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Noise Theory for Hot Electrons

The subject of this note is the extension of the Nyquist
theorem, which relates the electrical noise in a conductor
in thermal equilibrium to the Ohmic conductivity,’:? to
the “hot electron” situation in which there is a steady
electric field E strong enough to disturb the distribution
of electrons among Bloch states and for which the steady
current density J will not in general be proportional to E.?
For simplicity, we discuss the fluctuations of velocity, v,
for a single electron. For a steady state the time average,

7=Lim (%/ip(t)dt),

of a function ¢ of the electron’s state is the same as the
ensemble average at any instant over all N electrons in
the body:

Y=If=(Y) .

(I stands for integration over the Brillouin zone and
summation over spin states and bands, f is the distribution
function normalized so that If/=1.) For fluctuations we
have (neglecting any interaction between the electrons)

SNy =Ny—9)*,

and similarly for each spectral component of the fluctua-
tion.* (Here, and below wherever it is material, ¢ is taken
to be real.) We are interested in the “noise” spectral

density
/s¢,(t)e_imtdt ) , (1)
[}

where ¢’ =y — . This has the property

G, v)=Li 2z
(¢, ®)=Lim R

§—>m

/ * Gdo—27(3—3)° . )

The relation which links G to the transport coefficients
of the system is the Weiner-Khinchin theorem?

o0
Gy, w) =4 Re/ eios(Y (Y (1+5))ds . (3)
0
The first factor, ¢'(¢), of the time average () in (3)
may be replaced by ¢ (t) (since, obviously, if it were
replaced by ¥ the time average would become zero). For
comparison with transport coefficients, it is convenient
to formulate the right-hand side of (3) as follows: Let
the expectation of ¢ after an interval s, for an electron
which started from a particular specified state at the

initial time, be (y; s). This expectation will be a function
of the initial state and of the steady fields (E and H)
acting, but not of the initial time. Of course,

(5 ®)y=() .
(It should not be overlooked that, from their definitions,

(; 5) is in general a function of electron state whereas (¢
is a constant.) We may now write (3) as

Gy, 0)=4Re < ¥ f e sy s>—<¢>)ds> L@
0

Now, the Ohmic mobility tensor for thermal equilibrium
has diagonal elements5:©

paz(o) = %<vzﬁw6*"‘”s<vx; S)dS> . (35)

Therefore, for this case, we have at once
4kT Repar(0) = eG (Vs 0) , (6)

which is essentially the Nyquist relation for the fluctua-
tion of the current. By combining (6) with the Einstein
relation,

kTp(0) =e§, (7

connecting M to the diffusion constant § (for the electron
flux due to a concentration gradient, with f constant), we
obtain

We now turn to the “hot electron” situation. Both G
and § are essentially differential magnitudes, referring
here to deviations from the steady state condition — for
the latter, which may be written as §’ to remind one of its
meaning, specifically to small deviations linearly propor-
tional to each other. On the other hand a distinction must
now be made between the absolute mobility B, given by
(vi=u==*E-+p, and the differential mobility p'=
+ (3/9E)u. By the methods and results of reference 6,
we have

§'= <v/ ((v;s)—u)ds> . 9)

By combining (4) with (9) we retrieve (8), in the form
G(vy,0) =40, (89

as an exact result. Accordingly, generalization of the
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Nyquist formula for low frequencies? and generalization
of the Einstein relation are equivalent questions. One
wishes to define a “noise temperature,” fy, such that
when it is substituted for T the generalization of (6)
holds. For any given direction, there are two natural
definitions:

%eG(vx’, 0)EkHNx/sz(O)Eka'NxM'm(o) (10)

Because of (8'), each “diffusion temperature,” defined in
the corresponding way to generalize (7), is equal to the
equivalent noise temperature. A natural definition of an
“energy temperature,” fg, for comparison is;

FkOp=(e), (11)

where ¢ is the electron energy (relative to a band edge).
It will be convenient, however, with the band structure
expressed by (13), to further define an energy tempera-
ture for each direction:

kOg. =m*(v.2), (12)

We shall examine two simple hot-electron situations be-
low, and find that corresponding noise and energy tem-
peratures are—as one might hope—of the same order of
magnitude, though not in general equal.

The first case is that considered in reference 6. The
scattering is by weak non-polar interaction with longitu-
dinal Debye modes, and

e=p?/2m* . (13)

(p is the pseudomomentum, m* a constant.) With in-
creasing applied field E, u becomes proportional to \VE
while the surfaces of constant f remain almost spherical:

f~f(e) =const.e-&*/const. | (14)

Let the z axis be parallel to E. From the spherical sym-
metry of the system (i.e., independently of the actual
distribution function) it follows that

,U«,xac=,U«zz . (15)
From the results of reference 6, we haves
, 2 e
SMIZ(O)ZT e <T>’ (16)
2 1
2 Loem - — (7). (17)

The ratio of the right-hand sides of (16) and (17) gives
a noise temperature according to (8') and (10). For
thermal equilibrium (E=0, f proportional to
exp(—e/kT)), we find §'x.=0g="T. In the “\/E range,”
where (14) holds, we get

HIN.’E — 1.
Ou @Gnagn

For the field direction we have,¢ instead of (17),

—1.144 . (18)

r 2 1 _ d(‘ros)
Zzz—Tm* <7<£ w e >>, (19)
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where W=eu?/ .. is the rate, per electron, of absorption
of power from the field and 7o(¢) is the function intro-
duced in Eq. (8) of reference 6. Since 7o(z) is posi-
tive and monotonic-increasing, we conclude that
G(v./,0)<G(v,/,0).

The second hot-electron situation to be considered has
been discussed in detail by Gunn (reference 3, pages 217-
219). As in the first example, we have spherical symmetry
(so (15) still holds), with the energy given by (13); but
the predominant scattering process is supposed to be that
in which an optical-mode phonon, with energy o, is
created. It is supposed that for almost all such scattering
events the electron’s initial energy is only slightly greater
than &, (and its final energy <<eo), and that in the inter-
val between them (while the electron’s energy is being re-
stored by acceleration) an acoustic-mode scattering is
improbable.? The distribution represented by f(p) is then
concentrated uniformly along a thin filament extending,
in the direction of (—)E (which we choose for the z
direction), from p=0 to p,=~/(2m*so) =po. The dura-
tion of a scattering-acceleration-scattering cycle is

To=po/€eE . (20)
To this first approximation,*

u=(0, 0, 3v0); paz=%70e/Mm*; '2c=0, (21)
where vo=po/m*.

The diffusion constants (and hence the low-frequency
noise powers) may be calculated in terms of the differ-
ential mean free path®

l’E/w((v; sy—ua)ds, (22)

since, by (9), §'=(vl'). We have1°

l'e=v:(po—p:) /eE,

and therefore

L ew=470(v7) . (23)

This result (23), which we may regard as a good approxi-
mation so long as (v:%)<{<vo?, gives

' n2=0g (24)

by (8'), (10) and (12). The high-frequency noise may
be calculated in the same way with a phase factor cos(ws)
in the integrand of (22). We find

G(’I)x', m) _ ( sinfotg 2
G (v, 0) ’

1t should be noted that this result is for the idealized limit
corresponding to (21). One would expect the higher
secondary maxima of the “diffraction pattern” (25) to be
the most sensitive to departures from this limit, being
quenched by the smearing out of the distribution of in-
tervals between scatterings.

(25)

370

*#See the remarks immediately following Eq. (28).




The analysis for the field direction is not so straight-
forward. From Eq. (7) of reference 6 we have, for the
idealized limit,

vodl ./ dv,+70(v,—$0) =0, 0<v,<vo ; |
and (26)
U.(v,=0)=I".(v:=70).

Therefore
1 /2, 1 /2. \2 1
le=1v%|—|—)]——{(—) ——], 27
w(r(E)-=E) %) @
and
(v.l':)=0. (28)

Thus the low-frequency noise appears only from a closer
approximation to the actual situation than is represented
by (21), in which the “smearing out” of the distribution

and of the electron paths is represented. It is known that
f(v.) drops to zero (around v.=0 and v.=1v,) over a
velocity range of order \/{(v.2), when the latter is <<{vo:
presumably (v.l'.) is then of order ro(v.2). Thatis, G (2., 0)
and G(v., 0) are of the same order of magnitude. One
would expect the high-frequency noise to have peaks at
frequencies which are integer multiples of 1/7, as in the
transverse case above. The peaks for the longitudinal case
presumably are much larger, however, since by (2)

/G(’vz',m)dw "o . \
w0 1)12 12

/ G(Vs, 0)do <

[

A meaningful calculation of the high-frequency noise
power, G(v.’, ), evidently can be made only by going
beyond the idealized extreme situation corresponding to
@21

Footnotes and references

1. For a general reference, see C. Kittel, Elementary Statisti-
cal Physics, Sections 27-30 (Wiley, New York 1958).

2. For a treatment of the thermal-equilibrium case parallel
with the analysis given here, see for example R. Kubo,
J. Phys. Soc. Japan 12, 570 (1957); M. Lax, Phys. Rev.
109, 1921 (1958).

3. For a general reference on “hot electrons,” see J. B. Gunn,
Progress in Semiconductors 2, 211 (Wiley, New York
1957).

4. Here we are assuming Boltzmann statistics to apply.
Otherwise, for thermal equilibrium the correct result is
obtained by replacing the sum-integral over the Fermi
function fo (which of course differs from f as defined in
the text in not having a normalizing constant) by that
over fo(1— fo). Because just the same substitution applies
to the expression for the Ohmic mobility, the same
Nyquist relation is valid for Fermi statistics as for Boltz-
mann statistics.

. P.J. Price, IBM Journal 2,200 (1958).

6. P. J. Price, Proceedings of the 1958 International Confer-
ence on Semiconductors, J. Phys. Chem. Solids 8, 136
(1959). The factor exp (iws) in the mobility formulas,
for a harmonically varying applied field, is not included
in this paper or in reference 5. The proof of this generali-
zation is elementary, however.

7. For « small compared with the frequencies, 1/, of elec-
tron relaxation collisions, G(v.’, ) may be equated to

(>

G (v, 0): the noise is “white” until the predominant col-
lision frequencies are reached.

8. Both these results depend on the assumption that the part
of f(p) even in p is spherically symmetrical (a function
of p only). In addition (17) depends, in deriving from
Eq. (8) of reference 6, on the related circumstance that
the expectation of change of ¢, due to the accelerating
field, between collisions is small compared to ¢. The
particular form of (16) given depends on our assumption
that the scattering time 7(¢) is proportional to 1/ Ve.

9. These assumptions could be simultaneously valid only in
a range of field E between finite upper and lower limits.

10. We are, of course, assuming here that the expectation of
v, after a scattering is zero.

11. One may make a formal calculation by adding a term
(iwrol’z) to the differential equation (26) and taking the
real part of the solution (which is equivalent to inserting
the phase factor cos(ws) in the integrand of (22)), and
proceeding as before. The result is that G(v./, ) =0 at
all frequencies. The procedure is objectionable for fre-
quencies near integral multiples of 1/7o, because the
“generalized mean free path” obtained in this way has
singularities at these points. The result does, however,
seem to indicate that for all other frequencies, as for
w=0, G is “zero” in the sense of being small compared
with 7ovo2.
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