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A Learning  Machine: Part II* 

Abstract: An effort is made to improve the performance of the learning machine  described in Part I, and 

the over-all effect of various  changes is considered. Comparative runs by machines without the scoring 

mechanism indicate that the grading of individual instructions  can aid in the learning process. A related 

study is made in which automatic debugging of programs is taken as a special case of machine search. 

The ability to partition problems and to deal with parts in order  of  difficulty  proves helpful. 

Introduction 

The experiment described in Part I was continued after 
an  interruption of several  months. Two immediate  ob- 
jectives were set: ( 1) an explicit measure of Herman’s 
learning efficiency, and ( 2 )  a  better  understanding of 
the  factors which govern that efficiency. We  are inter- 
ested in Herman because elements which help or hinder 
his small-scale performance  can well influence more sub- 
stantial learning machines. 

But how is efficiency to be measured?  Suppose  changes 
are  made  in  Herman’s  program  randomly, without the 
benefit of success numbers. For  any reasonable prob- 
lem,  a correct  program will be hit upon eventually. The 
question is how much  faster Herman, with the  aid of the 
scoring  mechanism, will develop correct  programs  than 
he would merely by random, trial-and-error  search. 

Not all random searches are alike. Suppose we dis- 
cover  two men  on a lake: Samson and  Homer.  Each is 
blind and  cannot fix his precise  location.  Nevertheless, 
by dropping a  lead  line, each  can  determine exact 
depths.  Samson is somewhat stolid. He is  blown by 
chance winds about  the lake,  but he finds pleasure  in 
dropping his lead  line every five seconds and recording 
the depth.  Since one  drop follows so immediately upon 
another, his successive positions are close together and 
do not generally differ much in  depth. Homer,  on  the 
other  hand, takes  great  pleasure  in  surprise. He too is 
bandied about by chance winds, but he waits a  full hour 
between drops. In this way, his successive positions tend 
to be rather  remote;  and he has no idea  what will come 
next. 

Suppose  Samson and  Homer  compare  the first 10,000 
depths each has recorded. If we assume the  lake re- 
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mained  unchanged, there is no reason why either man 
should have scored more deep depths  than  the other. 
Samson, of course,  obtains his extreme  readings some- 
what in bunches. Suppose now we penalize Samson for 
his stolidity. Every time he records  a  deep depth of a 
certain magnitude, he must wait an  hour  before his next 
drop.  His percentage of deep drops will become  smaller, 
since he  cannot  take full  advantage from having reached 
a  deep  section of the lake. 

With this fantasy in  mind, we set up  two different 
random machines. One was like the penalized Samson, 
and  the  other was like Homer.  When  the Samson  ma- 
chine failed,  only one or two of the 64 active  instruc- 
tions were changed.  When  a successful program  emerged, 
the whole machine was started  from  scratch.  The  Homer 
machine, on  the  other  hand, underwent total revision 
after  each failure. As one would expect, Homer  far  sur- 
passed Samson in  the average  speed  with which he ob- 
tained correct programs.  Nevertheless,  Samson serves as 
a more valid basis for appraising  Herman’s success- 
number mechanism, because Samson is almost exactly 
like Herman except for lacking such a  mechanism. 

Teddy 

Before we attempted  to measure  Herman’s  learning ef- 
ficiency, we made two  changes in his mode of operation 
by priming and reset. Both were  calculated to improve 
his performance.  In this way, production runs  on  the 
IBM 704 could be cut  down  and very much better 
statistics obtained. 

As  noted  in Part I, a successful program is likely to 
contain op 0 in the initial  location and o p  1 or 3 in the 
final  location, when the two locations are used for input- 
output purposes. We prime Herman by guaranteeing 
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that this is the case. Priming is thus  an ad  hoc adjust- 
ment  to Herman’s particular characteristics; reset, on 
the  other  hand, is more  fundamental. Although the 
mechanism of success numbers enables us to “criticize” 
and modify the instructions  in the various  locations, it 
in no way affects the  data bits, which carry over un- 
changed from  one  run  to  another. This  means  there is a 
certain “dark  area” in the experiment,  in that a part of 
the  machinery which most influences the  outcome  of a 
problem is almost totally  independent of the success- 
number bookkeeping. Further,  an  important element 
which  could easily be  kept constant  from  run  to  run, 
thereby  reducing the over-all complexity of the situa- 
tion, is permitted to vary. Herman is reset, therefore, 
after every run by inserting ZERO in all data locations 
which do not  represent the selected inputs. From  here 
onward, we shall assume  machines to be  primed and re- 
set, unless otherwise specified. 

The efficiency with  which variant machines  dealt with 
Problem  1 was used as  a  rough touchstone of their  learn- 
ing potential. In this  problem, D,) is the  input location, 
D,, is the  output location, and  the criterion of success 
is that  the  output bit  should be identical to  the  input bit. 
Table 1 shows the general effect of priming and reset. 
At least 2,000,000 trial runs were made  to  obtain  the 
statistics for each of the  four possibilities. 

Table 1 Average number of trials  required to 
achieve a perfect program for Problem 1. 

Reset N o  Reset 

Herman  primed 
477,019 , 78,829 Herman  unprimed 
57,281 15,197 

- ~ ~ _ _ _ _ ~  ~ ~~ _ _ _ ~  ~ ~ ~ _ _ _ _ _  

Herman’s performance  on Problem 1 was then  com- 
pared to that of Samson  and Homer, mentioned  earlier. 
Samson was so set up  that  one active  instruction was 
replaced by its inactive counterpart  after every  failure. 
After every 64 failures, one  of  the 12.8 instructions, 
chosen randomly, was replaced by a new random one. 
The interchange of active and inactive  instructions was 
done  both systematically and by random choice. The 
latter mode of operation is more efficient, since there is 
less likelihood that  the machine will cycle. When 
changes are  made in  systematic order (Z,,, I , ,  . . . , I,,, I , ,  
I , ,  . . .) , almost duplicate programs will occur every 128 
failures. Hence,  programs  that have  already  proved fail- 
ures  may be run again, which will inhibit the speed of 
learning.  Samson was, therefore,  set up in  both ways 
for  Problem 1. Both machines  were given the usual 
2,000,000 trials. On  the average, the “systematic” Sam- 
son, which most resembled Herman, required 34,829 
runs to achieve success. The “randomized”  Samson  re- 
quired 9744. Homer was then  tried. Set up  in the man- 
ner  earlier  described, he achieved over 1000 perfect pro- 
grams  at an average of 356 trial  runs. 

The difference between the two  Samsons suggested a 
possible change  in Herman. “Criticism” of individual lo- 

cations after  failure might no longer be made in sys- 
tematic order,  but randomly. The “randomized” Her- 
man was in fact set  up, and  (2,000,000 trials, Problem 1 ) 
averaged 9959  runs  per success. Figure 1 shows graphi- 
cally the  comparative  performance of the two  Samsons 
and  Hermans.  The  fact  that  the “randomized” Herman 
does  not  maintain the supremacy  over the corresponding 
Samson which was shown by the “systematic” Herman 
is not  surprising. Because random success numbers  are 
assigned at  the  start, a  problem  must  be run  for some 
time  before the success mechanism can  take  full effect. 
If average runs  are sufficiently short,  the success mech- 
anism can in fact inhibit performance, since, in  the ini- 
tial stages, instructions with the lowest success numbers 
may well be  ones which have had  no effect whatever on 
the problem. 

Because it was felt  that Herman’s performance could 
be substantially  improved, it was decided to modify the 
general  scoring  mechanism; and a new machine,  Teddy, 
was put together. 

Teddy differs from  Herman only in the way the asso- 
ciated Learner functions. Two general  motivations gov- 
erned his design: ( 1) elimination of dark  areas, and 
( 2 )  reduction of traffic  jams.  Dark areas arise when the 
critical  mechanism  does not  attack those  elements which 
have  in fact  had most to  do with  past performance.  It 

Figure 1 Record of performance on Problem 1, 
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may either  punish and reward  innocent  bystanders, or 
leave unnoticed true heroes and villains. Traffic  jams 
arise when the  machine gets itself into a difficult situa- 
tion from which it can emerge  only  very slowly, if at all. 
For example, on a given production run where Herman 
learned Problem 1 45 times, in 42 cases it never  took 
him  more  than 30,000 trials. In  the remaining  three 
cases, he did not  take less than  86,000. 

What then are  the basic differences between Teddy’s 
scoring  mechanism and Herman’s? First, success num- 
bers  are modified only f o r  participants. A participant is 
an active  instruction  which was either  executed  in the 
run in question or referred  to by the b part of an exe- 
cuted op 3. Second, success numbers are both raised and 
lowered. After every success the  appropriate success 
numbers are increased by two. After every failure,  the 
appropriate success numbers  are reduced  by two. Third, 
the  method of assigning success numbers is changed. 
Upon initialization, all of the instructions are assigned a 
success number of 1000. The Si of an instruction later 
introduced is the  mean of the  current success numbers 
of the other instructions. Fourth,  a new system for han- 
dling maximum and minimum  numbers is introduced. 
No number is taken as S,, and scaling is eliminated. An 
instruction whose success number  drops  to 256 is re- 
placed by a new random instruction. Fifth, there is in- 
sured  modification of the program  after  failure. Only 
the participants are subjected to “criticism,” and this 
process continues  until one of the inactive  instructions 
becomes active. 

The reasons for these  changes are  not particularly 
subtle. Restricting  “criticism” and success-number  modi- 
fication to participants is designed to eliminate dark 
areas.  Lowering of success numbers  upon  failure  and 
the new treatment of Si and S, are designed to remove 
the tendency of success numbers, after a run of a  cer- 
tain length, to  bunch together  just below S,. The  latter 
makes the interchange of active and inactive  instructions 
almost automatic (since the size of the two numbers 
will be great relative to their  difference), and leads also 
to traffic jams. Suppose, for example,  a small number of 
Herman’s  instructions  have success numbers substan- 
tially lower than  the  bunch  at  the top. These few may 
receive the  great burden of the Learner’s “criticism,” 
even though they may not  have been participants  for 
some time. As  a  result, Herman may work himself out 
of a jam  quite slowly. Indeed,  the longer  a  problem 
runs, the greater the tendency of success numbers  to 
bunch  at  the top. Thus,  the  machine  (for a  variety of 
reasons)  may  become more-or-less static  in its behavior, 
its basic operations being largely independent of the 
changes made when it fails. As a  manifestation of this 
phenomenon, an  unprimed, unreset Herman was made 
to arrive at  and retain for some  time  a program merely 

tioned. In a given lesson, we presented Herman  (un- 
primed and  unreset) with a new problem  in which the 
only  criterion of success is that  the  program finish in 
time. The  Teacher, however, was made  to  report only 
one of every  ten true successes to the  Learner as a  suc- 
cess, and  the  other nine as failures. The  frequency of 
true success rose  gradually from a small initial  per- 
centage to almost 100 per cent. It then  remained well 
above 90 per cent  for better than 400,000 trials, during 
which  a good many of the  128 locations  were affected 
by random changes. We examined  several  programs that 
arose during  the  latter 280,000 trials. They all lacked 
any op 0 instructions in  the last  ten  pairs of active and 
inactive  instructions, and possessed a number of op 0 
instructions elsewhere with addresses  designating  these 
last locations. In  fact,  the empirical  check  indicated that 
the last 11 pairs of instructions  were not replaced by 
any new random instruction  in the final 100,000 runs. 
Both of these features  are obviously prone  to  favor a 
success for the problem in question  without necessarily 
ensuring  it. When Samson (unprimed  and  unreset) was 
substituted for  Herman in this experiment, the  fre- 
quency of true successes did not rise  above 15 per cent. 
Thus, it can be seen that  the success-number  mechanism 
is very effective for this  problem, both in developing a 
high frequency of s8uccess and in  maintaining it despite 
random changes in the program.  This  contrasts with the 
inability of Herman  to maintain an almost successful 
program  for  Problem 1 when given a  systematic failure 
only one  true success  in  ten (Part I, Experiment 9).  

Teddy’s record of performance is somewhat  better 
than Herman’s. In a total  run of 500,000, he was able 
to solve Problem 1 after  an average of 1360 programs 
tried. It should be noted,  however, that  the way in 
which the problem is posed by the  Teacher and  the 
method of counting runs are  both different from  that 
described in Part I. Since Teddy is reset after every run, 
he will obtain an identical output given an identical in- 
put, provided no instructions have been changed.  Hence, 
it is simpler to  know when he  has arrived at a  perfect 
program-he need only have tried all of the possible 
input circumstances and obtained correct outputs. With 
this in  mind, we set up the following procedure: a given 
program tries out all the  input conditions  before  a 
change is made. Success numbers  are appropriately 
modified, and  one set of “criticisms” is made per  failure. 
The resulting program is then tried,  and so on.  In  tabu- 
lating the result, it is more convenient to  count  the  pro- 
grams  tried  than  the individual runs.  With this new 
mode of bookkeeping  in effect, Herman  (primed, reset, 
“randomized”)  required  on  the average  2890  program 
trials to solve Problem 1. The “randomized” Samson 
needed 4603 trials, and  Homer, 321. Figure 2 shows 
these and  other results. I 

to finish, even  though given an  automatic  failure  nine Teddy and  the “randomized” Herman were also tried 
times  in ten. on a  few  two-variable  problems,  in which Do and D, 

Because Teddy’s over-all design is so much a function were taken as input locations, and D,, as the  output. 
of earlier  experience  with Herman, it may be of some Table 2 provides  a record of their achievement. The 
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Table 2 Comparative performance of Teddy and 
Herman (randomized) on two-variable 
problems. 

i Average  programs  tried  before  suc- 
cess  and  number of successes 

i obtained 

Function 1- ~-7‘eddy 
- ~~ ~. 

i Herman 
~~ __ - 

AND 24,896 15 ‘~ 225,508 -- 
INCLUSIVE-OR 44,539 1 1 97T78 6 
NOT-IF-THEN 18,633  141 306 1 3 

One of the  major objectives of Part I was to deter- 
mine  whether the grading of individual  instructions 
would aid in  the learning process. Samson, Herman,  and 
Teddy, in their  various  forms, are all inhibited in that 
changes are  made  more  or less one  at a time. The gen- 
erally superior  performance of those  machines with a 
success-number  mechanism  over  those  without  does 
serve to indicate that  such a  mechanism can provide  a 
sound basis for constructing a learning machine. 

Another aim of Part I was to  render  more explicit 
just how a  machine,  in  a progressive sequence of  opera- 
tions, could +discover  order in the midst of apparent 

Figure 2 Record of performance on Problem 1, 
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chaos. AS we have seen, dark  areas  and  traffic  jams  are 
likely to  occur  and  do have  a definite effect  on  the effi- 
ciency of  the machine. Hence, in  setting up  future  learn- 
ing machines, we need to consider  how  these  problems 
are  to be  managed in the given case. There is, of course, 
the fascinating  prospect that a  learning  machine  might 
SO adjust itself as to eliminate traffic jams and  dark  areas 
progressively, as it gains experience. 

Finally, there is the  problem that making  changes one 
at a  time can very much inhibit  a  learning  machine. 
Homer  far outstrips  Teddy  in performance.  The  par- 
ticular way in which success numbers  function  for  the 
machines we have considered  makes it difficult to avoid 
this  inhibition. Hence,  the question was next raised how 
an elementary  learning  machine,  which followed rea- 
sonably simple but general  directions,  might  be  set up 
without the use of success numbers. 

Ramsy 

It was remarked  in Part I that, although  a  learning ma- 
chine might indeed “learn to  perform a  task  without 
being told precisely how to perform it, it would still 
have to be told precisely how  to learn.” For  the  ma- 
chines we have been  considering, the ability to arrive 
at a program  for solving problems simply from seeing 
whether  trial runs succeed or fail  depends  in  large part 
on having some effective way of selecting one imperfect 
program  over another.  Naturally, it is easy to recognize 
a  perfect program when one comes  along; and  one 
might, as Homer does, simply try  out  one new program 
after  another. Still, this method,  though suggestive, does 
not seem very  promising. The  harder  the  problem,  the 
less likely it will help us. If we could  arrive at programs 
not  yet  perfect  which  have, nevertheless, a  certain figure 
of merit in their favor;  and, if we could use such pro- 
grams as a  decent basis for obtaining new programs with 
a  higher figure of merit, perhaps we might develop a 
reasonable  learning  machine after all. But how is  all 
this to be done? 

Suppose we simplify the problem  somewhat.  Let us 
say we want  a seZf-debugging machine capable of mak- 
ing an efficient, progressive search for  correct programs, 
starting  from scratch in each case. What exactly would 
such a  search  be like? Let us go back to  the lake-bottom 
fantasy described in the  Introduction. We now postulate 
Thales,  a third  man. Thales is neither blind nor blown 
about by chance winds. He  can always return  to a spot 
just left. To determine depths, he too must  drop a lead 
line;  but he does have  the capacity to  try  out nearby 
positions before moving on  to them. In this way, he can 
always move to a deeper  part of the  lake until he 
reaches  a position of desired depth unless, of course, he 
is stopped at some  point which is deep  relative to its im- 
mediate  surroundings  but  not to  the  lake  as a whole. 
Under  the  latter circumstances, he must  accept new posi- 
tions  which are  not necessarily better, in order  to get  out 
of the immediate  dead  end. 

Now,  although the “Thales”  technique of directed 
search may seem simple and straightforward, we do  not 
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in fact  understand it or its applications fully. Neverthe- 
less, we do know that  it is a  powerful  method, which we 
have  already used with  considerable success on a number 
of occasions  where other problem-solving techniques 
failed. It is typically applied to problems with answers 
easy to recognize but difficult to calculate. Hence,  the 
analogy to  the machine-learning  experiment is helpful. 
On  the  one  hand, we may receive some  hints as to how 
the learning machine  can  be  set  up  more efficiently. On 
the  other  hand, we are provided  with an additional  moti- 
vation for  the experiment.  A learning  machine based on 
the principle of directed  machine search would provide 
a rather illuminating  example of this technique. After 
all, our basic objective in building and studying  com- 
puters is to obtain  greater problem-solving capacity. 
For  the  latter, we need not only better machines, but 
also a  better understanding  of how to use them. 

Most problems we encounter  can be broken down  into 
parts,  and  often these parts  are  not difficult in them- 
selves. All of us have  dealt  with outwardly  hard  prob- 
lems which became  easy when reduced to a set of sim- 
pler  subproblems.  Suppose  two  imperfect  methods for 
solving a problem are  at  hand.  One does no good at all. 
The  other manages  a certain segment of the problem. 
We would obviously attach a  higher figure of merit  to 
the second. If there were  some way of leaving  undis- 
turbed  those features of the better  method  which  con- 
tributed to its partial success, while modifying other 
features which led to its partial  failure, we should also 
have a  decent basis for obtaining  a new method with an 
even higher  figure of merit. In this way, we could  pro- 
ceed to the solution  by  a  sequence of definite steps. Our 
scheme of operation would then resemble Thales,  in that 
a  proposed  step would be  accepted  only when in the 
right  direction.  Suppose the various parts, however, 
though  much easier than  the total  problem itself, are 
not alike  in difficulty. If the solution of one  part does 
not  help that of another, it would be  advantageous to 
attack  the  more difficult parts first. Since we hope to 
leave  undisturbed  those features of our  method which 
contribute  to whatever partial success has been ob- 
tained, the  farther  on we get with a problem,  the less of 
the method we have  available to modify. 

The  machine Ramsy is based  primarily upon two 
edicts: ( 1) partition  the problem into parts, and ( 2 )  
deal  with the  more difficult parts first. An  added princi- 
ple of operation is derived from Homer’s  superiority 
over the penalized  Samson. When a  purely random 
search is made, wholesale eradication should follow 
failure. Needless to say, dark  areas  and traffic jams are 
to be avoided. 

It is convenient to  retain  the  three basic blocks of the 
learning  machines  already discussed, but  to modify  their 
mode of interaction. In  Part  I,  the  machine was broken 
down  into  Teacher,  Learner,  and Slave (that is, Her- 
man). We  sometimes use the  name of the Slave loosely 
in  describing the whole machine,  but no confusion 
should  result from this. To this family of three, we pro- 

286 vided certain information, namely the possible inputs 
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and related outputs of the  problem  in  question. NO 
other  information was given. Specifically, we did not 
adjust the  family externally from problem to problem. 
In setting  up a new family  machine, we wish the  same 
rules to apply for posing problems. 

The Slave Ramsy is identical to  Teddy  and  Herman in 
kinds of instruction and  number of locations. The asso- 
ciated Teacher  and  Learner, however, have somewhat 
reversed roles. The  Teacher is more active, the  Learner 
more passive, and  more information passes between 
them. The partitioning and  ordering of the  problem  are 
done by the  Teacher.  The  Learner keeps  a  limited set 
of records and provides  a random-number generator. 
There  are  no success numbers  or inactive  instructions. 

How is a  problem partitioned? If we restrict our at- 
tention to “bit-manipulation’’ problems  (which seem 
sufficient to  our  purpose), partitioning is straightfor- 
ward.  Suppose we wish Ramsy to solve the familiar 
problem AND for two variables, the  input  and  output lo- 
cations being Do, D,, and D,, as  before. There  are  four 
possible input cases (two ONES, two ZEROS, et  cetera), 
and these define the  four parts of the problem. 

How  are  the  parts  to be ordered? Assume that Ramsy 
is primed with an op 1 or 3 in the  output location and 
will retain that operation. With o p  1, it is easier to  pro- 
duce ZEROS than ONES; with op 3, the reverse. If a prob- 
lem  produces more ZERO outputs  than ONES, it is better 
to  have op 1 in the  appropriate  location; otherwise, op 3. 

The Ramsy family’s mode of operation  can now be 
briefly summarized.  A  problem is posed as always. The 
Teacher primes the Slave appropriately  and  orders  the 
parts in terms of difficulty. A most difficult part is  given 
the Slave to solve first. If he fails on a given run, all of 
the participating  instructions (with  the exception of the 
bits determining the  primed  operations)  are replaced by 
new random instructions. If he succeeds, all of the  par- 
ticipants  become bound; and  the next part of the  prob- 
lem is undertaken. Bound instructions are exempted 
from  later eradications unless Ramsy becomes stuck, 
which occurs when no  participants  can be  replaced 
after a failing run because all are bound. Under such 
conditions,  Ramsy is filled with new instructions and the 
problem begun again. 

Ramsy  proved far  more successful than  Homer. On 
Problem 1 ,  for example, he required, on  the average, 
only 60 trial programs in  obtaining 500 solutions. Fig- 
ure 2 shows graphically his performance.  This superi- 
ority was also maintained on a number  of two-variable 
problems,  as  indicated  in Table 3. 

To test the efficiency of the Homer-Samson  principle, 
some limited runs were also made  on a modified Ramsy 
in  which never more  than  one participant was replaced 
by a random instruction. As expected, the  more stolid 
machine proved less efficient. On  Problem 1, for exam- 
ple, the modified Ramsy  generated 200 perfect  pro- 
grams  at  an average of 416 trials each, as shown in Fig- 
ure 2.  A brief run was also made in which Ramsy was 
presented with the easier of the two problem  conditions 
first. He averaged 144 program  trials to solve Problem 1. 



Table 3 Comparative performance of Ramsy and 
Homer on two-variable problems. 

Function 
~~~~~~ 

EXCLUSIVE-OR 
AND 

INCLUSIVE-OR 
NOT-IF-THEN 

I -  

Average  programs  tried  before  suc- 
cess  and  number of successes 

obtained 
~ ~~ 

Ramsy 

12,934 ’ 31 
1758 32 
216 

6820 ~ 35 
60 

~ - _ _  

Homer 

199,910 0 

19,445 

14,247 16 
42 7208 

5 

~- 

Another variant of Ramsy included a built-in mech- 
anism for shortening  programs.  This was done by a 
rather simple system of address modification which 
served to eliminate redundant participants. The tech- 
nique  worked  smoothly but was of only moderate in- 
terest to  the over-all experiment. Programs were very 
much shortened,  but the speed of learning was not af- 
fected. 

Still another  variant included an elementary method 
for  making D,, a function of D,, when the latter served 
as an input.  Learning efficiency was increased, b’ut it was 
not easy to generalize the technique to deal  with more 
involved cases. 

The chief drawback  to Ramsy is, of course, his grow- 
ing tendency to become  stuck  as more  and  more compli- 
cated problems are encountered.  Undoubtedly, an im- 
proved  mechanism can be devised for dealing with  this 
situation. The  problem is analogous to  that of Thales 
when he reaches  a depth which is maximum for a given 
Area, but  not yet deep  enough. Without taking  a  totally 
fresh start,  he must  “back-up” slightly in order  to get 
out of the immediate dead end. Traffic-jam techniques 
appropriate  for Thales  may  prove  workable for Ramsy. 

Added experience  has  revealed, however, an addi- 
tional drawback  to Ramsy, which would seem to  make 
it profitable to  start over  with an entirely new Slave. 
Since the basic method of learning is quite different 
from  that introduced in Part I, the particular  operations 
selected for Herman need  not be retained.  These  re- 
quire, on  the average, 260 microseconds to execute. If 
the tiny computer which we simulate on  the large  ma- 
chine had  an  order  code more cIosely akin to some of 
the actual  instructions  already available, the machine 

time  required to  carry  out  the experiment  could be sub- 
stantially  reduced. For a  variety of reasons,  this would 
very much facilitate the  conduct of the experiment. 

Conclusion 

In setting up an experiment  in which we study the prop- 
erties of small, easily controlled  machines as a guide to 
larger  machines, we face special problems in under- 
standing our results. Those characteristics of the small 
machine which obtain simply because it is small  must be 
differentiated from  more  fundamental properties which 
may  hold  in the  larger case. We  have seen that  the 
amount of change  made when a  program fails has a  def- 
inite  bearing upon  the average speed with which suc- 
cessful  programs are obtained. Homer makes large- 
scale changes upon failure, and surpasses Samson for 
this reason.  Thales, on  the  other  hand,  undertakes only 
small changes; but those  changes made  are likely to be 
in the right  direction. Hence  there is a definite tie-in 
between the size of change  made  and our capacity to 
compare related positions. The results obtained do indi- 
cate  that a simple reinforcement of individual  instruc- 
tions can aid in the learning  process;  but we have not 
wholly succeeded in setting up a  machine based upon 
this principle. The difficulty is that, although small-scale 
changes are  made  upon  failure, our scoring mechanism 
is admittedly loose. The  importance of dark  areas and 
traffic jams has also been emphasized.  As we have seen, 
there  are special problems in recognizing, avoiding,  and 
getting out of the  latter.  The results with Ramsy indi- 
cate  that  the ability to  partition problems and  to deal 
with the  parts in order of difficulty does prove helpful. 
In this  connection, we found it worthwhile to note the 
analogy between machine  learning and  the problem- 
solving technique of directed  machine  search. 

Where we should go from  here is not entirely clear. 
Perhaps the  experiment,  with  a  radically different Slave, 
could  be set up in a closer analogy to Thales.  We have a 
somewhat vague but  quite persistent  sentiment that  the 
methods we have used to bring about learning are  too 
passive. Some  scheme of ensured  referencing or execu- 
tion of inputs, such as that briefly suggested near the  end 
of the last section,  might well be introduced. In all 
events, we find the unanswered  questions as fascinating 
as they are difficult. 
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