- 
ences and weighted sums will approach  the corresponding 
derivatives  and  integrals,  (e.g., A#/Axa+a#/axa, 
E w ~ # J ~  +S#d"x) .  

E .  The  Fourier  Method 

In this method, the correspondence is established as 
follows:" 

( 1) The  (continuous) variables x are replaced by a  set 
of indices v l ,  vs , . , V N  (written  for  short as v), each of 
which takes on  the values 0, 1, 2, . (these sequences all 
terminate). 

( 2 )  The dependent  variable #(x) is replaced by a 
discrete  set of coefficients (or  parameters) Qv, each of 
which is a function of the indices V. The  mathematical 
relation  connecting # and 0 is in  terms of a set of known 
functions +"(x), which are linearly  independent and usu- 

356 ally orthonormal over the  domain of x. The correspond- 

k 

li 

le 

ing equation  for I/ is: 

V 

( 3 )  The derivatives of # with respect to  the xa are com- 
puted directly from Eq. (2.1). If we expand  the deriva- 
tive a+,/axa in terms of the +'s, to  obtain: 

then we can express the derivative a#/axa in terms of 
the 4's : 

(4) The integrals of # with  respect to  the x" are com- 
puted in an entirely  analogous manner. If we write: 

~ + v ( x ) d x E I v  

then 

L # ( x ) d N x = x t 9 v Z v .  V (2.5) 

(5) The  continuous  equations  are replaced by a finite 
set of algebraic  equations, equal  in  number  to  the num- 
ber of parameters. 

There  are difficulties with both of these  methods. For 
this discussion, the noteworthy  ones are as follows:l$* 

Method A: 

( 1 )  There is an ambiguity  in the  replacement of deriva- 
tives with differences, particularly where  the coefficients 
in the differential equation  are  not constant. 

( 2 )  There is no systematic way to  form difference equa- 
tions near irregular  boundaries or interfaces. 

( 3 )  It is difficult to  carry over into  the discrete formula- 
tion  the  proper analogues for  certain integral  relations 
holding in  the  continuous problem. 

Method B: 

(1) It is difficult to find basis functions which  satisfy 
the  boundary conditions. 

( 2 )  If the  function # has  strong fluctuations over  the 
domain D ,  the convergence of the expansion (2.1) is, in 
general, slow. 

In some cases, efforts have been made  to overcome 
the limitations of both of these methods. Some of the 
variations from  the pure procedures are as  follows: 

Method A: 

(1) Near  irregular boundaries, the  unknown  function is 
approximated by  a  polynomial and  made to fit exactly 
a number of mesh  nodes. This polynomial is then  differ- 
entiated  analytically, and  the derivative is then expressed 
in terms of the values at  the  nearby points.  However, 
there is still considerable  ambiguity  as  regards the  number 
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of neighboring  points, the accuracy of the expansion, the 
matching of numbers of coefficients with numbers of 
points, et cetera. This technique often makes use of cer- 
tain “fictitious points”  in order  to  make  the differencing 
more straightforward. 

(2) The usual naive  methods of integration, e.g., trape- 
zoidal and Simpson’s rules, are modified near boundaries 
SO as to accord with the difference equations which are 
finally adopted. In this way, integral identities (“con- 
servation rules”)  are maintained. 

Method B: 

(1) Neither  the differential equation nor the  boundary 
conditions are required to be satisfied exactly, but only 
to  the “best extent possible,” i.e., in the sense that some 
measure of the discrepancy is minimized. We  shall adopt 
this  point of view later in our “method of cells.”4 

3. The method of cells 

We shall adopt a point of view which  in many respects 
embodies features of both  Methods A and B. We shall 
divide the domain D into  many cells, viz., small  sub- 
domains,  generally as many in number as the mesh  nodes 
of Method A .  However, we shall treat  the cells in all 
other respects as in Method B.  

Let us first consider  some  preliminary  notational 
necessities. First  the  domain D is divided into subdomains 
D k (  k =  1 , . * , K )  . These subdomains  (cells) may be of 
fairly  general shape,  and need not be  rectangular,  tri- 
angular,  et  cetera. In  any case, given two cells, they will 
or will not  share a common interface. If they do, we shall 
call them contiguous neighbors. If the contiguous cells 
happen to be numbered k and rn, we shall denote  their 
common interface by Bl,, . 

In  many cases, we shall wish to refer to  the contiguous 
neighbors of Dh. If we denote  the “contiguous  neighbor 
function” by n(  k )  , then { Dn(k ) }  is the set of cells con- 
tiguous to Dk. Similarly, { B r c n ( k ) }  is the set of interfaces 
between Dk and  its contiguous  neighbors; hence  the 
perimeter of Dk. 

Let  the continuous  equation of the  problem be denoted 
by : 

S ( # )  = O .  (3.1) 

We  assume that Eq. (3.1), together with the  boundary 
conditions: 

a(+) =o (3 .2 )  
specify the solution # uniquely. 

Now, in order  to accomplish the reduction to a dis- 
crete  problem, we shall approximate #(x) individually 
within each cell Dl, by a  known function of x and certain 
parameters 0;: 

+ ( X ) E f k ( X ,  0;) (3 .3 )  

In  particular  (as in Method B ) ,  we may take a  linear 
function : 

+h(x)  = x o : + k v ( x ) .  (3 .4 )  
U 

We note  that  the  set of 0’s is different for each cell. The 
basis functions +lev may also be different, although  in 
many cases they  may  be the  same  for  each cell. In all 
cases we shall  assume that sums over 1) cover the  appro- 
priate ranges of v (e.g., v =  1 , . . . , MI, ,  where Mk is the 
number of 0’s in Dl,). 

Clearly, we cannot represent exactly any function of 
the general class which satisfy Eq. ( 3 . 1 ) ,  by a formula 
such  as (3.3), wherein f k ( x ,  8 k )  is predetermined in form 
so that our only freedom lies in the finite set of parameter 
values 0;. In this fact lies the approximate nature of the 
replacement (3.3). 

Our ultimate  intention, of course, is somehow to re- 
place the  function $(x) and  its continuously ranging 
arguments x“ by the function 0;; and its discretely ranging 
arguments k and v. The analytic  equation (3.1) will then 
be  replaced by a finite set of equations  for  the  parameter 
values B y .  

We  next  apply  the operator d: to f l i  in cell Dl; and 
obtain: 

d: {tlz(x, e,) = p l i ( ~ ,  eli) . (3 .5 )  

If, by accident, f l z ( x ,  8)  were an exact  solution of (3.1) 
in Dl,, would vanish,  but in general  this is not the case. 
Further, we cannot in  general select values of 0 l  which 
will make pl, vanish identically. We  can,  however, ask that 

shall: (a) vanish “to some order”; (b) be “as  small  as 
possible.” Requirement (a) is the one usually drawn  upon 
in Method A ,  while requirement  (b) is largely used in 
Method B. The great  advantage of (b)  in the cell method 
is that  one may  derive  in an  automatic  manner a number 
of equations just equal  to  the  number of parameters. 

4. Variational formulation of cell equations 

We  shall now consider the way in which we might set up 
a  variational functional so as to obtain the  proper set of 
equations for  the 0;. These would then be our discrete 
equations  corresponding  to  the  continuous  equation 
(3.1). 

Our method is to set up a functional, i.e., a function of 
the el, derived from  the  operator d: and  the approxima- 
tion fk(x,81,), which is to be minimized by the  appropriate 
selection of the values for Ox, and which would in fact 
take on its absolute  minimum for the true solution #(x). 

There  are various ways of doing  this,  depending on  the 
form of d: . If d: is a self-adjoint, definite operator, then 
(3 .1 )  is derivable as the  Euler equation of a  variational 
problem. An example is Laplace’s equation: 

which is the  Euler equation for the $(.x, y )  which mini- 
mizes the integral: 

(4.2) 

Hence, we might take  for  our functional  the  expression 
I in this case. 35: 
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I - { p k ( x ,  6,) } ' d D k  = minimum, all k . 
. = 2 6 ,  (4.3) 

There  are some important points to be observed here. 
One is that  the object of an integration  over  a domain is 
to eliminate x from  the  problem, leaving only the indices 
Y ,  k. Further, $(x) is eliminated also, leaving only 6;. A 
second point is that we really  should  minimize the  sum 
of all the z k  simultaneously, i.e., 

J = x I k = x +   J ! p k ( x ,   6 k ) ) ' d D k  = minimum . (4.4) 

However, we now notice that we have  carried  the 
separation of D into { D k }  too  far, i.e., we have a separate 
representation for  each cell, and a separate  functional  to 
minimize  independently for  each cell. Thus (4.3) and 
(4.4) are equivalent. 

In  order  to find a natural  means  for tying  together the 
various $k so as to  form a $ which  represents the solution 
to (3.1) and (3.2) in D,  we draw  upon  the requirements 
laid down  by the existence theorems for  partial differen- 
tial equations. 

For  the purposes of this argument, we shall  assume 
that $ is an elliptic partial differential operator of the 
second order.  For this type of operator,  the  appropriate 
uniqueness  requirements are  that $ should be  continuous 
and  have  continuous first partial derivatives. 

Clearly, we cannot  require these rather stringent  con- 
ditions to hold  exactly for  our  approximation { $ k } ,  so we 
shall  set up  the following discrete  analogue of these con- 
ditions and  incorporate it into  our  variational principle. 

The continuity of { # k }  fails on  the interfaces B k m .  This 
failure is measured by the difference 

k k  

Figure I 

Now,  when we sum I k m  over all k and m (without 
repetitions) we find that  the $k are coupled  together. 
Figure 1 shows how $2 ,  and #3, for example, are 
linked  together by their interface conditions on B I Z ,  B 2 3  

and B 1 3 .  

We  add x I k m  to J (of (4.4)) to  obtain  the complete 

functional (also  denoted by J )  : 
k m  

r 

C k m =   [ $ k ( x ,  6 d  - $ m ( X ,  e m )  I B k m .  (4.5) { $ k - $ m } ' d B h  
km I Bkm 

The discontinuity  in the tangential  derivative of $ along 
Bkm is included in C k m ,  and is expressed simply as the + + v x /  {% - + ) l d B k m .  (4.8) 
tangential  derivative of C k m ,  viz., a C k , / a r .  However, k m  Bkm 

the discontinuity  in the  normal derivative  must  be com- 
puted separately as follows: 

We notice  now the  important  fact  that J is a  function 
of the 0 ; only: 

D - k m -  [ ( X ,   6 k ) -  (4.6) J = J ( e ; ,  e ;  , - -, e ; ) .  (4.9) - 
To obtain  the  equations  for  the  parameters e;, we simply 

(The  normal derivatives are  both  taken in the  same  differentiate J with  respect to  each e; ,  and  set  the result 
direction.) equal  to  zero: 

ingredients, we square C k m  and D k m  and integrate the - 
squares over B k m  as follows: ae; 

In  order  to  form  the  proper  functional with  these 
aJ =o ; v=l,. . . , M k ;  k=l , * * e  , K .  (4.10) 

x Eq. (4.10) are now the  equations pertaining to  the 
Ikm= -\{$k"/'rn}'dBkm discrete problem,  and they correspond  to Eq. (3.1). 

B k m  It should  be noted, finally, that  the assigned conditions 

+ 2 Bkm {- an - * ) 2 d D k m .  an (4*7) expressions for C k m  or D k m .  If the  boundary condition is 
on  the  boundary of D itself require somewhat different 

of Dirichlet  type, we must  replace (4.5) by: 
The multipliers X and 7 express the weights we wish to 

358 attach  to continuity and  to continuity of the derivative. [ C k l B k =   [ $ k ( x ,   e k )  - A  ( x )  I B k  - (4.11) 
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If it is of Neumann type, we must  have: 

(4.12) 

of each.  However, we should never require  more  exact 
relations than there are parameters e$. 

Our discrete  equations  corresponding to  the functional 
J are as follows: 

where the subscript Bk indicates  the  interface between 
cell Dk and the region outside D .  Only those values of k 
are included, for which D k  is a  boundary cell. 

5. Incorporation of auxiliary conditions 

In many  problems of physical interest, it is  of great 
importance  to preserve  certain  integral  relations (or 
other auxiliary conditions) exactly, even though the solu- 
tion function $, which is required  to fulfill these relations, 
satisfies the basic equations of the problem only  approxi- 
mately. 

An example of such  a  relation is Gauss’ Theorem ap- 
plied to  the Laplacian  operator.  Let # satisfy Eq. (4.1 ) in 
the interior of D .  Then by Gauss’ Theorem: 

where B is the  boundary of D .  Hence we may require, in 
the discrete  problem, that 

exactly. 
We may actually alter  the  discrete  equations (4.10) 

for  the 6; in a systematic manner, so that if #k satisfy 
these  altered discrete equations, they will also automati- 
cally satisfy the auxiliary relations which have influenced 
the alteration. 

Let us first write such relations in a more general form. 
We first associate with each cell Dk an exact  condition 
which must be fulfilled. Denote this by E k (  0,). An exam- 
ple would be the following: 

E k ( 6 k ) G  s ( f k ( X ,  th)}dDk= P k ( &  h ) d D k ,  (5.3) 
h k  h, 

which is distinct from condition (4.4), insofar as we did 
not require  the  integral  appearing  therein to vanish. 

Another possible exact relation would be the following: 

We may easily incorporate these conditions into the 
variational principle by using Lagrange’s Method of 
Multipliers. We simply add to  the functional J a  linear 
combination of the E k  and F k m ,  with multipliers f f k  and 
,&me Hence, we have: 

J = x z k + x  {+Xc$,, + ~ ~ D ~ m } d B k m  
k krn I Bkm 

+ x f f k E k + x P k m F k m  (5.5) 
k kna 

Note  that we may  have several conditions of each of 
the types represented by C, D ,  E,   F,  instead of only  one 

for all V ,  k and m. 

6. Remarks on the discrete equations 

If we focus our attention on  one of the cells, say Dko, we 
notice that  the set of discrete  equations  corresponding to 
ko is as follows: 

(6.1) 

Now we  notice an interesting property: Because elo 
enters  into J in connection with its contiguous neighbors 
only, via Ckom, DkOm and F k o m ,  the differentiations in 
(6.1) will cause to  drop  out of these equations all et 
which are  not associated with contiguous neighbor cells 
Dn(ko) (see  notational  note in Section 3) .  Hence, after 
eliminating ffko and p k o n ( k 0 )  from these equations,  the re- 
sulting set may be written: 

Wlo (Big, &(kg) ; X, 7) =o ; v = l , .  . . , M k o  3 (6.2) 

and we see therewith that  the “principal” equations for 
elo involve only  the  parameters associated with contigu- 
ous neighbor cells. Hence, these discrete  equations resem- 
ble difference equations  insofar  as the  latter also connect 
nearest neighbors. 

We may regard  Eq. (6.2) as  a  discrete  analogue  to 
(3.1) in the following sense: A differential equation may 
be thought of as the expression of a certain  connection 
between the characteristics of # at “infinitely near” 
points. In (6.2), the elements being connected are  not 
“infinitely near,”  but  only “near.” 

7. Application to Laplace’s equation-regular cell 

We shall now consider a simple example to illustrate the 
application of the cell method. We shall consider the typi- 
cal  cluster of cells as shown in Fig. 2 (overleaf). 

For convenience, we  have labeled the cells as illus- 
trated.  Without loss of generality, we can assume the 
squares to be 2 units on each side, The coordinate system 
for each square will have its origin at the  center, and  the 
x and y coordinates  vary between - 1 and + 1.  

We shall expand #(x, y )  in a series of functions which 
form  an  orthonormal set in each  square. These shall be 
denoted by {+*(x) + “ ( y ) } .  Later, we shall  actually use 
the sine and cosine functions,  but for notational sim- 
plicity, we shall  defer this. First, we have: 

For  the functional J ,  we shall use expression (5.5), 
except that lo shall be given by: 35 b 
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The computation of lo, with the  help of the orthonor- 
mality of the +’s, yields the following: 

n.  

or dy . d+ d + )  
(7.3) 

The expression representing the degree of discontinuity 
of + between cells is as follows: 

(7.4) 

where 4 represents +( + 1) and 4 represents +( - 1). 

of &//an between cells is as follows: 
The expression representing the degree of discontinuity 

k 2 + d x d y  = 0 

and 

il,, ($ - $)dBoi=o ; i = l ,  + , 4  . (7.7) 

In terms of the series (7.1), condition (7.6) becomes: 

(7.9a) 

+ + 2;1(ey+; -sy+; )  =o (7.9b) 
360 V 

Figure 2 

(7.11) 

The additional  equations  are, of course, (7.8) and  (7.9). 
We shall now assign, for  the {GEL}, the sines and cosines 

as follows: 

+ o ( x )  =l/YT (7.15a) 

+P(x) =cosprx , p=2p . (7 .15~)  

&(x) =sinprx,  p=2p-l  (7.15b) 
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Notice  that, in all cases, we may write  p = [ - ’:’ ] , where 

the  bracket means “the integral part of.” With this nota- 
tion, we find for A,, the following result: 

A, ,=x~~~S, ,  ; p =  [GI. (7.16) 

We find further  that  Eq.  (7.8) is automatically satis- 
fied, and  that  the coefficient of 01 in  (7.14) vanishes. 
Hence, a no longer appears in the problem. Further, if 
we  denote  the parity of p by 6 ( p ) ,  we have: 

B,,=O,  if @ ( p )  #@(u) (7.17a) 

Bzp,29=2h( - l ) p + q  (7.17b) 

B2p-1,2p-1=277~~pq( - l)p+q (7 .17~)  

CP,=D po - - 3Bpa (7.18) 

and 

EMY=0 if p ,  v fO ,  or@(p)  =@(v) (7.19a) 

E2p-1,0=(POlfP03)PX(-l)p (7.19b) 

E o , z , - ~ = ( P o ~ + P o ~ ) ~ x ( - ~ ) * .  (7 .19~)  

We shall  assume  a simple approximation for #o, viz.: 
1 

+o= z ey+,(x)+w(Y) (7.20) 
f l = O  
w=o 

which contains the 4 parameters e?, Oil and 02’. The 

equations  (7.10)  and  (7.9)  reduce to: 

4 e ~ o - ( e ~ o + e ~ + e ~ o + e ~ ) = o  (7.21a) 

e;o  e;o = 610 (7.2 1 b) 

e o 1  (7 .21~)  

4 I +  - si1 -(e;l+e;l+e;l+ey) =o . ( 7 . 2 ~ )  ( 2:) ) 
The first of these  equations is the familiar  Laplace 

difference equation  (in this case, for  the mean values 
0;’)). In  order  to  maintain consistency, it is necessary to 
require, as indicated in  (7.21b)  and  (7.21c),  that 
O ; o = O ; o  and O ; l = O z l .  Hence, these parameters  are  com- 
pletely uncoupled from  the  interior of D ,  but are deter- 
mined by the  boundary conditions alone. In  (7.21d), if 
~ + o o ,  which would impose  complete  continuity of a$/& 
(to  the  approximation as indicated), we see that {e:’} 
also would satisfy Laplace’s difference equation. 

8. Laplace’s equation-irregular cell 

We shall  now  analyze  a more difficult problem, viz., the 
case of an irregular (interface) cell. We  shall  consider an 
irregularly disposed interface between two regions, in 
each of which  Laplace’s equation is to be satisfied. How- 
ever, the  interface condition is slightly more complicated 
than before. Figure 3 depicts the geometry. 

REG 

“ 

“ 

// 

” 

Figure 3 

We  notice that  Do  has five contiguous  neighbors,  in- 
stead of four,  and  that  one of them ( D l )  is not  in  the 
same “physical”  region  as Do. 

As far as the  functional  to be minimized is concerned, 
it shall  be  identical in  content with (5.5), but now the 
v?.rious integrals will have  to be computed differently. 
Starting with l o ,  we shall have: 

++,(x)+o(x)+:(Y)+:(Y)}dxdY. (8.2) 

In  order to write the integrals over interfaces  in a con- 
cise form, we must refine our representation of the 
interfaces. Let  each  boundary segment BO, be  repre- 
sented as a  parametrized curve as  follows: 

Bo,: x = u , ( s ) ,  y = W m ( ~ ) ;  - I < S < l .  (8.3) 

The functions u,(s) and v,(s) are constructed  in such 
a manner  that  the point ( x ,   y )  moves from  one end of the 
interface segment to the  other in the positive direction 
(as indicated by the  arrows  in Fig. 3) as s varies from 
- 1 to + 1. We may now write  any line integral  along 
Bo, in the  form: 3t 
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where urn - , urn= - * 
- dum * dv ,  

ds ds 

To  compute  the  normal derivative of $ on a given 
interface, we  make use of the well-known formula: 

where (ng, nk)  is the  unit  normal  to Bom, and all quan- 
tities are calculated on Bo,. 

The unit normal vector n, may be  calculated in  terms 
of the vector T ,  tangent to Born. The  latter is given by: 

h ' .  n , = ( u ~ + v ~ ) - + ( v , ,  -urn) (8.7) 

is clearly orthogonal  to T ,  and is of unit length. Hence: 

For convenience, we shall use the  same  functions 
+p(x) and +,,(y) within an irregular cell, which were 
previously defined over the  entire  square of which it is a 
part.  The coefficients BPv shall, of course, be different for 
the two cells composing  a  square. 

For the  interface discrepancies, we shall take: 

c o m = [ $ o - ~ m l B o r n ;  m = l , * . *  9 5  (8.9) 

(8. loa) 

, 5 .  (8.10b) 

The coefficients K I  and K~~ represent physical constants 
associated with Regions I and I1 respectively. (For ex- 
ample,  in heat flow problems, these are conductivities;  in 
neutron diffusion problems  they are reciprocal transport 
cross-sections, et  cetera.) 

IC  is given by: 
5 

I C = :  { B ~ ~ ~ T e ~ 8 ~ + C ~ ~ ~ T 8 ~ v 8 ~ ~  
pVOT m=1 

+ C b ~ ~ v e g 8 ~ K + D ~ ~ J T 8 ~ , " ~ }  (8.11) 

with : 

(8.12a) 
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(8.13) 

Dol must be squared  and integrated  over Bol. We shall 
not carry this manipulation  out in  detail,  since the calcu- 
lation on Corn illustrates the  method.  Further, we shall 
not write the expressions for Do,(m=2 , . * , 5 ) ,  since 
these are  quite analogous to  (8.13), with the exception 
that  the { c $ ~ }  are  now defined in different squares. 

The  end result of these calculations is a set of equa- 
tions  similar to  (7.10) ; however, the  formulas  for  the 
various coefficients are  much  more complicated.  Never- 
theless, there does not  appear  any difficulty of principle 
which  would prevent  the  programming of the general 
procedure  for  an  automatic  computing machine. 

9. Various  generalizations 

Nonlinear problems 

Two generalizations are possible here:  (1) nonlinear 
equations with the retention of linear  expansions of JI; 
(2) nonlinear  representation for $ (i.e., nonlinear  in 
{ 0.)). Further,  one  may have both of these in  one  prob- 
lem. In  the case of (1) , it is of course necessary to find 
a suitable  variational functional. 

Several dependent variables 

One simply  appends an index to $, so that  one deals  with 
$ p ( p =  1 , . , P )  . Naturally,  there must  be P equations, 
but these can also  be incorporated  into  an over-all func- 
tional  without difficulty in  principle. 

Higher dimensions 

The only change necessary here is the modification in 
the expansion: e.g., $= 2 W ' ' + p ( x ) + v ( y ) ~ u ( z ) .  Each 

interface Bk, still separates two cells, et  cetera. 

10. Some questions for further investigation 

Since the  functional J is made  to be positive, the result- 
ing quadratic  form  in { Or} has  the  same property.  This 
means  that  the  matrix of coefficients of the { 8gV}  is sym- 
metric  and positive definite. Hence,  it should be possible 
to set up relatively simple  iterative  procedures for solu- 
tion  which may be  guaranteed to converge. This, how- 
ever, has  not yet been carried out. 

As far as the convergence of the  approximation itself 
is concerned,  one may  expect it  to be similar to  that of 
the classical Rayleigh-Ritz method  for a single domain or 
a  small number of domains. No theorem  has been formu- 
lated or proved,  however, for  the present  case. 

P O  



If it is feasible to  prepare a program  for  an  automatic 
computer  to execute this method, the  treatment of free 
boundaries would be  facilitated by the computer’s ability 
to  set  up new difference equations for  the new (free) 
interface  at  each time  step. It is also conceivable that, by 
introducing some + p ( x ,  y )  which themselves contain dis- 
continuities, the  free boundaries  might be ignored. 

Finally, it is possible that  inappropriate difference 
equations, which violate “conservation laws” (or integral 
identities), may, by this  characteristic, contain  inherent 
tendencies to slow convergence  when  iterative  methods 
of solution are  attempted.  The  two most  obvious  defects 
of such difference equations  are possible “fictitious” 
sources and sinks, or “fictitious” interfaces  with  low 
“error transmission” or  “error diffusion” characteristics. 
It is possible that  proper attention to  the  requirement of 
exact  integral  identities would remove these troubles. 
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