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Abstract: A velocity-modulated electron-beam microwave tube is described which can be operated as a

frequency divider. Its operation is analyzed in terms of velocity-modulation bunching theory, neglecting

space-charge forces. Because of the existence of two stable states opposite in phase, such a divider can

be advantageously employed in a microwave logical system. The transient behavior of the device is dis-

cussed, particularly with reference to the time required to switch the device from one of its stable states

to the other. Factors involved in the minimization of this time interval are analyzed.

1. Introduction

For certain computing applications there is a need for a
microwave frequency divider, which would switch from
one to the other of its two stable phases in an extremely
short time. Such a device, which will be referred to as the
klystron divider, consists of a single-cavity klystron oscil-
lator, of either the drift tube or reflex type, with an addi-
tional bunching cavity (called the prebunching cavity)
placed between the cathode and oscillator cavity, as
shown in Fig. 1. The oscillator cavity is tuned to the sub-
harmonic frequency, henceforth assumed to be one-half
the input frequency, while the prebunching cavity is
tuned to and is excited by the input frequency. Such a
device can be operated as a frequency divider simply by
setting the beam current at a value somewhat below that
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Figure I Reflex-type frequency divider.

of the starting current for the oscillator. In a manner to be
described, the excitation of the prebunching cavity and
the concomitant prebunching of the beam makes the elec-
tronic conductance of the beam at the subharmonic
frequency sufficiently negative to permit the amplitude
build-up of the subharmonic in the oscillator cavity.

A qualitative description of the mechanism involved is
particularly simple when it is possible to neglect the
velocity modulation of the prebunched beam compared
to the density modulation it has developed by the time it
has entered the oscillator cavity. This is, in fact, a good
approximation when the prebunching drift angle is
chosen to be large compared to the effective oscillator

*See Reference 1.
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Figure 2 Schematic diagram showing formation of bunches in drifi-tube type frequency divider.

drift angle. In this case one may imagine tight bunches of
electrons entering the oscillator cavity at every half-cycle
of the subharmonic oscillation. It is clear that such a
bunch entering at time of zero subharmonic field will not
couple to it at all. On the other hand, if the bunches enter
at the times of maximum field amplitude (Fig. 2), alter-
nate bunches will be accelerated and decelerated, leading
to a current component in the beam at the subharmonic
frequency during its second passage through the oscillator
cavity gap. Furthermore, the subharmonic component is
produced more efficiently in the prebunched beam than
it would have been in a uniform beam carrying the same
direct current. Thus one can see why a definite phase is
preferred, and why the subharmonic can build up in the
presence of prebunching even when the beam current is
inadequate for it to build up in the absence of prebunch-
ing.

It might be noted here that even when the beam current
exceeds the starting current, the prebunching, under cer-
tain circumstances, may still act to control the oscillator
frequency and to fix its phase. For such operating condi-
tions the device may be thought of as a locked oscillator
rather than as a frequency divider. This distinction is
probably not of any practical significance, however.2: 3

2. Theoretical analyses

The operation of a klystron divider can be analyzed by
methods typically applied in the study of klystrons. In the
case of klystrons the effect of our harmonic electric field
in the buncher gap on the motion of the beam electrons
is used to compute the electronic current in the catcher
gap. The ratio of the catcher current to the buncher volt-
age is then used to define an electronic admittance (or
transadmittance, depending upon whether the buncher
and catcher gaps do or do not coincide). A steady-state
operating point, characterized by an amplitude and a
frequency, is determined by requiring that the electronic
admittance match an appropriately defined cavity admit-
tance. In the case of the klystron divider, it is also neces-
sary to take the effect of the prebuncher fields into
account. This gives rise to an electronic admittance which
depends upon the amplitude and phase of the prebuncher
voltage. An operating point is again determined by requir-
ing an impedance match. In the case of divider action,
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the frequency is determined by the prebuncher input; the
operating point is characterized by an amplitude and
phase.

Certain idealizations frequently made in the study of
klystrons will be assumed in our discussion. These consist
of the assumptions (1) that the velocity modulation is
small compared to the mean velocity of the electrons, (2)
that the drift spaces are field free, or, in the reflex case,
have a constant retarding field, (3) that space charge
forces are negligible. For the device envisaged, the con-
dition (1) will be satisfied. While (2) may not be satis-
fied, the conclusions drawn will remain valid so long as
certain of the drift angles are understood to be effective
drift angles. Although the neglect of space-charge forces
will probably not be justified for the device in question,
it is hoped that the derived formulas will provide useful
information.

® a) Bunching theory

We begin by computing the subharmonic component in
the beam current at its second passage through the oscil-
lator gap that is induced by a specified rf voltage at the
input frequency at the prebunching gap and by an inde-
pendently specified voltage at the subharmonic frequency
at the oscillator gap.

Let ¢, be the time at which an electron passes through
the prebunching gap, ?. the time of its first passage
through an oscillator gap, t; the time of its second passage
through an oscillator gap. (The two passages may refer
to the same or distinct oscillator gaps.) Let o be the
angular frequency of the subharmonic and 2o that of the
input. We take for the gap voltages V; sin 2ot and Vi cos
{wt+B). Then the times #1, t5, t5, are related by

ota=ol+8,— W1 sin 2oty
wt3=wt2+02—W2 sin 20t — X cos (wt2+ﬁ). (1)

6, and @, are clearly the drift angles associated with the
means of the time differences t,—1#; and t;—1,, respec-
tively. W1, W, and X are proportional to the respective
voltage amplitudes at the prebunching and oscillator gaps.
They may be written in the form

MiV6, MV, MVi6),
My, My 2
2V, 2V, 2V,




Here V, is the dc voltage; M,, M5 beam coupling coeffi-
cients; 0, 6, effective drift angles. For the field-free drift
tube case and the uniform repeller field case #1=¢; and
62=16]. The ratio W,/W, is positive for the drift-tube
case but negative for the reflex case.

The current component of frequency o at the second
oscillator gap passage is given by

. Ml e
jg= 220 / e ©t) d(wty), (2)

T w

where I, is the beam current.
An electronic admittance may be defined by dividing
ig by the voltage at the oscillator gap. Thus

iy
Vsejﬁ :

To evaluate the integral appearing in the expression
(2) for ig, one uses the relation (1) and the well-known
Fourier series expansion of exp[jX cos(wt+¢)] (re-
garded as a function of o), obtaining

M8, o

Y, =
2 Vo

e-6s
> {(~~ 1)» %}%@ [T (2pWy— W) edery
=0

+Jp+1(2(p+1)W1+Wz)e‘j2("+1)7]}- (3)

Just as is the case for the klystron oscillator, divider
operation is characterized by various drift-angle modes.
That is, operation is centered about values of 6, given by
f2=2m(n+4%). For large values of 6, the variation of §;
and consequently W, for a given particular mode is
unimportant and hence can be replaced by 4, ,,, the value
of 6, at the center of the mode. Hence we write

Yo n=je % G, nPr(X, W,v),

with
Iy 2lp’ I
Ge’nz 2V0 M IGZ,nIZ%Mz loz,n[GO
W
W=W,+|W.|; Wi= ¢“—a
91,n+I02,n|

Wy= ——=2 02"”W,

0nt+105ml

Pt W) =3 (—pyr 2
»=0 X

[Jo(2pW1—Wo)eiy+ 1, 2(p+1) W1+ Wz)e—jz(pu)y]} .

The quantity je-7% G, , is precisely the small-signal ad-
mittance for a klystron oscillator. The n dependence of
the quantity P, occurs only through W; and W.. In the
special cases W1=0 or W,=0 it becomes independent
of n.

® b) Operation as a frequency divider

Steady oscillations, of course, take place in a given mode
when

Ye,n=_Yc(¢°) s (4)

where Y.(o) is the admittance of the oscillator circuit.
The quantities W, v, n and 6§, are all externally fixed oper-
ating parameters. The quantities which are determined by
the Eq. (4) are, of course, the subharmonic level via X,
and the phase via y.

For a discussion of the conditions under which oscilla-
tions can begin, it is convenient to define a small-signal
admittance

},0,’n:jevj‘92 Ge,n Pn(os W3 7)
Pu(0, W, y) =Jo(Ws) +J1(2W 1+ W) eIy . (5)¢

In Fig. 3, P.(0, W,y) is plotted in the complex
plane for a particular Wy, W, and a full cycle of y. The
curve is simply a circle of radius J;(2W;+W;) centered
on the real axis a distance Jo(W:) from the origin. Also

plotted on the same plane is the admittance ratio j——=

el plotted for a range of values of 2 centered abéylrt
82, ». Two such curves are plotted corresponding to differ-
ent beam currents and hence to different values of Ge, .
These curves are simply arcs of circles centered at the
origin. One of these arcs fails to intersect the P, (0, W, y)
circle and hence corresponds to a situation in which the
beam current is too small to permit the subharmonic
amplitude to build up. For the second arc, the two inter-
sections with the P, (0, W, y) curve determine the range
of 62 about 6>, » for which frequency division takes place.
They also determine the range over which v, or the phase
of the subharmonic, varies as f, is varied. Also plotted in
Fig. 3 are curves of P,(X, W, y) for constant X as y is
varied and for constant y as X is varied. The two types of
curves for convenience have been plotted in the upper and
lower half-planes, respectively. The curves of constant
X are, in fact, symmetric with respect to the real axis,
while those of constant y have a reflection in the upper
half-plane corresponding to the opposite sign of y. From
the intersection of these curves with the admittance ratio
arc, one can read off the relative power output (propor-
tional to X?) and phase as a function of #2. The results
obtained are plotted in Fig. 4.

The minimum starting current in a given mode is, of
course, determined by the maximum of P, (0, W, y). For
fixed W and ¢;/(6;+]6;|) this maximum occurs either
at y=0 or y==/2, accordingly as 2W.+ W, is positive
or negative. In Fig. 5 this quantity, which is equal to
Jo(W2) +J1(|2W1+Ws|) is plotted as a function of W
for various values of ¢;/(8:+(8;|), while in Fig. 6 its
maximum in W is plotted as a function of 8;/(8:+16;|).

® ¢) Operation as a locked oscillator

The starting condition for oscillation in a given mode,
when the input voltage V; is zero, is simply G, .>G,
obtained essentially from (4) and (5) with W=0. It is
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Figure 3 Pu(X,y) for y fixed and X varying, and for X fixed, y varying for W:=0.92, W;=0. Also plotted:
j(Y./Ge,n) € for two different beam currents.

apparent from Figs. 5 and 6 that a wide range of values Figure 4 Relative power output and phase as a
for W and 6;/(8;+8;|) exist for which operation as a function of 02— 02, .

frequency divider, rather than as a locked oscillator takes

place. Thus, whenever the real part of P(0, W, y) ex-

ceeds unity, there exists a range of beam currents for

which an amplitude can build up in the oscillator cavity

only when V; is sufficiently large. On the other hand, by

increasing the input current one can certainly arrive at a

point where ordinary klystron oscillator operation can

take place. The question to be answered is whether or not

the application of the input frequency will permit the

oscillations to continue incoherently, or whether instead

it will enforce a particular phase and frequency on these

oscillations. It is clear, of course, that Eq. (4) can still be | \ |
satisfied when G, , exceeds the zero-W free oscillations
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threshold. Therefore, locked oscillations are certainly | 100 02~ 02,
possible. Hence what we must first determine are the "
conditions under which free oscillations for non-zero W - 200 Y

348 are also possible.
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The essential characteristic of free or incoherent oscil-
lation is the fact that the frequency in the oscillator cavity
is no longer precisely one-half that of the input fre-
quency. A modification of the analysis in Part a), appro-
priate to this situation, follows:

Let o be the frequency of V5, » one-half the input fre-
quency as before. If o—e’ is infinitesimal compared to o,
and if in addition one confines his attention to time inter-
vals short compared to 27/|w—o'|, then the fact that
o— 0’70 has essentially no effect on the bunching process.
On the other hand, the fact that o is not equal to o' makes
itself felt over long time intervals via the phase y, which
is continually changing on account of this inequality. In
terms of the discussion of Part a), we should write
cos(o't+B) as cos[wt+B'(t)] with B(1) =B+ (o' — )1
and carry through a derivation of the electronic admit-
tance Y., ignoring the time dependence of 8'(or y'=f’
+6y). In the final expression for Y, . y should, of
course, replace y so that the resultant electronic admit-
tance is slowly varying, rather than constant. Hence one
must expect that the incoherent oscillations are not con-
stant in amplitude but are in fact amplitude modulated at
the angular frequency 2(o—w'). More important, we
conclude that the average operating point is determined,
at least approximately, by the condition

— i Ji(X
~Yi(o) =Ton=ie 7% G, 21—)‘()JO(W2> ,

where Y., , means that the admittance has been averaged
over y. The average amplitude and the frequency o’ are
then determined by this equation in a manner corre-
sponding precisely to the ordinary klystron oscillator.
Accordingly, the starting condition for these oscillations
in a given mode is G.(0') <G, Jo(W ). Since Jo(W;)
<1 for all W, different from zero, it is apparent that a
non-zero W, can act to suppress the free oscillations and
hence that a region of locked oscillation exists.

Figure 5 Reciprocal of relative starting current as
a function of W for various values of
n=0, ./(61+18, . 1).
(Note: vertical scale begins at 1.0)
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It should be noted that the crude averaging we have
used for estimating this suppression factor is valid only
when the amplitude-modulation factor is small. If the
circuit admittances at o’ and 20—« are comparable this
will not be the case. Instead, operation at o’ will be accom-
panied by a comparable component at 20— o' leading to
typical two-frequency operation. For this situation the
effective beam conductance can be nearly as large as in
the case of locked oscillation or divider operation. The
possible competition between divider operation and two-
frequency operation should be studied, as it has an impor-
tant bearing upon the question of phase stability. This
question, however, will not be discussed here.

The origin of the suppression of free oscillations by
prebunching can be traced to the phase aberration arising
from the velocity modulation of the incoming beam. To
elaborate, the electronic admittance for a beam of uni-
form density and velocity entering a klystron oscillator is
given by

Y, =jG.e7f ——————ZJI(X)

If this incident beam contains a velocity and density
distribution which is uncorrelated with the oscillator
frequency, then it is appropriate to average Y, over these
distributions. The density occurs only in the factor G.,
and then linearly, so that the averaging simply yields the
same Tesult as using the mean density in G.. On the other
hand, the velocity modulation of the beam has an effect
on the factor e-7¢ that is essentially the same as the typical
reflex-klystron phase aberration arising from different
electron transit times in different parts of the beam cross-
section. Indeed, we should take

m
/ e—]'(00+¢)P(¢))d¢ s
~Pm

where p(¢$) represents the relative density of electrons

Figure 6 Reciprocal of relative starting current as a
function of 7 at its maximum in W.
(Note: vertical scale begins at 1.0)

MAX. [Jo(w2)+ 14 (2W1+Wz)l]
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with the phase deviation ¢ from the mean phase ¢o, and
¢n is the maximum deviation. In the case of a sinusoidal
modulation

1 1
T VWA’
where Wa=d¢,,, and the above integral yields e~70 Jo(W).

Hence the averaged admittance in the presence of pre-
bunching is again found to be

251(X)
—

For the applications of this device to be discussed,
there is no practical difference between the locked-oscil-
lation region and frequency-dividing region, since the
input voltage will be maintained steadily. Hence in the
following sections this distinction will not be emphasized.

We have seen that as the beam current is increased
from zero, the device passes from a condition of no-oper-
ation to one of frequency division and then to one of
locked oscillation. The distinction between these latter
two regions is one of terminology only, the designation
“locked oscillation” being merely in recognition of the
fact that free oscillations could take place in the absence
of the input voltage. As the beam current is increased
still further, however, the threshold for free oscillations
in the presence of the input voltage is passed, and both
types of operation become possible. Which type will take
place in fact can be expected to depend upon the starting
conditions. Since the applications of the device require
rapid variations in the amplitude of the subharmonic,
and since phase stability is essential, it would appear pru-
dent to avoid operating conditions which could permit
free oscillations. Limitations imposed by the requirement
of suppression of two-frequency oscillation, however,
may be more stringent than those implied by the above
discussion.

p(e)=

Ye:fGee‘MO Jo(W3)

3. Design considerations

The discussion of Section 2 applies to any klystron-type
frequency divider. In this section some special problems
associated with the proposed application will be discussed
briefly.

In operation, the prebunching cavity will be provided
with a constant input frequency 2. The oscillator cavity,
however, will also be provided with an input of frequency
o, and amplitude 4, zero, or —A. The phase of 4 will be
so chosen that the two stable phases of the divider for
zero subharmonic input just coincide with those of 4 and
—A. There will be four distinct steady-state operations:
one with the input A4, another of equal amplitude and
opposite phase with — A, and two of equal but smaller
amplitudes and opposite in phase, associated with zero
input. At any instant the input amplitude may change
from one of its three values to another. In general, one
wishes to minimize the time required to approach the new
steady state, especially the switching time, i.e., the time
required to change the sign of the amplitude in the oscil-
lator cavity. The theory of the switching process will be
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discussed in Section 4. The essential features as they
affect design, however, will be noted here.

The principal factors interfering with the rapid switch-
ing are the loaded Q of the oscillator cavity and the
oscillator drift angle f.. The values of 8, associated with
typical klystron-oscillator design would not be unsatis-
factory for this application. Hence we will assume that
the chief limiting feature is Q. The minimum switching
time will be proportional to Q/«. Hence the design
should minimize this quantity. As an example we note
that for o/27=10 kme, a Q of 30 would be satisfactory,
although a smaller value would be preferable. A loaded
Q of 30 is considerably less than is in common use for
low-level oscillators and the question arises as to whether
such low Q’s are possible.

As Q is reduced, the circuit admittance increases. This
increase must be compensated for by an increase in the
electronic admittance. Now

Ge,n=3M2?16) |G, .

Essentially no significant increase in M,? is possible. In
the case of the drift-tube klystron 6, ,=02,.; hence very
little increase in 6, , is possible either, if this quantity is
not itself to become a limiting factor in the switching
time. Therefore, G,,, can be increased only by increas-
ing Go. The rate of increase of G.,, with G is consider-
ably decreased by the effects of space charge so that quite
large values would be needed. This would in turn lead to
a device with a rather high operating level. In the case of
the reflex klystron, |4, ,| is generally greater than |02, .|
owing to the fact that the electrostatic retarding field
generally weakens as the reflector is approached. It is
hoped that this effect can be considerably enhanced by
means of careful design of the reflector field. One might
hope in this way to achieve a satisfactory low-Q device
operating in the milliwatt range. It might be noted in
connection with this reference to a reflex design that it
is probably important to avoid multiple electron transits,
so that the usual precautions to avoid them should be
incorporated into the design of the reflecting field.

The switching time may also be affected by the magni-
tude of the subharmonic input 4. Indeed, for switching
to occur at all, this amplitude must exceed some critical
value (see Section 4). Furthermore, for an amplitude 4
which exceeds the critical value by an arbitrarily small
amount, the switching time can be arbitrarily long. On the
other hand, an unnecessarily large value of 4 may lead to
an inconveniently large difference between the operating
amplitude obtained with input A4 versus that obtained
with zero input. Both of these amplitudes are determined
by the behavior of the electronic admittance as a function
of X, and hence by the behavior of P,(X, W, vy). In oper-
ation, 4, , would generally be chosen so that y=0 or 7/2
accordingly as 2W5+ W is positive or negative. Also, W
would be chosen large enough to maximize the small signal
admittance, or perhaps in certain cases, larger. In Fig. 7,
P,(X, W, _?r_) is plotted as a function of X for values of
6,0/, ,+10; ,) which may be of practical signifi-
cance, and for the indicated values of W, chosen either




equal to or larger than the value necessary to maximize
the smalil-signal admittance. On each curve, a point
[Xs, P(Xs)] is marked, corresponding to the relation
Jo(W3) =P,(Xg, W i). The significance of Jo(W32) in
connection with the stzarting condition for free oscillations
has been noted in the previous section. The condition that
parameters be chosen such that free oscillations be im-
possible implies that X, the value of X in the absence of
a subharmonic input, must be less than Xg. On the other
hand, to take full advantage of the low Q of the oscillat-

ing circuit, and provide rapid switching, it is necessary
that X4, the value of X in the presence of the input ampli-
tude A, be such that P,(X,4, W, 7)<0. Under these

conditions the electron beam is no longer driving the sub-
harmonic but is instead acting as a load. Hence the orders
of magnitude of X,/X 4 can be read off these curves for
the various cases.

We conclude with a remark about the choice of
6, n/(01,,+10; ,|). There is no doubt that, electrically,
the optimum choice for this parameter is zero (or near

Figure7 P.(X,W,n, % ) as function of X for given W, 7, y values, For X : Jo(W2) =P (X5, W, 7, % ).
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zero). To achieve such a value, however, requires a very
long prebunching drift space. Particularly if this choice
leads to a loss of beam current, some compromise should
be made. The choice n=—1 for the reflex case is, practi-
cally speaking, a very convenient one, and the added
convenience might compensate for the somewhat poorer
intrinsic characteristics.

4. Transient response of the frequency divider

In Section 3 of this paper the main ideas and results in
connection with the switching time have been already
discussed. We shall present a more detailed analysis of
this subject here.

The discussion will be based upon energy-balance con-
siderations, assuming steady-state properties for the pas-
sive circuit elements. While transient effects in these
elements are ignored chiefly in the interest of simplicity,
it is expected that they would be unimportant in the pro-
posed application.

During the transient state the voltage-amplitude Vy of
the divider cavity, and hence the energy, is a function of
time. It is convenient to take the bunching parameter X,
which is proportional to Vi, as a measure of the ampli-
tude.

The stored energy in the cavity at any time is ¢1X?,
where ¢, is a proportionality factor. Therefore the rate at
which the energy-content of the cavity changes is 2c,.X X,
where the differentiation refers to time. As a natural
dimensionless time variable for this problem we take
T=wt/2Q, because the switching time is proportional to
Q/w. (Q is the loaded Q of the divider cavity.) The
change of the energy content in the cavity occurs for the
following reasons:

1) The cavity is not perfectly conducting and may be
loaded. The resultant resistive loss rate of the cavity is
given by c:X?, where ¢, is a positive constant. We may
say that energy is produced at the rate of —c2X2

2) The external source delivers energy. We take it to be
of the constant-current type, so that the rate at which it
delivers energy is given by ¢:X, where c; is a constant.

3) The bunched beam also delivers energy. The current
of the beam is proportional to X*P(X*) where X*
stands for X(tr—#0./2Q). Therefore the rate at which the
bunched beam delivers energy is given by ¢, XX*P(X*),
where ¢, is a proportionality factor. Thus we obtain the
equation

20X X = —e:X*+ X + e XX*P(X*) |

The trivial and unstable solution X =0 should be elimi-
nated by dividing by X. The constants can conveniently
be expressed in terms of various parameters. First of all,
in order that the Q appearing in the definition of = cor-
respond to the loaded Q it is necessary that 2¢; =c,. Then
cs/2c, will be determined by defining as a unit source
amplitude that amplitude which yields X; as the equilib-
rium amplitude, where X; is the first positive root of
P(X)=0. Thus we write ¢3/2¢1=aX; where « is the
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source amplitude in the unit defined above. Thus ¢4/2c;
can be expressed in terms of the steady state amplitude,
Xo attained in the absence of an external source. With
these definitions we obtain

X*P(X*)
P(Xo)

We first apply this equation to the steady state prob-
lem, in which case we have X =0; X* =X and

XP(X)
P(Xo)

This relationship is illustrated in Fig. 8, where the left
and right sides are plotted as functions of X for various
values of . The intersections correspond to solutions of
this equation. For |a|>0.07 =a:i; there is one solution.
For |a|<0.07 there are three intersections, correspond-
ing to two stable and one unstable (the central intersec-
tion) operating points. In particular X= %X, are the
possible operating points for «=0. In order that the
device operate as described in the text it is necessary that
the applied signal exceeds the critical value (|a|>aerit)-

The transient behavior is obtained by integrating Eq.
(6) numerically. For a numerical solution neither the
fact that P(X) must be evaluated numerically nor the
retardation implicit in X offers any complication. A mini-
mum switching time, g, can be defined with reference to
the following problem.

The divider is assumed to be operating in the steady
state corresponding to an input —«<—0.07. The input
+a is then applied for a time =g, after which no input is
applied. There exists a time 75 such that for r<rs, the
steady-state amplitude finally is —X,, while for +>rs it
is + Xo. Clearly 75 depends principally on « and in partic-
ular becomes long as « approaches acrit.

An example of the transient behavior relevant to the
determination of rg is illustrated in Fig. 9. In this case
the parameters have been chosen with the view of obtain-
ing a small 75. We have taken Xo=Xjy (see Fig. 7c and
related text), the retardation parameter 6./20Q=0.55,
and «=1.25. The three curves correspond to different
values of = and we note that »,<rg but both 73, 7. exceed
5. Then 7g is approximately 0.8. This small value is ob-
tained at the cost of a switching power approximately
eight times as large as the power output of the divider
operating without input. As the discussion in Section 3
indicates, reduction of the switching power below that
which yields an optimum switching time leads to an
increase in switching time. There would, for example, be
some practical advantage in using a switching power
equal to the output of the divider operating without input
(«=0.2). For this input, however, one finds 7326, so
that the increase in switching time is quite large.

(= —X+aX1+ (6)

X”‘Xm’:

Appendix: Frequency division
by factors greater than two
A bunching theory appropriate to the case of frequency

division by an arbitrary integer m can be developed in a
manner identical to that given in Section 2a) for the




case m=2. Starting from the transit time relations
wlfz=ol + 01 — W1 sin molty
a)t3=wtz—|- 02'— Wz sin ma)t]_—X Cos (wt2+,3) s

one finds

1=0

Y.= ZJTc;e e-i0s {2 jl(m+2)Jl(W2_m1W1)11+ml(X)ejl1ny

o0
-2 jlm-’l(W2+mlW1)Jml_1(X)e'”m7} .
I=1

The most important feature of this expression becomes
apparent when one considers the small-signal admittance
for m>>2. In this case

Y. 0=jG.e 7% Jo(W2) m>2,

This expression is independent of m and of the relative
phase y and is identical with the averaged small-signal
admittance discussed in Section 2¢). From this result
one can conclude that for m>2 there is no region of
frequency division or locked oscillation in the sense
discussed in Section 2. That is, with the beam cur-
rent sufficiently large to permit the build-up of the
subharmonic amplitude from an infinitesimal level, free
oscillations are also possible. There may, of course, be

conditions under which the device will prefer to lock
rather than oscillate freely, but more detailed theoretical
consideration would be required to see what these condi-
tions might be.

Of course, there is the possibility that | Y| may exceed
its small-signal value for nonzero values of X. This will
certainly be the case if W, is so chosen as to make
Jo(W32) very small, or if m=3 and J(3W+W2) does
not vanish. In this case beam currents which are not suffi-
cient to permit the build-up of the subharmonic from
zero amplitude, or to sustain free oscillation, may well
be sufficient to sustain a subharmonic amplitude which
has been built up to an appropriate level by an external
source.
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Figure 8 Steady-state amplitudes of the divider for various voltage inputs.
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P(X) same as in Fig. 7¢
Xo = Xs

(c)

(b)

T, respectively.

They describe their device as a variable-parameter ampli-
fier, and choose the klystron drift angle in such a way that
the varied parameter (the electronic admittance) is sus-
ceptive. From the variable-parameter point of view our
device is a variable negative-conductance oscillator. For
a fast-switching application, the more efficient use of the
beam electrons associated with the variable negative-
conductance mode of operation is advantageous.

. The “variable susceptance” operation of the Ashkin, et al

device referred to in Footnote 3 is characterized by a ¢2
chosen so as to make the quantity je-7% appearing in Eq.
(5) imaginary, while in our discussion to follow, we
choose 62 so as to make this quantity negative and real
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Figure 9 Operating level of the divider as a function of time. The input voltage is turned off at 7., 7» and

(corresponding to “variable negative conductance”). The
maximum effective negative conductance given by our
theory for the variable-susceptance case is Ge,»/1(2W1
+ W2), while for the variable negative conductance case
it is G, n[Jo(W2) +J1(2W14+W2)]. As will be discussed
in Section 3, minimization of switching time, which has
been our dominant design consideration, requires maxi-
mization of the electronic negative conductance. As dis-
cussed by Ashkin et al, variable-susceptance operation has
advantages for the low-noise amplification application
which they had principally in mind.
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