Short Communication

1. Sugai*

Numerical Solution of Laplace’s Equation,

Given Cauchy Conditions+

Usually Laplace’s equation V=0 (or Poisson’s equa-
tion V2y=F) must be solved with conditions given all
around the boundary of the region in question. Yet in
such specific engineering problems as the design of elec-
tron guns, 2 solutions are sought in an open region with
the Cauchy boundary condition.** With Cauchy condi-
tions, Laplace’s equation is “unstable”® in that an expo-
nential growth of errors occurs during numerical analysis
by methods of finite differences. An expression that gives
the order of magnitude of the propagated errors could
therefore be of considerable value as a “rule of thumb”
where these methods are used, particularly for digital
computer programmers. This communication explains
how this “rule of thumb” has been obtained.

The boundary C is, in general, not a straight line, nor
can it be conformally mapped by analytic methods. More-
over, C may separate two different regions, respectively
source-free (Laplace’s equation) and source-present
(Poisson’s equation). When finite-difference methods are
used, there are usually many “stars” which lie partially in
each, no matter how fine the mesh is made. A typical five-
point star,*? ABCDE in Fig. 1, has points in both the
the Laplace region and the Poisson region (shaded area).
To start a solution over the Laplace region, the potential
¢ at mesh points of the first four diagonal lines is calcu-
lated by Taylor-series expansion of ¢ near the boundary
C. The potential  and its normal derivative ¢, are given
along C; partial derivatives of ¢ along C are obtained by
differentiating ¢, ¢, along C and substituting in V2y=0
and its derivatives along and across C.® Once ¢ is known
on several “starting” lines, the five-point star formula,

Yi=dpo—dr—¢a2—¢s,

can be used to calculate y at the rest of the mesh points to
within the error of this difference approximation to the
Laplacian operator. This technique of solving Laplace’s
equation by first determining several starting lines was
originally suggested by Hyman.?

*The work reported was done while the author was at the Microwave
Research Institute, Polytechnic Institute of Brooklyn, under the Senior
Research Fellowship, supported by Contract No. AF-18(600)-1505.

1The practical aspect of this paper has been published as a note, “Numeri-
cal Analysis for Design of Electron Guns with Curved Electron
‘Trajectories,”” Proceedings of the IRE, 47, 87-88 (January 1959).

**Added in proof: See F. John, “Notes on Improperly Posed Problems in
Partial Differential Equations,” Internal Report NN-117, Institute of
Mathematical Sciences, New York University (August, 1958).

POTENTIALS AT MESH POINTS

TO BE CALCULATED BY
‘ 5-POINT STAR FORMULA
| ,JEG oN of | }! ®USE POINTS 0-1-2-
LAPLACE'S| | 4Ust PCINT‘S 0-I-2-3"
A
EQUATION e \
[ 77 I* POTENITIALS AT MESH
,/// POINTS CALCULATED
T 7 7\ BY TAYLOR SERIES |—"".
4 13 C=Clxy)
7 7 71
N T’/ d
/7
4 Il e Pl
v A
0, 8Lk 5
7/
1 .// e
N 2 C
REGIQN OF POISSON'S EQUATION
x
-

Figure ] General boundary and five-point star.

Errors in the potentials at mesh points of the first four
diagonal lines are inevitable because the Taylor-series
expansions used to find them must be cut off after a finite
number of terms, and the incremental distance for Taylor
series (which is the mesh size) is small but never zero.
The error at any point can be defined as

e(x, y) =ya(x, ¥) —9(x,¥), ey

where ¢4 is based on all the terms of the Taylor series
and ¥ on a finite number of terms. The implicit assump-
tion of (1) is that when all the terms are used, the true
potentials at mesh points in the vicinity of the boundary
C can be obtained by Taylor-series expansions about
potentials on C. Since even with multiple-precision arith-
metic,1® existing digital computers will have a limiting
error larger than the sum of the terms neglected, this error
may be used for e(x, y).

The build-up of errors in an open region occurs as
follows: Let e1,; and e2,; be the known errors at mesh
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points of the first two lines; then accumulated errors at
other mesh points are given as follows:

£3,4=—€1,i—€2,i 1T 4€2,i—€2,i41 » (2)

where i>2;

£4,i=—¢£1,51—4e1,i 1,01 €2,0.2—8ez i1+
17e2,;—8ez, 141+ £2,i42 5 (3)
where i>3;
e5,i=—¢1,;2F8e1,;_1—17e1,i+8e1,1,1— €112 £2,i-3+
12e2,;.2—49¢€2,;.1+80e2,i:—49¢2,:,1+ 1262, 12— £2,i43 .(4)
where i>4.
In general,
k=+(m-3) F=+(m-2)
Em,i= E am, kb‘l,i+k+ 2 bm, kE2,i4k 5 (5)
k=—(m-3) k=—(m-2)

where i>m~—1, k is the running index of summation, and
@, ;= —bm_1, 1 and an,, i and by, i are integer coefficients.

Since errors on the second diagonal line of Fig. 1 are
larger than those on the first diagonal line, the second
summation dominates the magnitude of error in &,,,;. The
partial table of b,,, » is shown below.

Since it is impossible to represent by« as a function of
m and k, a graphical method was employed to investigate
the gross rate of increase of the terms in the three central
columns of the above table where the major coeflicients
occur. In Fig. 2 the ratio of each two successive center-
column terms has been plotted against m. As m becomes
larger than 10, the ratios asymptotically approach 5.7.
The graphical study also showed that the magnitude of
the terms in the two columns immediately adjacent to the
center column rapidly begin to approach the magnitude

Figure 2 Ratios of two successive terms of the cen-
ter column.
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of the center-column terms. Thus the empirical expression
[em,i] <]3e2,i(5.7) ™3| (6)

is obtained for the error bound.* This bound can be used
by programmers in choosing a mesh size and number of
figures carried. Equation (6) interrelates the mesh size
and number of steps m before the accumulated error
reaches this error bound.

*Kunz reports a similar exponential growth of error, considering only the
center column, 2t

m=2 1

m=3 —1 4 -1

m=4 1 —8 17 -8 1

m=5 —~1 12 —49 80 —49 12 —1

m=6 1 —16 97 —280 401 —280 97 —16 1

m=17 —1 20 —161 672 — 1569 2084 —1569 672 —161 20 -1
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