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Theory of a 
Fast-Switching Electron-Beam Frequency Divider* 

Abstract: A velocity-modulated  electron-beam  microwave  tube i s  described which can be  operated as a 

frequency divider. Its operation i s  analyzed in  terms of  velocity-modulation  bunching theory, neglecting 

space-charge forces. Because of  the existence of  two  stable states opposite in  phase, such a divider can 
be  advantageously  employed in  a microwave  logical system. The transient  behavior  of  the device i s  dis- 
cussed, particularly  with reference to  the  time  required to switch  the device from  one  of  its  stable states 
to  the other. Factors involved in the  minimization  of  this  time  interval  are  analyzed. 

1. Introduction 

For certain  computing applications there is a  need for a 
microwave  frequency  divider, which would switch from 
one to the  other of its two  stable  phases  in an extremely 
short time.  Such  a device, which will be  referred to as the 
klystron  divider, consists of a single-cavity klystron oscil- 
lator, of either the  drift tube or reflex type,  with an addi- 
tional  bunching  cavity  (called the prebunching cavity) 
placed between the  cathode  and oscillator  cavity, as 
shown  in  Fig.  1. The oscillator  cavity is tuned  to  the sub- 
harmonic frequency, henceforth assumed to be one-half 
the  input frequency, while the  prebunching cavity is 
tuned  to  and is excited by the  input frequency. Such a 
device can be operated as  a frequency divider simply by 
setting the beam current  at a value  somewhat below that 

of the starting current  for  the oscillator. In a manner  to be 
described, the excitation of the prebunching cavity and 
the concomitant prebunching of the beam makes  the elec- 
tronic  conductance of the beam at  the  subharmonic 
frequency sufficiently negative to  permit  the amplitude 
build-up of the  subharmonic in the oscillator  cavity. 

A qualitative  description of the mechanism involved is 
particularly  simple when  it is possible to neglect the 
velocity modulation of the  prebunched beam compared 
to the density  modulation it  has developed by the  time  it 
has  entered  the oscillator cavity. This is, in  fact, a good 
approximation when the  prebunching  drift  angle is 
chosen to be large compared  to  the effective oscillator 
*See Reference 1. 
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Figure I Reflex-type frequency divider. 
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drift angle. In this  case one may  imagine tight bunches of 
electrons  entering the oscillator  cavity at every half-cycle 
of the  subharmonic oscillation. It is clear that  such a 
bunch entering at  time of zero  subharmonic field will not 
couple to it  at all. On  the  other  hand, if the bunches enter 
at  the times of maximum field amplitude  (Fig. 2 ) ,  alter- 
nate bunches will be accelerated and decelerated,  leading 
to a current  component  in  the beam at  the  subharmonic 
frequency  during its  second passage through  the oscillator 
cavity gap. Furthermore,  the  subharmonic  component is 
produced  more efficiently in  the  prebunched beam than 
it would have been in  a uniform beam carrying  the  same 
direct  current.  Thus  one  can see why a definite phase is 
preferred,  and why the  subharmonic  can build up  in  the 
presence of prebunching even when the beam current is 
inadequate  for it to build up in  the absence of prebunch- 
ing. 

It might  be  noted here  that even  when the beam current 
exceeds the  starting  current,  the prebunching, under cer- 
tain circumstances,  may still act  to  control  the oscillator 
frequency  and  to fix its phase. For  such operating condi- 
tions the device may be thought of as  a  locked  oscillator 
rather  than as  a frequency divider. This distinction is 
probably not of any practical significance, however.293 

2. Theoretical analyses 

The  operation of a klystron divider can be analyzed by 
methods typically applied in  the study of klystrons. In  the 
case of klystrons the effect of our  harmonic electric field 
in  the  buncher  gap  on  the  motion of the beam  electrons 
is used to  compute  the electronic current  in  the  catcher 
gap. The  ratio of the  catcher  current  to  the  buncher volt- 
age is then used to define an electronic admittance  (or 
transadmittance,  depending upon whether the  buncher 
and  catcher gaps do  or  do  not  coincide). A  steady-state 
operating point,  characterized  by an  amplitude  and a 
frequency, is determined by requiring that  the electronic 
admittance  match  an  appropriately defined cavity  admit- 
tance.  In  the case of the klystron  divider, it is also neces- 
sary  to  take  the effect of the  prebuncher fields into 
account.  This gives rise to  an electronic admittance which 
depends upon  the  amplitude  and phase of the  prebuncher 
voltage. An  operating  point is again  determined  by  requir- 
ing an impedance  match. In  the case of divider action, 

the frequency is determined  by the  prebuncher  input;  the 
operating  point is characterized by an  amplitude  and 
phase. 

Certain idealizations frequently  made  in  the study of 
klystrons will be  assumed in  our discussion. These consist 
of the assumptions (1) that  the velocity modulation is 
small compared  to  the  mean velocity of the electrons, ( 2 )  
that  the  drift spaces are field free,  or,  in  the reflex case, 
have a  constant retarding field, (3)  that space charge 
forces  are negligible. For  the device envisaged, the con- 
dition ( 1) will be satisfied. While (2) may  not be satis- 
fied, the conclusions drawn will remain valid so long as 
certain of the  drift angles are  understood  to be effective 
drift angles. Although  the neglect of space-charge  forces 
will probably not be justified for  the device in question, 
it is hoped that  the derived formulas will provide  useful 
information. 

0 a )  Bunching theory 

We begin by computing the  subharmonic  component in 
the beam current  at its  second passage through  the oscil- 
lator gap that  is induced by a specified rf voltage at  the 
input  frequency  at  the  prebunching  gap  and by an inde- 
pendently specified voltage at  the  subharmonic  frequency 
at  the oscillator gap. 

Let tl be the time at which an electron passes through 
the  prebunching gap, tz the time of its first passage 
through  an oscillator  gap, f3 the time of its second passage 
through  an oscillator gap. (The  two passages may refer 
to  the  same  or distinct  oscillator  gaps.) Let UJ be the 
angular frequency of the  subharmonic  and 20 that of the 
input.  We take for  the gap voltages Vi sin 2 d  and V S  cos 
(uJ~+P). Then  the times t l ,  t 2 ,  t3 ,  are related  by 

UJtz=wtl+e,- W1 sin 20h 

U J t 3 = W t Z + e 2 -  W2 sin 2 d - X  cos ( & + f ) .  (1) 

el and O2 are clearly the  drift angles associated  with the 
means of the  time differences t z - f l  and f3- t z ,  respec- 
tively. W1,  Wz and X are  proportional  to  the respective 
voltage  amplitudes at  the  prebunching  and oscillator gaps. 
They  may be  written in  the  form 

w -1. , w 2 = d  * 
MlVie' MlVit" MzVSOH 

2vo 2vo 1- 
2vo 

, x=-. 



Here Vo is the  dc voltage; M1,  M z  beam  coupling coeffi- 
cients; S;, S& effective drift angles. For  the field-free drift 
tube case and  the  uniform repeller field case 01 = 8; and 
S2= I O i l .  The  ratio W 2 / W 1  is positive for  the  drift-tube 
case but negative for  the reflex case. 

The  current  component of frequency w at  the second 
oscillator  gap passage is given by 

. M2Zo += 
1s= - 

7 L e-j d (  utl) , ( 2 )  

where lo is the beam current. 

is by the voltage at  the oscillator gap. Thus 
An electronic admittance may be defined by dividing 

To evaluate the integral appearing  in  the expression 
( 2 )  for is, one uses the relation (1) and  the well-known 
Fourier series expansion of exp [jX cos( ut++) ] (re- 
garded as a function of d), obtaining 

Just as is the case for  the  klystron' oscillator,  divider 
operation is characterized by various  drift-angle modes. 
That is, operation is centered about values of 02 given by 
8 2  = 2 ~ (  n + 3). For  large values of e;, the variation of S 6 
and consequently W z  for a given particular  mode is 
unimportant  and hence can be  replaced by Si, n ,  the value 
of 0 ; at  the  center of the mode. Hence we write 

with 

W=W1+ I Wzl; 

[J,(2pW1-w2)ejz~~+J,+~(2(p+l)W~+W~)e-j2(~+1)~] 

The  quantity je-jez Ge, ,  is precisely the small-signal ad- 
mittance  for a  klystron  oscillator. The n dependence of 
the  quantity Pn occurs only through W1 and W z .  In  the 
special cases Wl=O or Wz=O it becomes independent 
of n. 

0 b)  Operation as a frequency  divider 

Steady oscillations, of course, take place  in  a given mode 
when 

Ye,n=-Yc(w), (4) 

where Y, (o )  is the  admittance of the oscillator  circuit. 
The quantities W ,  O, n and O2 are all externally fixed oper- 
ating parameters. The quantities which are determined by 
the  Eq. (4) are, of course, the  subharmonic level via X ,  
and  the phase  via y .  

For a discussion of the conditions under which oscilla- 
tions  can begin, it is convenient to define a small-signal 
admittance 

Yn,n=je-jo2 G e , n  Pn(0, W ,   7 )  

Pn(0,  W ,  y )  =Jo(  Wz) +J1(2W1+  Wz)e-2jY. ( 5 )  

In Fig. 3, Pn(O, W ,  7) is plotted  in the complex 
plane  for a particular W1, W p  and a full cycle of y. The 
curve is simply a  circle of radius J1( 2W1+ W z )  centered 
on  the  real axis a  distance Jo(  W,)  from  the origin. Also 
plotted on  the  same plane is the  admittance  ratio j Y "  

plotted for a range of values of S 2  centered about 
02, n. Two  such curves are plotted  corresponding to differ- 
ent beam currents  and hence to different values of Ge,n. 
These curves are simply arcs of circles centered  at  the 
origin. One of these arcs fails to intersect the Pn(O, W ,  y)  
circle and hence  corresponds to a situation in which the 
beam current is too small to  permit  the  subharmonic 
amplitude  to build  up. For  the second arc,  the two  inter- 
sections  with the Pn(O, W ,  7) curve  determine  the  range 
of O2 about (I2.,, for which frequency division takes place. 
They also determine  the  range  over which y,  or  the phase 
of the  subharmonic, varies  as S2 is varied. Also plotted in 
Fig. 3 are curves of P , ( X ,  W ,  7 )  for  constant X as y is 
varied and  for  constant y as X is varied. The  two types of 
curves for convenience  have  been  plotted  in the  upper  and 
lower  half-planes, respectively. The curves of constant 
X are, in fact, symmetric  with  respect to  the real  axis, 
while  those of constant y have a reflection in  the  upper 
half-plane  corresponding to  the opposite sign of y. From 
the intersection of these  curves  with the  admittance  ratio 
arc,  one  can  read off the relative power output  (propor- 
tional  to X z )  and phase  as a function of S2. The results 
obtained are plotted  in  Fig. 4. 

The minimum starting  current  in a given mode is, of 
course,  determined by the  maximum of P,(O, W ,  y )  . For 
fixed W and 0; / (6' ; + I 0; I ) this  maximum occurs either 
at y=O or y = 7 / 2 ,  accordingly  as 2 Wl+ Wz is positive 
or negative. In  Fig. 5 this quantity, which is equal  to 
Jo(  Wz)  +J1( 12 W1 + W 2  I ) is plotted  as  a function of W 
for various values of e ; / (  S; + 1 0 1 ) , while in Fig. 6 its 
maximum  in W is plotted  as a function  of e ; / (  0; + I S; I ) . 

c) Operation as a locked oscillator 

The starting  condition for oscillation in a given mode, 
when the  input voltage Vi is zero, is simply G,,,>G,, 
obtained essentially from (4) and ( 5 )  with W=O. It is 

Ge,n 
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Figure3 P , (X,  y )  for y fixed  and X varying, and for X fixed, y varying for w1=0.92, Wz=O. Also plotted: 
j ( Y C / G e , , ) e i e z  for two  different  beam currents. 

apparent  from Figs. 5 and 6 that a wide range of values Figure 4 Relative power output and  phase  as a 
for W and 0;/(8; + 10; I )  exist for which operation as  a function of 82-82,.. 

frequency divider, rather  than as a locked  oscillator  takes 
place. Thus, whenever the  real  part of P ( 0 ,  W, y )  ex- 
ceeds  unity, there exists a range of beam currents  for 
which an  amplitude  can build up in the oscillator  cavity x2 , t 
only when Vi is sufficiently large. On  the  other  hand, by 
increasing the  input  current  one  can  certainly  arrive  at a 
point  where  ordinary klystron  oscillator operation  can 
take place. The question to be answered is whether or  not 
the application of the  input  frequency will permit  the 
oscillations to  continue incoherently, or whether  instead 
it will enforce a particular phase and  frequency  on these 
oscillations. I t  is clear, of course, that  Eq. (4) can still be 
satisfied when G e , n  exceeds the zero-W free oscillations 
threshold. Therefore, locked oscillations are certainly 
possible. Hence  what we must first determine are  the 
conditions under which free oscillations for non-zero  W 

348 are also possible. 
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The essential characteristic of free  or  incoherent oscil- 
lation is the  fact  that  the  frequency in the oscillator  cavity 
is no longer precisely one-half that of the  input  fre- 
quency.  A modification of the analysis in Part a ) ,  appro- 
priate  to this  situation,  follows: 

Let W’ be the  frequency of Vs ,  w one-half the  input  fre- 
quency as before. If 0-0’ is infinitesimal compared  to O ,  

and if in addition one confines his attention  to time  inter- 
vals short  compared  to ~ x / ( w - o ’ I ,  then the  fact  that 
O- 0‘#0 has essentially no effect on  the bunching process. 
On  the  other  hand,  the  fact  that w is not  equal  to W’ makes 
itself felt over long  time  intervals via the phase y ,  which 
is continually  changing on  account of this inequality. In 
terms of the discussion of Part a ) ,  we should  write 
c o s ( ~ ’ t + P )  as c o s [ ~ t + P ’ ( t ) ]  with P ( t )  =p+(,‘-W)t  
and  carry  through a  derivation of the electronic  admit- 
tance Y e , n  ignoring the time  dependence of P’(or y ‘ = P  
+e1) .  In  the final expression for Y e , n  7’ should, of 
course,  replace y so that  the resultant  electronic  admit- 
tance is slowly varying, rather  than constant. Hence  one 
must expect that  the incoherent oscillations are  not con- 
stant in  amplitude but  are in fact amplitude  modulated at 
the  angular  frequency 2(0--0’) . More  important, we 
conclude that  the average  operating  point is determined, 
at least  approximately, by the  condition 

- Y c ( ~ ’ ) = y e , n = j e - % G e , n -  2J1(x) Jo(  W , )  , 

where ye ,n  means that  the  admittance has been averaged 
over y. The average amplitude  and  the  frequency W’ are 
then determined by this  equation  in a manner  corre- 
sponding precisely to  the  ordinary klystron  oscillator. 
Accordingly, the  starting condition for these oscillations 
in a given mode is G,(o’ )<G, , ,Jo(W,) .  Since Jo(W2) 
<1 for all W Z  different from  zero,  it is apparent  that a 
non-zero W2 can  act  to suppress the  free oscillations and 
hence that a region of locked oscillation exists. 

X 

Figure5 Reciprocal of  relative  starting current as 
a function of W for  various  values  of 

(Note: vertical scale begins at 1.0) 
rl=e;,n/(el+le:,nl). 
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It should be noted that  the  crude averaging we have 
used for estimating  this  suppression factor is valid only 
when the amplitude-modulation factor is small. If the 
circuit  admittances at W’ and 2 ~ - 0 ’  are  comparable this 
will not be the case. Instead, operation at W’ will be accom- 
panied by a comparable  component  at 2 ~ - 0 ‘  leading to 
typical  two-frequency  operation. For this  situation the 
effective beam conductance  can be  nearly  as  large as in 
the case of locked  oscillation or divider operation. The 
possible competition between divider operation  and two- 
frequency operation should  be  studied, as it has an impor- 
tant bearing upon  the question of phase  stability. This 
question,  however, will not be discussed here. 

The origin of the suppression of free oscillations by 
prebunching can be traced  to  the phase aberration arising 
from  the velocity modulation of the incoming beam. To 
elaborate,  the electronic admittance  for a  beam of uni- 
form density and velocity entering a  klystron  oscillator is 
given by 

If this  incident  beam  contains  a velocity and density 
distribution  which is uncorrelated  with the oscillator 
frequency,  then it is appropriate  to average Y e  over  these 
distributions. The density occurs only in  the  factor G,, 
and  then linearly, so that  the averaging  simply yields the 
same result as using the  mean density in G,.  On  the  other 
hand,  the velocity modulation of the beam has  an effect 
on  the  factor e-jo that is essentially the  same as the typical 
reflex-klystron phase aberration arising from different 
electron transit times in different parts of the beam cross- 
section. Indeed, we should take 

J -$m 

where p (  +) represents the relative  density of electrons 

Figure 6 Reciprocal of  relative  starting current as a 
function of 7 at its maximum  in W .  
(Note: vertical  scale begins at 1.0) 
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with the phase  deviation 9 from  the  mean phase $0, and 
+m is the  maximum deviation. In  the case of a  sinusoidal 
modulation 

where W2=&,  and  the above  integral yields e-j*oJo( W Z ) .  
Hence  the averaged admittance  in  the presence of pre- 
bunching is again found  to  be 

For  the applications of this device to  be discussed, 
there is no practical difference between the locked-oscil- 
lation region and frequency-dividing  region,  since the 
input voltage will be  maintained steadily. Hence  in  the 
following  sections  this  distinction will not be  emphasized. 

We  have seen that as the beam current is increased 
from zero, the device passes from a  condition of no-oper- 
ation to  one of frequency division and  then  to  one of 
locked oscillation. The distinction  between  these latter 
two regions is one of terminology  only, the designation 
“locked oscillation” being merely in recognition of the 
fact  that  free oscillations could take  place  in  the absence 
of the  input voltage. As the beam current is increased 
still further, however, the threshold for  free oscillations 
in  the presence of the  input voltage is passed, and  both 
types of operation become possible. Which type will take 
place in fact  can be  expected to depend upon  the  starting 
conditions.  Since the applications of the device require 
rapid variations in  the  amplitude of the subharmonic, 
and since  phase  stability is essential, it would appear  pru- 
dent  to avoid operating conditions  which  could permit 
free oscillations. Limitations  imposed  by the  requirement 
of suppression of two-frequency  oscillation, however, 
may be more stringent than those  implied  by the above 
discussion. 

3. Design  considerations 
The discussion of Section 2 applies to  any klystron-type 
frequency divider. In this  section  some  special  problems 
associated  with the proposed  application will be discussed 
briefly. 

In  operation,  the prebunching  cavity will be  provided 
with  a constant  input frequency 20. The oscillator  cavity, 
however, will also be  provided  with an  input of frequency 
O,  and  amplitude A ,  zero, or - A .  The phase of A will be 
so chosen that  the two stable phases of the divider for 
zero  subharmonic  input just  coincide  with those of A and 
- A .  There will be four distinct  steady-state operations: 
one with the  input A ,  another of equal  amplitude  and 
opposite phase with - A ,  and  two of equal  but smaller 
amplitudes and opposite in phase, associated with zero 
input.  At  any  instant  the  input  amplitude  may  change 
from  one of its three values to another.  In general, one 
wishes to minimize the  time  required  to  approach  the new 
steady state, especially the switching time, i.e., the  time 
required  to  change  the sign of the  amplitude  in  the oscil- 

350 lator cavity. The theory of the switching process will be 

discussed in Section 4. The essential features as  they 
affect design, however, will be noted here. 

The principal factors  interfering with the  rapid switch- 
ing are  the loaded  Q of the oscillator  cavity and  the 
oscillator drift angle 02. The values of O2 associated with 
typical klystron-oscillator design would not  be unsatis- 
factory  for this application. Hence we will assume that 
the chief limiting feature is Q. The minimum  switching 
time will be proportional  to Q/o. Hence  the design 
should  minimize  this  quantity.  As an example we note 
that  for 0 / 2 x =  10 kmc,  a  Q of 30 would be satisfactory, 
although a  smaller  value would be  preferable.  A loaded 
Q of 30 is considerably less than is in  common use for 
low-level oscillators and  the question arises as to whether 
such low Q’s are possible. 

As Q is reduced, the circuit admittance increases. This 
increase  must  be  compensated for by an increase in  the 
electronic  admittance. Now 

Ge, n = 3 M z 2  I Oi, I Go . 
Essentially no significant increase  in Mz2 is possible. In 
the case of the  drift-tube klystron 19 I, = $ 2 ,  ,,; hence  very 
little  increase in $i,n is possible either, if this quantity is 
not itself to become  a  limiting factor  in  the switching 
time. Therefore, Ge,n can be increased  only  by  increas- 
ing Go. The  rate of increase of Ge,, ,  with Go is consider- 
ably  decreased  by the effects of space  charge so that  quite 
large values would be needed. This would  in turn lead to 
a device with  a rather high operating level. In  the case of 
the reflex klystron, I 0 ;, r; [ is generally  greater than I $2, n I 
owing to the  fact  that  the electrostatic retarding field 
generally  weakens  as the reflector is approached. It is 
hoped that this effect can be  considerably enhanced by 
means of careful design of the reflector field. One might 
hope in  this way to achieve a satisfactory low-Q device 
operating  in  the milliwatt  range. It might  be  noted in 
connection  with  this  reference to a reflex design that  it 
is probably important  to avoid multiple  electron  transits, 
so that  the usual  precautions to avoid them  should  be 
incorporated  into  the design of the reflecting field. 

The switching time may also be affected by the magni- 
tude of the  subharmonic  input A .  Indeed, for switching 
to  occur  at all, this  amplitude must exceed some  critical 
value  (see Section 4). Furthermore,  for  an  amplitude A 
which exceeds the critical  value by an  arbitrarily small 
amount,  the  syitching  time  can  be arbitrarily long. On  the 
other  hand,  an unnecessarily large  value of A may  lead to 
an inconveniently large difference between the  operating 
amplitude  obtained with input A versus that obtained 
with zero  input. Both of these  amplitudes are  determined 
by the behavior of the electronic admittance as  a function 
of X ,  and hence by the behavior of P n ( X ,  W ,  y )  . In oper- 
ation, e;, would generally  be  chosen so that y =O or ~ / 2  
accordingly  as 2 W1 + W z  is positive or negative. Also, W 
would be  chosen  large  enough to maximize the small  signal 
admittance, or perhaps  in  certain cases, larger. In Fig. 7, 
P n ( X ,  W ,  4) is plotted  as  a function of X for values of 
O;,n/($;,n$ I $i,nl ) which  may  be of practical signifi- 
cance, and  for  the indicated values of W ,  chosen  either 
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equal  to or larger than  the value necessary to maximize 
the small-signal admittance. On  each curve,  a  point 
[ X S ,  P ( X s ) ]  is marked,  corresponding to  the relation 
lo( W z )  = P,(Xs,  W ,  +) . The significance of lo( W z )  in 
connection with the starting  condition for  free oscillations 
has been noted in the previous section. The condition that 
parameters be chosen such  that  free oscillations be im- 
possible implies that XO, the value of X in the  absence of 
a subharmonic input,  must be less than X S .  On the  other 
hand,  to  take full  advantage of the low Q of the oscillat- 

ing  circuit, and provide  rapid switching, it is necessary 
that X,, the value of X in  the presence of the  input ampli- 
tude A ,  be such  that P n ( X A ,  W ,  %) 10. Under these 
conditions the electron  beam is no longer driving the sub- 
harmonic but is instead acting  as a load. Hence  the  orders 
of magnitude of X O / X A  can  be  read off these curves for 
the various cases. 

We conclude  with a remark about the choice of 
e;, n/ ( 01, ,+ I 0 i, nl ) . There is no  doubt  that, electrically, 
the  optimum choice for this parameter is zero  (or  near 

2 

Figure 7 P , ( X ,  W ,  7, ) a s  function of X for given W ,  7, y values. For X s  : J o ( W z )  =f',(xs, w, 7, ). 
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zero).  To achieve such a  value, however, requires  a  very 
long  prebunching drift space.  Particularly if this choice 
leads to a loss of beam current, some  compromise  should 
be made. The choice 7 ~ -  1 for the reflex case is, practi- 
cally speaking,  a very convenient one,  and  the  added 
convenience  might  compensate for  the somewhat poorer 
intrinsic  characteristics. 

4. Transient response of the frequency divider 

In Section 3 of this paper  the main  ideas and results  in 
connection with the switching  time  have been already 
discussed. We  shall  present  a more detailed analysis of 
this  subject  here. 

The discussion will  be based upon  energy-balance  con- 
siderations,  assuming  steady-state  properties for  the pas- 
sive circuit elements. While  transient effects in these 
elements are ignored chiefly in the interest of simplicity, 
it is expected that they would be unimportant in the  pro- 
posed application. 

During the transient  state  the voltage-amplitude VIS of 
the divider cavity, and  hence the energy, is a function of 
time. It is convenient to take the bunching parameter X ,  
which is proportional to V,, as  a  measure of the ampli- 
tude. 

The stored  energy in  the cavity at  any time is c1X2, 
where c1 is a  proportionality factor.  Therefore  the  rate  at 
which the energy-content of the cavity  changes is 2clXX, 
where  the  differentiation refers  to time. As a natural 
dimensionless time  variable for this  problem we take 
7=0f/2Q, because the switching time is proportional  to 
Q/w. (Q is the loaded Q of the divider  cavity.) The 
change of the energy content in the cavity occurs  for  the 
following reasons: 

1) The cavity is not perfectly  conducting and may  be 
loaded. The resultant resistive loss rate of the cavity is 
given by c2X3,  where c2 is a positive constant. We may 
say that energy is produced  at  the  rate of -c2X2.  

2 )  The  external  source delivers energy. We  take it  to be 
of the  constant-current type, so that  the  rate  at which it 
delivers energy is given by c ~ X ,  where c:: is a  constant. 

3 )  The bunched beam also delivers energy. The  current 
of the beam is proportional  to X * P ( X * )  where X" 
stands  for X (  T -  02/2Q).  Therefore  the  rate  at which the 
bunched  beam delivers energy is given by c 4 X X 9 P ( X * ) ,  
where cI  is a  proportionality factor.  Thus we obtain the 
equation 

2c ,Xx=-c2X~+c: :x+cpxx*P(x*) .  

The trivial and unstable  solution X - 0  should be elimi- 
nated by dividing by X .  The constants  can  conveniently 
be expressed in terms of various  parameters. First of all, 
in order  that  the Q appearing  in  the definition of T cor- 
respond to  the loaded Q it is necessary that 2cl =c2. Then 
c3/2cI will be determined by defining as a unit  source 
amplitude  that  amplitude which yields X1 as the equilib- 
rium amplitude,  where X I  is the first positive root of 

352 P ( X )  =O. Thus we write c3/2c1=aX1 where N is the 
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source  amplitude in the  unit defined above. Thus  c42c1 
can be  expressed  in terms of the steady state amplitude, 
X,, attained  in the absence of an external  source. With 
these definitions we obtain 

x= -x+Cux1+ X * P ( X * )  

P ( X n )  
We first apply this equation  to  the steady state prob- 

lem,  in which case we have X = O ;  X" = X  and 

This relationship is illustrated in  Fig. 8, where  the left 
and right sides are plotted as functions of X for various 
values of a. The intersections  correspond to solutions of 
this  equation. For la1 >0.07=aCrit  there is one solution. 
For I a1 <0.07  there  are  three intersections,  correspond- 
ing to two  stable and  one unstable (the  central intersec- 
tion)  operating points. In  particular X =   ? X o  are  the 
possible operating points for a=O. In  order  that  the 
device operate as described  in the text it is necessary that 
the applied signal exceeds the critical  value ( I a I >acrit). 

The transient  behavior is obtained by integrating Eq. 
(6) numerically. For a  numerical  solution  neither the 
fact  that P ( X )  must  be  evaluated  numerically nor  the 
retardation implicit in X offers any  complication. A mini- 
mum switching time, 78,  can be defined with reference to 
the following problem. 

The divider is assumed to be operating in the steady 
state corresponding to  an  input -a<-O.O7. The  input 
+a is then applied for a  time rS,  after which no  input is 
applied. There exists a  time T~ such  that  for T<TS, the 
steady-state  amplitude finally is -Xo, while for T>TS it 
is +X, .  Clearly rS depends  principally on N and in  partic- 
ular becomes long  as a approaches acrit. 

An example of the  transient behavior  relevant to  the 
determination of T~ is illustrated  in Fig. 9. In this case 
the  parameters  have been  chosen  with the view of obtain- 
ing a  small TS .  We  have taken X o = X s  (see  Fig. 7c  and 
related text),  the  retardation  parameter  &/2Q=0.55, 
and a= 1.25. The  three curves  correspond to different 
values of T and we note that ra<rS but both T b ,  T~ exceed 
rS. Then rS is approximately 0.8. This small  value is ob- 
tained at  the cost of a  switching  power  approximately 
eight times as large  as the power output of the divider 
operating without input. As the discussion in  Section 3 
indicates,  reduction of the switching power below that 
which yields an  optimum switching time  leads to  an 
increase in switching time. There would, for example,  be 
some  practical  advantage in using a switching power 
equal  to  the  output of the divider operating without input 
( 0 ( = 0 . 2 ) .  For this input, however, one finds ~ ~ 2 6 ,  SO 

that  the increase  in switching time is quite large. 

Appendix: Frequency division 
by factors greater than  two 

A bunching theory  appropriate  to  the case of frequency 
division by an  arbitrary integer rn can be developed in  a 
manner identical to  that given  in  Section 2a) for  the 



case m = 2. Starting from  the  transit time  relations 

o t p  = d l  + O1 - W1 sin motl 

d 3 = & + O z -  W ,  sin motl-X cos (0 t ,+ /3 ) ,  

one finds 

ye= e 2” X e-jsz ~ ~ ~ ~ ~ ( ~ ~ ) ~ ~ ( ~ z - m ~ ~ l ) ~ l + ~ ~ ( ~ ) e ~ ~ ~ ~ ~ ~  

1 = 1  1. W 

- x j lmJi( W z + m Z W l ) J ~ ~ ~ - l ( X ) e - j z ~ y  

The most important  feature of this  expression becomes 
apparent when one considers the small-signal admittance 
for  m>2.  In this  case 

Y,,o=jG,e-jezJo(Wz) m > 2 .  

This  expression is independent of m and of the relative 
phase y and is identical  with the averaged small-signal 
admittance discussed in Section 2c).  From this  result 
one  can  conclude  that  for m>2  there is no region of 
frequency division or locked oscillation in  the sense 
discussed in  Section 2. That is, with  the beam cur- 
rent sufficiently large to  permit  the build-up of the 
subharmonic  amplitude  from  an infinitesimal level, free 
oscillations are also possible. There may, of course,  be 

conditions under which the device will prefer to lock 
rather  than oscillate freely, but  more detailed  theoretical 
consideration would be required to see what these condi- 
tions might be. 

Of course, there is the possibility that I Y ,  1 may exceed 
its small-signal value for nonzero values of X .  This will 
certainly  be the case if W z  is so chosen  as to  make 
Jo(  W , )  very  small, or if m= 3 and J l ( 3  WI+ W z )  does 
not vanish. In this case beam currents which are not  suffi- 
cient to  permit  the build-up of the  subharmonic  from 
zero amplitude, or to sustain free oscillation, may well 
be sufficient to sustain a subharmonic  amplitude which 
has been built up to an  appropriate level by an external 
source. 
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Figure 8 Steady-state amplitudes of the  divider for various voltage inputs. 

P ( X )  same as i n  F i g .  7 c  

x0 = x, 

1 

L 
3 

IBM  JOURNAL OCTOBER 1s 



N G  L 

2t 
OPERATI €VEL P ( X )  same as i n   F i g .  7c 

x0 = x, 

Figure 9 Operating  level  of the divider a s  a function of time. The input  voltage is turned off  at ra,  rb and 
T ~ ,  respectively. 

They describe their device as a variable-parameter  ampli- 
fier, and choose the klystron  drift  angle in such a way that 
the varied parameter  (the electronic admittance) is sus- 
ceptive. From  the variable-parameter  point of view our 
device is a variable negative-conductance oscillator. For 
a fast-switching application, the  more efficient use of the 
beam  electrons associated with the variable negative- 
conductance  mode of operation  is  advantageous. 

4. The “variable susceptance” operation of the Ashkin, et a1 
device referred to in Footnote 3 is characterized by a e2 
chosen so as to make the  quantity je& appearing in Eq. 
( 5 )  imaginary, while in  our discussion to follow, we 
choose 82 so as to  make this  quantity negative and real 354 
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(corresponding to “variable negative conductance”). The 
maximum effective negative conductance given by our 
theory for the variable-susceptance case is Ge,J1(2W1 + WZ), while for  the variable negative conductance case 
it is Ge,n[Jo(Wz)+J1(2W1+Wz) ] .  As will be discussed 
in Section 3, minimization of switching time, which has 
been our dominant design consideration,  requires maxi- 
mization of the electronic negative conductance. As dis- 
cussed by Ashkin et al, variable-susceptance operation  has 
advantages for the low-noise amplification application 
which they had principally in mind. 
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