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The subject of this note is the extension of the Nyquist 
theorem,  which  relates the electrical noise in  a conductor 
in thermal equilibrium to the  Ohmic conductivity,1,2 to 
the  “hot electron”  situation in which there is a  steady 
electric field E strong  enough to disturb  the distribution 
of electrons among Bloch states and  for which the steady 
current density J will not in general be proportional  to E.3 
For simplicity, we discuss the fluctuations of velocity, v, 
for a single electron. For a  steady state  the time average, 

of a function + of the electron’s state is the  same as the 
ensemble average at  any instant over all N electrons  in 
the body: 
- * =If$ = (4) 
(I stands  for  integration over the Brillouin zone  and 
summation over  spin  states and  bands, f is the distribution 
function normalized so that If = 1.) For fluctuations we 
have (neglecting any interaction  between the  electrons) 

and similarly for each  spectral  component of the fluctua- 
tion.4 (Here,  and below wherever it is material, y? is taken 
to be real.) We  are interested  in the “noise” spectral 
density 

where $I’ E + - T. This  has  the  property 

LW G d 0 = 2 n ( + - $ ) ~ .  (2) 

The relation which links G to  the  transport coefficients 
of the system is the Weiner-Khinchin  theorem1 

G(+‘,  0)=4 Re e- iu5(#’ ( t ) I ) ’ ( t+s) )ds .  
M 

J O  

The first factor, + ’ ( t ) ,  of the time  average (-) in (3) 
may be replaced by $( t )  (since, obviously, if it were 
replaced by 5 the time  average would become zero).  For 
comparison with transport coefficients, it is convenient 
to formulate  the right-hand  side of (3) as follows: Let 
the expectation of + after  an interval s, for an electron 
which started  from a particular specified state  at  the 

initial time, be ($; s). This expectation will be  a  function 
of the initial state  and of the steady fields (E and H) 
acting,  but not of the initial time. Of course, 

(*; W)=($)  * 

(It should  not be overlooked that,  from  their definitions, 
(I); s) is in general  a function of electron state whereas (+) 
is a constant.) We may now write (3) as 

~ 

Now,  the  Ohmic mobility tensor for thermal equilibrium 
has diagonal  elements5% 

Therefore,  for this case, we have  at  once 

4kT Repz,( 0 )  = eG ( w,, 0 )  , (6) 

which is essentially the Nyquist  relation for  the fluctua- 
tion of the  current. By combining (6) with the Einstein 
relation, 

kTp(O) =e5 , (7) 

connecting p to  the diffusion constant  (for  the electron 
flux due to a concentration gradient,  with f constant), we 
obtain 

G(v, ,  0 )  =4CZ2. (8) 

We now turn  to  the “hot  electron”  situation.  Both G 
and 5 are essentially digerential magnitudes,  referring 
here  to deviations from  the steady state condition - for 
the latter,  which  may  be  written as 5’ to remind one of its 
meaning, specifically to small  deviations  linearly  propor- 
tional to  each other. On the  other  hand a distinction must 
now  be made between the absolute mobility p, given by 
( v ) r u = k E * p ,  and  the  differential  mobility p’- 
(a/aE) u. By the methods and results of reference 6,  

we have 

if= ( “bm ((v; S)-U)dS . ) (9) 

By combining (4) with (9) we retrieve (S ) ,  in the  form 

G(v.z’, 0 )  =45‘z, 9 (8’) 

as an exact result. Accordingly,  generalization of the 191 
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Nyquist formula  for low frequencies7 and generalization 
of the Einstein  relation are equivalent  questions.  One 
wishes to define a “noise temperature,” 8 ~ ,  such  that 
when it is substituted for T the generalization of (6) 
holds. For  any given direction, there  are two natural 
definitions: 

;teG(v,’, O ) - k 8 ~ s p ~ x ( O ) E k e ’ ~ x p ’ x x ( O ) .  ( 1 0 )  

Because of (8’), each “diffusion temperature,” defined in 
the corresponding way to generalize ( 7 ) ,  is equal to the 
equivalent noise temperature. A natural definition of an 
“energy temperature,” BE, for comparison  is: 

$ k 8 , ~ ( ~ ) ,  (11) 

where E is the electron  energy  (relative to a  band edge). 
It will be convenient,  however,  with the  band  structure 
expressed by ( 1 3 ) ,  to  further define an energy tempera- 
ture  for each  direction: 

k8Es-mm(vx2) ,  ( 1 2 )  

We shall  examine  two  simple  hot-electron  situations be- 
low, and find that corresponding  noise and energy tem- 
peratures are-as one might hope-of the same order of 
magnitude,  though not in general  equal. 

The first case is that considered  in reference 6. The 
scattering is by weak non-polar  interaction  with longitu- 
dinal  Debye modes, and 

& = p 2 / 2 m *  . ( 1 3 )  

(p is the pseudomomentum, m* a constant.)  With in- 
creasing  applied field E ,  u becomes proportional  to VE 
while the surfaces of constant f remain almost  spherical: 

f-f( E )  = const.e-@/con*t. . ( 1 4 )  

Let  the z axis be parallel to E. From  the spherical  sym- 
metry of the system (Le., independently of the  actual 
distribution function) it follows that 

p x x  = p z z  . ( 1 5 )  

From  the results of reference 6, we have* 

The  ratio of the right-hand sides of (16) and ( 17)  gives 
a  noise temperature  according  to (8’) and (10). For 
thermal equilibrium (E=O, f proportional  to 
exp ( - E/kT) ) , we find 8 ’ ~ ~ =  eE= T .  In  the “ V E  range,” 
where ( 1 4 )  holds, we  get 

For  the field direction we  have,6 instead of ( 1 7 ) ,  

192 czz=“ 2 1  3 m* ( . (E - .? ) ) ,  

where W E e u 2 /  pLzz is the  rate, per  electron, of absorption 
of power from  the field and T ~ ( E )  is the  function intro- 
duced  in Eq. (8) of reference 6. Since TO(&) is posi- 
tive  and  monotonic-increasing,  we  conclude  that 
G(vz’ ,   O)<G(v , ’ ,  0 ) .  

The second  hot-electron  situation to be  considered has 
been discussed in detail by Gunn  (reference 3, pages 217- 
2 1 9 ) .  As in the first example, we have  spherical  symmetry 
(so ( 15)  still holds), with the energy given by ( 1 3 )  ; but 
the  predominant scattering  process is supposed to be that 
in which an optical-mode  phonon, with energy EO, is 
created. It is supposed that  for almost  all such scattering 
events the electron’s initial  energy is only slightly greater 
than cO (and its final energy <<E,,), and  that in the inter- 
val between them  (while the electron’s energy is being re- 
stored by acceleration)  an acoustic-mode  scattering is 
impr~bable .~  The distribution  represented by f(p) is then 
concentrated  uniformly  along  a  thin  filament  extending, 
in  the direction of ( -)E (which we choose for  the z 
direction),  from p=O to p z = ~ ( 2 m * ~ o ) - p o .  The  dura- 
tion of a scattering-acceleration-scattering  cycle is 

TO =po/eE . ( 2 0 )  

To this first approximation,* 

u=(O, 0, 3 ~ 0 ) ;  pzz=3Toe/m*; p’zz=O, ( 2 1  1 
where vo-po/rn*.  

The diffusion constants (and hence the low-frequency 
noise powers) may be calculated  in terms of the differ- 
ential  mean free pathe 

I’r ((v; s ) - u ) d s ,  

since, by (9),  g’= (VI’). We havelo 
/ d m  

( 2 2 )  

l ’ x = v x ( p o - p P z ) / e E ,  

and  therefore 

~ x z = = ~ T o ( v z ~ )  . ( 2 3  1 
This  result ( 2 3 ) ,  which we may regard as a good approxi- 
mation so long  as ( V , ~ ) < < V ~ ~ ,  gives 

8 ’ ~ 1 : = 8 ~ x   ( 2 4 )  

by (8’), (10)  and ( 1 2 ) .  The high-frequency noise may 
be  calculated in  the  same way with  a  phase factor COS(WS) 
in the integrand of ( 2 2 ) .  We find 

It should be noted that this result is for  the idealized limit 
corresponding to ( 2 1 ) .  One would expect the higher 
secondary  maxima of the “diffraction pattern” ( 2 5 )  to be 
the most sensitive to  departures  from this limit, being 
quenched by the smearing out of the distribution of in- 
tervals between scatterings. 

*See  the  remarks  immediately following Eq. ( 2 8 ) .  
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The analysis  for  the field direction is not so straight- 
forward. From Eq. (7) of reference 6 we  have,  for  the 
idealized  limit, 

W o d l ’ ~ / d ~ e + T o ( ~ ~ , - ” % )  =o 3 o<Wz<z)O ; 

and 

I Therefore 

and 

(v,l’,)=O . (28) 

Thus  the  low-frequency  noise  appears  only from a closer 
approximation  to  the  actual  situation  than is represented 
by (2  1 ) , in  which  the  “smearing  out” of the  distribution 
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(1959). The  factor exp ( ius)  in the mobility formulas, 
for a  harmonically varying applied field, is not included 
in this paper  or in reference 5 .  The proof of this generali- 
zation is elementary, however. 

7. For w small  compared with the frequencies, 1 / ~ ,  of elec- 
tron relaxation collisions, G(wr’, o) may be equated to 

and of the  electron  paths is represented. It is known  that 
f(w,) drops  to zero (around w,=O and w,= WO) over a 
velocity  range of order v(wzz), when  the  latter is <<VO:  

presumably (vel’,) is then of order T ~ ( W , ~ ) .  That is, G(v,’, 0 )  
and G(  w,‘, 0 )  are of the  same  order of magnitude.  One 
would  expect  the  high-frequency  noise to have  peaks at 
frequencies  which  are  integer  multiples of  TO, as in  the 
transverse  case  above.  The  peaks  for  the  longitudinal  case 
presumably  are  much  larger,  however,  since  by (2) 

A meaningful  calculation of the  high-frequency  noise 
power, G(v,‘, o ) ,  evidently  can  be  made  only  by  going 
beyond  the  idealized  extreme  situation  corresponding  to 
(21).11 

G(w,’, 0) : the noise is “white” until the predominant col- 
lision frequencies are reached. 

8. Both these results depend on the assumption that the part 
of f ( p )  even in p is spherically symmetrical (a  function 
of p only).  In addition (17) depends, in deriving from 
Eq. (8) of reference 6, on the related  circumstance that 
the expectation of change of E ,  due  to  the accelerating 
field, between collisions is small  compared to E .  The 
particular form of (16) given depends on our assumption 
that  the scattering  time T ( E )  is proportional to l / V &  . 

9. These assumptions could be simultaneously valid only  in 
a range of field E between finite upper and  lower limits. 

10. We are, of course, assuming here that  the expectation of 
w ,  after a scattering is zero. 

11.  One may  make a formal calculation by adding a term 
( i w ~ o l ) , )  to the differential equation (26) and taking the 
real part of the solution  (which is equivalent to inserting 
the phase factor  cos(os) in the integrand of (22) ) , and 
proceeding as before. The result is that G(wz’, o) = O  at 
all frequencies. The procedure is objectionable for fre- 
quencies near integral  multiples of 1/70, because the 
“generalized mean free path” obtained in this way has 
singularities at these points. The result does, however, 
seem to indicate that  for all other frequencies, as for 
w = O ,  G is “zero” in the sense of being small  compared 
with TOW$. 
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