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A Gas Film Lubrication Study 
Part II 
Numerical Solution of the Reynolds  Equation 
For  Finite  Slider Bearings 

Introduction 

The work reported  here was undertaken in support of two 
distinct activities which are described  in Part I and  Part 
I11 of this series. 

The principal  analytical tool  for  the investigation of 
film lubrication is a partial differential equation known  as 
the Reynolds  equation. Part I deals with  a  derivation of 
this equation.  Since in the most  general  case the Reynolds 
equation has  not been solved in closed form,  recourse 
must be  made  to  approximate numerical  solutions. The 
present paper describes a  technique by which  numerical 
solutions  were  obtained  with the aid of a  digital computer. 

The  large  amount of computation  which has been per- 
formed  thus  far has  served a twofold  purpose. On  the  one 
hand  it reveals the general  behavior, both  static  and dy- 
namic, of gas-lubricated  bearings under a wide range of 
conditions. These results are presented  in Part I. On  the 
other  hand  it serves as a guide to the  optimum design of 
specific bearings,  supplementing  experimental work  and 
in  some cases even supplanting it. This is dealt  with  in 
Part 111. 

Derivation of the finite difference approximation 
to the Reynolds equation 

The Reynolds  equation for the pressure p ( x ,  y )  at a  point 
( x ,  y )  in a compressible lubricating film is 

C ( h 3 ~ p ” ” ~ z ) / p l z +  [ (h3~””~ lr ) /p ly=6U(h~1 /a )z  9 (1) 

where p is the viscosity, U the speed of the moving sur- 
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face, h = h ( x ,  y )  the film thickness, and n the exponent in 
the polytropic gas law 

pp-n = constant, 1 i n  I k . 
The subscripts x and y denote  differentiation  in the x and 
y directions. (For derivations and  further discussion of 
the  equation,  the  reader is referred  to  Part I of this  series.) 

Assuming the viscosity to be  independent of the co- 
ordinates x and y ,  and  carrying  out  the indicated differen- 
tiations, we may  write Eq. ( 1 )  in the  form 

We seek numerical  solutions to  Eq. ( 2 )  over  a  rectangular 
region of the x ,  y plane. It will be  convenient to  take as 
the boundary of the rectangle the lines x = O ,   x =  B ,  
y = L / 2 ,  and y =   - L / 2 .  We shall allow the film thickness 
function h = h ( x , y )  to be arbitrary except for  the sym- 
metry condition h ( x ,  y )  = h ( x ,  - y ) .  Since  this  symmetry 
implies a symmetry  in the pressure function p ( x ,  y )  = 

p ( x ,  - y ) ,  solutions will be  obtained  only for  the  upper 
half of the rectangle. 

The  boundary  value problem, then, is to solve Eq. ( 2 )  
in the half rectangle  bounded by the lines x=O, x =  B,  
y =0, and y = L / 2 ,  with boundary conditions 



I- 
. " .  , , 

1 where p a  denotes  ambient  pressure. - ( P k , m + l - P k , m - 1 ) 2 -  - 6 d J  v ( A x ) ?  
4r (ny ) % rh2n 

Consider  a  net formed by lines parallel to  the y axis 
spaced  a  distance Ax = B / M  apart  and by lines parallel to + P k + l ,   m - P k - 1 .  m 

the x axis spaced  at Ay=L/2N,  where M and N are posi- rn r n  
tive integers. Let (xk, y m )  be an  arbitrary point of the 
mesh and let P k , m  be defined by 

v(Ax) + Pk ,mt l -pk .m- l  
W(AY) 

v ? ( A ~ ) ~  w ? ( A Y ) ~  
r n  rn 

- - 
3 (4) 

Pk,m=p(kAx, may)  (k=O, 1 ,..., M ;   m = O , l ,  ..., N ) .  where 

If the pressure  function p ( x ,  y )  be expanded in a Taylor 
series about  the point (xk, y m ) ,  we obtain in the usual I'= ~ 

way  the  following  formulas  for  the  derivatives of 

2 2 

(Ax) : !  ( A Y ) ~  
+-, 

P at (xk, yIII)  : S = ( ~ / ~ ~ ) P X X Z Z ( F ,  Y r n ) ,  t=(1/12)pvwv(xk, 7') 7 

P k + l , m - P k - l , m  
P.r(xkl Y m )  = " (Ax) P Z T Z ( t ,  Ylii 1 ~ = ( 1 / 6 ) ~ z z z ( t ,  Y ) ,  W=(1/6)Pvvv(xk, 7) * 

2Ax 6 The finite difference approximation  to  Eq. ( 2 )  is then 
~ Pk.m+l-Pk,m-l (AYI2  obtained by omitting from Eqs. ( 3 )  and (4) those  terms 

Pw!,(xk, 7 )  involving the higher derivatives, s, t ,  V ,  and w. Thus we P!,(Xk, Y m )  = 
2AY 6 
" 

obtain  an  approximation &m to pk ,m which satisfies 
Pk+l,m-2Pk,m+Pk-l.m 

P.rs(xk, Y m )  = ~k,m2-2Gk,mak,m+Rk,m=0, 
- 

( 5 )  
(Ax) 

(Ax) 
where E k , m  and R k ,  are obtained from Gk.m and Hk,nl 

obtain 
" 

12 
P Z Z . L Z ( C ,  Y m )  by setting s=t=v=w=O. Solving Eq. (5) for &m, we 

- 
I S k , m = G k , m + ~ / G k , m 2 - H k , m .  

I 

( 6 )  

On  the  other  hand, by retaining terms in s, t ,  v, and w, 
we may readily verify that  the local truncation  error 
P k . m - p k , m  is o [ ( A ~ ) ~ ] + o [ ( A y ) * 1 .  

It should be remarked that  the  other  root of the  quad- 
ratic  equation ( 5 )  is extraneous,  as  may be shown by the 
following continuity  argument. If we set u= l / n  in Eq. 
(4),  then 

gk, m = UH'k, 1~ , 
where lilk,m is independent of u. Setting u =o (incom- 
pressible flow) we have sk ,m E O ,  and consequently, 
P k ,  = 2Gk, m .  This relation  together with the requirement 
that a k , m ,  and  therefore j ik ,Tn,  be a  continuous function 
of u establishes Eq. ( 6 ) .  

Numerical solution of the finite difference equation 

Numerical solutions of Eq. (5) have been obtained by 
the "Extrapolated  Liebmann" method,l a single-step iter- 
ative process in which the  net is traversed in a fixed 
sequence  with the old values of P k , m  being replaced by 
the new as soon  as  they are obtained. If the mesh is being 
traversed for  the ( j +  1) th time,  then the new value is the 
extrapolated  value 

- 

p(j+l) = yq(j+1) ' + (1 " Y ) p ' j )  , (7)  

where q(j+l)denotes  the right-hand  member of Eq. (6) 
and  where y is a constant greater than unity. The itera- 257 
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tions are continued  until the "convergence indicator," 

is sufficiently small. 

The  boundary condition that pu=O for y = 0  is approxi- 
mated by setting ~ k , - ~ = p k ,  when  calculating P k ,  0 .  The 
netistraversedinthesequence(1,0),(1,1),(1,2), ..., 
(1, N -  l ) ,  ( 2 , 0 ) ,   ( 2 ,  l ) ,  etc.  Experiments  with several 
more complicated  sequences showed this simple sequence 
to  produce  the most rapid convergence. 

The  total load, W ,  on  the slider bearing is 

w = y / z  iB b ( X ,  Y )  -PaldXdY 
-L/Z 

and  the x coordinate of the  center of pressure is 

Because of symmetry the y coordinate  is, of course,  zero. 

These integrals are  computed approximately by apply- 
ing Simpson's rule  to  the P k , m .  For brevity, let 

Pk,m=Pk,m-Pa 

Then, with y = m ( A y )  , we have 

where I El < maxpZZZZ . 
O<X<B 

The  fourth derivative of p is, of course, unknown;  but 
we may  estimate it by considering the special case of 
incompressible flow under a slider bearing of infinite 
length.  Setting h ( x )  = a ( A  -x), the Reynolds equation 
yields the exact  solution 

The  fourth derivative of p ( x )  is readily calculated, and 
moreover, it is easily verified that its maximum  value 
occurs  at x = 0. We thus find that 

For a  typical case, if  we choose B=0.578 inches, a= 
0.0003 radians, p=2.62 X lb sec/in2, U =  1500 in/ 
sec, M=12,  and a=0.911  in, we find that 

( A X ) 5 M  

90 
E<0.0004. 

For this  set of parameters the  computer solution gives 
258 approximately 2.0 atmospheres  as an average  value of 

p ~ ~ , ~ ~ ,  and hence, the integral on  the  left-hand side of 
Eq. (10) is approximately 1.2. The  error is thus seen to 
be less than  0.0004/1.2, or about 0.03 per cent. For the 
majority of our computations  this error is considerably 
smaller. 

A similar analysis carried out for the integral ( 9 )  yields 
comparable results. It should be emphasized that these 
estimates of error apply to  the integration process (and 
in fact only to  the integration  in the x direction) and have 
nothing to  do with the discretization error which arises 
from replacing the continuous  problem (the Reynolds 
equation) by the discrete  problem (the finite difference 
equation) or with the  error which arises in solving 
numerically the discrete  problem. 

In nonlinear  problems of the type we are concerned 
with  here, precise analysis of these errors lies beyond the 
presently  known  techniques of numerical analysis. How- 
ever,  some insight can be gained by studying  experimen- 
tally the behavior of the load, W ,  and  the position of the 
center of pressure xe as Ax is decreased while holding the 
ratio Ax/Ay  constant.  This was carried out  on  the com- 
puter using 28, 66, 120, and 190 mesh  points, in each 
case the iterations being continued until there was prac- 
tically no  change in the values of P k , m .  The results are 
shown  in Figs. 1 and 2, where W and xc are plotted against 
 AX)^. The straight lines are obtained by a least squares 

Figure I 
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load, W ,  plotted against IAxP for a cylin- 
drical surface bearing. 
(Breadth = 0.6 in., length = 0.55 in.,  crown 
height = 250 pin.; velocity = 2500 ips; min. 
film thickness = 250 pin.;  viscosity = 2.76 X 

10-9 lb. sec./in.z;  angle = 1.5 X 10-3 radians; 
h / A y  = 1,091 ,) 
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somewhere between 0 (Ax) and 0 [ ( A x )  '1. 
For some  mesh  ratios A x / A y  or  for excessively large 

values of y ,  the extrapolation constant in Eq. ( 7 ) ,  the 
iterative  scheme becomes unstable. Both weak instability 
(small but bounded oscillations in successive values of 
p ( j ) )  and  strong instability (oscillations of rapidly  in- 
creasing magnitude)  occur. Instability  can be dealt with 
in either of two of the following ways or by a  combina- 
tion of both. 

1.  The extrapolation constant y may be reduced. Nor- 
mally, y in the  range 1.4 to 2.0 produces the most 
rapid  convergence. Severe cases of instability may 
sometimes  be  cured by taking y to be less than unity. 

I 

2. The mesh ratio A x / A y  may  be increased. 

The computer program 

The  procedure described in the preceding sections was 
carried  out  on  the  IBM 650 Magnetic Drum  Data  Proc- 
essing Machine. This section is devoted to a  general 
description of the  computer program.  Detailed flow dia- 
grams  and  program listings are available from  the  author. 

Much of the  computational work was carried out in 
support of the experimental investigations which are re- 
ported  in Part 111. For this  purpose it was sufficient to 

Figure 2 Center of pressure plotted  against (Ax)' 
for a cylindrical surface bearing. 
(Breadth = 0.6 in.,  length = 0.55 in., crown 
height = 250 pin.;  velocity = 2500 ips;  min. 
film thickness = 250 pin.;  viscosity = 2.76 X 

10-9 lb. sec./ in.2; angle = 1.5 X IO-$ radians; 
Ax/AY = I .091.) 

h (x, y ) = cg + c1x + C'X? + c3y2 . 
With suitable values of the coefficients this function accu- 
rately  represents  plane,  cylindrical, and spherical slider 
bearing  surfaces at  arbitrary inclination angles. The com- 
puter  program is designed to be as  fully automatic as 
possible. All the necessary input  information is entered 
on two  cards. This  information includes the dimensions 
of the slider, its surface shape,  pivot  location,  speed, 
minimum clearance  desired, and  an estimate of the in- 
clination angle. The  true angle,  which is usually unknown, 
is of course the equilibrium  angle for  the pivoted slider, 
i.e., the angle for which the  center pressure lies on  the 
pivot axis. The  computation begins by  setting all the p k , ? n  i ~ 

values to ambient  pressure p a .  The mesh is traversed until 
convergence is obtained,  upon which  control then passes 
to  the integrating routine  for calculation of load and 
center of pressure. If the latter does not fall on  the pivot 
axis (within  preset limits),  the angle is automatically ad- 
justed while the minimum  clearance is held fixed. A new 
solution to  the difference equation is obtained using the 
previous  solution  as  a  starting  approximation.  When  a 
sufficiently precise angle is found,  the  computer punches 
a card containing the load, correct angle, and  other in- 
formation. 

matically  takes the corrective  measures  described in the 
preceding section. Weak instability is indicated by failure 
of the convergence indicator (8) to decrease from  one 
traverse of the mesh to  the next, while strong instability 
is detected by an overflow condition  resulting from ex- 
cessively large Pk ,m values. The corrective  measures are 
specified by a  table  stored  in  memory. Each table word 
specifies a fraction by which y is to be reduced and a 
fraction by which Ax/Ay is to be  increased. The program 
tries these remedies  in  sequence  until either a  stable  con- 
dition is achieved or until the end of the table is reached. 
In  the  latter event the  machine stops because any  further 
corrective  measures would result  in excessively slow 
convergence. 

The program  also allows load-angle calculations to be 
performed  for a  sequence of values of either  minimum 
clearance  or  surface curvature.  Since  the speed of calcu- 
lation  depends heavily upon  the accuracy of the initial 
guess for  the angle,  considerable time is saved by extra- 
polating the previous correct angles to  obtain  the initial 
guess. The extrapolation is effected by means of a New- 
tonian backward-difference formula. 

Fixed  decimal arithmetic was employed. Typical  oper- 
ating speeds are 5-10 minutes to  obtain convergence on a 
66-point  mesh, 20 minutes to find an equilibrium angle. 
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