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A Gas Film Lubrication Study 
Part I 
Some Theoretical Analyses of Slider  Bearings 

Abstract: The Reynolds differential  equation describing flow  in a compressible lubricating film i s  developed. 

Important characteristics of such films are determined directly from the Reynolds Equation. Pressure, load, 

velocity, and geometry characteristics are presented for many compressible slider bearing films based upon 

computer solutions of a Reynolds difference equation as derived in Part II. Part Ill cites experimental verifica- , tion of computer solutions and describes experimental techniques. 

Introduction 

Within the past  decade,  sharpened  interest  in gaseous 
lubrication has developed throughout  the world. The gas- 
lubricated  bearing has been widely used to good advan- 
tage. For example, there have been applications  in  which 
low friction characteristics are required;  applications  in 
which there  are large temperature variations, and  it is 
desired that viscosity increase or  remain nearly constant 
with temperature; applications  in which the  lubricant 
should  not be adversely affected by radiation; applications 
in  which an essentially fixed clearance between slider 
bearings and moving surface must  be  maintained under 
various  conditions of acceleration; and applications  in 
which ambient air can be used as  a  clean,  available, inex- 
pensive lubricant. 

A hydrodynamic lubricating film is defined as that fluid 
which  separates  surfaces, with no internal  sources or 
sinks, which  have  relative  motion. By contrast,  the  term 
externally pressurized or hydrostatic film is sometimes 
used when internal sources are provided such  that  there 
will be no  surface  contact in the absence of relative 
surface motion. 

The theory of hydrodynamic film lubrication, first pro- 
posed by Osborne Reynolds,l has been verified many 
times. Although  occasional  experimenters have  found 
that they  could not achieve a satisfactory  correlation be- 
tween theory  and experiment, others  have demonstrated 
that good correlation  results by properly  accounting for 
all significant boundary conditions and physical variables. 
For example, Part I11 of this series discusses experimental 
techniques  used to verify  theoretical  characteristics of 
air-lubricated slider bearings. 

The governing differential equations for compressible 
fluid flow for a laminar isotropic  Newtonian fluid involve 
the velocity v; absolute  pressure p ;  density p; coefficient 
of viscosity p; dilatational (or  bulk) viscosity A; film 
thickness or  clearance h, between bearing and moving 
surface; absolute temperature T ;  specific heats cp and c,; 
time t ;  and  the body force F. The equation of motion for 
the lubricating fluid is 

p ( v t + v * V v )   = F - V [ p -   ( 3 p + A > O .  V I  +pVZv, ( 1 )  

in which the subscript  represents  differentiation. 

relation 
When the first order kinetic  theory  may be applied, the 

3p+A=0 ( 2 )  

is assumed. Then Eq. (1) takes the Stokes form,  often 
called the Navier-Stokes equation.  Since the region of 
interest is free  from singularities, the continuity  relation ~ 

pt+V*  (pv)  =o ( 3 )  

may be used. In general, the energy  equation 

pgv * V E + p V v = V *  ( K V T )  +pa (4) 
is also necessary to provide  a  solution,  in  which the in- 
trinsic  energy  per  unit mass is given by 

E = c , T ,  

and  the dissipation function by 

~ ~ 2 ( u , ~ + z ) y ~ + w * ~ ) + ( w z + u y ) ~ + ( w y + w * ) ~  

+ ( u , + w z ) ~ " < + ) ( V * V ) ~ .  237 
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Equations ( I ) ,  ( 3 ) ,  and (4) are sufficient, when  com-  equations may be  applied. With these restrictions, Eq. ( 1 ) 
bined with reduces to 

p=pRT, ( 5 )  vp=E”v2v. ( 6 )  

the  equation of state  for a  perfect gas (or  an  appropriate 
pressure  density  relation for a liquid),  and  the necessary 
boundary conditions, to describe  most laminar lubricating 
films. 

The differential equations of a lubricating film 

Figure 1 is a possible configuration for a film-lubricated 
slider bearing. The film thickness, h(x ,  y ) ,  ordinarily 
symmetrical  with  respect to  the x, z plane, has a  minimum 
clearance h,. Widest  interest  centers on  the case in which 
the  surface, z=O, is assumed to move  with velocity U in 
the x direction. The  breadth of the bearing  in the direction 
of surface motion is B, and  the length normal  to this 
motion is L.  Since the surfaces usually deviate only 
slightly from being parallel, fluid velocity components 
normal  to  the surfaces may generally be disregarded. The 
configuration is similar to  the film which  might exist be- 
tween two  nearly  parallel  planes which are mathemati- 
cally  smooth, equal  in size to football fields, and separated 
by one-half inch  at  one  end,  one inch at  the  other. 

Fluid body forces are invariably negligible for  the 
ordinary lubricating film. Additionally, for  thin film 
thicknesses ( h / B  generally less than  the inertia 
terms of Eq. (1) are usually negligible. This may be seen 
by writing a modified Reynolds number, 

R:k- u B ( ; > ” ,  - 
E” 

which has  an  order of magnitude equal  to the ratio of 
inertia to viscous acceleration  terms.  When R*<<l ,  and 
conditions are steady, the simplified classical lubrication 

An  order of magnitude evaluation of Eq. ( 6 )  reveals that 
the transverse  pressure  variation through  the film may 
be ignored. 

Upon removing constant translation  components, the 
most  general velocity boundary conditions  become: 
V(z=O)   = iUo+jVo+kWo,   V( z=h)   = iUh+jVh+kWI , .  
When h>25I (the molecular mean  free path is I ) ,  bound- 
ary slip may  be neglected and  the fluid velocity at  the 
boundaries assumed identical to  the  surface velocity. It 
is additionally  assumed that  surface asperities do  not 
materially affect the films. Assuming  steady  conditions, 
and  that  the transverse  density  variation through  the film 
may  be neglected, Eqs. ( 3 )  and ( 6 )  may be combined 
to give 

-p[(Uh--Uo)h,  +(V,-Vo)hyl 

+ h { [ p ( ~ h + ~ O ) l z + [ ~ ( ~ h + ~ O ’ o ) l y }  9 } (7) 

the Reynolds equation  for a laminar Newtonian fluid with 
R*<<l .  

The isothermal  pressure  distribution  may  be  obtained 
from  the Reynolds equation when h(x ,  y ) ,  the  boundary 
conditions, and fluid properties are specified. Normally, 
edge effects are ignored, and  the pressure is assumed to 
be ambient, p a ,  for x=O, B, y = f L / 2 .  Pressure  distribu- 
tions beyond this region have no physical  meaning.  It is 
tacitly  assumed that a  fully developed boundary layer 
exists throughout  the film. 

Figure I Configuration for a film-lubricated slider 
bearing. 
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There is, of course,  a wide variety of applications for 
Eq. (7). The  range extends from high-capacity oil- 
lubricated thrust bearings to lightly loaded high-speed 
gas-lubricated bearings. Additionally, it is possible to 
apply Eq. (7) to  journal bearings because the radial 
clearance is small compared  to  the radius. Under these 
conditions, the x coordinate is replaced by re. 

When  bearing loads are large, the variation of viscosity 
with pressure and  temperature,  and  therefore with spa- 
tial position, must  be  considered. Furthermore, although 
liquids are commonly assumed to be incompressible, the 
density of ordinary lubrication oil must at times be  con- 
sidered  a function of pressure,  as well as temperature. 
Under these conditions, the energy equation (4) must be 
adapted to  the  particular conditions, and solved simul- 
taneously with the Reynolds  equation (7) with due regard 
for  parameter variations. 

When Eq. (7) is to be applied to gas lubrication, it is 
also important  that  the energy equation (4) be consid- 
ered. Under  many lightly loaded  conditions, it is justified 
to assume the  lubricant  to be isothermal. The consequence 
is that  Eq. (7) may be modified by using Eq. (5) with 
T =  Tu. Assume further  (and in the sequel unless men- 
tioned to  the  contrary)  that conditions are steady  in  time, 
and  the only  non-zero velocity boundary condition is 
u ( 0 )  = U=constant.  Then, 

in which the  term p p z  has been replaced by ( 1 / 2 )  ( P ' ) ~ ,  

When the lubricating fluid may be  considered  incom- 
pressible, the density terms of Eq. (7)  vanish. The differ- 
ential equation of the isothermal  compressible film has 
the  same  form as the isothermal  incompressible film. To 
use this  similarity, it is necessary to  relate p 2  and 2ph on 
the  left  and right sides of the compressible equation  to 
the corresponding p and h of the  incompressible equation, 

and PPY by ( 1 / 2 ) ( P * ) ! / .  

[: P x ] .  + [%p. ] ,  = 6 [ U h ] , .  

An approximation to  Eq. (8) was integrated by 
W. J. Harrison.2 In  order  to obtain his solution, Harrison 
assumed  derivatives  with respect to y to vanish, in effect 
describing an infinitely long bearing. This solution is for 
the case in which h is a  linear  function of x. 

Because of the difficulties in  handling the energy equa- 
tion, it is common to use the pressure-density relation 

~ p - ~  =constant, l s n s k .  (10) 

The polytropic gas exponent is n.  For isothermal  condi- 
tions, n has  the value 1, and  for adiabatic, the value 

A specific gas lubrication  problem  should  be  consid- 
ered in  the light of the energy equation (4). It is possible 
that sufficient information may  be  available about  the 
flow conditions to  reduce  the energy equation  to a tracta- 
ble form.  Equation ( lo), however,  provides  a simplifica- 

k=c, /c , .  

tion  which has allowed good correlation between theory 
and experiment.  A more precise application of Eq. (10)  
would be to consider n = n  (x, y )  . 

By employing Eq. ( lo) ,  the Reynolds equation may  be 
written  in the following forms, 

[y p z ] .  + [ F p u ]  Y = 6 U [ p 1 / " h ] , ,  ( 1 1 )  

h 

nP 
= 6 U [ h x + - p , ] .  

Once  the pressure  distribution has been obtained,  it is 
possible to evaluate the shearing stresses on  each  surface, 

P U  h r= - iz "PZ, 
h 2  

in which the ( - )  applies to  the slider, and  the ( +) to 
the moving  surface. The bearing  load W ,  and  the shearing 
force F,  may be evaluated by integration. The shearing 
force  on  the moving surface should  be used since it  has 
the  same magnitude  as the shearing force  on  the slider 
plus the  appropriate slider load  component. 

A coefficient of resistance  sometimes used is defined: 

f = F /  W .  ( 1 5 )  

This  has  the  order of magnitude of h / B .  

Normalization of lubrication film equations 

It is often  desirable to work with  normalized  quantities. 
The dimensionless quantities  shown  in Table 1 will be 
used. The subscript a implies ambient  conditions  (inlet 
conditions for slider bearings). 

Table I Dimensionless parameters. 

Geometry 

Bearing breadth 
Film thickness 
x coordinate 
y coordinate 
z coordinate 

~ ~~~ 

~ ~ _______~ 
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Equation ( 1 3 )  may now be written  in  normalized form, 

[T P X l x  + [G P.] + - H 3  
p AnP 

[PX2+PY21 

=G H x + -  [ 
in  which the bearing number is G =6paUB/pahln2.  

It may be noted  in passing that conventional  dimen- 
sional analysis, taking into  account  the ambient  pressure, 
minimum film thickness for a  particular  geometry,  length, 
breadth,  surface velocity, ratio of specific heats for con- 
stant  temperature,  and angle of inclination a, indicates 
that  the bearing  load W is a function of the following 
groupings: 

The bearing number G of Eq. ( 1 6 )  implies that  the 
functions gl, g2, and g3 may  be  combined to give G*= 
( 6 p a U / L p a )   ( B / h , , ) 2 .  Both G and G' have been effec- 
tively used for plotting  load  variations for fixed inclina- 
tion slider bearings. For some  configurations, it is con- 
venient to replace h, by ( h l + h 2 )  /2 or by (h12-   hZ2)  ll2. 

Examination of lubrication equations 

It is instructive to examine the effect on load-carrying 
capacity and friction of liquid and gas-lubricating films 
as a result of the difference in viscosity and ambient 
pressure. The viscosity of a  lubricating  liquid may be  a 
thousand times that of a gas. As a  consequence, the load- 
carrying capacity and  the  frictional  force will each be 
greater by approximately  this factor  for liquid lubrication 
than  for gas film lubrication for  equal bearing geometries. 

If a  lubricating film is incompressible, the absolute 
magnitude of the pressure is not related to  the pressure 
changes. It is therefore possible to ignore  atmospheric 
pressure  when  determining  pressure  variation. Thus, in 
Eq. ( 9 ) ,  only derivatives of p occur. For compressible 
lubrication,  this is not  true because  absolute  pressure 
must be used (see  Eqs. (4), (7) ,  ( 1 1 ) ) . Increasing the 
ambient  pressure of a  compressible  bearing film means 
that, although the  ratio of maximum to  ambient pressure 
decreases, the load-carrying  capacity will increase. 

Because of the nonlinear nature of the Reynolds  equa- 
tion for a  compressible film, solutions may most easily be 
obtained by approximations such as  linearizations. It is 
also possible to  obtain qualitative  information  directly 
from  the differential equation. For example,  consider the 
pressure  variation  in the X direction. For simplicity,  Eq. 
( 7 )  may  be  applied to  an infinitely long  bearing so that 
the y-derivative terms vanish. If, in  addition, the fluid 
is assumed to be incompressible, the density terms cancel, 
and  the remaining equation  may be  immediately solved 
by elementary  methods. If the lubricating fluid is com- 

240 pressible, it is possible to gain  some comparative  informa- 

BEARING L E N G T H  

Figure 2 Comparative pressure distribution  for 
compressible and incompressible Iubrica- 
tion. 

tion by direct  qualitative analysis of the differential terms. 
A comparison of pressure  variation for compressible 

and incompressible  lubricating films may be recognized 
for  the infinitely long  bearing after integrating Eq. (7)  
once with  respect to X. The result is 

in which m' represents the normalized  mass rate of flow 
per  unit  length of the  lubricant  through  the film, u' is the 
normalized velocity, and I? is the normalized density. For 
the incompressible case, the  ratio m ' / r  is the quantity of 
flow, a  constant. To simplify comparison,  consider the 
viscosity of the incompressible and compressible fluids to 
be the same. The pressure  variation for  the incompres- 
sible case is controlled  now completely by the film 
thickness, H .  Figure 2 illustrates  qualitative  pressure 
distributions for compressible and incompressible films. 
In Region I of the figure, Px is positive, and in Region 11, 
negative. It is zero  for  the condition P H = m ' / r .  For 
compressible lubrication, the increase  in  pressure is ac- 
companied by a  density increase. As a  consequence, the 
term, m'/ r  decreases  as P increases. Therefore, PX in- 
creases more rapidly in  the compressible film than in the 
incompressible. However, P x ( 0 )   c o m p < P ~ ( 0 )  incomp so that 
Pincomp>Pcomp over  the leading  region of the film. In 
addition, for Region 11, PX and I?x are  each negative, and 
the pressure of the compressible  bearing  must fall off 
more rapidly than  that of the incompressible  bearing. It 
follows therefore  that  the  center of pressure will be 
farther  from  the leading edge of the bearing for  the com- 
pressible than  for  the incompressible film. 

limiting characteristics of gas-lubricating films 

It is possible to gain  additional information  from  the 
Reynolds  equation. When  the bearing number is small 
G+O (or,  for a particular film geometry and constant 
viscosity, U/p,+O),  the pressure developed due  to lubri- 
cating  action can be  only slightly different from pa.  Thus 
P=p/p,+ 1, and  the pressure derivatives are negligibly 
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small compared  to  the pressure  magnitude. With these 
simplifications, Eq. (13)  reduces to  Eq. (9) the  equation 
for  an incompressible  lubricating film. 

Hence,  for a given viscosity and film configuration, 
when the velocity is comparatively low, or the ambient 
pressure comparatively  high,  compressible and incom- 
pressible films behave similarly. For example, the load 
capacity  varies  linearly  with velocity. 

Now consider the  other extreme, when the bearing 
number is large. For example,  when ( U/p,)+ 03, Eq. 
(12) may be written, 

It is first noticed that, as the right-hand side of Eq. (18) 
becomes large, the Y derivative terms become  small com- 
pared  to  the X derivative  terms. It follows that,  for  large 
bearing  numbers, the lubrication of a finite bearing  may 
be  described by the solution for  an infinitely long  bearing. 
In addition, for finite  pressure to be developed under  the 
condition ( U / p , ) +  03, it is necessary that 

( P n H )  x+O . 
The pressure  distribution therefore becomes 

P ( G + ~ )  ( H a / H )  . (19) 

This may also be  shown by examination of the mass flow 
for large  bearing  numbers. 

As  an example of limiting load characteristics,  a  plane 
rectangular slider  bearing will support a  load 

W' = W/p,BL = 
H I  (Hl"-l- 1 ) 
(n- 1 )  ( H -  1)  

-1 .  

Note  that  the equations for pressure and load involve 
neither  speed nor viscosity. The load is carried by the 
compressibility effect of the ambient gas. 

Since boundary layer  characteristics are well known, 
a comparison between compressibility effects in  a  lubri- 
cating film and in  a boundary  layer is in order.  For a 
Mach  number as  low  as 0.25, compressibility, to  the 
exclusion of the viscosity effects, may be of primary 
importance in the  former,  but of negligible importance  to 
the  latter. 

In  order  to  obtain a first approximation to a solution 
for a particular gas  bearing  configuration,  asymptotic 
bounds may first be established for limiting values of 
U / p , .  The  upper limit, established by Eq. (20) for  the 
plane bearing will be  considerably  higher for adiabatic 
than  for isothermal films. Thus  it is important  to establish 
an  appropriate value for n. Experiments  with  slider  bear- 
ings having about  one  square  inch  area reveal that a 
temperature rise at a thermocouple potted into  the bear- 
ing surface is less than 4°F. Although the  temperature 
within the film may  be  expected to rise higher, still the 
total effect upon density and viscosity appears  to be negli- 
gibly small. The assumption of isothermal flow for slider 

bearings appears  to be justified. However,  experiments 
upon gas lubricated journal bearings by Wildmann? when 
compared with the theoretical  solutions of A u ~ m a n , ~  
reveal that,  from a load standpoint,  journal bearing gas 
films appear  to be nearly  adiabatic. 

For low bearing  numbers, the results of incompressible 
lubrication  studies  may  be used. Solutions for  the finite, 
rectangular,  plane  slider  bearing  with an incompressible 
lubricating film have been given by Michell,6  Muskat, 
Morgan  and Meres,G Frosse17 and Wood.8 Solutions for 
rectangular slider  bearings  with  curved  surfaces  have 
been provided  by B ~ e g l i , ~  Frossel,7 and Ying, Charnes, 
and Saibel.lo  Raimondi and  Boyd,ll  and Abramovitz12 
have studied the infinitely long  curved  slider  bearing. The 
infinitely long  slider  bearing  with  a  step was analyzed by 
Rayleigh,lS and  the rectangular finite step  bearing by 
Ar~hiba1d.l~ Solutions for  the infinite tapered  land bear- 
ings have been discussed by B 0 ~ e r . l ~  A wide variety of 
forms have been analyzed by Tipei.lG  The presently avail- 
able solutions for compressible slider  bearings are those 
due  to  Harrison,2  Con~tantinescu,~~,  Scheinberg,lg 
Tipei,16 and Kochi.*O 

For incompressible  lubrication, it  has been pointed out 
that  the bearing friction is related to  the bearing load by 
the  same  ratio as the  minimum film thickness to  the 
bearing  length. This, of course,  holds for compressible 
lubrication when U / p ,  is small.  However, as U / p ,  in- 
creases and  the asymptotic  value of bearing  load is ap- 
proached,  the frictional force continues to increase 
linearly  with velocity. The consequence is that  the coeffi- 
cient of resistance, F / W ,  becomes increasingly less 
favorable for the compressible film, compared  to  the 
incompressible. 

Some dynamic bearing effects 

Slider bearings are usually used to provide thrust or for 
accurately  maintaining specified film thicknesses. For 
thrust requirements, the  important criteria are commonly 
the bearing load and frictional  characteristics. For main- 
taining a constant-thickness film, it is necessary to specify 
other conditions. Specifications for high  load-carrying 
capacity, minimum friction, and constant film thickness 
are generally combined  in  varying  proportions for specific 
applications. 

A  bearing which will maintain  a sufficiently uniform 
film thickness in the presence of anticipated  accelerations 
in  the z-direction, is said to  have  adequate stiffness. The 
term stiffness may be misleading because the  damping 
characteristics of a  lubricating film should not be ignored 
through concentration on  the spring-like  behavior of the 
film. 

The load  carried by a  slider  bearing  resulting from  the 
dynamic or squeeze film effect varies  approximately  in- 
versely with the  cube of the film thickness, whereas the 
hydrodynamic load capacity  varies  approximately inverse- 
ly with the  square of the film thickness. A qualitative  load 
clearance  curve, with the design clearance hd and  the 
design load W d ,  is seen in Fig. 3. During anticipated  oper- 
ation, W Z  Wd and h =: hd so that  the load-clearance curve 24 1 
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Figure 3 load-clearance characteristic of slider 
bearing. 

W 

R I R I  

2b 

Figure4 Equivalent  dynamic system for spring- 
242 loaded slider bearing. 

may  be approximated by a  straight line as  illustrated. 
The inertia of a lubricating film is sufficiently small that 
the load-clearance  results  obtained for zero acceleration 
may  ordinarily  be used in the presence of acceleration. 
The squeeze film damping  may similarly  be  linearized. 

The result of these linearizations is to allow representa- 
tion of the bearing  as  a single degree of freedom linear 
vibrating system as  shown  in  Fig. 4. The spring  represents 
the slope of the load  displacement curve of the bearing for 
the  particular  operating conditions, and  the  dash pot  rep- 
resents the effect of the squeeze film. The mass, rn, is the 
effective mass of the slider  bearing. The  equation of 
motion for the system is 

Z z t t + 2 ( b l + b z ) Z z t + ( k l + k z ) Z 2 = 2 6 1 Z l t + k l Z 1 ,  ( 2 1 )  
in  which kl and kz are  the equivalent  spring  constants of 
the lubricating film and loading  mechanisms respectively, 
and 2b1 and 2b2 are  the corresponding  equivalent damp- 
ing  constants. More precisely, these  constants are a func- 
tion of the  frequency  at which the system is excited. 
Often, kl (Zz-Zl )>>kzZZ,  and bl(Zz,-Z1,)>>bzZz so 
that the  characteristics of the loading  mechanism  may be 
ignored. 

The solution to Eq. ( 2 1 )  is  well known.  Usually  the 
system is more  than critically damped, so that there are 
no oscillatory characteristics. For maximum  spacing  con- 
trol, frequencies of anticipated  disturbances must be 
small  compared  to  the  undamped  natural  frequency, 
kI1l2 .  Thus  the slope of the  load spacing curve in the 
operating region becomes of primary  importance. 

Pivoted slider bearings 

Pivot-loaded  slider  bearings have unusual  characteristics. 
The angle of inclination of this  type of bearing may  auto- 
matically  adjust so that,  for any  load, the  center of pres- 
sure is always at  the pivot. The difference in  behavior 
between a pivot-loaded plane surface bearing  with  incom- 
pressible and compressible films is of particular impor- 
tance. 

With an incompressible film, the flat pivoted bearing 
will react to load changes as shown  in Fig. 5. Under these 
conditions, the  ratio of inlet to  outlet film thickness  re- 
mains constant. This may be verified by examination of 
the  available  theoretical  solutions, or by experiment. 

With a compressible film, the results  can  be strikingly 
different. Figure 5 illustrates the effect of load changes 
for  particular operating  conditions. A plane through  the 
bearing passes through  an  area situated  above the moving 
surface. It develops that  there  are two  clearances possible 
for a particular load. One is stable, the  other unstable. 
There is also a maximum load  which  may be supported. 
When  the bearing is parallel to  the moving surface, it is 
incapable of supporting a  load and will therefore collapse. 
This effect was first experienced during experimental 
studies  as discussed in Part 111. The  computer program, 
as  described  in Part 11, was applied to this problem  and 
yielded excellent verification of the experimental charac- 
teristics. 

Collapse of the lubricating film will not occur  for a 
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pivot-loaded convex curved surface because, neglecting 
the  effect of asperities,  a wedge may always be developed. 
Film collapse will not occur  under pivoted Rayleigh-type 
step, or tapered land bearings. The superiority of these 
shapes  over the plane surface bearing for  many applica- 
tions, such as support  for magnetic elements, is apparent. 

Solution of Reynolds equation 

The theoretical  solutions to slider bearing problems are 
generally complicated  enough to  warrant  the use of 
digital computers, especially if many numerical  results 
are required.  This, of course, raises the  question:  Why 
not solve directly  a difference equation which corresponds 
to  the Reynolds differential equation? It  appears  at pres- 
ent  that this is the most practical approach, even though 
hand  relaxation  must he used for all but  the most simple 
geometrical configurations. As previously indicated, the 
rectangular slider bearing with plane and curved surface 
has been thoroughly investigated for incompressible lubri- 
cation. Unfortunately,  the resulting equations are  quite 
complex. When  results are desired for  unusual configura- 
tions, such as steps which curve  in the bearing  plane, or 
shapes other  than rectangular (sectorial),  the digital com- 
puter may  be effectively used. 

For compressible lubrication, the nonlinearity of the 
Reynolds  equation places even more severe  limitations on 
the theoretical solutions. This means that,  for most gas 
lubrication  problems,  a  direct approach by hand relaxa- 
tion, or by using a  digital computer, is the only available 
nonexperimental way to obtain accurate solutions. Part I1 
discusses the finite difference technique by which  a digital 
computer was used to  approximate a  solution to  the 
Reynolds  equation for gas-lubricated slider bearings. Ac- 
curacy of solution is discussed there. 

Effects of parameter variations 

The interaction of the several  bearing parameters makes 
the  optimum design of a gas-lubricated slider bearing  a 
difficult task. The bearing number, pivot position or angle 
of inclination,  loading, shape  and size as well as dynamic 

illustrated in the ensuing figures. In every case, surfaces 
are considered to be perfectly smooth and  the velocity of 
the moving surface is assumed to be steady in time. 
Curves are shown based upon resuIts obtained using a 
digital computer programmed by Dr. W. A. Michael  as 
described in Part 11. 

Three bearing shapes were considered:  plane, cylin- 
drically  curved, and spherically curved.  Pressure  distribu- 
tions and loads are presented for a  variety of conditions. 
Pivot-loading and fixed-angle curves are shown from 
which equivalent stiffness may  be  determined. In addi- 
tion, the effect of fixing either  pivot position, minimum 
film thickness, or load of pivoted sliders is illustrated. 

The film thickness for bearings  with  cylindrical or 
spherical  surfaces is represented by h = ho +a2 /2R + 
( a / R ) x +  (2R)-*x2+  (2R)-ly2 in  which the  radius of cur- 
vature is R.  There is of course no y variation for cylin- 
drical surfaces. The inlet film thickness is h l = h ( x = O ) ,  
and  the outlet film thickness is h2 = h ( x =  B )  . The mini- 
mum spacing between the parabola which defines the 
curved surface  and  the driving  surface, ho, occurs  at x=a. 
In case the parabolic arc subtended by the curved surface 
does not include the minimum spacing, a>B and h2= 
h,>ho. The crown height 6 is the perpendicular  distance 
of the vertex of the  surface in the plane of symmetry of 
the bearing, to  the line connecting the inlet and trailing 
edges. 

It is possible to normalize  cylindrical  bearing films by 
relating film thickness to ha and lengths to (2hoR) l l2.  
Results may then  be compared  for  any combination of R 
and ho as  long as a (2h0R)-1/~ and B(2hoR)-lI2 remain 
fixed. This  type of comparison is impractical for this 
study. Hence crown  height is normalized  with respect to 
minimum film thickness and length to B. Some selected 
numerical data  are tabulated  in an internal IBM report.’l 

The well-known Harrison solution for  the infinitely 
long  isothermal  plane inclined slider  bearing provides a 
useful first step  toward analysis or synthesis of gas-bear- 

Figure 5 Pivoted plane sliders with various load- 
ings. Black curves are for incompressible 
films,  curves in color are for  compressible 
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ing films. The solution is sufficiently complicated that 
Figs. 6, 7, and 8 are presented to illustrate the effects of 
inclination (HI =h1/h2= 1.5, 3, 6 ) ,  and bearing number 
upon isothermal  pressure  distribution for infinitely long 
films. Numerical data  for pressures at twelve position 
intervals are presented  in the aforementioned  internal 
report.*l  Curves for  the corresponding center of pressures 
are shown  in Fig. 9. An additional  normalization is possi- 
ble by dividing P by H I .  However, such normalization 
appeared  to be  undesirable for this investigation. 

Figures 10 and 11 illustrate the effect of bearing num- 
ber and film thickness ratio  upon isothermal  load for 
various fixed plane inclined sliders. Bearing  length  ratios 
of co and 2 are illustrated so that side flow factors may 
be determined for these examples. Figure 12 illustrates 
the effects of bearing number, inclination, and gas  expan- 
sion  characteristics  upon  load for fixed plane sliders hav- 
ing  length  ratios L / B =  1.  In addition to isothermal and 
adiabatic (for  air  and helium)  load  curves,  characteristics 
for incompressible films are shown. The asymptotic  loads 
for G+ co are marked.  All  compressible  curves for G+O 
are asymptotic to  the  appropriate incompressible  load 
line. Adiabatic (air), as well as incompressible load 
curves, are shown. 

Figure 13 may be used in  connection  with Figs. 10 
and 12 to evaluate the effect of bearing  length ratio upon 
load for fixed plane  inclined  sliders, for which H1=2. 
Isothermal and adiabatic (air) curves are shown. 

Figures 14  and 15 may be compared  to evaluate the 
effects of curvature  upon load for fixed sliders, for which 
HI  =2, and L / B =  1. Results are presented for  both cylin- 
drical and spherical sliders with different curvatures.  Iso- 
thermal  and adiabatic (air) conditions are presented. 

A careful scrutiny of the region G+O of Figs. 14 and 
15 reveals that, although  asymptotic to  the incompressible 
load line, the compressible films support greater  loads for 
certain  conditions: hz>h, and G sufficiently small. 
Under these  conditions, the incompressible film develops 
pressures less than atmospheric  (assuming the bearings 
to be submerged  in the  lubricant). Although the pressure 
peaks of the compressible film are  not so high  as  those of 
the incompressible film, the pressure  remains always 
above  ambient so that  the total  load supported is greater 
than  that of the incompressible film. Figures 16 and 17 
illustrate  pressure  distributions for incompressible and iso- 
thermal films for cylindrical sliders for which G =  18.57, 
6/h,=0.5, H1=2, and hz/h,=1.17. Figure 18 repre- 
sents the pressure difference between the films of Figs. 16 
and 17. The normalized  load carried by the incompressi- 
ble film, 0.2 159, is 0.0244 greater than  that of the incom- 
pressible film. The shift of the  center of pressure is easy 
to visualize. 

Figure 19 illustrates  isothermal  pressure  distributions 
for cylindrical sliders for which G=22.50, L / B  = 1 ,  and 
HI  =3. Similar  curves showing isothermal  pressure dis- 
tribution for plane and spherical sliders have been deter- 
mined and  are available.21 The bearing number is chosen 
to be  representative of operation approximately  equally 

244 separated from  the asymptotic  regions G+O and G+m. 

The pressure patterns have been plotted from  data  on 
24 X 24 grids. Comparison  solutions on 12 X 12 grids  re- 
veal changes less than  one per  cent. 

Some of the characteristics of pivoted sliders may be 
recognized by observation of the remaining figures. Fig- 
ures 20 and 21 illustrate the effects of isothermal  load 
changes upon pivoted and fixed angle sliders. Results are 
plotted versus minimum film thickness, h,. Equivalent 
stiffness may be obtained by measuring the slope of a 
W'- h, curve. 

Figure 20 is particularly revealing. Load, angle of in- 
clination, and film thickness ratio  are plotted for a pivoted 
plane slider. The unstable  region of operation, as previ- 
ously discussed, is apparent.  When  the angle of inclina- 
tion is zero, ( H l = l ) ,  no  load  may  be  supported. 
However, the addition of an extremely  small convexity is 
sufficient to  guarantee a wedge for small film thicknesses 
so that  the load  capacity is ideally unlimited. 

Figure 21 illustrates the similarity of load clearance 
characteristics of pivoted and fixed angle, slightly curved 
bearings. Both isothermal and adiabatic (air) conditions 
are shown for the latter. 

Figure 6 Isothermal pressure distributions for in- 
finitely  long inclined slider bearings hav- 
ing  film thickness ratio hl/h2= 1.5. 
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The effect of increasing  bearing number  upon  load, 
inclination, and  minimum film thickness for a  plane 
slider  bearing having a fixed pivot position with respect 
to  the driving surface is illustrated  in Fig. 22. An opti- 
mum unit  load  condition is apparent. 

The figures presented here may be used to establish 
approximate  characteristics of gas-lubricated  slider  bear- 
ings. Computer  and experiments may then be used to 
optimize  the film. Additional work is in progress and will 
be reported in the  future." 
"Paper  to  be  presented  at  First ONR International  Symposium  on  Air 

Lubrication, Washington, D. C., October 26, 27, 28, 1959. 

List of Symbols 

0 equivalent damping constant 
B bearing breadth in line with surface velocity 
c, specific heat for  constant pressure 
cv specific heat for constant  volume 
E intrinsic  energy per unit  mass 
F force  on a differential element 

Figure 7 Isothermal pressure distributions for in- 
finitely long inclined plane slider bearings 
having film thickness ratio hl/h2=3. 
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unit  vector  in x direction 
unit  vector  in y direction 
unit  vector in z direction 
adiabatic gas expansion term (k=c , / c , )  ; 
equivalent spring  constant 
thermal conductivity 
bearing  length normal  to  surface velocity 
mass rate of flow per  unit  length  through 
lubricating film; bearing mass 
m/p,Uh,, 
polytropic gas expansion term 
P / P a  
radius of journal bearing 
gas constant,  radius of curvature 
modified Reynolds number 
time 

h/hm 

Subscripts a:  ambient  conditions;  independent  variables:  partial  differenti- 
ation  with respect  to  the  subscript. 

Figure 8 Isothermal pressure distributions for in- 
finitely  long inclined plane slider bearings 
having  film thickness ratio h,/h2=6. 
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T temperature  (absolute) 
U magnitude of driving-surface  velocity  in 

u magnitude of velocity  component  in x direction 

v magnitude of velocity  component  in y direction 
v vector  velocity 
w magnitude of velocity  component  in z direction 
W’ W / p , B L  
x, y ,  z rectangular  coordinates 
X x / B  
y Y / B  
Z z / B  
LY angle of inclination 

P / P a  

0 angular  variable 
A p/p.a 
X coefficient of dilatational  viscosity 
,u coefficient of viscosity 
p density 
T shearing  stress 

x direction 

ut u / u  

dissipation  function 
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Figure 12 Effect  of bearing number  upon isothermal and adiabatic (air, helium) load for plane slider bearing 
with film thickness ratio Hl=hl/h2=2 in black, and  H1=3 in color. length-to-breadth ratio, L /B=l .  
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Figure 13 Effect of bearing number upon isother- 
mal  and adiabatic  (air)  load for plane 
slider  bearings  having  film thickness 
ratio h,/h2=2, and  different  length-to- 
breadth ratios. 
Curves in color are for  n = 1 .  

Figure 14 Effect of bearing number upon isother- 
mal  and adiabatic  (air)  load for convex 
cylindrical slider where L / B  = 1, h,/h,=2, 
and S/h,=0.1 and 0.5. 
Curves in color are for n = l .  

Figure 15 Effect of bearing number upon isother- 
mal  and adiabatic  (air)  load for convex 
spherical slider where L / B =  1 , h1/h,=2, 
and S/h,=0.1 and 0.5. 
Curves in color are for n = l .  
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Figure20 Effect  of minimum film thickness upon 
isothermal load, angle, and  film thick- 
ness ratio for plane  and convex cylin- 
drical  pivoted sliders where L/B=l,  G =  
8.779 X lO-?/h;,,  h,/h, = 1 + 0.578a/hr, 
and B=0.578 in. 

Figure21 Effect  of minimum film thickness upon 
load  and angle  for isothermal load  and 
angle of a  pivoted convex cylindrical 
slider, and for  a similar fixed  angle slider 
f0rS=lOpin.,L/B=l,G=8.779XlO-~/h~, 
h,/h,=l  +0.578a/h2, and B=0.578 in. 

Figure  22 Effect of bearing number upon angle of 
inclination, minimum film thickness, and 
bearing load for an isothermal film of 
plane slider with  fixed  pivot for L/B=l,  
p/Pa 1.875X 10-lo sec., and hl/h2=1 + 
0.5a/h2. 
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