
I .  Sugai* 

Usually Laplace’s equation V2+=0 (or Poisson’s equa- 
tion V2+=F)  must  be solved with conditions given all 
around  the  boundary of the region in  question.  Yet  in 
such specific engineering problems  as the design of elec- 
tron guns,1>2 solutions are sought  in an open region with 
the  Cauchy  boundary condition.** With  Cauchy condi- 
tions, Laplace’s equation is “~ns t ab le”~  in that  an expo- 

, nential  growth of errors  occurs  during numerical analysis 
by methods of finite differences. An expression that gives 
the  order  of magnitude of  the propagated errors could 
therefore be of considerable  value  as  a  “rule of thumb” 
where these methods are used,  particularly for digital 
computer programmers. This communication explains 
how this “rule of thumb”  has been obtained. 

The  boundary C is, in  general, not a  straight line, nor 
can it be  conformally  mapped by analytic  methods.  More- 
over, C may separate two different regions, respectively 
source-free  (Laplace’s  equation)  and  source-present 
(Poisson’s equation). When finite-difference methods are 
used, there are usually many ‘‘stars’’ which lie partially in 
each, no  matter how fine the mesh is made.  A  typical five- 
point  tar,^-^ ABCDE in  Fig. 1, has points  in  both the 
the Laplace region and  the Poisson region (shaded  area). 
To start a  solution over  the  Laplace region, the potential 
I) at mesh points of the first four diagonal lines is calcu- 
lated by Taylor-series expansion of I) near  the  boundary 
C. The potential + and its normal derivative +n are given 
along C; partial derivatives of + along C are obtained by 
differentiating +, $n along C and substituting in V2+=0 
and its derivatives along and across C.8 Once $ is known 
on several  “starting” lines, the five-point star  formula, 

+ 4 = 4 $ 0 - + 1 - + 2 - + 3 ,  

can be used to calculate I) at the rest of the mesh points to 
within the  error of this difference approximation to the 
Laplacian operator.  This technique of solving Laplace’s 
equation by first determining  several  starting lines was 
originally suggested by Hyman.g 
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t T h e  practical  aspect  of this paper has been  published as a  note, “Numeri- 
cal  Analysis for Design  nf  Electron  Guns  with  Curvrd  Electron 
Trajectories,” Proceedings of the I R E ,  47, 87-88 (January  1959). 

**Added in  proof: See F. John,  “Notes  on  Improperly  Posed  Problems  in 
Partial  Differential  Equations,”  Internal  Report  NN-117,  Institute  of 
Mathematical  Sciences, New York University  (August,  1958). 
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POTENTIALS AT  MESH POINTS 
TO BE CALCULATED BY 
5-POINT STAR FORMULA 

Figure I General  boundary  and five-point star. 

Errors in the potentials at mesh  points of the first four 
diagonal lines are inevitable  because the Taylor-series 
expansions used to find them  must be cut off after a finite 
number of terms,  and  the incremental  distance for  Taylor 
series (which is the mesh  size) is small  but  never  zero. 
The  error at  any point  can be defined as 

&(X, Y )  =I) l l (x ,  Y )  -7(s Y )  9 (1) 

where +A is based on all the  terms of the  Taylor series 
and 5 on a finite number of terms. The implicit assump- 
tion of ( 1) is that when all the  terms  are used, the  true 
potentials at mesh  points in the vicinity of the  boundary 
C can be obtained  by  Taylor-series  expansions  about 
potentials on C. Since even with  multiple-precision  arith- 
metic,1° existing digital computers will have a  limiting 
error  larger  than  the  sum of the  terms neglected, this error 
may  be used for E (x, y )  . 

The build-up of errors in an  open region occurs as 
follows: Let e1,i and E Z , ~  be the known errors  at mesh 187 
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points of the first two lines; then  accumulated errors  at 
other mesh  points are given as follows: 

E 3 , i =  “E l,i-EZ,i-l+4EZ,i-EZ,i+l , ( 2 )  

where i> 2; 

~4,i=-~1,i-1-4~1,i+~1,i+l+~~,i-~-S~~,i-1$. 

17E~, i -8E~, i+ l+E~, i+~ 9 (3 1 
where i> 3; 

E5,i=-El,i-2+8E1,i-1-17El,i+8El,i+i-El,i+Z-EZ,i-3+ 

1 2 E ~ , i - ~ - 4 9 E ~ , i - l + 8 O E ~ , i - 4 9 E ~ , i + l + 1 2 E ~ , i + ~ - E ~ , i + 3  ,(4) 

where i 2  4. 
In general, 

7i=+(rn-3) k=+(m-2)  

k = - ( r n - 3 )  7c=- ( rn-2 )  

Em,i= 2 am,kEl,i+k+ bm,ke2,i+k 9 ( 5  1 

where i2m-  1, k is the  running index of summation,  and 
arn, k= - bm-l, k and a m ,  k and bm, k are integer coefficients. 

Since errors  on  the second  diagonal  line of Fig. 1 are 
larger than those on  the first diagonal line, the second 
summation dominates the magnitude of error in E ~ ,  i. The 
partial table of bm, k is shown below. 

Since it is impossible to  represent bm, k as a function of 
m and k ,  a  graphical method was employed to investigate 
the gross rate of increase of the terms  in the  three  central 
columns of the above table  where  the  major coefficients 
occur. In Fig. 2 the  ratio of each two successive center- 
column terms has been  plotted  against rn. As rn becomes 
larger than 10, the ratios  asymptotically approach 5.7. 
The graphical  study also showed that  the magnitude of 
the  terms  in the two columns  immediately  adjacent to  the 
center  column  rapidly begin to  approach  the  magnitude 

Figure 2 Ratios of two successive terms of the cen- 
ter column. 
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lrn - 
of the center-column  terms. Thus  the empirical expression 

l&m,il 5 13EZ,i(5-7)m31 (6) 
is obtained for the  error  bound.”  This  bound  can be  used 
by programmers in  choosing a mesh size and  number of 
figures carried. Equation (6)  interrelates the mesh size 
and  number of steps m before the accumulated error 
reaches  this error bound. 
*Kunz reports a similar  exponential  growth of error,  considering only the 

center column.” 

m=2 1 

1n=3 -1 4 - 1  

m = 4  1 -8  17 -8  1 

m=5 - 1  12 - 49 80 - 49 12 - 1  

m=6 1 - 16 97 - 280  40 1 - 280 97 - 16 1 

m=7  - 1  20 -161  672  -1569  2084  -1569 672  -161 20 - 1  
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