288

G. A. Blaauw

Indexing and Control-Word Techniques®

Abstract: In large-scale computers the details of data handling, such as indexing, transmission and ordering,

may be performed either by programming or by built-in machine operations. An analysis of the most fre-

quently performed functions justifies the expansion of single-valued index quantities to three-valued con-
trol words and the specification of built-in increment, count and refill operations to be used with these
control words., STRETCH, the large-scale computer which is being developed by IBM for the Los Alamos Sci-
entific Laboratory, provides these control-word functions for data-handling operations.

Introduction

One of the basic requirements for a computer is that
writing the program for a calculation take less effort
than performing the calculation without the computer.
This requirement can be satisfied when the calculation
permits a program to be repeated with different sets of
data. In the earliest machines the technique employed
was to change the contents of storage locations between
successive executions of the program. A later method of
achieving the same result was to change the addresses
used by the program in referring to data, rather than
changing the data at a given address. This procedure wid-
ened the scope of computer applications considerably.
Early computers, whose programs were specified by plug-
gable wiring, paper tape or cards, permitted little or no
address alteration. The invention of stored-program com-
puters provided a major advance because it allowed a
program to be treated as data, so that any instruction of
a program could be modified by the program itself. The
main application of this general facility was for the
modification of addresses. Subsequently, it became ap-
parent that programmed address computation, though
sufficient in theory, was cumbersome in practice. Too
much computing time and program space were required
to perform these auxiliary operations. A remedy was
provided by an address register, also called index register
or B-line,® whose contents could be added to the operand
address. In recent machines, several index registers—up
to one hundred—have been made available.

The historic development outlined above shows that
address computation has partly taken the place of data
transmission and has subsequently been simplified by
the introduction of index registers. Providing machine

* A condensed version of this paper was presented at the Eastern Joint
Computer Conference, December 1958, under the title, “Data Handling
by Control-Word Techniques.”

IBM JOURNAL * JULY 1959

functions, such as indexing, for operations which could
be programmed was not new since in theory all machine
instructions but one are redundant. That is, an instruc-
tion repertoire can be replaced by one single, well-chosen
instruction.? In practice, a repertoire of more than one
instruction is justified by the operating time and program
space which is saved. Similarly, special-purpose registers
like index registers may be justified when they increase
the effective speed and capacity of the computer. The
gain in performance then offsets the expense of the added
equipment, improving the performance/cost ratio. This
type of performance gain normally is accompanied by
greater programming ease. Programming ease greatly
affects the form which an added function should take,
but, because it is hard to express in a cost figure, it is
rarely used as the sole justification for added equipment.
In the design of the STRETCH Computer,® an at-
tempt has been made to achieve great flexibility and
generality in machine functions. The indexing functions
and the associated instruction set, consequently, were
examined carefully. The general principles which were
considered in this examination will be discussed first.
The built-in functions which were developed for the
STRETCH Computer as a result of the examination will
be described subsequently and illustrated by examples.

Index function

Index functions may be divided into four groups: ad-
dress modification, index arithmetic, termination, and
initialization. The first group is used in addressing op-
erands and provides the justification for the existence of
index quantities. The other groups concern the task of
changing the index quantities, the tests for end condi-
tions and the set-up procedures. These operations are
often termed housekeeping.

The common use of an index register is the addition
of its contents, the index value, to the address part of an
instruction, which will be called the operand address, in
order to address memory with the sum, the effective ad-
dress. This operation is called address modification. The
operand address and the index value remain unchanged
in storage in this operation.

Address modification is used in general to address suc-
cessively the elements of an array. An array may be one
dimensional, or multi-dimensional, and its elements may
be single-valued or multiple-valued. The address of a
value which is part of an array can be subdivided into
three distinct parts. The first part, the base address, iden-
tifies the location of the array within memory. The sec-
ond part will be called the element address. This address
concerns the location within the array of the element
which is currently used in the computation. The element
address is specified relative to the base address and is
independent of the location of the array in memory.
The third part of the address of an array value is the
relative address which specifies the location of the array
value relative to the current element. The relative ad-
dress is independent of the location of the array or the
selection of the current element. The array value may be
part of the current element or it may be part of another
element. A well-known case in technical computation is
the addressing of right, left, upper and lower neighbors
of an element in a two-dimensional array. Figure 1 il-
lustrates this case and shows how the address of a par-
ticular array value is formed as the sum of base address,
element address, and relative address.

Figure 1

The base address and relative address are constant
throughout the execution of the program. The base ad-
dress is determined as part of the task of memory alloca-
tion. The relative address is determined as part of the
programming task by the characteristics of the compu-
tation to be performed. The element address, on the
other hand, is not constant. It changes as the computa-
tion proceeds from one element to the next.

The three components, base, element and relative ad-
dress, must be available during address modification.
Therefore each of these addresses must be found either
in the operand address part of the instruction or in the
index values of index registers. In order to allow effective
address modification, the variable part of the array ad-
dress, the element address, should be part of an index
value. The relative address is used to address different
values for a given element address. In order to preserve
the identity of the selected element, the index value,
which contains the element address, must remain un-
changed. Therefore, the relative address should be part
of the operand address. The base address may be part
either of the operand address or of an index value. In
the first case, it is added to the relative address; in the
second case, it may be added to the element address.

As a computation proceeds, successive elements of an
array are addressed. The element addresses are generated
by the algorithm which is appropriate for the use of the
array in the computation. Since the element address is
part of the index value, the address computation may be
accomplished by index arithmetic. In a large number of
cases, the algorithm used is a simple recurrent process

90 storage locations used for three-valued, two-dimensional array of 65 elements. (Relative

addressing shown for second value of an element and its four neighbors.)

1200 1203 1206
N | !

P =]
BASE ADDRESS

| 1242
[|

l120‘? | 1212 \ 1215

I a | O [
| 1 1

[1257 1258
o [@
-2

| 1278 \1279 = 1|200+60+ 19

' o @@ o + o o

+19 ‘

IBM JOURNAL * JULY 1959

290

in which a new index value is obtained by the addition
of an increment to the old index value.

There are several algorithms which cannot be de-
scribed by a simple incrementing process. In particular,
some algorithms make use of variables which are data
or instructions rather than known parameters of an
array. The use of data in index arithmetic occurs in
table reference techniques. The use of instructions in
index arithmetic occurs in indirect addressing. In this
mode, the effective address is used, not as the address of
an operand, but as the address of an instruction whose
effective address is the address of the operand.

The conventional use of the effective address as the
operand address is called direct addressing, in contrast
to the indirect addressing mode. In a simple incrementing
process, another addressing mode, immediate addressing,
is often used. In this case, the effective address is used
as an operand, rather than as the address of an operand.

Each time an index is altered by index arithmetic, a
test may be performed to determine when the last ele-
ment of the array is addressed. This process is called
termination. Some of the forms of the test are: limit
comparison, length subtraction, and counting. In [imit
comparison, the current index value is compared with a
given constant, the limit. In length subtraction, a given
variable, the length, is reduced by the value of the incre-
ment and tested for zero. In counting a given variable,
the count is reduced by one and tested for zero. The
three methods of test are closely interrelated. When the
base address is part of the index value, the limit is the
sum of base address and length. The length, in turn, is the
product of increment and count. Counting permits the
test for completion to be independent of base address
and increment, such that even an “increment” of zero is
possible.

Instead of using a separate value such as limit, length,
or count, the index value itself can be used to determine
the end of the process. In that case, the index value
serves as a length, and a limit of zero is implied. This
approach requires a minimum of information and is fol-
lowed in the IBM 704, 709, and 7090. A greater degree
of freedom in specifying index values and tests is, how-
ever, very desirable. Therefore, independence of index
value and test for termination is preferred. In the
STRETCH Computer, counting has been chosen as the
primary means for determining the end of an index
modification sequence. However, the conclusions reached
in the course of the discussion are equally valid when a
limit or length is used.

After the last element of the array is addressed, the
index value and count must each be changed to the ini-
tial setting for the array to be addressed next, which may
be the same array or another one. This housekeeping
operation is called initialization. Of course, initialization
also occurs prior to the entire array-scanning operation.
This case is the least frequent and is usually part of
more general loading and resetting procedure. For these
reasons its characteristics influence the indexing proce-
dures to a lesser degree.

IBM JOURNAL * JULY 1959

A summary of the index functions which have been
described is shown in Table 1. The quantities which oc-
cur in the indexing procedure for a simple array are
listed in the second column. The operations which make
use of these quantities are listed in the third column.

Table1 Summary of index functions.

Function Operation

Index Use

Quantity

Index value | Address modification
Index Change | Increment Incrementing

Index Test Count Counting and zero testing
Index Reset | Next initial: | Replacement of:

Index value | Index value

Count Count

Of the quantities listed, the index value is in the index
register. This leaves four quantities which must reside
somewhere. Earlier approaches have relied on storing
these quantities in general memory locations. Of the
four operations listed, only address modification is usu-
ally performed as a built-in machine operation. In most
earlier machines the other three operations are per-
formed by standard arithmetic instructions. In the fol-
lowing sections, the possibility of storing more quantities
in the index register and providing more built-in opera-
tions will be considered.

Instruction format

A systematic method of operand addressing requires a
uniform means of address modifications for all operands.
Relative addressing requires at least one field for direct
operand designation, called the operand address field,
and one field for indirect operand designation, called the
index address field. The latter field specifies the address
of the index used in address modification. Providing
more direct address fields for each operand serves no pur-
pose. More indirect address fields would be infrequently
used. They would find application when an index arith-
metic algorithm is used which forms the sum of two or
more independently computed index values, called mul-
tiple indexing. In order to provide for this case, it was
chosen not to burden the operand designation with added
index address fields, but to provide a separate instruc-
tion, LOAD VALUE WITH SUM. This instruction adds any
selected number of index values, and places the sum in
another selecied index value. This procedure of provid-
ing for operations whose application is important but not
frequent, by means of specific instructions rather than
by fields which appear in all instructions, has been fol-
lowed in all applicable cases. As a result, the instruction
information content is improved, since one out of many
codes is used, rather than an extra bit for each code.
Also, the efficiency with which a program can be stated
is improved, since the infrequent use of an extra instruc-
tion is easily offset by the greater information content
of each frequent instruction, while on the other hand,
omitting the instruction entirely would require a sub-
routine each time the need arises. Another example of
this procedure is the instruction LOAD VALUE EFFECTIVE,

OPERAND ADDRESS ' OPERATION ‘ 1

SINGLE-ADDRESS FORMAT

OPERAND ADDRESS { J

INDEX ARITHMETIC FORMAT

OCPERAND ADDRESS ‘ OPERATION 1 i
| |

TWO-ADDRESS FORMAT

Figure 2 Instruction formats.

which gives the equivalent of indirect addressing by
loading an index value with the effective address of the
instruction at the addressed memory location.

With an operand address field and an index address
field required to specify each operand and with several
operands necessary for most operations, the instruction
format would become inefficient unless implied addresses
or truncated addresses are used.

In arithmetic operations, the accumulator usually is
used as the implied address. An add-type operation, for
instance, may have one implied operand in the accumu-
lator to which an explicitly specified operand is added.
The sum replaces either the implied operand or the
specified operand. Of the three addresses required by the
operation, only one is stated explicitly. This gain in effi-
ciency is nullified when the ADD is preceded by a LoAD
and followed by a sTORE. Therefore, implied addresses
provide a gain in instruction-bit efficiency only when
repeated reference is made to the implied address with-
out intermediate change of the implied operand. In
arithmetic operations, repeated reference to implied ad-
dresses occurs with sufficient frequency to justify the
single address instruction format outlined below. In index
arithmetic operations, the use of implied addresses has
been extended by specifying more than one operation in
one instruction, as will be described in the following
sections.

A second means of reducing the number of bits re-
quired for operand specification is the use of a truncated
address. The truncation of the address reduces the num-
ber of available address locations, and consequently
makes the instruction set less general. A truncated ad-
dress for index registers may be justified, however, be-
cause a limited number of index registers is usually used
in a program and a complete address would therefore be
inefficient. A second justification is that limiting the
number of index registers permits preferred treatment
for these registers to speed up index arithmetic opera-
tions and address modification. A third justification is
that a truncation of the index address makes it possible
to include a second index address in index arithmetic in-
structions, which greatly improves the efficiency of these
instructions. Nevertheless, some applications require
complete generality for index addresses. For these cases,
an instruction RENAME effectively expands an index ad-
dress to the full capacity. The instruction loads an index

OPERAND ADDRESS ‘ OPERATION l !

register from any desired memory location, retaining the
address of the memory location; the contents are auto-
matically stored back at the original location before the
index register is loaded by a subsequent RENAME in-
struction.

Another possibility for improving the efficiency of
operand specifications is the use of a truncated operand
address. This method was not used, however, since the
size of relative addresses would be restricted and the base
address could not be part of the operand address.

As a general pattern, a single-address instruction
format is used in the STRETCH Computer. The name
“single address” refers to the operand address and ignores
auxiliary addresses such as the index address. The
format permits specification of operations which require
only one explicit address. The index address field, I, is
used in address modification and is part of the operand
specification. Index arithmetic instructions use the index
arithmetic format which is the single-address format to
which a second index address field, J, has been added
so that the second operand can be addressed explicitly.
Some operations, for which two complete explicit op-
erand addresses are desired, use a two-address format.
This format consists of two single-address formats and
has double the length of the single-address format.
Figure 2 shows three basic formats which are used.

Increment instruction

Index incrementing could be performed in the accumu-
lator by a series of three single-address instructions which
add the increment to the index value and return the re-
sult to the index register. Actually, only the increment
and the subject index need specification, and since the
index address is truncated, the index arithmetic format
can be used to specify the entire operation. Such an ADD
TO VALUE operation can make use of the index adder
which is provided for address modification. The main
arithmetic process for data is then separated from the
housekeeping process. Data registers need not be altered.
Because of these advantages, an ADD TO VALUE operation
is normally provided when index registers are available.
In the index arithmetic format which is used in the
STRETCH Computer, the operand address specifies the
address of the increment. The operand address can

itself be indexed just as any other operand address. This

gives indexable index arithmetic.

291

IBM JOURNAL * JULY 1959

292

The quantity used in incrementing, the increment, is
specified explicitly in the increment instruction. A dif-
ferent approach is possible. The increment could be
associated with the index, such that the address of the
increment is known whenever the index is addressed.
The increment is then specified by an implied address.
As was pointed out before, an advantage is obtained by
implied addressing when the increment remains un-
changed. Furthermore, such an ADD To VALUE operation
should be combined with another operation which uses
the same index address. For instance, it would be pos-
sible to specify in one single-address instruction the use
and subsequent incrementing of an index. This method,
however, loses its value when several increments must
be used to change an index value, or when the incre-
menting and index use must occur in different parts of
the program. In order to achieve greater generality, a
separate ADD TO VALUE instruction has been chosen in
preference to a combined instruction. Several variations
of the basic ADD TO VALUE instruction, permitting sign
inversion and immediately addressing, are available.

Count

In the termination of array scanning, more than one
count may be used, just as several increments may be
used in index arithmetic. Most frequently, however, a
single count is used. It therefore is profitable to associate
the count used in the termination with the index value
to which the process applies, and use implied addressing.
Since counting normally occurs when the index value is
changed, it is logically consistent to specify incrementing
and counting in one index arithmetic instruction, ADD TO
VALUE AND COUNT. This instruction is available in addi-
tion to ADD TO VALUE. It becomes equivalent to “count”
when the increment is zero.

An implied address for the count can be obtained in
various ways. A solution, economical in time and space,
is to place index value and count as separate fields in one
word. Such a word will be referred to as a control word.
The instruction ADD TO VALUE AND COUNT adds the ad-
dressed increment to the index value, reduces the count
by one and provides a signal when the count becomes
Zero.

The choice of counting as a test for termination and
the use of an implied address for the count does not
preclude other termination tests. In particular, a com-
PARE VALUE instruction is made available to allow limit
tests and an ADD TO COUNT instruction can be used
for the equivalent of length subtraction. These instruc-
tions add flexibility to the instruction set but they are less
efficient than ADD TO VALUE AND COUNT.

The following example, to be expanded later, illus-
trates the use of counting in a simple technical computa-
tion. It is required to multiply Vectors 4 and B. Each
vector has n elements. Vector A4 has its first element at
ay, Vector B has its first element at b,. The product is
to be stored at ¢,. A4 is stored in successive memory lo-
cations. B is a column vector of a matrix whose rows
have p elements and are stored in successive memory

IBM JOURNAL * JULY 1959

locations. Therefore, the elements of B have locations
which are p apart. The program is shown in Table 2.
Multiplicand and multiplier are specified in Instructions
f+3 and f+4. Their product is added to the accumulator
content, which contains the sum of the previous products.
This operation is called cumulative multiplication. The
count in control word i terminates the cumulative multi-
plication. The count in control word j is not used. The
example shows that the use of the control words i and j
in two instructions requires five added instructions in
order to change, test, and initialize these control words.
Three of the latter instructions are in the “inner loop.”
Even though the simplicity of the arithmetic process
tends to over-emphasize the housekeeping burden,
further simplification of the indexing procedure would
be desirable.

Advance

An array in which elements have adjacent addresses,
such as Vector 4 in Table 2, requires an increment of
one. The frequency of occurrence of an increment of
one suggests the definition of an “advance and count”
operation which is an ADD TO VALUE AND COUNT opera-
tion with an implied immediate increment of one. The
advance operation then can be combined with another
single-address operation. A suitable candidate is the con-
ditional branch operation which refers to the zero-count
test. The new instruction then becomes ADVANCE, COUNT,
AND BRANCH. Several variations on ADVANCE, COUNT, AND
BRANCH can be and have been provided, but they add
no new indexing concepts and consequently will not be
discussed in detail.

In the example of Table 2, Instructions f+6 and f+7
can be replaced by one ADVANCE, COUNT, AND BRANCH
operation.

Progressive indexing

In discussing index use, it was pointed out that a base
address can be part of the operand address or of the in-
dex value. When the base address is part of the index
value and the relative address is zero, the operand ad-
dress is not used at all. The operation therefore can be
combined with an ADD TO VALUE AND COUNT operation.
The index value is first used as an effective address to
address memory and subsequently incremented by the
operand address, which acts as an immediate increment.
This order of events occurs also when two separate in-
structions are used. The operation part of the instruc-
tion, besides specifying the arithmetic operation, also
specifies: Use index value as the effective address and
subsequently increment and count. This type of indexing
will be called progressive indexing. Simple arrays which
permit progressive indexing occur both in data process-
ing and in technical computations.

In the vector-multiplication problem of Table 2, the
base addresses a, and b, could be placed in the value
field of i, and j,, respectively. If progressive indexing
were used, Instruction f+5 could be combined with f+4
and, instead of using the ADVANCE operation, Instruction

Table 2 Vector multiplication, using count.

e Instructions

Initial setup —ey |

Load i from i,

f+1 Load j from j,
f+2 Set accumulator to zero
Vector multiply, inner loop f+3 Load cumulative multiplicand from a,, indexed by i -e—
f+4 Multiply cumulatively by by, indexed by j
Housekeeping, inner loop f+5 Increment j by p
f+6 Increment i by 1, count
f+7 Branch to f+3 if count did not reach zero
Vector multiply, outer loop f+38 Store cumulative product ¢,
o' Control Words e Diagram of vector dimensions.
Contents after executing the inner loop x times bo
Address Index Value Count |[A 4 X bo +p
i x n—x ap ag+n ; :
io 0 n
i xp :
Jo 0 botrp

f+6 could be combined with f43. As a result, the pro-
gram is shortened both in instructions and in execution.

The use of progressive indexing in a data processing
operation is illustrated in Fig. 3. A series of elements of
different length is processed. As part of the computation
which is appropriate for an element, the element is ad-
dressed, using progressive indexing. As a result, process-
ing can proceed from one element to the next without
added index arithmetic. The example shows the use of
indexing words and bits within a word, as provided in
the STRETCH Computer.

Figure 3 Progressive indexing of elements with

e Instructions

Data transmission

When an increment of one is implied, as discussed in the
case of the ADVANCE operation, the count becomes the
equivalent of a length and represents the number of ad-
jacent words in the addressed memory area. When,
furthermore, the index value is used as an effective ad-
dress, as in the case of progressive indexing, the initial
index value is the base address, and addresses the first
word of the memory area. A memory area can, there-
fore, be specified in position and length by the value
field and count field of a control word. This makes it

varying length.

e Load element R, length r bits, from location
specified by i and increment i by r.

e+1 Compute with element R.

e+2 Load element S, length s bits, from location
specified by /.

e+3 Compute with element S.

e+4 Store new element S, length s bits, at location

specified by i and increment i by s.

e+5 Add one to element T, length ¢ bits, in location
specified by i and increment i by t.

e+6 Load accumulator with a constant.

e+7 Compare accumulator to element U, length u
bits, in location specified by i and increment i
by u.

IBM JOURNAL * JULY 1959

293

294

convenient to specify the memory areas involved in data
transmission by means of control words and gives the
control word the characteristic of a shorthand notation
for a memory area.

Data may be transmitted between two memory areas
or between input or output units and memory. The data
which are transmitted in one operation will be called a
record. A control word may be used both for indexing
and data transmission. This generality makes it possible
to associate a control word with a record and use it to
identify the record throughout an entire program, in-
cluding reading, processing, and writing.

The use of control words in transmission instructions
is particularly convenient when data can be moved di-
rectly between input-output units and general-purpose
memory. This ability is incorporated in the STRETCH
Computer as well as in other recent computers, and
avoids special-purpose areas to buffer records. An input-
output instruction specifies the input-output device used,
the operations to be performed and the address of a
control word. The two-address instruction format is used.
Data can move directly between the device and the mem-
ory area specified by the control word.

Data ordering

A common procedure in data-ordering operations, such
as sorting, merging, queuing, inserting, and deleting, is to
move records from one memory area to another. With
control words it is possible to replace the transmission
of a record containing many data words by the transmis-
sion of a single control word which specifies that record.

As an example, consider n records stored in random
order. It is desired to write the records on tape in proper
sequence. The sequencing is accomplished by ordering
the control words which are associated with the records.
The “key” value of each record is addressed relative to
the base address in the control word for that record.
By comparing the key values of the records, their proper
sequence is determined. In the course of this procedure
the control words may be placed in the correct order in
successive memory locations. The sequence of the control
words then specifies indirectly the sequence of the asso-
ciated records. When the records are written on tape,
the control words are used in the order of their ad-
dresses. Consequently, the records appear on tape in the
desired sequence. No record transmission is required
other than from memory to tape.

The preceding example illustrates the case of a series
of records which are to be processed as a group. The
records cannot be described by a single control word
since they are not in successive memory locations. The
group is described by a series of control words. The
transmission to or from input-output devices can, how-
ever, be mechanized by defining a chain of control
words. The chain is started by the control word specified
in the instruction. The chain is continued by taking con-
trol words from successive memory locations. The chain
is ended when some kind of end condition is sensed. A
convenient end condition is the presence or absence of

1BM JOURNAL * JULY 1959

a bit in the control words. This bit will be called the chain
bit. Thus, a single input or output instruction can, by
means of a chain of control words, initiate the trans-
mission of a group of records. Records which appear in
memory in random order are said to be scattered.

Control words were introduced in the IBM 709 in
order to permit grouped-record transmission to or from
external devices. In the IBM 7070, control words can
be used both for grouped-record transmission and for
indexing. Both machines establish a chain of control
words by placing the words in consecutive memory
locations.

An example of data ordering is the case of the dele-
tion of one record from a group of records. Assume the
records A . . . Z are in consecutive memory locations.
To delete Record D from this series, the records £ ... Z
would have to be moved to the locations previously oc-
cupied by D . . . Y. The use of control words greatly
simplifies this procedure. The grouped records can be
in random order in memory with their order established
by control words which are in consecutive memory lo-
cations. The deletion of Record D is accomplished by
removing its control word from the table of control
words and moving all subsequent control words one
space such that they again form a continuous table.
Table 3 illustrates this procedure. The insertion of a
record in a group of records may be handled by revers-
ing the process.

Table 3 Sequence of control words.

old New
A A
B B
C C

<« D E
E F
F G
X Y
Y Z
V4

Some conclusions may be drawn concerning the use
of control words in data transmission and data ordering.

First, since record transmission is replaced by control-
word transmission, an advantage in storage space and
transmission time is achieved. The advantage of the
procedure is dependent upon the size of the record.
When the record is one word long, it is more advanta-
geous to transmit the records.

Second, the location of a record and its control word
are independent, which facilitates data ordering by con-
trol-word manipulation.

Third, the use of identical control words for both in-

dexing and data transmission simplifies data ordering
operations.

Fourth, the records can be scattered in memory.
However, the control words have their sequence indi-
cated by the sequence of their memory addresses. As a
result of this restriction, activity on one record may re-
quire relocation of several control words.

Refill

The advantage of using control words in data handling
is increased when control words as well as records can
be scattered. Random addresses for control words imply
that a means for specifying their sequence must be pro-
vided. A straightforward solution has been found by
introducing a refill field in the control word which
specifies the memory address of its successor. The con-
trol word then contains three fields: the value field, the
count field, and the refill field, as shown in Fig. 4.
This solution is particularly attractive since it also
completes the indexing requirements stated in Table 1.
It was shown at that point that an indexing operation
required specification of: index value, increment, count,
and next initial index value and count. All these quanti-
ties except the last two have been specified so far, either
in instructions or in the control word. The last two quan-
tities can now be specified by the refill address. This ad-
dress can refer to a second control word, whose value
and count field specify the next initial setting. In fact,
the second control word is the next initial control word.
The refill field then serves the general purpose of link-
ing a control word with the next control word to be
used.

The operations which use the quantities mentioned
above were listed in Table 1 as: address modification,
incrementing, counting and zero testing, replacement of
index value and count. All these operations, except for
the last, have been specified as machine functions. The
last operation can be restated as: Replace the index
word by the word at its refill address location. The
operation as stated makes use of an implied address.
Therefore, the operation can be part of an INCREMENT,
COUNT, AND REFILL instruction. This combination of
operations is only meaningful when the refill operation
is conditional. An obvious condition is that the count
should reach zero. In addition, the instruction repertoire
can include other instructions, such as an unconditional
operation REFILL.

The refill operation can also be incorporated in input-
output data transmission control. The control words
comprising a data transmission chain need no longer be
located in successive memory locations. One control
word refers to the next through its refill address. The

Figure 4 Control-word format.

INDEX VALUE

chain bit indicates the termination of the chain and
hence stops transmission.

The refill function requires that the refill address be
part of the index word. When a computer word is not
large enough to contain all three fields, a partial solu-
tion can be found by using two adjacent words in mem-
ory. This procedure has been used in the input-output
control of the IBM 709. In a series of control words in
that machine a word may be placed which has the char-
acter of the instruction: Continue with the word at the
specified location.

An alternate use of the refill address has been con-
sidered. The refill address could be used as a branch
address rather than a control-word address. Whenever
the test condition is satisfied, a branch is made to a
subroutine which takes care of all termination and ini-
tialization procedures. As a minimum, the control word
could be reloaded, but more elaborate programs could
be performed. The procedure is more general than the
refill operation as defined above. The cost of this gen-
erality, however, is loss in efficiency in the case of the
minimum reload procedure; a branch as well as a load
operation is performed; each control word requires an
associated load instruction. In other words, the use of
an implied address in the main program is obtained at
the expense of explicit addresses in a subroutine. The
ability to permit more elaborate initialization procedures
is often incompatible with the use of the control word
in different parts of a program. For these and other rea-
sons, the refill operation has been preferred over the
branch procedure or one of the many variations thereof.

Index applications

The basic indexing formats and functions have been de-
fined in the preceding sections. The use of this mech-
anism will be demonstrated in the remainder of this
paper by re-examining the examples which were used
above in illustrating the evolution of the mechanism, as
well as by considering some more elaborate applications.
Of the indexing applications, the simple example of
vector multiplication described earlier and its expansion
to matrix multiplication will be discussed.

The vector multiplication program was listed in
Table 2. The same program using the refill operation
is shown in Table 4. The control words are automatically
reset. When the program is executed repeatedly, it is
sufficient to start at the initial setup instruction g. When
however, the execution of the program is stopped pre-
maturely and a restart is required, the preparatory steps
g-2 and g-1 are required, which lead / and j. Thus, load-
ing of i and j should always be part of the program load
procedure. The control words i and j are specified by

(-CHAIN AND CONTROL BITS

COUNT ‘ REFILL

295

IBM JOURNAL * JULY 1959

296

truncated addresses and are located in the index reg-
isters. The control word i,, however, has a complete
address and can be located anywhere in memory. The
program illustrates the use of an ADVANCE, COUNT,
REFILL AND BRANCH instruction. Because the base ad-
dresses a, and b, are part of the operand address, the
control word i, can serve as a refill word for both i and j.

The program for matrix multiplication is shown in
Table 5. Index i describes the row element of Matrix 4.
The index repeats the same row p times. Index j is used
to address the elements of a column of Matrix B. It is
incremented n times by p, then reloaded from j,. The
count of j is not used. At the end of every vector multi-
plication, j, is incremented by 1, thus selecting the next
column vector of the multiplicand.

The incrementation of j, is counted p times and used
to determine the end of the product row. Index & is used
to determine the end of the entire matrix multiplication.

The program shows that a reasonably complex index-
ing procedure can be described satisfactorily and com-
pactly. The following observations can be made:

(1) Only Instructions 2+6 and h+11 contain con-
stants which describe the locations and dimensions of
the matrices. Both instructions could use a direct ad-
dress instead of an immediate address, however. In that
case, the program is independent of the data. The use
of a direct address slightly increases the execution time.

Table 4 Vector multiplication, using. COUNT and REFILL.

(2) The constants describing matrix locations and di-
mensions appear as single quantities in instruction and
control-word fields. The only exception is the constant
m which appears as part of the product mp. Note that
only control words iy, jog, and kg should be supplied by
the programmer. All other control words are developed
during program execution or preliminary setup.

(3) The automatic refill is used in the inner loops.
The refill operation is supplemented by load operations
in the outer loops. The refill operation is no substitute
for preparatory operations required for restart proce-
dures.

Record-handling applications

Record-handling techniques have application both in
technical computation and data processing. The exam-
ples to be discussed are a read-process-write cycle, or-
dering, and a file-maintenance procedure.

The use of control words for a simultaneous read-
process-write cycle is illustrated in Fig. 5. Here X—x
describes a control word, which, by its value and count
fields, defines memory area X and which has the address
x in its refill field. Location x contains the next control
word in the chain, Y —y, defining Record Y. Control word
Z—z is placed at Location y. Because control word X —x
is stored at Location z, a “ring” of three memory areas,
X, Y, and Z is set up in which X is followed by Y,

e Instructions

Preparation g2
g—1

Initial setup

Vector multiply, inner loop g+1
g+2
Housekeeping, inner loop g+3
g+4
Vector multiply, outer loop g+5

Load i from i,
Load j from i,

Set accumulator to zero

Load cumulative multiplicand from a, indexed by i ==
Multiply cumulatively by b, indexed by j

Increment j by p, count, refill when count reaches zero
Advance i, count, refill when count reaches zero, branch
to g+ 1 when count does not reach zero

Store cumulative product at ¢,

e Control Words

¢ Diagram of vector dimensions.

Contents after executing the inner loop x times

Address Index Value Count Refill
i X n—x iy
iy 0 n iy
i xp n—x iy

X bo+p

Qo:-- e °0+n

——bo+np

IBM JOURNAL * JULY 1959

Y by Z, and Z again by X. Both record areas and con-
trol words may be scattered throughout memory. Note
that in this notation capital letters are used for record
areas and lower case letters for control-word locations.
Corresponding letters are used in each control word to

Table 5 Program for matrix multiplication.

denote a record area and the control word of the next
area in sequence.

The example of Fig. 5 shows the sequence of opera-
tions in a read-process-write cycle. While a record is
read into Area Z, as controlled by control word Z—z,

o Instructions

Preparation h—2
h—1

Initial setup

New product row procedure h+1
New vector product procedure h+2
h+3
Vector multiply, inner loop h+4
h+5
Housekeeping, inner loop h+6
h+7
End of vector multiplication procedure h+8
h+9
h+10
End of product row procedure h+11
h+412
h+13

Load & from k,
Load j, from jg,

Load i, from iy,

Load i from i, -

Load j from j, -
Set accumulator to zero

Load cumulative multiplicand -

from location specified by j
Multiply cumulatively by operand location specified by i

Increment j by p
Advance i, count, refill when count reaches zero, branch

to h+4 when count does not reach zero

Store cumulative product at location specified by &
Increment k by 1, count, refill when count reaches zero
Advance j,;, count, refill when count reaches zero and
branch to 42 when count does not reach zero

Increment iy by n
Compare index values of &k and &,
Branch to 241 if comparison result was not equal

o Control Words

e Diagram of matrix dimensions.

Contents after executing the inner loop x times for the
product matrix element c,,

Address Index Value Count Refill
i ag+ra+x n—x io
iy ay+rn n iy
igo ay n iy
J by+s+xp pP—s joo
jo bo+s p—s joo o ‘ oo = |
Joo r bo 4 ino J : rT X = i__’ln
k Ccot+rpt+s mp—rp—s ko I ’

297

IBM JOURNAL °* JULY 1959

Table 6 Record deletion.
X e Before o After
Y Control Control Control
Location Word | Location Word Location Word
z MEMORY AREAS
b C—c C—c
c D—d c D—d
d H—h d E—e
h E—e h H-—h
LOCATION CONTROL WORDS USED e F—f e F—f
L f G—g f G—g
x Y-y READ— X-x, Y-y, Z-z, X-x, ... I—i 1—i
y Z-z PROCESS— X=x. Y-y, Z-z, ... g g 8 .
z X-x WRITE— X-x, Yoy, « . . i J—j i J—j
i K—k j K—k
CONTROL i
WORD
Figure 5 Read-process-write chain.
. . . Table 7 d i ion.
processing proceeds with control word Y —y using data ¢ Record insertion
in Area Y, and data from Area X are written under o Before o After
control of control word X —x. At the conclusion of each -
of these operations, the appropriate control word is re- Control Control Control

filled and the areas are thereby cyclically permuted in
function.

Instead of a single control word, a chain of »n control
words could be used in reading while a second chain of
n control words is used in processing, and a third chain
of n control words is used in writing. To further elabo-
rate the example, assume that processing consists in
placing the n records in a preferred sequence. This se-
quencing operation was described above. Because of the
refill field, however, the control words do not have to be
in sequential locations. The advantage of this added de-
gree of freedom will be shown in the following exam-
ples.

Assume that the records 4 . . . Z are scattered through-
out memory. The associated control words 4A—a...
Z—z establish their order. The correct order is indi-
cated by the alphabetic sequence. It is desired to delete
Record H, which is out of sequence and set its memory
area aside. The control word H—h of this record is part
of the chain C—c ... K—k shown in the left half of
Table 6. By interchanging the contents of locations d
and A, a new order is established as shown in the right
half of Table 6, and H is no longer part of the sequence.
A second interchange between d and & would re-insert
H. Thus, the complementary nature of insertion and de-
letion is reflected in the programming procedure.

1f it would be desired to insert H in the sequence. ..
G, I, J,...between G and I, the second interchange
would be between g and A. Table 7 illustrates this case.

Becausz the sequence . . . G, I, J . . . is part of se-
quence A . .. Z, the example is equivalent to a sorting
operation. The sequence . . . G, I, J . .. may equally well

be part of an independent sequence, as is the case in file
298 maintenance.

IBM JOURNAL * JULY 1959

Location Word Location Word Location Word
\ ,]

b C—c b C—c
c D—d c D—d
d E—e . d E—e
e F—f e F—f
f G—g f G—g
g I-i g H—h
h H—h ‘ h I-i
i J—j i i J—j
j K—k j K—k
\
Table 8 Group deletion.
e Before "o After
Control Control Control
Location Word | Location Word Location Word
b C—c b C—c
c P—p c D—-d
p 0—q p O—q
a R—r q R—r
r D—d r P-p
d E—e d E—e
e F—f e F—f
f G—g f G—g
g H—h g H—h

The interchange of two control words is performed
conveniently by a swaP instruction. This instruction in-
terchanges the contents of two memory words. The in-
sertion or deletion of a record involves only the swarp
of its control word with that of its successor. The inser-
tion and deletion of a group of records is equally sim-
ple. Consider again the file 4 . . . Z. It is required to
delete the group P . .. R from the file shown on the left
in Table 8. By giving a swaP instruction for locations ¢
and r, the new order becomes as shown on the right in
Table 8.

One swaP instruction deletes the group of records
just as one SWAP instruction in the previous example
deleted a single record. The only differences are the ad-
dresses of the instruction. The records P ... R form a
ring in sequence. (In the previous example, the deleted
record H could be considered to form a ring in se-
quence, since its control word was stored at its own refill
location.) The re-insertion of the records P ... R can be
performed by again swapping the contents of locations
candr.

In these examples the sequence of control words is
changed by transmitting entire words. A different ap-
proach is to transmit refill fields only, leaving the re-
mainder of the control word unchanged in memory.
This method can also be used in many applications.

File maintenance

A simple case of updating a master file from a detail file
will be discussed. Four tapes are used: the old master
tape, the new master tape, the detail input tape, and the

detail output tape. The detail records are processed in a

simple input-process-output operation as was described
above. The master records are ready from the old master
tape, processed and written on the new master tape.
Reading, writing and processing take place simultane-
ously. The processing of a master record may involve:

a) no activity,

b) updating,

c) deletion of obsolete records, and
d) insertion of new records.

Master records are read and written in groups of m
records. Memory space is set aside for a total of 4m
master records and their control words. Normally, m
records are written on the new master file, while m rec-
ords are read from the old master file. The remaining
2m record spaces are available for processing. These
record spaces are divided into two groups: the current
spaces and the spare spaces. The current record spaces
contain records which either have been processed and
are ready to be written on the new master tape, or
which have been read from the old master tape and are
available for processing. The spare record spaces con-
tain no useful record information. The number of cur-
rent and spare spaces varies throughout the processing
but their sum remains 2m.

The control words used in reading and writing and
the control words of the current records form a ring.

The control words for the spare record areas also form
a ring. Figure 6 shows the control words in diagram
form and illustrates the cases discussed below for m=8§.

When a record is inactive or requires updating, the
number of current and spare records remains unchanged.
The record is addressed by means of its control word.
After the processing is completed, the current control
word is replaced by the next one in order by means of
a REFILL instruction. The record is ready to be written
on the new master tape. A count is kept of the records
which are ready to be written. When the count equals
m, a WRITE instruction is issued which is followed by a
READ instruction. The record space of the records just
written is used for the records to be read. The records
just read are available for processing.

When a record is found to be obsolete and should be
deleted, its control word is removed from the ring of
current control words and inserted in the ring of spare
control words. Because the control word is deleted, its
record is not written on the new master tape. The count
of records which are ready to be written is not changed.
The control word of the next record is obtained and
processing continues.

Because of an excess of deletions, all current records
may be processed before m records are ready to be writ-
ten. In that case, the number of spare record areas is
always larger than m and a corrective step can be taken.
This step consists in deleting m control words from the
spare ring and inserting them in the read-process-write
ring. The control words are inserted as a block preced-
ing the control words used in reading and following
those used in writing. An extra READ instruction is given
and processing proceeds with the records which have
just been read.

When a new record is to be inserted, a control word
is removed from the ring of spare control words and
inserted in the ring of current control words. The cor-
responding record area is then available for the new
record. After the new record is processed, it is ready to
be written.

Because of an excess of insertions, the spare control-
word ring may have been reduced to zero. A corrective
step then should be taken by deleting m control words
from the read-process-write ring and using them as a
new spare ring. The m control words which are deleted
are those which were last used in a write operation.
Writing is checked for completion. The next time that m
records are ready to be written, the WRITE instruction
is given but the READ instruction is omitted.

The file maintenance procedure outlined above illus-
trates the use of insertion and deletion of single records
and groups of records. All the manipulations which were
described are performed conveniently with control words
and would require a great deal of housekeeping without
the refill feature.

Subroutine control
Another application of control words is in subroutine
control. Fn the preceding discussion, the control word

IBM JOURNAL * JULY 1959

299

MASTER PROCESSING RING SPARE RING
UPDATING OR NO ACTIVITY 2 READY FOR WRITING
o1 UPDATED OR INACTIVE
«——""_5 READY FOR PROCESSING

/'9— CURRENT

7 SPARE
DELETION
% ____________________________ =~
3 READY FOR WRITING \\
TT———1 DELETED 'd
5 READY FOR PROCESSING
5 CURRENT
7 SPARE
1 INSERTED
EXCESS DELETION 6 READY FOR WRITING
CORRECTION NONE AVAILABLE FOR PROCESSING
,/
L 10 SPARE
L, 8 DELETED
4
v
/,/
INSERTION T -

4 SPARE
T2 READY FOR WRITING | DELETED
1 INSERTED
.10 READY FOR PROCESSING
Se_ 13 CURRENT \
\\~ _______________________________ ’/
EXCESS INSERTION
CORRECTION
AY ! 7
5 et ’ _ —_
-
Z e ' N
NO SPARE
8 INSERTED
TTS~7 READY FOR WRITING
NONE AVAILABLE FOR INSERTING
9 READY FOR PROCESSING
16 CURRENT
300 Control-word diagram for file maintenance.

IBM JOURNAL * JULY 1959

specified a memory area which normally would contain
data. However, the memory area might also contain in-
structions. A record can then be thought of as a subrou-
tine. An illustration might be the use of exception sub-
routines which are stored on tape, drum or disk, and
are called in when the exception arises. The control
word is used in the READ instruction and can subse-
quently be used for address modification in the BRANCH
instruction which refers to the subroutine and in the in-
struction which stores the instruction counter contents.
The subroutines, therefore, can be inserted conveniently
in a main sequence of instructions.

The chaining concept has been developed independ-
ently by Newell, Shaw and Simon, who have shown
many interesting examples of its function on a simulated
computer.*

Conclusion

The preceding discussion has shown the application of
control words in address modification and in record han-
dling. Both indexing and data transmission techniques
make it desirable to have an index value, count and re-
fill facility. The three fields in the control word and the
associated machine functions satisfy these requirements.
The control words provide substantial saving in pro-
gram space and increase in machine speed. They sim-
plify programming of “housekeeping” operations.

Control words do not introduce entirely new functions,
since their operation can be simulated on any stored-
program computer. Also, the introduction of count and
refill is only a second-order improvement as compared
to the first-order improvement of address modification
through indexing. The simplicity of control-word opera-
tion .is, however, in sufficient contrast to the complexity
of simulating its operation that several methods of rec-
ord control are feasible which otherwise would have
been impractical.

The indexing instructions have been described for the
STRETCH Computer. Though elements of the system
described here have been used in other machines, the

effectiveness of control-word techniques depends to a
major extent upon the combination of all features
which have been described. It is believed that control-
word techniques represent a significant step forward in
the data-handling ability of computers.

Acknowledgments

Much of the early development of the control-word con-
cept was stimulated by discussions with G. M. Amdahl,
E. M. Boehm, J. E. Griffith and R. A. Rahenkamp.
Many contributions to the use of control words in the
STRETCH Computer were made by W. Buchholz, F. P.
Brooks, Jr., and C. A. Scalzi.

References

1. T. Kilburn, “The University of Manchester High-Speed

Digital Computing Machine,” Nature, 164, 684 (1949).

2. W. L. van der Poel, The Logical Principles of Some Sim-

ple Computers, Excelsior, The Hague, Netherlands, p.

100.

3. The following technical papers have been published

about the STRETCH computer:

a) S. W. Dunwell, “Design Objectives for the IBM
Stretch Computer,” Proceedings of EJCC, p. 20 (De-
cember, 1956).

b) F. P. Brooks, Jr.,, “A Program-Controlled Program
Interruption System,” Proceedings of the EJCC, pp.
128-132 (December, 1957).

c) W. Buchholz, “The Selection of an Instruction Lan-
guage,” Proceedings of the WICC, p. 128 (May,
1958).

d) F. P. Brooks, Jr., G. A. Blaauw, W. Buchholz, “Proc-
essing Data in Bits and Pieces,” IRE Transactions on
Electronic Computers (June, 1959).

4. a) A. Newell, J. C. Shaw, “Programming the Logic
Theory Machine,” Proceedings of the WICC, p. 230
(February 1957).

b) A. Newell, J. C. Shaw, H. A. Simon, “Empirical Ex-
plorations of the Logic Theory Machine,” Proceed-
ings of the WJCC, p. 218 (February 1957).

¢) A. Newell, H. A. Simon, “The Logic Theory Ma-
chine,” Transactions on Information Theory, IT-2,
No. 3, 61 (September 1956).

d) J. C. Shaw, A. Newell, H. A. Simon, T. O. FEllis,
“A Command Structure for Complex Information
Processing,” Proceedings of the WICC, p. 119 (May
1958).

Received August 22, 1958

301

IBM JOURNAL * JULY 1959

