
J. H. North

A Learning Machine: Part II*

Abstract: An effort is made to improve the performance of the learning machine described in Part I, and

the over-all effect of various changes is considered. Comparative runs by machines without the scoring

mechanism indicate that the grading of individual instructions can aid in the learning process. A related

study is made in which automatic debugging of programs is taken as a special case of machine search.

The ability to partition problems and to deal with parts in order of difficulty proves helpful.

Introduction

The experiment described in Part I was continued after
an interruption of several months. Two immediate ob-
jectives were set: (1) an explicit measure of Herman’s
learning efficiency, and (2) a better understanding of
the factors which govern that efficiency. We are inter-
ested in Herman because elements which help or hinder
his small-scale performance can well influence more sub-
stantial learning machines.

But how is efficiency to be measured? Suppose changes
are made in Herman’s program randomly, without the
benefit of success numbers. For any reasonable prob-
lem, a correct program will be hit upon eventually. The
question is how much faster Herman, with the aid of the
scoring mechanism, will develop correct programs than
he would merely by random, trial-and-error search.

Not all random searches are alike. Suppose we dis-
cover two men on a lake: Samson and Homer. Each is
blind and cannot fix his precise location. Nevertheless,
by dropping a lead line, each can determine exact
depths. Samson is somewhat stolid. He is blown by
chance winds about the lake, but he finds pleasure in
dropping his lead line every five seconds and recording
the depth. Since one drop follows so immediately upon
another, his successive positions are close together and
do not generally differ much in depth. Homer, on the
other hand, takes great pleasure in surprise. He too is
bandied about by chance winds, but he waits a full hour
between drops. In this way, his successive positions tend
to be rather remote; and he has no idea what will come
next.

Suppose Samson and Homer compare the first 10,000
depths each has recorded. If we assume the lake re-

282 *“A Learning Machine: Part I” by R. M. Friedberg, appeared in the
IBM Journal, 2, No. 1, 2-13 (January 1958).

mained unchanged, there is no reason why either man
should have scored more deep depths than the other.
Samson, of course, obtains his extreme readings some-
what in bunches. Suppose now we penalize Samson for
his stolidity. Every time he records a deep depth of a
certain magnitude, he must wait an hour before his next
drop. His percentage of deep drops will become smaller,
since he cannot take full advantage from having reached
a deep section of the lake.

With this fantasy in mind, we set up two different
random machines. One was like the penalized Samson,
and the other was like Homer. When the Samson ma-
chine failed, only one or two of the 64 active instruc-
tions were changed. When a successful program emerged,
the whole machine was started from scratch. The Homer
machine, on the other hand, underwent total revision
after each failure. As one would expect, Homer far sur-
passed Samson in the average speed with which he ob-
tained correct programs. Nevertheless, Samson serves as
a more valid basis for appraising Herman’s success-
number mechanism, because Samson is almost exactly
like Herman except for lacking such a mechanism.

Teddy

Before we attempted to measure Herman’s learning ef-
ficiency, we made two changes in his mode of operation
by priming and reset. Both were calculated to improve
his performance. In this way, production runs on the
IBM 704 could be cut down and very much better
statistics obtained.

As noted in Part I, a successful program is likely to
contain op 0 in the initial location and o p 1 or 3 in the
final location, when the two locations are used for input-
output purposes. We prime Herman by guaranteeing

i IBM JOURNAL JULY 1959

that this is the case. Priming is thus an ad hoc adjust-
ment to Herman’s particular characteristics; reset, on
the other hand, is more fundamental. Although the
mechanism of success numbers enables us to “criticize”
and modify the instructions in the various locations, it
in no way affects the data bits, which carry over un-
changed from one run to another. This means there is a
certain “dark area” in the experiment, in that a part of
the machinery which most influences the outcome of a
problem is almost totally independent of the success-
number bookkeeping. Further, an important element
which could easily be kept constant from run to run,
thereby reducing the over-all complexity of the situa-
tion, is permitted to vary. Herman is reset, therefore,
after every run by inserting ZERO in all data locations
which do not represent the selected inputs. From here
onward, we shall assume machines to be primed and re-
set, unless otherwise specified.

The efficiency with which variant machines dealt with
Problem 1 was used as a rough touchstone of their learn-
ing potential. In this problem, D,) is the input location,
D,, is the output location, and the criterion of success
is that the output bit should be identical to the input bit.
Table 1 shows the general effect of priming and reset.
At least 2,000,000 trial runs were made to obtain the
statistics for each of the four possibilities.

Table 1 Average number of trials required to
achieve a perfect program for Problem 1.

Reset N o Reset

Herman primed
477,019 , 78,829 Herman unprimed
57,281 15,197

- ~ ~ _ _ _ _ ~ ~ ~~ _ _ _ ~ ~ ~ ~ _ _ _ _ _

Herman’s performance on Problem 1 was then com-
pared to that of Samson and Homer, mentioned earlier.
Samson was so set up that one active instruction was
replaced by its inactive counterpart after every failure.
After every 64 failures, one of the 12.8 instructions,
chosen randomly, was replaced by a new random one.
The interchange of active and inactive instructions was
done both systematically and by random choice. The
latter mode of operation is more efficient, since there is
less likelihood that the machine will cycle. When
changes are made in systematic order (Z,,, I , , . . . , I,,, I , ,
I , , . . .) , almost duplicate programs will occur every 128
failures. Hence, programs that have already proved fail-
ures may be run again, which will inhibit the speed of
learning. Samson was, therefore, set up in both ways
for Problem 1. Both machines were given the usual
2,000,000 trials. On the average, the “systematic” Sam-
son, which most resembled Herman, required 34,829
runs to achieve success. The “randomized” Samson re-
quired 9744. Homer was then tried. Set up in the man-
ner earlier described, he achieved over 1000 perfect pro-
grams at an average of 356 trial runs.

The difference between the two Samsons suggested a
possible change in Herman. “Criticism” of individual lo-

cations after failure might no longer be made in sys-
tematic order, but randomly. The “randomized” Her-
man was in fact set up, and (2,000,000 trials, Problem 1)
averaged 9959 runs per success. Figure 1 shows graphi-
cally the comparative performance of the two Samsons
and Hermans. The fact that the “randomized” Herman
does not maintain the supremacy over the corresponding
Samson which was shown by the “systematic” Herman
is not surprising. Because random success numbers are
assigned at the start, a problem must be run for some
time before the success mechanism can take full effect.
If average runs are sufficiently short, the success mech-
anism can in fact inhibit performance, since, in the ini-
tial stages, instructions with the lowest success numbers
may well be ones which have had no effect whatever on
the problem.

Because it was felt that Herman’s performance could
be substantially improved, it was decided to modify the
general scoring mechanism; and a new machine, Teddy,
was put together.

Teddy differs from Herman only in the way the asso-
ciated Learner functions. Two general motivations gov-
erned his design: (1) elimination of dark areas, and
(2) reduction of traffic jams. Dark areas arise when the
critical mechanism does not attack those elements which
have in fact had most to do with past performance. It

Figure 1 Record of performance on Problem 1,

40,OOC

36,00C

32,000

28,000

24,000

20,000
v)
v)

W

U 16,000
U
3
v)

12,000
a
v)

Z
=I 8,000
w
W

0
4 4,000
Tr
W

>
4 0

t

1
r
t
i

t-
L I
I s

random input.

i

I I I
1 25 50 75 100 1 2 5 150 175

tUCCESSFUL PROGRAMS A C H I E V E D 288

IBM JOURNAL JULY 1959

may either punish and reward innocent bystanders, or
leave unnoticed true heroes and villains. Traffic jams
arise when the machine gets itself into a difficult situa-
tion from which it can emerge only very slowly, if at all.
For example, on a given production run where Herman
learned Problem 1 45 times, in 42 cases it never took
him more than 30,000 trials. In the remaining three
cases, he did not take less than 86,000.

What then are the basic differences between Teddy’s
scoring mechanism and Herman’s? First, success num-
bers are modified only f o r participants. A participant is
an active instruction which was either executed in the
run in question or referred to by the b part of an exe-
cuted op 3. Second, success numbers are both raised and
lowered. After every success the appropriate success
numbers are increased by two. After every failure, the
appropriate success numbers are reduced by two. Third,
the method of assigning success numbers is changed.
Upon initialization, all of the instructions are assigned a
success number of 1000. The Si of an instruction later
introduced is the mean of the current success numbers
of the other instructions. Fourth, a new system for han-
dling maximum and minimum numbers is introduced.
No number is taken as S,, and scaling is eliminated. An
instruction whose success number drops to 256 is re-
placed by a new random instruction. Fifth, there is in-
sured modification of the program after failure. Only
the participants are subjected to “criticism,” and this
process continues until one of the inactive instructions
becomes active.

The reasons for these changes are not particularly
subtle. Restricting “criticism” and success-number modi-
fication to participants is designed to eliminate dark
areas. Lowering of success numbers upon failure and
the new treatment of Si and S, are designed to remove
the tendency of success numbers, after a run of a cer-
tain length, to bunch together just below S,. The latter
makes the interchange of active and inactive instructions
almost automatic (since the size of the two numbers
will be great relative to their difference), and leads also
to traffic jams. Suppose, for example, a small number of
Herman’s instructions have success numbers substan-
tially lower than the bunch at the top. These few may
receive the great burden of the Learner’s “criticism,”
even though they may not have been participants for
some time. As a result, Herman may work himself out
of a jam quite slowly. Indeed, the longer a problem
runs, the greater the tendency of success numbers to
bunch at the top. Thus, the machine (for a variety of
reasons) may become more-or-less static in its behavior,
its basic operations being largely independent of the
changes made when it fails. As a manifestation of this
phenomenon, an unprimed, unreset Herman was made
to arrive at and retain for some time a program merely

tioned. In a given lesson, we presented Herman (un-
primed and unreset) with a new problem in which the
only criterion of success is that the program finish in
time. The Teacher, however, was made to report only
one of every ten true successes to the Learner as a suc-
cess, and the other nine as failures. The frequency of
true success rose gradually from a small initial per-
centage to almost 100 per cent. It then remained well
above 90 per cent for better than 400,000 trials, during
which a good many of the 128 locations were affected
by random changes. We examined several programs that
arose during the latter 280,000 trials. They all lacked
any op 0 instructions in the last ten pairs of active and
inactive instructions, and possessed a number of op 0
instructions elsewhere with addresses designating these
last locations. In fact, the empirical check indicated that
the last 11 pairs of instructions were not replaced by
any new random instruction in the final 100,000 runs.
Both of these features are obviously prone to favor a
success for the problem in question without necessarily
ensuring it. When Samson (unprimed and unreset) was
substituted for Herman in this experiment, the fre-
quency of true successes did not rise above 15 per cent.
Thus, it can be seen that the success-number mechanism
is very effective for this problem, both in developing a
high frequency of s8uccess and in maintaining it despite
random changes in the program. This contrasts with the
inability of Herman to maintain an almost successful
program for Problem 1 when given a systematic failure
only one true success in ten (Part I, Experiment 9).

Teddy’s record of performance is somewhat better
than Herman’s. In a total run of 500,000, he was able
to solve Problem 1 after an average of 1360 programs
tried. It should be noted, however, that the way in
which the problem is posed by the Teacher and the
method of counting runs are both different from that
described in Part I. Since Teddy is reset after every run,
he will obtain an identical output given an identical in-
put, provided no instructions have been changed. Hence,
it is simpler to know when he has arrived at a perfect
program-he need only have tried all of the possible
input circumstances and obtained correct outputs. With
this in mind, we set up the following procedure: a given
program tries out all the input conditions before a
change is made. Success numbers are appropriately
modified, and one set of “criticisms” is made per failure.
The resulting program is then tried, and so on. In tabu-
lating the result, it is more convenient to count the pro-
grams tried than the individual runs. With this new
mode of bookkeeping in effect, Herman (primed, reset,
“randomized”) required on the average 2890 program
trials to solve Problem 1. The “randomized” Samson
needed 4603 trials, and Homer, 321. Figure 2 shows
these and other results. I

to finish, even though given an automatic failure nine Teddy and the “randomized” Herman were also tried
times in ten. on a few two-variable problems, in which Do and D,

Because Teddy’s over-all design is so much a function were taken as input locations, and D,, as the output.
of earlier experience with Herman, it may be of some Table 2 provides a record of their achievement. The

284 interest to set forth a few details of the result just men- functions indicated are the familiar truth-functional ones.

IBM JOURNAL JULY 1959 I

Table 2 Comparative performance of Teddy and
Herman (randomized) on two-variable
problems.

i Average programs tried before suc-
cess and number of successes

i obtained

Function 1- ~-7‘eddy
- ~~ ~.

i Herman
~~ __ -

AND 24,896 15 ‘~ 225,508 --
INCLUSIVE-OR 44,539 1 1 97T78 6
NOT-IF-THEN 18,633 141 306 1 3

One of the major objectives of Part I was to deter-
mine whether the grading of individual instructions
would aid in the learning process. Samson, Herman, and
Teddy, in their various forms, are all inhibited in that
changes are made more or less one at a time. The gen-
erally superior performance of those machines with a
success-number mechanism over those without does
serve to indicate that such a mechanism can provide a
sound basis for constructing a learning machine.

Another aim of Part I was to render more explicit
just how a machine, in a progressive sequence of opera-
tions, could +discover order in the midst of apparent

Figure 2 Record of performance on Problem 1,
systematic input.

10.000
8,000
6,000

4,000

2,000

1,000
2 800
v 6 0 0
V
3
v) 400

W

LL
W
0

v) 200
Q:
-I

-
+ l o o
4 8 0

LL

4
U 6 0
13
2 4 0 0

W

O 2 0 z
W
>
4 10

1 - ,,
I

1
I
I TEDDY - 1360 I , I I

I I I ,

HOMER 7 321

I I ,p“~ +.-
-

“F-
\

RAMSY - 60 ,

SUCCESSFUL PROGRAMS ACHIEVED

chaos. AS we have seen, dark areas and traffic jams are
likely to occur and do have a definite effect on the effi-
ciency of the machine. Hence, in setting up future learn-
ing machines, we need to consider how these problems
are to be managed in the given case. There is, of course,
the fascinating prospect that a learning machine might
SO adjust itself as to eliminate traffic jams and dark areas
progressively, as it gains experience.

Finally, there is the problem that making changes one
at a time can very much inhibit a learning machine.
Homer far outstrips Teddy in performance. The par-
ticular way in which success numbers function for the
machines we have considered makes it difficult to avoid
this inhibition. Hence, the question was next raised how
an elementary learning machine, which followed rea-
sonably simple but general directions, might be set up
without the use of success numbers.

Ramsy

It was remarked in Part I that, although a learning ma-
chine might indeed “learn to perform a task without
being told precisely how to perform it, it would still
have to be told precisely how to learn.” For the ma-
chines we have been considering, the ability to arrive
at a program for solving problems simply from seeing
whether trial runs succeed or fail depends in large part
on having some effective way of selecting one imperfect
program over another. Naturally, it is easy to recognize
a perfect program when one comes along; and one
might, as Homer does, simply try out one new program
after another. Still, this method, though suggestive, does
not seem very promising. The harder the problem, the
less likely it will help us. If we could arrive at programs
not yet perfect which have, nevertheless, a certain figure
of merit in their favor; and, if we could use such pro-
grams as a decent basis for obtaining new programs with
a higher figure of merit, perhaps we might develop a
reasonable learning machine after all. But how is all
this to be done?

Suppose we simplify the problem somewhat. Let us
say we want a seZf-debugging machine capable of mak-
ing an efficient, progressive search for correct programs,
starting from scratch in each case. What exactly would
such a search be like? Let us go back to the lake-bottom
fantasy described in the Introduction. We now postulate
Thales, a third man. Thales is neither blind nor blown
about by chance winds. He can always return to a spot
just left. To determine depths, he too must drop a lead
line; but he does have the capacity to try out nearby
positions before moving on to them. In this way, he can
always move to a deeper part of the lake until he
reaches a position of desired depth unless, of course, he
is stopped at some point which is deep relative to its im-
mediate surroundings but not to the lake as a whole.
Under the latter circumstances, he must accept new posi-
tions which are not necessarily better, in order to get out
of the immediate dead end.

Now, although the “Thales” technique of directed
search may seem simple and straightforward, we do not

I

285

IBM JOURNAL * JULY 1999

in fact understand it or its applications fully. Neverthe-
less, we do know that it is a powerful method, which we
have already used with considerable success on a number
of occasions where other problem-solving techniques
failed. It is typically applied to problems with answers
easy to recognize but difficult to calculate. Hence, the
analogy to the machine-learning experiment is helpful.
On the one hand, we may receive some hints as to how
the learning machine can be set up more efficiently. On
the other hand, we are provided with an additional moti-
vation for the experiment. A learning machine based on
the principle of directed machine search would provide
a rather illuminating example of this technique. After
all, our basic objective in building and studying com-
puters is to obtain greater problem-solving capacity.
For the latter, we need not only better machines, but
also a better understanding of how to use them.

Most problems we encounter can be broken down into
parts, and often these parts are not difficult in them-
selves. All of us have dealt with outwardly hard prob-
lems which became easy when reduced to a set of sim-
pler subproblems. Suppose two imperfect methods for
solving a problem are at hand. One does no good at all.
The other manages a certain segment of the problem.
We would obviously attach a higher figure of merit to
the second. If there were some way of leaving undis-
turbed those features of the better method which con-
tributed to its partial success, while modifying other
features which led to its partial failure, we should also
have a decent basis for obtaining a new method with an
even higher figure of merit. In this way, we could pro-
ceed to the solution by a sequence of definite steps. Our
scheme of operation would then resemble Thales, in that
a proposed step would be accepted only when in the
right direction. Suppose the various parts, however,
though much easier than the total problem itself, are
not alike in difficulty. If the solution of one part does
not help that of another, it would be advantageous to
attack the more difficult parts first. Since we hope to
leave undisturbed those features of our method which
contribute to whatever partial success has been ob-
tained, the farther on we get with a problem, the less of
the method we have available to modify.

The machine Ramsy is based primarily upon two
edicts: (1) partition the problem into parts, and (2)
deal with the more difficult parts first. An added princi-
ple of operation is derived from Homer’s superiority
over the penalized Samson. When a purely random
search is made, wholesale eradication should follow
failure. Needless to say, dark areas and traffic jams are
to be avoided.

It is convenient to retain the three basic blocks of the
learning machines already discussed, but to modify their
mode of interaction. In Part I, the machine was broken
down into Teacher, Learner, and Slave (that is, Her-
man). We sometimes use the name of the Slave loosely
in describing the whole machine, but no confusion
should result from this. To this family of three, we pro-

286 vided certain information, namely the possible inputs

1 IBM JOURNAL * JULY 1959

I
and related outputs of the problem in question. NO
other information was given. Specifically, we did not
adjust the family externally from problem to problem.
In setting up a new family machine, we wish the same
rules to apply for posing problems.

The Slave Ramsy is identical to Teddy and Herman in
kinds of instruction and number of locations. The asso-
ciated Teacher and Learner, however, have somewhat
reversed roles. The Teacher is more active, the Learner
more passive, and more information passes between
them. The partitioning and ordering of the problem are
done by the Teacher. The Learner keeps a limited set
of records and provides a random-number generator.
There are no success numbers or inactive instructions.

How is a problem partitioned? If we restrict our at-
tention to “bit-manipulation’’ problems (which seem
sufficient to our purpose), partitioning is straightfor-
ward. Suppose we wish Ramsy to solve the familiar
problem AND for two variables, the input and output lo-
cations being Do, D,, and D,, as before. There are four
possible input cases (two ONES, two ZEROS, et cetera),
and these define the four parts of the problem.

How are the parts to be ordered? Assume that Ramsy
is primed with an op 1 or 3 in the output location and
will retain that operation. With o p 1, it is easier to pro-
duce ZEROS than ONES; with op 3, the reverse. If a prob-
lem produces more ZERO outputs than ONES, it is better
to have op 1 in the appropriate location; otherwise, op 3.

The Ramsy family’s mode of operation can now be
briefly summarized. A problem is posed as always. The
Teacher primes the Slave appropriately and orders the
parts in terms of difficulty. A most difficult part is given
the Slave to solve first. If he fails on a given run, all of
the participating instructions (with the exception of the
bits determining the primed operations) are replaced by
new random instructions. If he succeeds, all of the par-
ticipants become bound; and the next part of the prob-
lem is undertaken. Bound instructions are exempted
from later eradications unless Ramsy becomes stuck,
which occurs when no participants can be replaced
after a failing run because all are bound. Under such
conditions, Ramsy is filled with new instructions and the
problem begun again.

Ramsy proved far more successful than Homer. On
Problem 1 , for example, he required, on the average,
only 60 trial programs in obtaining 500 solutions. Fig-
ure 2 shows graphically his performance. This superi-
ority was also maintained on a number of two-variable
problems, as indicated in Table 3.

To test the efficiency of the Homer-Samson principle,
some limited runs were also made on a modified Ramsy
in which never more than one participant was replaced
by a random instruction. As expected, the more stolid
machine proved less efficient. On Problem 1, for exam-
ple, the modified Ramsy generated 200 perfect pro-
grams at an average of 416 trials each, as shown in Fig-
ure 2. A brief run was also made in which Ramsy was
presented with the easier of the two problem conditions
first. He averaged 144 program trials to solve Problem 1.

Table 3 Comparative performance of Ramsy and
Homer on two-variable problems.

Function
~~~~~~ 

EXCLUSIVE-OR 
AND 

INCLUSIVE-OR 
NOT-IF-THEN 

I -  

Average  programs  tried  before  suc- 
cess  and  number of successes 

obtained 
~ ~~ 

Ramsy 

12,934 ’ 31 
1758 32 
216 

6820 ~ 35 
60 

~ - _ _  

Homer 

199,910 0 

19,445 

14,247 16 
42 7208 

5 

~- 

Another variant of Ramsy included a built-in mech- 
anism for shortening  programs.  This was done by a 
rather simple system of address modification which 
served to eliminate redundant participants. The tech- 
nique  worked  smoothly but was of only moderate in- 
terest to  the over-all experiment. Programs were very 
much shortened,  but the speed of learning was not af- 
fected. 

Still another  variant included an elementary method 
for  making D,, a function of D,, when the latter served 
as an input.  Learning efficiency was increased, b’ut it was 
not easy to generalize the technique to deal  with more 
involved cases. 

The chief drawback  to Ramsy is, of course, his grow- 
ing tendency to become  stuck  as more  and  more compli- 
cated problems are encountered.  Undoubtedly, an im- 
proved  mechanism can be devised for dealing with  this 
situation. The  problem is analogous to  that of Thales 
when he reaches  a depth which is maximum for a given 
Area, but  not yet deep  enough. Without taking  a  totally 
fresh start,  he must  “back-up” slightly in order  to get 
out of the immediate dead end. Traffic-jam techniques 
appropriate  for Thales  may  prove  workable for Ramsy. 

Added experience  has  revealed, however, an addi- 
tional drawback  to Ramsy, which would seem to  make 
it profitable to  start over  with an entirely new Slave. 
Since the basic method of learning is quite different 
from  that introduced in Part I, the particular  operations 
selected for Herman need  not be retained.  These  re- 
quire, on  the average, 260 microseconds to execute. If 
the tiny computer which we simulate on  the large  ma- 
chine had  an  order  code more cIosely akin to some of 
the actual  instructions  already available, the machine 

time  required to  carry  out  the experiment  could be sub- 
stantially  reduced. For a  variety of reasons,  this would 
very much facilitate the  conduct of the experiment. 

Conclusion 

In setting up an experiment  in which we study the prop- 
erties of small, easily controlled  machines as a guide to 
larger  machines, we face special problems in under- 
standing our results. Those characteristics of the small 
machine which obtain simply because it is small  must be 
differentiated from  more  fundamental properties which 
may  hold  in the  larger case. We  have seen that  the 
amount of change  made when a  program fails has a  def- 
inite  bearing upon  the average speed with which suc- 
cessful  programs are obtained. Homer makes large- 
scale changes upon failure, and surpasses Samson for 
this reason.  Thales, on  the  other  hand,  undertakes only 
small changes; but those  changes made  are likely to be 
in the right  direction. Hence  there is a definite tie-in 
between the size of change  made  and our capacity to 
compare related positions. The results obtained do indi- 
cate  that a simple reinforcement of individual  instruc- 
tions can aid in the learning  process;  but we have not 
wholly succeeded in setting up a  machine based upon 
this principle. The difficulty is that, although small-scale 
changes are  made  upon  failure, our scoring mechanism 
is admittedly loose. The  importance of dark  areas and 
traffic jams has also been emphasized.  As we have seen, 
there  are special problems in recognizing, avoiding,  and 
getting out of the  latter.  The results with Ramsy indi- 
cate  that  the ability to  partition problems and  to deal 
with the  parts in order of difficulty does prove helpful. 
In this  connection, we found it worthwhile to note the 
analogy between machine  learning and  the problem- 
solving technique of directed  machine  search. 

Where we should go from  here is not entirely clear. 
Perhaps the  experiment,  with  a  radically different Slave, 
could  be set up in a closer analogy to Thales.  We have a 
somewhat vague but  quite persistent  sentiment that  the 
methods we have used to bring about learning are  too 
passive. Some  scheme of ensured  referencing or execu- 
tion of inputs, such as that briefly suggested near the  end 
of the last section,  might well be introduced. In all 
events, we find the unanswered  questions as fascinating 
as they are difficult. 

Received  March 24,  1959 

287 

I B M  .JOURNAL - J U L Y  1959 

I 


