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A Gas Film Lubrication Study

Part |

Some Theoretical Analyses of Slider Bearings

Abstract: The Reynolds differential equation describing flow in a compressible lubricating film is developed.
Important characteristics of such films are determined directly from the Reynolds Equation. Pressure, load,

velocity, and geometry characteristics are presented for many compressible slider bearing films based upon

computer solutions of a Reynolds difference equation as derived in Part Il. Part 1l cites experimental verifica-

tion of computer solutions and describes experimental techniques.

Introduction

Within the past decade, sharpened interest in gaseous
lubrication has developed throughout the world. The gas-
lubricated bearing has been widely used to good advan-
tage. For example, there have been applications in which
low friction characteristics are required; applications in
which there are large temperature variations, and it is
desired that viscosity increase or remain nearly constant
with temperature; applications in which the lubricant
should not be adversely affected by radiation; applications
in which an essentially fixed clearance between slider
bearings and moving surface must be maintained under
various conditions of acceleration; and applications in
which ambient air can be used as a clean, available, inex-
pensive lubricant.

A hydrodynamic lubricating film is defined as that fluid
which separates surfaces, with no internal sources or
sinks, which have relative motion. By contrast, the term
externally pressurized or hydrostatic film is sometimes
used when internal sources are provided such that there
will be no surface contact in the absence of relative
surface motion.

The theory of hydrodynamic film lubrication, first pro-
posed by Osborne Reynolds,! has been verified many
times. Although occasional experimenters have found
that they could not achieve a satisfactory correlation be-
tween theory and experiment, others have demonstrated
that good correlation results by properly accounting for
all significant boundary conditions and physical variables.
For example, Part III of this series discusses experimental
techniques used to verify theoretical characteristics of
air-lubricated slider bearings.

The governing differential equations for compressible
fluid flow for a laminar isotropic Newtonian fluid involve
the velocity v; absolute pressure p; density p; coefficient
of viscosity u; dilatational (or bulk) viscosity A; film
thickness or clearance ki, between bearing and moving
surface; absolute temperature T; specific heats ¢, and cy;
time t; and the body force F. The equation of motion for
the lubricating fluid is

p(Vi+Vv - VW) =F—V[p— (3u+A)V-v]+uV3v, 1)

in which the subscript represents differentiation.
When the first order kinetic theory may be applied, the
relation

3pt+A=0 ()

is assumed. Then Eq. (1) takes the Stokes form, often
called the Navier-Stokes equation. Since the region of
interest is free from singularities, the continuity relation

pitV - (pv) =0 3)
may be used. In general, the energy equation
pgY « VE-+pVv=V+ (KVT) +pd (4)

is also necessary to provide a solution, in which the in-
trinsic energy per unit mass is given by

E=c,T,

and the dissipation function by

D=2(u2+ v 2 +w.?) + (vetuy) 2+ (wy+v,)2
+ (W) 2= () (V- V)2
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Equations (1), (3), and (4) are sufficient, when com-
bined with

p=pRT, (5)

the equation of state for a perfect gas (or an appropriate
pressure density relation for a liquid), and the necessary
boundary conditions, to describe most laminar lubricating
films.

The differential equations of a lubricating film

Figure 1 is a possible configuration for a film-lubricated
slider bearing. The film thickness, hA(x,y), ordinarily
symmetrical with respect to the x, z plane, has a minimum
clearance h,,. Widest interest centers on the case in which
the surface, z=0, is assumed to move with velocity U in
the x direction. The breadth of the bearing in the direction
of surface motion is B, and the length normal to this
motion is L. Since the surfaces usually deviate only
slightly from being parallel, fluid velocity components
normal to the surfaces may generally be disregarded. The
configuration is similar to the film which might exist be-
tween two nearly parallel planes which are mathemati-
cally smooth, equal in size to football fields, and separated
by one-half inch at one end, one inch at the other.

Fluid body forces are invariably negligible for the
ordinary lubricating film. Additionally, for thin film
thicknesses (h/B generally less than 10-3), the inertia
terms of Eq. (1) are usually negligible. This may be seen
by writing a modified Reynolds number,

B 2
re= P (RN
n \ B

which has an order of magnitude equal to the ratio of
inertia to viscous acceleration terms. When R*<<1, and
conditions are steady, the simplified classical lubrication
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equations may be applied. With these restrictions, Eq. (1)
reduces to

Vp=uViy . (6)

An order of magnitude evaluation of Eq. (6) reveals that
the transverse pressure variation through the film may
be ignored.

Upon removing constant translation components, the
most general velocity boundary conditions become:
V(z=0) =iUg+§Vo+kW,, V(z=h)=iUp+§Vi+kWh.
When #>251 (the molecular mean free path is /), bound-
ary slip may be neglected and the fluid velocity at the
boundaries assumed identical to the surface velocity. It
is additionally assumed that surface asperities do not
materially affect the films. Assuming steady conditions,
and that the transverse density variation through the film
may be neglected, Eqs. (3) and (6) may be combined
to give

3 3
[”h px] +[”h py] =6{ 2hpe+2p(Wi—Wo)
“ z ] y

_‘P[(UH_UO)hx +(Vn_V0)hy]

+h{[P(Uh+UO)]x+[P(Vh+V0)]y}}, @h)

the Reynolds equation for a laminar Newtonian fluid with
R*<<<1.

The isothermal pressure distribution may be obtained
from the Reynolds equation when A (x, y), the boundary
conditions, and fluid properties are specified. Normally,
edge effects are ignored, and the pressure is assumed to
be ambient, p., for x=0, B, y=*=L/2. Pressure distribu-
tions beyond this region have no physical meaning. It is
tacitly assumed that a fully developed boundary layer
exists throughout the film.

Figure ] <Configuration for a film-lubricated slider
bearing.




There is, of course, a wide variety of applications for
Eq. (7). The range extends from high-capacity oil-
lubricated thrust bearings to lightly loaded high-speed
gas-lubricated bearings. Additionally, it is possible to
apply Eq. (7) to journal bearings because the radial
clearance is small compared to the radius. Under these
conditions, the x coordinate is replaced by rf.

When bearing loads are large, the variation of viscosity
with pressure and temperature, and therefore with spa-
tial position, must be considered. Furthermore, although
liquids are commonly assumed to be incompressible, the
density of ordinary lubrication oil must at times be con-
sidered a function of pressure, as well as temperature.
Under these conditions, the energy equation (4) must be
adapted to the particular conditions, and solved simul-
taneously with the Reynolds equation (7) with due regard
for parameter variations.

When Eq. (7) is to be applied to gas lubrication, it is
also important that the energy equation (4) be consid-
ered. Under many lightly loaded conditions, it is justified
to assume the lubricant to be isothermal. The consequence
is that Eq. (7) may be modified by using Eq. (5) with
T=Ta. Assume further (and in the sequel unless men-
tioned to the contrary) that conditions are steady in time,
and the only non-zero velocity boundary condition is
u{(0) =U=constant. Then,

h3 h3
[— (p2)x] + [— (Pz)y] =12U([ph]., (8)
® T M~ v

in which the term pp, has been replaced by (1/2) (p?).,
and ppy by (1/2)(p?)y.

When the lubricating fluid may be considered incom-
pressible, the density terms of Eq. (7) vanish. The differ-
ential equation of the isothermal compressible film has
the same form as the isothermal incompressible film. To
use this similarity, it is necessary to relate p? and 2ph on
the left and right sides of the compressible equation to
the corresponding p and } of the incompressible equation,

h3 h3
(2] +[ 2 0] -stwn.. (©)
® z " y

An approximation to Eq. (8) was integrated by
W. J. Harrison.2 In order to obtain his solution, Harrison
assumed derivatives with respect to y to vanish, in effect
describing an infinitely long bearing. This solution is for
the case in which % is a linear function of x.

Because of the difficulties in handling the energy equa-
tion, it is common to use the pressure-density relation

pp~"=constant, 1=n=k. (10)

The polytropic gas exponent is n. For isothermal condi-
tions, n has the value 1, and for adiabatic, the value
k=cy/cy.

A specific gas lubrication problem should be consid-
ered in the light of the energy equation (4). It is possible
that sufficient information may be available about the
flow conditions to reduce the energy equation to a tracta-
ble form. Equation (10), however, provides a simplifica-

tion which has allowed good correlation between theory
and experiment. A more precise application of Eq. (10)
would be to consider n=n(x, y).

By employing Eq. (10), the Reynolds equation may be
written in the following forms,

h3 1/n ha 1/n
l: b px} + |: P py:l =6U[p1/nh]x B (11)
z I v

I
h3 h3
[ ]+ [ ]
p « Ln v
6U
= — (1+n)[pV/"h]., (12)
n
h3 h3 h?
[—px] +[—py:| + [p2+py2]
12 & P v unp
h
—6U TRt~ p,1. (13)
np

Once the pressure distribution has been obtained, it is
possible to evaluate the shearing stresses on each surface,

=+ D, 14
T n o p (14)
in which the (—) applies to the slider, and the (+) to
the moving surface. The bearing load W, and the shearing
force F, may be evaluated by integration. The shearing
force on the moving surface should be used since it has
the same magnitude as the shearing force on the slider
plus the appropriate slider load component.

A coefficient of resistance sometimes used is defined:

f=F/W. (15)
This has the order of magnitude of h/B.

Normalization of lubrication film equations

It is often desirable to work with normalized quantities.
The dimensionless quantities shown in Table 1 will be
used. The subscript @ implies ambient conditions (inlet
conditions for slider bearings).

Table I Dimensionless parameters.

Geometry
Bearing breadth 1=B/B
Film thickness H=h/h.,
x coordinate X=x/B
y coordinate Y=y/B
z coordinate Z=z/hn
Property
Mass flow m'=m/peh,, LU
Velocity u=u/U
Viscosity A=p/ pq
Density T'=p/pa
Pressure P=p/p.
Bearing load W =Ww/p,BL 239
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Equation (13) may now be written in normalized form,

H3 H3 H3
[ Px] + PYJ + [Px?+Py?]
A X A Y AnP

HP
=G|:HX+ X], (16)
nP

in which the bearing number is G =6p,UB/p.fi..?.

It may be noted in passing that conventional dimen-
sional analysis, taking into account the ambient pressure,
minimum film thickness for a particular geometry, length,
breadth, surface velocity, ratio of specific heats for con-
stant temperature, and angle of inclination «, indicates
that the bearing load W is a function of the following
groupings:

w—pBLg: (Y B L
=pbLg Bp 82 7 83 B

uwlU k
81 pc,,BT>g5 )ge(a) .

The bearing number G of Eq. (16) implies that the
functions g, g2, and g; may be combined to give G*=
(6p.U/Lp,) (B/h)2. Both G and G* have been effec-
tively used for plotting load variations for fixed inclina-
tion slider bearings. For some configurations, it is con-
venient to replace A, by (hi+h2) /2 or by (hi2— hg?)1/2,

Examination of lubrication equations

It is instructive to examine the effect on load-carrying
capacity and friction of liquid and gas-lubricating films
as a result of the difference in viscosity and ambient
pressure. The viscosity of a lubricating liquid may be a
thousand times that of a gas. As a consequence, the load-
carrying capacity and the frictional force will each be
greater by approximately this factor for liquid lubrication
than for gas film lubrication for equal bearing geometries.
If a lubricating film is incompressible, the absolute
magnitude of the pressure is not related to the pressure
changes. It is therefore possible to ignore atmospheric
pressure when determining pressure variation. Thus, in
Eq. (9), only derivatives of p occur. For compressible
lubrication, this is not true because absolute pressure
must be used (see Eqs. (4), (7), (11)). Increasing the
ambient pressure of a compressible bearing film means
that, although the ratio of maximum to ambient pressure
decreases, the load-carrying capacity will increase.
Because of the nonlinear nature of the Reynolds equa-
tion for a compressible film, solutions may most easily be
obtained by approximations such as linearizations. It is
also possible to obtain qualitative information directly
from the differential equation. For example, consider the
pressure variation in the X direction. For simplicity, Eq.
(7) may be applied to an infinitely long bearing so that
the y-derivative terms vanish. If, in addition, the fluid
is assumed to be incompressible, the density terms cancel,
and the remaining equation may be immediately solved
by elementary methods. If the lubricating fluid is com-
pressible, it is possible to gain some comparative informa-
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Figure2 Comparative pressure distribution for
compressible and incompressible lubrica-
tion.

tion by direct qualitative analysis of the differential terms.

A comparison of pressure variation for compressible
and incompressible lubricating films may be recognized
for the infinitely long bearing after integrating Eq. (7)
once with respect to X. The result is

G 2m’
Px— <u'H— __> (17)

H? r

in which m’ represents the normalized mass rate of flow
per unit length of the Iubricant through the film, «’ is the
normalized velocity, and T is the normalized density. For
the incompressible case, the ratio m’ /T is the quantity of
flow, a constant. To simplify comparison, consider the
viscosity of the incompressible and compressible fluids to
be the same. The pressure variation for the incompres-
sible case is controlled now completely by the film
thickness, H. Figure 2 illustrates qualitative pressure
distributions for compressible and incompressible films.
In Region I of the figure, Py is positive, and in Region II,
negative. It is zero for the condition PH=m'/T. For
compressible lubrication, the increase in pressure is ac-
companied by a density increase. As a consequence, the
term, m’ /T decreases as P increases. Therefore, Py in-
creases more rapidly in the compressible film than in the
incompressible. However, Px(0) comp<<Px(0) incomp SO that
Pincomp>Peomp Over the leading region of the film. In
addition, for Region II, Py and Ty are each negative, and
the pressure of the compressible bearing must fall off
more rapidly than that of the incompressible bearing. It
follows therefore that the center of pressure will be
farther from the leading edge of the bearing for the com-
pressible than for the incompressible film.

Limiting characteristics of gas-lubricating films

It is possible to gain additional information from the
Reynolds equation. When the bearing number is small
G—0 (or, for a particular film geometry and constant
viscosity, U/p,—>0), the pressure developed due to lubri-
cating action can be only slightly different from p,. Thus
P=p/p—1, and the pressure derivatives are negligibly




small compared to the pressure magnitude. With these
simplifications, Eq. (13) reduces to Eq. (9) the equation
for an incompressible lubricating film,

Hence, for a given viscosity and film configuration,
when the velocity is comparatively low, or the ambient
pressure comparatively high, compressible and incom-
pressible films behave similarly. For example, the load
capacity varies linearly with velocity.

Now consider the other extreme, when the bearing
number is large. For example, when (U/p.,)—> w0, Eq.
(12) may be written,

[ﬁ Py, |+ E(p(nm/n)
A X A ¥ Y
1
=G["+ ] I:Pl/nH:' . (18)
n X

It is first noticed that, as the right-hand side of Eq. (18)
becomes large, the Y derivative terms become small com-
pared to the X derivative terms. It follows that, for large
bearing numbers, the lubrication of a finite bearing may
be described by the solution for an infinitely long bearing.
In addition, for finite pressure to be developed under the
condition (U/p,)—>x, it is necessary that

(PY"H) x>0 .

The pressure distribution therefore becomes
Pieoey=(H,/H)". (19)

This may also be shown by examination of the mass flow
for large bearing numbers.

As an example of limiting load characteristics, a plane
rectangular slider bearing will support a load

H.(H"'—1) _
(n—1)(H-1)

Note that the equations for pressure and load involve
neither speed nor viscosity. The load is carried by the
compressibility effect of the ambient gas.

Since boundary layer characteristics are well known,
a comparison between compressibility effects in a lubri-
cating film and in a boundary layer is in order. For a
Mach number as low as 0.25, compressibility, to the
exclusion of the viscosity effects, may be of primary
importance in the former, but of negligible importance to
the latter.

In order to obtain a first approximation to a solution
for a particular gas bearing configuration, asymptotic
bounds may first be established for limiting values of
U/p.. The upper limit, established by Eq. (20) for the
plane bearing will be considerably higher for adiabatic
than for isothermal films. Thus it is important to establish
an appropriate value for n. Experiments with slider bear-
ings having about one square inch area reveal that a
temperature rise at a thermocouple potted into the bear-
ing surface is less than 4°F. Although the temperature
within the film may be expected to rise higher, still the
total effect upon density and viscosity appears to be negli-
gibly small. The assumption of isothermal flow for slider

W —W/p.,BL— (20)

bearings appears to be justified. However, experiments
upon gas lubricated journal bearings by Wildmann® when
compared with the theoretical solutions of Ausman,?*
reveal that, from a load standpoint, journal bearing gas
films appear to be nearly adiabatic.

For low bearing numbers, the results of incompressible
lubrication studies may be used. Solutions for the finite,
rectangular, plane slider bearing with an incompressible
lubricating film have been given by Michell,> Muskat,
Morgan and Meres,® Frossel” and Wood.® Solutions for
rectangular slider bearings with curved surfaces have
been provided by Boegli,® Frossel,” and Ying, Charnes,
and Saibel.?® Raimondi and Boyd,"* and Abramovitz!*
have studied the infinitely long curved slider bearing. The
infinitely long slider bearing with a step was analyzed by
Rayleigh,’® and the rectangular finite step bearing by
Archibald.'* Solutions for the infinite tapered land bear-
ings have been discussed by Bower.’® A wide variety of
forms have been analyzed by Tipei.¢ The presently avail-
able solutions for compressible slider bearings are those
due to Harrison,? Constantinescu,'”-1® Scheinberg,!?
Tipei,¢ and Kochi.2?

For incompressible lubrication, it has been pointed out
that the bearing friction is related to the bearing load by
the same ratio as the minimum film thickness to the
bearing length. This, of course, holds for compressible
lubrication when U/p, is small. However, as U/p, in-
creases and the asymptotic value of bearing load is ap-
proached, the frictional force continues to increase
linearly with velocity. The consequence is that the coefli-
cient of resistance, F/W, becomes increasingly less
favorable for the compressible film, compared to the
incompressible.

Some dynamic bearing effects

Slider bearings are usually used to provide thrust or for
accurately maintaining specified film thicknesses. For
thrust requirements, the important criteria are commonly
the bearing load and frictional characteristics. For main-
taining a constant-thickness film, it is necessary to specify
other conditions. Specifications for high load-carrying
capacity, minimum friction, and constant film thickness
are generally combined in varying proportions for specific
applications.

A bearing which will maintain a sufficiently uniform
film thickness in the presence of anticipated accelerations
in the z-direction, is said to have adequate stiffness. The
term stiffness may be misleading because the damping
characteristics of a lubricating film should not be ignored
through concentration on the spring-like behavior of the
film.

The load carried by a slider bearing resulting from the
dynamic or squeeze film effect varies approximately in-
versely with the cube of the film thickness, whereas the
hydrodynamic load capacity varies approximately inverse-
ly with the square of the film thickness. A qualitative load
clearance curve, with the design clearance h; and the
design load W, is seen in Fig. 3. During anticipated oper-
ation, W= W, and h =< hy so that the load-clearance curve
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Figure 3 Load-clearance characteristic of slider
bearing.
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Figure 4 Equivalent dynamic system for spring-
242 loaded slider bearing.
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may be approximated by a straight line as illustrated.
The inertia of a lubricating film is sufficiently small that
the load-clearance results obtained for zero acceleration
may ordinarily be used in the presence of acceleration.
The squeeze film damping may similarly be linearized.

The result of these linearizations is to allow representa-
tion of the bearing as a single degree of freedom linear
vibrating system as shown in Fig. 4. The spring represents
the slope of the load displacement curve of the bearing for
the particular operating conditions, and the dash pot rep-
resents the effect of the squeeze film. The mass, m, is the
effective mass of the slider bearing. The equation of
motion for the system is

Zyy+2(b1+b2) Zoy+ (ki + ko) 2, =2b1Zy k1 Zy,  (21)

in which &, and k; are the equivalent spring constants of
the lubricating film and loading mechanisms respectively,
and 2b; and 2b, are the corresponding equivalent damp-
ing constants. More precisely, these constants are a func-
tion of the frequency at which the system is excited.
Often, ky(Zy—Z1) >>koZs, and by (Zs,—Z1,) > >bsZ5 s0
that the characteristics of the loading mechanism may be
ignored.

The solution to Eq. (21) is well known. Usually the
system is more than critically damped, so that there are
no oscillatory characteristics. For maximum spacing con-
trol, frequencies of anticipated disturbances must be
small compared to the undamped natural frequency,
k.72, Thus the slope of the load spacing curve in the
operating region becomes of primary importance.

Pivoted slider bearings

Pivot-loaded slider bearings have unusual characteristics.
The angle of inclination of this type of bearing may auto-
matically adjust so that, for any load, the center of pres-
sure is always at the pivot. The difference in behavior
between a pivot-loaded plane surface bearing with incom-
pressible and compressible films is of particular impor-
tance.

With an incompressible film, the flat pivoted bearing
will react to load changes as shown in Fig. 5. Under these
conditions, the ratio of inlet to outlet film thickness re-
mains constant. This may be verified by examination of
the available theoretical solutions, or by experiment.

With a compressible film, the results can be strikingly
different. Figure 5 illustrates the effect of load changes
for particular operating conditions. A plane through the
bearing passes through an area situated above the moving
surface. It develops that there are two clearances possible
for a particular load. One is stable, the other unstable.
There is also a maximum load which may be supported.
When the bearing is parallel to the moving surface, it is
incapable of supporting a load and will therefore collapse.
This effect was first experienced during experimental
studies as discussed in Part ITI. The computer program,
as described in Part II, was applied to this problem and
yielded excellent verification of the experimental charac-
teristics.

Collapse of the lubricating film will not occur for a




pivot-loaded convex curved surface because, neglecting
the effect of asperities, a wedge may always be developed.
Film collapse will not occur under pivoted Rayleigh-type
step, or tapered land bearings. The superiority of these
shapes over the plane surface bearing for many applica-
tions, such as support for magnetic elements, is apparent.

Solution of Reynolds equation

The theoretical solutions to slider bearing problems are
generally complicated enough to warrant the use of
digital computers, especially if many numerical results
are required. This, of course, raises the question: Why
not solve directly a difference equation which corresponds
to the Reynolds differential equation? It appears at pres-
ent that this is the most practical approach, even though
hand relaxation must be used for all but the most simple
geometrical configurations. As previously indicated, the
rectangular slider bearing with plane and curved surface
has been thoroughly investigated for incompressible lubri-
cation. Unfortunately, the resulting equations are quite
complex. When results are desired for unusual configura-
tions, such as steps which curve in the bearing plane, or
shapes other than rectangular (sectorial), the digital com-
puter may be effectively used.

For compressible lubrication, the nonlinearity of the
Reynolds equation places even more severe limitations on
the theoretical solutions. This means that, for most gas
lubrication problems, a direct approach by hand relaxa-
tion, or by using a digital computer, is the only available
nonexperimental way to obtain accurate solutions. Part IT
discusses the finite difference technique by which a digital
computer was used to approximate a solution to the
Reynolds equation for gas-lubricated slider bearings. Ac-
curacy of solution is discussed there.

Effects of parameter variations

The interaction of the several bearing parameters makes
the optimum design of a gas-lubricated slider bearing a
difficult task. The bearing number, pivot position or angle
of inclination, loading, shape and size as well as dynamic

zA

characteristics must all be considered. The effect of these
parameters upon certain gas lubricating films will be
illustrated in the ensuing figures. In every case, surfaces
are considered to be perfectly smooth and the velocity of
the moving surface is assumed to be steady in time.
Curves are shown based upon results obtained using a
digital computer programmed by Dr. W. A. Michael as
described in Part IL.

Three bearing shapes were considered: plane, cylin-
drically curved, and spherically curved. Pressure distribu-
tions and loads are presented for a variety of conditions.
Pivot-loading and fixed-angle curves are shown from
which equivalent stiffness may be determined. In addi-
tion, the effect of fixing either pivot position, minimum
film thickness, or load of pivoted sliders is illustrated.

The film thickness for bearings with cylindrical or
spherical surfaces is represented by hk=ho-+a?/2R+
(a/R)x+ (2R)x2+ (2R)-y? in which the radius of cur-
vature is R. There is of course no y variation for cylin-
drical surfaces. The inlet film thickness is Ay =h(x=0),
and the outlet film thickness is Z:—A(x=B). The mini-
mum spacing between the parabola which defines the
curved surface and the driving surface, ki, occurs at x=a.
In case the parabolic arc subtended by the curved surface
does not include the minimum spacing, ¢>B and h,=
hm>ho. The crown height § is the perpendicular distance
of the vertex of the surface in the plane of symmetry of
the bearing, to the line connecting the inlet and trailing
edges.

It is possible to normalize cylindrical bearing films by
relating film thickness to Ao and lengths to (2hoR)/2.
Results may then be compared for any combination of R
and ho as long as a (2hoR) /2 and B(2hoR)~'/? remain
fixed. This type of comparison is impractical for this
study. Hence crown height is normalized with respect to
minimum film thickness and length to B. Some selected
numerical data are tabulated in an internal IBM report.2*

The well-known Harrison solution for the infinitely
long isothermal plane inclined slider bearing provides a
useful first step toward analysis or synthesis of gas-bear-

Figure 5 Pivoted plane sliders with various load-
ings. Black curves are for incompressible
films, curves in color are for compressible
film.
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ing films. The solution is sufficiently complicated that
Figs. 6, 7, and 8 are presented to illustrate the effects of
inclination (H,=h,/h:=1.5, 3, 6), and bearing number
upon isothermal pressure distribution for infinitely long
films. Numerical data for pressures at twelve position
intervals are presented in the aforementioned internal
report.?! Curves for the corresponding center of pressures
are shown in Fig. 9. An additional normalization is possi-
ble by dividing P by H,. However, such normalization
appeared to be undesirable for this investigation.

Figures 10 and 11 illustrate the effect of bearing num-
ber and film thickness ratio upon isothermal load for
various fixed plane inclined sliders. Bearing length ratios
of o and 2 are illustrated so that side flow factors may
be determined for these examples. Figure 12 illustrates
the effects of bearing number, inclination, and gas expan-
sion characteristics upon load for fixed plane sliders hav-
ing length ratios L/B=1. In addition to isothermal and
adiabatic (for air and helium) load curves, characteristics
for incompressible films are shown. The asymptotic loads
for G—> oo are marked. All compressible curves for G—=>0
are asymptotic to the appropriate incompressible load
line. Adiabatic (air), as well as incompressible load
curves, are shown.

Figure 13 may be used in connection with Figs. 10
and 12 to evaluate the effect of bearing length ratio upon
load for fixed plane inclined sliders, for which H;=2.
Isothermal and adiabatic (air) curves are shown.

Figures 14 and 15 may be compared to evaluate the
effects of curvature upon load for fixed sliders, for which
H;=2, and L/B=-1. Results are presented for both cylin-
drical and spherical sliders with different curvatures. Iso-
thermal and adiabatic (air) conditions are presented.

A careful scrutiny of the region G—>0 of Figs. 14 and
15 reveals that, although asymptotic to the incompressible
load line, the compressible films support greater loads for
certain conditions: h,>h, and G sufficiently small.
Under these conditions, the incompressible film develops
pressures less than atmospheric (assuming the bearings
to be submerged in the lubricant). Although the pressure
peaks of the compressible film are not so high as those of
the incompressible film, the pressure remains always
above ambient so that the total load supported is greater
than that of the incompressible film. Figures 16 and 17
illustrate pressure distributions for incompressible and iso-
thermal films for cylindrical sliders for which G=18.57,
8/hm=0.5, H,=2, and hs/h,=1.17. Figure 18 repre-
sents the pressure difference between the films of Figs. 16
and 17. The normalized load carried by the incompressi-
ble film, 0.2159, is 0.0244 greater than that of the incom-
pressible film. The shift of the center of pressure is easy
to visualize.

Figure 19 illustrates isothermal pressure distributions
for cylindrical sliders for which G=22.50, L/B=1, and
H;=3. Similar curves showing isothermal pressure dis-
tribution for plane and spherical sliders have been deter-
mined and are available.2! The bearing number is chosen
to be representative of operation approximately equally
separated from the asymptotic regions G—=>0 and G—>w.
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The pressure patterns have been plotted from data on
24 x 24 grids. Comparison solutions on 12 x 12 grids re-
veal changes less than one per cent.

Some of the characteristics of pivoted sliders may be
recognized by observation of the remaining figures. Fig-
ures 20 and 21 illustrate the effects of isothermal load
changes upon pivoted and fixed angle sliders. Results are
plotted versus minimum film thickness, A,,. Equivalent
stiffness may be obtained by measuring the slope of a
W' —h,, curve.

Figure 20 is particularly revealing. Load, angle of in-
clination, and film thickness ratio are plotted for a pivoted
plane slider. The unstable region of operation, as previ-
ously discussed, is apparent. When the angle of inclina-
tion is zero, (H;=1), no load may be supported.
However, the addition of an extremely small convexity is
sufficient to guarantee a wedge for small film thicknesses
so that the load capacity is ideally unlimited.

Figure 21 illustrates the similarity of load clearance
characteristics of pivoted and fixed angle, slightly curved
bearings. Both isothermal and adiabatic (air) conditions
are shown for the latter.

Figure 6 lsothermal pressure distributions for in-
finitely long inclined slider bearings hav-
ing film thickness ratio h;/h.=1.5.
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The effect of increasing bearing number upon load,
inclination, and minimum film thickness for a plane
slider bearing having a fixed pivot position with respect
to the driving surface is illustrated in Fig. 22. An opti-
mum unit load condition is apparent.

The figures presented here may be used to establish
approximate characteristics of gas-lubricated slider bear-
ings. Computer and experiments may then be used to
optimize the film. Additional work is in progress and will
be reported in the future.*

*Paper to be presented at First ONR International Symposium on Air
Lubrication, Washington, D. C., October 26, 27, 28, 1959.

List of Symbols

b equivalent damping constant

B bearing breadth in line with surface velocity
Cp specific heat for constant pressure

Cy specific heat for constant volume

E intrinsic energy per unit mass

F force on a differential element

Figure 7 lsothermal pressure distributions for in-
finitely long inclined plane slider bearings
having film thickness ratio h,/h.=3.
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Figure 8 lsothermal pressure distributions for in-
finitely long inclined plane slider bearings
having film thickness ratio h,/h,=6.
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u/U

magnitude of velocity component in y direction
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magnitude of velocity component in z direction
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rectangular coordinates

x/B

y/B

z/B

angle of inclination

P/ pa

angular variable

n/ e

coefficient of dilatational viscosity

coefficient of viscosity

density

shearing stress

dissipation function

QM

RN

=
~N

BAIDE X >DHR NNNR ST €

References

1.

2.

O. Reynolds, “On the Theory of Lubrication,” Phil.
Trans. Roy. Soc., 177, ser. A, 157 (1886).

W. J. Harrison, “The Hydrodynamical Theory of Lubri-
cation with Special Reference to Air as a Lubricant,”
Trans. Camb. Phil. Soc., 22, 39 (1913).

. M. Wildmann, “Experiments on Gas-Lubricated Journal

Bearings,” ASME paper no. 56-LUB-8, ASME-ASLE
Lub. Confr. (1956).

. J. S. Ausman, “Finite Gas-Lubricated Journal Bearing,”

Inst. Mech. Engrs., paper 22, London Confr. on Lub. &
Wear (1957).

. A. G. M. Michell, “The Lubrication of Plane Surfaces,”

Z. Math. Physik, 52, 123 (1905).

. M. Muskat, F. Morgan, and M. W. Meres, “The Lubri-

cation of Plane Sliders of Finite Width,” J. Appl. Phys.,
11, 208 (1940).

. W. Frossel, “Berechnung der Reibung und Tragkraft

eines endlich breiten Gleitschuhes auf ebener Gleitbahn
(Calculation of Load and Friction of Smooth Surface
Finite Slider Bearings),” Zeit. fur Ang. Math. u. Mech.,
21, no. 6, 321 (1941).

. W. L. Wood, “Note on a New Form of the Solution of

Reynolds-Equation for Michell Rectangular and Sector-
Shaped Pads,” London, Edinb., and Dublin Phil. Mag.
and Jour. of Sci., Tth series, 40, 220 (1949).

Figure 9 Effect of bearing number upon isothermal center of pressure for infinitely long plane slider bearing

where L/B=x, n=1, and H,=h,/h..

0.77 ! L
H, =6
0.75 “1
H,= 4
AN
H =31
H, =2

ICENTER OF PRESSURE,

0.55 /

10 20

BEARING NUMBER, G = 6uUB / pohs

IBM JOURNAL * JULY 1959

30 40




W AT

w_
h /hy=4
0.8 % /J.r Ny —
\% (
> /W\
°
%
0.7 N
r
/8 =2 T
/”3/ h] /h2= 3
0.6 AN—
0.5 N
//\N\
0.4 o A A—
‘/\ \ﬁ_—
b /h2= 2
03 | N
. [ N
y\/
hi/hy=1.5| L/B = |M/h27 13
/ W VA—
0.2 FVa—
/___________————-—\N
y /
@
a
> 0.1 /‘ N
=
n
E
a
<
o]
- 0.0
0 10 20 30 40 50 60 70 80 90 ®©

BEARING NUMBER, G = 64UB/pgh;

Figure 10 Effect of bearing number upon isothermal load for plane sliders having film thickness ratios
h,/h.=1.5, 2, 3, 4, and 6 with L/B=x and 2, and n=1, Curve for h,/h,=6 intersects infinity at

W’=1.150. Both colored and black curves intersect infinity at points shown. 247

IBM JOURNAL * JULY 1959




9. G. P. Boegli, “The Hydrodynamic Lubrication of Finite Profile on the Load Capacity of Thrust Bearings with

Sliders,” J. Appl. Phys., 18, 482 (1947). Centrally Pivoted Pads,” Trans. Am. Soc. Mech. Engrs.,
10. A. S. C. Ying, A. Charnes, and E. Saibel, “Slider Bearing 77, 321 (1955).
with Transverse Curvature; Exact Solution,” Trans. Am. 12. S. Abramovitz, “Theory for a Slider bearing with a Con-
Soc. Mech. Engrs., 718, 465 (1956). vex Pad Surface; Side Flow Neglected,” J. Franklin Inst.,
11. A. A. Raimondi, and J. Boyd, “The Influence of Surface 259, 221, No. 3 (1955).
1.2
1.1 !
i
1.0 A
|
0.9 (— . !
0.8 4
0.7 g
0.6 \
0.5
G Z 30 \
/ !
0.4 .
7
G=10
/\
L, 02— - -
@ \
o’
~ T
E G=5
n —”_\
N 0.1 _
2z — ]
o
< G =1
S o B ,
1 2 3 4 5 [
FILM THICKNESS RATIO, Hy = hi/h,

Figure 11  Effect of film thickness ratio upon isothermal load of infinite sliders for various bearing numbers
248 with L/B=, and n=1.

IBM JOURNAL * JULY 1959




13.

14.

15.

17.

18.

3

Lord Rayleigh, “Notes on the Theory of Lubrication,’
London, Edinb., and Dublin Phil. Mag. and Jour. of Sci.,
Sixth Series, 35, 1 (1918).

F. R. Archibald, “A Simple Hydrodynamic Thrust Bear-
ing,” Trans. Am. Soc. Mech. Engrs., 72, 393 (1950).

G. S. Bower (Discussion of Paper by A. Fogg), Proc.
Inst. Mech. Engr., 155, 61 (1946).

. N. Tipei, “Hidro-Aerodinamica Lubrificatiei (Hydro-

Aerodynamics of Lubrication” (in Romanian), Acade-
miei Republicii Populare Romine (1957).

V. N. Constantinescu, “Sur la Théorie des Paliers 4 Gaz
(On the Theory of Gas Bearings),” Rev. de Mecan.
Appliq., 1, no. 1, 141 (1956).

V. N. Constantinescu, “Sur le Probléme Tridimensionnel
de la Lubrication aux Gas (On the Three Dimensional
Problem of Gas Lubrication),” Rev. de Mecan. Appliq.,
1, no. 2, 123 (1956).

19.

20.

21.

S. I. Scheinberg, “Gas Lubrication of Slider Bearings
(Theory and Calculations)” (in Russian), Friction and
Wear in Machines, Institute of Machine Sci. Acad. of Sci.
USSR, 8, 107 (1953).

K. C.Kochi, “Characteristics of a Self-Lubricated Stepped
Thrust Pad of Infinite Width with Compressible Lubri-
cant,” Paper No. 58-A-194, presented at 1958 A.S.M.E.
annual meeting.

W. A. Gross, “A Gas Film Lubrication Study: Some
Theoretical Analyses of Slider Bearings,” IBM Research
Paper RJ-RR-126 (1958).

Received June 19, 1958

Figure 12 Effect of bearing number upon isothermal and adiabatic (air, helium) load for plane slider bearing
with film thickness ratio H,=h,/h.=2 in black, and H,=3 in color. Length-to-breadth ratio, L/B=1.
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Figure 13 Effect of bearing number upon isother-
mal and adiabatic (air) load for plane
slider bearings having film thickness
ratio h,/h,=2, and different length-to-
breadth ratios.

Curves in color are for n—=1.

Figure 14 Effect of bearing number upon isother-
mal and adiabatic (air) load for convex
cylindrical slider where L/B=1,h,/h,,=2,
and 8/h,,=0.1 and 0.5.

Curves in color are for n=1.

Figure 15 Effect of bearing number upon isother-
mal and adiabatic (air) load for convex
spherical slider where L/B=1, h,/h,,=2,
and 3/h,,=0.1 and 0.5.

Curves in color are for n=1.
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Incompressible pressure distribu-
tion for cylindrical slider where 1.4 \
G=18.57,
W’'=0.1915, 1.3
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Figure 18
Difference between incompressi-
ble and isothermal compressible
pressure distributions for cylin- 0.3
drical sliders
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TRAILING EDGE FILM THICKNESS, 10%h, in.

Figure 20

Figure 21

Figure 22

Effect of minimum film thickness upon
isothermal load, angle, and film thick-
ness ratio for plane and convex cylin-
drical pivoted sliders where L/B=1, G=
8.779 X 10°/h%, h,/h,=1+ 0.578a/h.,
and B=0.578 in.

Effect of minimum film thickness upon
load and angle for isothermal load and
angle of a pivoted convex cylindrical
slider, and for a similar fixed angle slider
for8=10uin. L/B=1,G=8.779X10""/h2,
h,/h,=1+0.578a/h,, and B=0.578 in.

Effect of bearing number upon angle of
inclination, minimum film thickness, and
bearing load for an isothermal film of
plane slider with fixed pivot for L/B=1,
w/P, 1.875X107%° sec., and h,/h,=1+
0.5a/h,.

( 5
Ll
e
w
z
<
350 012 31.20
<
[-°3
/ z
325 B / 0.10 2 1.00
/ 2
z
/ <
300 —] 0.08
275 0.06
250 0.04
-
[--]
a
~
b4
225 0.2 0.02 "
z
\ a
<
o
200 L 0 0o =
2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

2
BEARING NUMBER, G = 6uUB/p,h;

Fig. 22

255

IBM JOURNAL * JULY 1959




