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Elementary Divisors of Normal Matrices

It is known from the transformation theory of matrices
that normal matrices can be brought to the diagonal form
by means of a similarity transformation. On the other
hand, any diagonal matrix possesses linear elementary
divisors exclusively. Since elementary divisors are un-
altered by similarity transformations, it follows that
normal matrices have linear elementary divisors only.

A direct proof of this fact is given below. It is an exten-
sion of the proof of Wedderburn, which demonstrates the
same fact for Hermitian matrices.*

Let N be a normal matrix of degree n over a general-
ized complex field,t i.e., NN*=N*N (the star denotes
the complex-conjugated and transposed matrix); or, if
A, B denote the Hermitian components of N, where

N=A+iB, (1)
the normality is expressed by the equation
AB=BA . 2)

Let m(z) denote the minimum polynomial of N, i.e., the
polynomial of lowest degree for which m(N) =0.

Suppose N possesses a nonlinear elementary divisor.
Then m(z) possesses a multiple root zx, because m(z) is
the ratio of the determinant f(z)—=|zE—N| and the
greatest common divisor of all minors of f(z) with degree
n—1. (Cf. Ref. 2). Thus

m(z) =(z—zx) *p(z) (ax>1) . (3
We introduce

mi(z) = (z2—2zx) % 1p(z) (4)
and write m; (N) as the sum of its hermitian components
my(N)=C+iD . 5

TA generalized complex field is defined by extending an arbitrary ordered
commutative field K with characteristic 542 by adjoining a square root §
of a negative number. Complex conjugation is then defined by the auto-
morphism in K (&) induced by {&— —§& The proof of the text, which for
the sake of simplicity is written down for K (&)= field of ordinary complex
numbers, also holds true for generalized complex fields. In that case, i
should be replaced by £, and, if the field K (£) is not algebraically complete,
(z—2xk) should be replaced by pr, pr being a prime of the polynomial
principal ideal ring K (&)[=].

The assumption: characteristic =2 is used in defining the Hermitian

components of a matrix, On the other hand £<0 assures dizdix>0, a
necessary condition to imply D=0 if D*=0.

Then
CD=DC, (6)
because any polynomial of a normal matrix is itself
normal.

Now [m,(z)]? is a multiple of m(z), and m(N) =0.
Hence
0=[mi(N)2=C*—D2>+iCD+iDC

=C?2—D2+42iCD . @)

This equation can be satisfied only if
CD=0 and Cz—D2=0. (8)
Thus
(CD)2=C2D2=C*=D*=0. %) |

C and D being hermitian matrices, C=D=0 follows
from the vanishing of an even power of C and D, as
D?=0 implies

rD*=3 3 dudri=3 |dir|2=0 . (10)
ik ik

Hence

my(N) =0 (11

holds true.

The degree of m1(z) is lower by unity than the degree
of m(z), whereas m(z) is by definition the polynomial of
lowest degree possessing N as a root. This contradiction
forces us to renounce the supposition of the existence of
a nonlinear elementary divisor.

The author’s thanks are due R. A. Willoughby for his
encouraging interest and critical advice.
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