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W. A. Michael

A Gas Film Lubrication Study

Part 1l

Numerical Solution of the Reynolds Equation

For Finite Slider Bearings

Introduction

The work reported here was undertaken in support of two
distinct activities which are described in Part I and Part
III of this series.

The principal analytical tool for the investigation of
film lubrication is a partial differential equation known as
the Reynolds equation. Part I deals with a derivation of
this equation. Since in the most general case the Reynolds
equation has not been solved in closed form, recourse
must be made to approximate numerical solutions. The
present paper describes a technique by which numerical
solutions were obtained with the aid of a digital computer.

The large amount of computation which has been per-
formed thus far has served a twofold purpose. On the one
hand it reveals the general behavior, both static and dy-
namic, of gas-lubricated bearings under a wide range of
conditions. These results are presented in Part 1. On the
other hand it serves as a guide to the optimum design of
specific bearings, supplementing experimental work and
in some cases even supplanting it. This is dealt with in
Part I11.

Derivation of the finite difference approximation
to the Reynolds equation

The Reynolds equation for the pressure p(x, y) at a point
(x,y) in a compressible lubricating film is

[(B*p*/"ps) /plat [(R2p /" py) [ pn]y=6UChp /™), (1)

where p is the viscosity, U the speed of the moving sur-
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Abstract: This paper presents a finite-difference
technique for obtaining approximate numerical so-
lutions to the Reynolds partial differential equation
of gas film lubrication theory. A digital computer
program is described, and discretization errors and
stability of the difference equations are discussed.

face, h=h(x, y) the film thickness, and » the exponent in
the polytropic gas law

pp"=constant, 1 <n<k.

The subscripts x and y denote differentiation in the x and

y directions. (For derivations and further discussion of

the equation, the reader is referred to Part I of this series.)

Assuming the viscosity to be independent of the co-

ordinates x and y, and carrying out the indicated differen-
tiations, we may write Eq. (1) in the form

6uU 3ph, > 3ph,

Pz

p(Pxx+pyy)=< ke - A h

Dy

1 h,
— — () +6pU 2 )
n h?

We seek numerical solutions to Eq. (2) over a rectangular
region of the x, y plane. It will be convenient to take as
the boundary of the rectangle the lines x=0, x=2B,
y=L/2, and y=—L/2. We shall allow the film thickness
function A=Ah(x,y) to be arbitrary except for the sym-
metry condition A(x, y) =h(x, —y). Since this symmetry
implies a symmetry in the pressure function p(x, y)=
p(x, —y), solutions will be obtained only for the upper
half of the rectangle.

The boundary value problem, then, is to solve Eq. (2)
in the half rectangle bounded by the lines x=0, x=B,
y=0, and y=L /2, with boundary conditions




p(0,y)=pa

P(B,y)=pq

p(x,L/2)=pa

py(x,0)=0,

where p, denotes ambient pressure.

Consider a net formed by lines parallel to the y axis
spaced a distance Ax=B/M apart and by lines parallel to
the x axis spaced at Ay=L /2N, where M and N are posi-
tive integers. Let (xi, y») be an arbitrary point of the
mesh and let p; ., be defined by

D, m=P(kAx, mAy) (k=0,1,...,M; m=0,1,...,N).

If the pressure function p(x, y) be expanded in a Taylor
series about the point (xy, y»), we obtain in the usual
way the following formulas for the derivatives of
pat(xr, ym):

DPrii,m— Pk-1,m . (Ax)z
2Ax 6

(X, Ym) = Peca(€, Yuu)

Pr.ms1— P,m-1 . (Ay) z
2Ay 6

PH(JCI;, Ym) = Pyyy(xk, 7})

pk+1,m‘"‘2pk,m+pk—1. m
(Ax)?

prz(xk; ym) -

_ (Ax)*
12

Prxrz (fl, ym)

Pr,mi1— 2pk, m+pk, m-1
(Ay)?

Pyy(xk, Ym) =

_ (ay)?
12

where x;. 1<<§, &<xpyand Yy 1<g, 7' <V -

Pyyyy(Xk, '),

If we substitute these expressions into Eq. (2) and col-
lect like powers of pi ., we obtain, after a straightfor-
ward but tedious calculation,

Pre,m?—2Gk, mPr,m+Hi, m=0,

where

Gr,m=Gr,m(Pri1,m Pk-1,m5 Pk, m+15 Pk,m-1)
and

Hy o =H, m (Prit,m3 Pr_t,ms Pieymats Prymo1)
are independent of py .. Specifically,

pk+1,m+pk—~1.m pk,m+1+pk,m_1

2Gk, m=

T(Ax)* T(Ay)®
+ 3hx(Pk+1,m~pk_1,m) 3hy(plc,m+1'"Pk,m—1)
2T (Ax)h 2T (Ay) h
_6uUR (an? ( 3h
Th? T h
(Ay)? 3hy
— i+ - 3
T ) -

3ulU

H m= +1,m— Pr-1,m
k, i (an)n (Pr+1 Di-1,m)
— 1 ( . )2
AT (Ax)%n Prsl,m— Pk-1,m
1 6ulU
e m+17 m— 2— v(Ax 2
4T(Ay)3n (Pl = Pim-t) Th?n (A%)
+ Pkit,m— Pk-1.m v(Ax) + Pr,ms1— Pk,m-1 w(AY)
I'm
7 (Ax)* w2(Ay)t
(A0t wian )
T'n I'n
where
2 2

s

T= +
(Ax)® (Ay)*

s:(l/lz)pxxxx(g’a ym) s t:(l/lz)pyyyy(xk’ 7]') ’

v=(1/6) pzza(&, ¥) » w=(1/6) pyyy(xr; 1) .

The finite difference approximation to Eq. (2) is then
obtained by omitting from Eqgs. (3) and (4) those terms
involving the higher derivatives, s, ¢, v, and w. Thus we
obtain an approximation px,m t0 pr,» Which satisfies

ﬁk,an*Z(_;-k,mp_k,m‘l‘Hk,m:O, (5)

where G ,, and H ., are obtained from G, and Hy,
by setting s—¢=v=w=0. Solving Eq. (5) for p;, .., we
obtain

ﬁk,mzﬁk,m+'\/ak,m2"ﬁk,m- (6)

On the other hand, by retaining terms in s, ¢, ¥, and w,
we may readily verify that the local truncation error
Pi.m— Pr,m is O[(Ax)2] + 01 (Ay)2].

It should be remarked that the other root of the quad-
ratic equation (5) is extraneous, as may be shown by the
following continuity argument. If we set u=1/n in Eq.
(4), then

Hy m=uH'y

where H'y, ., is independent of u. Setting u=0 (incom-
pressible flow) we have Hj .,=0, and consequently,
Pr, m=2Gr, m. This relation together with the requirement
that Hy, ., and therefore i, be a continuous function
of u establishes Eq. (6).

Numerical solution of the finite difference equation

Numerical solutions of Eq. (5) have been obtained by
the “Extrapolated Liebmann” method,! a single-step iter-
ative process in which the net is traversed in a fixed
sequence with the old values of py,. being replaced by
the new as soon as they are obtained. If the mesh is being
traversed for the (j+ 1)t time, then the new value is the
extrapolated value

p(j+1)=-yq(j+1)—|—(1~y)p(j) , (7)

where g(/+Vdenotes the right-hand member of Eq. (6)
and where y is a constant greater than unity. The itera-
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tions are continued until the “convergence indicator,”

j+1

> /2l
,m

k,m

- The boundary condition that p,=0 for y=0 is approxi-
mated by setting pr,_1=pi,1 When calculating px 0. The
net is traversed in the sequence (1, 0), (1, 1), (1, 2),...,
(1, N—-1), (2,0), (2, 1), etc. Experiments with several
more complicated sequences showed this simple sequence
to produce the most rapid convergence.

) (8)

(J+1). . p (§
pk,m plc,jf)n

is sufficiently small.

The total load, W, on the slider bearing is

L/2 B
W= / / [p(x,y) —puddxdy
-L/2 JO

and the x coordinate of the center of pressure is

1 L/2 B
xc=—/ / xlp(x, y) —paldxdy . %)
w ~L/2 JO

Because of symmetry the y coordinate is, of course, zero.

These integrals are computed approximately by apply-
ing Simpson’s rule to the px,». For brevity, let

Pk,m=pk,m*pa-
Then, with y=m(Ay), we have

B Ax
[p(x,) —pa]dx:—3— (Po,m+4P1,m+2Ps,m
0

+..... +4PM—1,m+PM,m)

_ (Ax)SM

E, 10
%0 (10)

where | E| <max prezs -
O<x<B

The fourth derivative of p is, of course, unknown; but
we may estimate it by considering the special case of
incompressible flow under a slider bearing of infinite
length. Setting h(x) =a(A—x), the Reynolds equation
yields the exact solution

6uUx(x—B)
a?(B—2A4)(A—x)? '
The fourth derivative of p(x) is readily calculated, and

moreover, it is easily verified that its maximum value
occurs at x=0. We thus find that

144U |34 —4B!

A5a2(2A—B)

For a typical case, if we choose B=0.578 inches, a=

0.0003 radians, p=2.62x10-? Ib sec/in2, U=1500 in/

sec, M=12 and ¢=0.911 in, we find that

(Ax)SM
90

For this set of parameters the computer solution gives
approximately 2.0 atmospheres as an average value of

p(x) =

[E|<

E<0.0004 .
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DPx,m, and hence, the integral on the left-hand side of
Eq. (10) is approximately 1.2. The error is thus seen to
be less than 0.0004/1.2, or about 0.03 per cent. For the
majority of our computations this error is considerably
smaller.

A similar analysis carried out for the integral (9) yields
comparable results. It should be emphasized that these
estimates of error apply to the integration process (and
in fact only to the integration in the x direction) and have
nothing to do with the discretization error which arises
from replacing the continuous problem (the Reynolds
equation) by the discrete problem (the finite difference
equation) or with the error which arises in solving
numerically the discrete problem.

In nonlinear problems of the type we are concerned
with here, precise analysis of these errors lies beyond the
presently known techniques of numerical analysis. How-
ever, some insight can be gained by studying experimen-
tally the behavior of the load, W, and the position of the
center of pressure x. as Ax is decreased while holding the
ratio Ax/Ay constant. This was carried out on the com-
puter using 28, 66, 120, and 190 mesh points, in each
case the iterations being continued until there was prac-
tically no change in the values of pi .. The results are
shown in Figs. 1 and 2, where W and x, are plotted against
(Ax)2. The straight lines are obtained by a least squares

Figure I Load, W, plotted against (Ax)? for a cylin-
drical surface bearing.
(Breadth = 0.6 in., length=0.55 in., crown
height =250 pin.; velocity = 2500 ips; min.
film thickness =250 pin.; viscosity =2.76 X
1079 Ib. sec./in%; angle=1.5 X 10-% radians;

Ax/Ay=1.091.)

738

734 /

730 / /
724 /
v

wy

b /
2

[-°4

O

= ¥4
- 718

o

<

o

-~ 714

0  0.001 0.002 0.003 0.004 0.005 0.006

(ax)2 IN INCHES?




fit. Figure 1 suggests that discretization error affects the
load, W, to the order of (Ax)2, while the error in x is
somewhere between O(Ax) and O[ (Ax)2].

For some mesh ratios Ax/Ay or for excessively large

values of y, the extrapolation constant in Eq. (7), the.

iterative scheme becomes unstable. Both weak instability
(small but bounded oscillations in successive values of
p") and strong instability (oscillations of rapidly in-
creasing magnitude) occur. Instability can be dealt with
in either of two of the following ways or by a combina-
tion of both.

1. The extrapolation constant y may be reduced. Nor-
mally, y in the range 1.4 to 2.0 produces the most
rapid convergence. Severe cases of instability may
sometimes be cured by taking vy to be less than unity.

2. The mesh ratio Ax/Ay may be increased.

The computer program

The procedure described in the preceding sections was
carried out on the IBM 650 Magnetic Drum Data Proc-
essing Machine. This section is devoted to a general
description of the computer program. Detailed flow dia-
grams and program listings are available from the author.

Much of the computational work was carried out in
support of the experimental investigations which are re-
ported in Part III. For this purpose it was sufficient to

Figure 2 Center of pressure plotted against (Ax)*
for a cylindrical surface bearing.
(Breadth = 0.6 in., length=0.55 in., crown
height =250 pin.; velocity = 2500 ips; min.
film thickness =250 uin.; viscosity =2.76 X
10-% 1b. sec./in.?; angle = 1.5 x 10-* radians;
Ax/Ay=1.091.)
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assume for the film thickness A(x,y) a quadratic ex-
pression

h(x,y)=co+cx+cax?+cay?.

With suitable values of the coefficients this function accu-
rately represents plane, cylindrical, and spherical slider
bearing surfaces at arbitrary inclination angles. The com-
puter program is designed to be as fully automatic as
possible. All the necessary input information is entered
on two cards. This information includes the dimensions
of the slider, its surface shape, pivot location, speed,
minimum clearance desired, and an estimate of the in-
clination angle. The true angle, which is usually unknown,
is of course the equilibrium angle for the pivoted slider,
i.e., the angle for which the center pressure lies on the
pivot axis. The computation begins by setting all the py .
values to ambient pressure p,. The mesh is traversed until
convergence is obtained, upon which control then passes
to the integrating routine for calculation of load and
center of pressure. If the latter does not fall on the pivot
axis (within preset limits), the angle is automatically ad-
justed while the minimum clearance is held fixed. A new
solution to the difference equation is obtained using the
previous solution as a starting approximation. When a
sufficiently precise angle is found, the computer punches
a card containing the load, correct angle, and other in-
formation.

The computer program detects instability and auto-
matically takes the corrective measures described in the
preceding section. Weak instability is indicated by failure
of the convergence indicator (8) to decrease from one
traverse of the mesh to the next, while strong instability
is detected by an overflow condition resulting from ex-
cessively large pi,» values. The corrective measures are
specified by a table stored in memory. Each table word
specifies a fraction by which y is to be reduced and a
fraction by which Ax/Ay is to be increased. The program
tries these remedies in sequence until either a stable con-
dition is achieved or until the end of the table is reached.
In the latter event the machine stops because any further
corrective measures would result in excessively slow
convergence.

The program also allows load-angle calculations to be
performed for a sequence of values of either minimum
clearance or surface curvature. Since the speed of calcu-
lation depends heavily upon the accuracy of the initial
guess for the angle, considerable time is saved by extra-
polating the previous correct angles to obtain the initial
guess. The extrapolation is effected by means of a New-
tonian backward-difference formula.

Fixed decimal arithmetic was employed. Typical oper-
ating speeds are 5-10 minutes to obtain convergence on a
66-point mesh, 20 minutes to find an equilibrium angle.
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