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Extension of Moore-Shannon  Model 
for Relay Circuits 

Abstract: The Moore-Shannon model for switching circuits i s  extended to show how the number of 
redundant relays needed to  improve  reliability depends on the logical function of the entire circuit. 
The reliabilities  of AND, OR, and EXCLUSIVE-OR relay circuits are studied as a  function of the number of 
relays, the network topology, and the distribution of inputs. For the case of intermittent failures, a  pro- 
cedure i s  developed for  calculating the reliability of combinational switching circuits, defined as the 
probability  that the circuit will function as  specified, averaged over all possible inputs, and subject to the 

idealizing assumptions of the Moore-Shannon model. The redundancies required  to achieve a specified 
increase in reliability,  although considerably smaller than  for  alternative methods, are still enormous. 
It i s  shown that  a  good way to improve an AND circuit, for example, i s  to use a series-parallel network 
in which the number of parallel lines varies with the logarithm of the number of basic AND circuits  con- 
nected in series to form each line. 

Introduction 

Combinational switching circuits which can be found  in the 
arithmetic and control sections of digital computers, tele- 
phone exchanges, and  other control centers, tend to be 
unreliable when the number of constituent switches be- 
comes very large. Thus, an average time of about 10 hours 
between breakdowns is perhaps  a  reasonable figure for a 
large digital computer. A theoretically interesting and prac- 
tically important question is to determine the possibility of 
substituting a given switching circuit by another switching 
circuit with more switches, but with the same  number of 
inputs, outputs,  and  the same behavior, and with as low a 
failure probability as desired. After  a precise formulation 
of this  problem  in terms of the Moore-Shannon-von Neu- 
mann model for relay circuits,1~2 it becomes a purely 
mathematical  problem of determining sufficient condi- 
tions on  the  structure of several proposed  nets to replace a 
given circuit such that  its probability of error, suitably 
defined, becomes arbitrarily small for a sufficiently large 
redundancy. 

One such network is a replication of the given circuit, 
with each switch replaced by a sufficiently large hammock 
network which acts like a single switch of any specified 
reliability. Moore and Shannon' have proved that this can 
be done with relays of arbitrarily  poor reliability by simply 
using enough of them in the right way. They also showed 

that in  a hammock network it takes at  least [(log b)/(log u)l2 
relays of error probability a, where a<+, for  the network 
to function as a relay with error probability 6, where 6<<a. 
For example, suppose that  an AND circuit is to be designed 
which will fail at most once in half-a-million cases, on  the 
average. This design would consist of two relay contacts  in 
series connection, in which either relay contact would fail 
at most once in a million cases, on the average, with the 
conservative assumption that  the circuit fails when a single 
relay fails. If the only relays which are available, however, 
have failure rates of 0.005, then we require at least nine 
such relays, connected in  a 3 X 3 hammock network with a 
common coil, to replace each of the two relays in series. 
Thus, 18 relays of the above type are required to produce 
such a circuit. If, however, we do  not assume that  the 
circuit necessarily fails when a single relay fails, then we 
might be able  to produce such a circuit with fewer than 18 
relays of the same type. 

In this paper, the results of Moore-Shannon are extended 
by showing that knowledge of the intended logical function 
of the entire circuit leads to economies in the redundant 
use of relays to improve reliability. In doing this, we have 
defined the reliability of a circuit as the  probability that  it 
functions  as specified, averaged over all possible inputs. 
Both analytical and computational  methods for calculating 
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this  quantity for a large class of circuits are described. 
Using these methods, we examine several redundant cir- 
cuits and estimate the redundancies required to achieve a 
desired reliability for  the case of intermittent failures. The 
significant findings are  that increasing the redundancy will 
not give arbitrarily high reliability, except under special 
conditions on the  proportions of the network, and  that 
these conditions have a very simple and interesting form. 

The model 

The starting  point for  our analysis is the Moore-Shannon 
model for switching circuits.’ It should be remembered 
that we are dealing, not with a description of switches of 
any particular physical nature, but with a model of 
switching circuits involving many idealizations from actual 
devices. Although electromechanical relays are probably 
the switches which this model describes best, for some 
purposes, cryotrons, magnetic cores, and  other switches 
are not grossly misrepresented by the  assumptions; but 
this is irrelevant for  the exploration of the formal model. 
To introduce the notation and emphasize the limitations to 
which all the following results are subject, it will be helpful 
to summarize the main  assumptions of this model in  its 
extension to  our problem. 

(1) A switch (any operable bistable device)  is regarded 
as consisting of two parts, the “contact” and the “coil.”* 
The contact is either  open or closed, and  the coil either is 
or is not energized. All four combinations of coil and con- 
tact  states are considered possible. 

(2)  I f  more than  one contact is served by the same coil, 
it is assumed that all coils are in  the  same  state. In  an OR 

circuit, for instance, all the resistors, capacitors, and in- 
ductors  should  be such as  to cause  a  current  in  either 
branch to be above the threshold to be called a “1” at  the 
output. These circuit parameters are assumed to remain 
consistently at fixed values. 

(3) Only failures at  the contacts are taken into account. 
This excludes many common errors in the coils, such as 
breaking of lines, loosening of solder joints, short circuits 
of the coil and contact,  et cetera. 
(4) The mechanism which causes a relay to fail at  any 

time is independent of the relay’s prior history and past 
failures and use. That is, wear, fatigue, and catastrophic 
failure (e.g., a relay permanently welded shut) are excluded; 
only intermittent failures are considered. Thus, the behavior 
of a switch is supposed to be completely described by the 
following two conditional probabilities: 

a=P (contact is closedlcoil is energized) 
c=P (contact is closedlcoil is not energized) (1) 

(5) The final assumption on which our model is built 
takes  all the relays to be statistically independent. This is 
perhaps the most severe idealization in this context, since 
the cause  for  failure of one switch (e.g., dirt, moisture, 
temperature) may also  cause at least the neighboring relays 
to fail at  about the  same time. For convenience of notation 
we shall also make  the (nonessential) assumption that all 
relays are characterized by the same parameters a and c. 

Unless stated otherwise, we shall regard all the relays 
studied here as ideally normally  open, which means that 
a> c. This means that  for a perfect relay, a= 1 and c=O. 

Basic AND and OR circuits 

In  order  to introduce  our definition of circuit reliability 
with mathematical precision, it will be useful to  start with 
AND circuits and OR circuits. Furthermore,  in view  of the 
fact that a circuit with any logical function  can be built in 
terms of OR circuits, AND circuits, and normally closed 
relays exclusively, the analysis of these special cases is of 
central  importance. 

A simple way to construct an n-way AND circuit-that  is, 
a circuit which conducts  current if and only if all n input 
coils are energized-is to connect n normally open relays 
in series. To construct an OR circuit-which  is open if and 
only if all n input coils are unenergized-is to construct  the 
dual of the AND circuit, or n normally open relays connected 
in parallel. 

We shall suppose that  the n states of the n input coils are 
statistically independent, and p the probability that a given 
input coil is energized. There are obviously 2% possible 

input configurations, with ( $pk( 1 -P>”-~ being the 

probability of all input configurations in which exactly 
k of the n coils are energized. An AND circuit should be 
open for all input configurations in which k#n. The con- 
ditional  probability that n independent relays in series form 
an open circuit, given one of the above input distributions 
with k#n,  is simply 1 -akcnPk, because abcn-k is the corre- 
sponding probability of a closed circuit. When k =n,  we  seek 
the conditional  probability that n relays in series form  a 
closed circuit, or  that all then independent relays are closed, 
given that all coils are energized. This is simply an. Each of 

the n terms so generated, when multipled by k 1 -p)n--k, 
( ; ) p  ( 

k=O, l , - . , n  gives the  joint probability of an  input con- 
figuration with n coils energized and a  correct response from 
the circuit as  a  conjunction of n variables. To  obtain the 
probability that  the circuit functions correctly, we sum over 
all inputs, and  obtain: 

*’l‘he abstract  terms  “contact”  and “coil” refer to  the storage  and  gating 
170 functions of any  switching  device. 
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k=O k=4 

+p"a" -p"( 1 - U"L) 

= 1 -(pa+qc)""p"(l"2a") , 
where q = I "p . (2) 

We shall use R as a measure of reliability of the circuit as 
an AND circuit. It is clearly a  function of a, c, p and n. This 
measure treats all errors  as equally important. This seem- 
ingly plausible assumption leads to  the possibly objection- 
able result that, when n is  very large, R is  very close to 1 
(in fact, if p f  1 ,  then Fit R =  I), implying that  an open cir- 
cuit or  no circuit at all would function  almost as reliably as 
an AND circuit of n relays in series. This follows directly 
from  the nature of an AND circuit and  the fact that  the  input 
configuration with all coils energized is a rare event when n is 
large. It is clear that if this  input is very likely, in particular 
ifp > 1 - (l/n), then an open  circuit is no longer comparable 
to n relays in series. Also, if the  cost of circuit failure when 
all coils are energized is very high, this measure of reliability 
is misleading. If the costs of various errors could be esti- 
mated, then the expected loss of using the circuit would be 
a more suitable measure of unreliability. For example, if it 
were known that a  failure of n relays in series to produce 
an open circuit, when not all coils are energized, is u, and 
the cost of failure to close when all coils are energized is o, 
then the expected loss is 

k=O 

=u[(pu+qc)""p"a"]+vp"(l -an) . 
Note  that if p <  1, a#c,  this converges to 0 for any u, v, a 
and e, as n-+ rn . In  the absence of realistic estimates for 
such costs, the definition of reliability exemplified by Eq. 
( 2 )  will be  accepted, and explored for  its  mathematical 
properties. Finally, it should be emphasized that  our 
measure of reliability concerns only the restricted case of 
an intermittent circuit failure in a single operation. 

From  the fact that  the OR and AND circuits are completely 
dual, we obtain an  important relation between R(a,c,n,p), 
the reliability of n relays in series as an AND circuit, and 
R(a,c,n,p), the reliability of n relays in parallel as  an OR 

circuit. 

Theorem 1. R'(a,c,n,p)=R(l -c,l -a,n,q) . 
Pro0 f: 

R'(a,c,n,p) = qn( 1 - e)" +E( : ) p % T x  
k=l 

The kth term  in the sum is the joint probability that k of 
the coils are energized and  that  not all of the n relays in 
parallel are open. After some simple algebraic steps, it  is 
readily seen that 

R'(a,c,n,p)= 1 - [ p ( l  -a)+q(l -c)]""q"[l"2(1 -e)"] . (3) 

If we substitute 1 -e,  1 --a andp for a, c and q, respectively, 
wherever the  latter  appear in Eq. (3), we obtain Eq. (2),  
which proves the  theorem. 

To obtain some feeling for how R and R' vary as  func- 
tions of a and c, consider the families of surfaces shown 
in Fig. 2 for p = +. 

The point (a,c) = (1,O) is an invariant on both surfaces. 
The intersection of both surfaces with the plane a = 1 - c is 
the curve: R =  1 -2P+l(1 -aTL). Both surfaces approach the 
uppermost plane of the unit cube, R =  1, except for  one 
point, where R=O as n-.m ; for R, this discontinuity 
occurs at a = c = 1 ; for R', it occurs at n = c = O .  

To get some  understanding how R and R' vary with p 
and e, it will be convenient to let a= 1 --c (an  assumption 
which will be made henceforth without explicit reiteration). 
The results are shown graphically in Fig. 3. 

Ifp=O, then R = l - c n  and R ' = ( l - c ) " .   I f p = l ,  then 
R=a"=(l -e)" and R'= 1 -(I -a).= 1 -e". If c=p=O or 
if a = p  = 1 ,  we have perfect reliability, R = R' = 1. 

Improved series AND circuits 

As mentioned in the Introduction, we can make an AND 

circuit as reliable as we wish  by connecting n "relays" in 
series, but making each "relay"  sufficiently reliable by sub- 
stituting  for it a network of less reliable relays according to 
the Moore-Shannon technique. In particular, we consider 
the network shown in Fig. 1 ; suppose that each of its four 
relays are replaced by a network just like that in Fig. 1 ; 
each of the 16 relays in the resulting network is also 
replaced by the same circuit, et cetera, until a network like 
Fig. 1 has been substituted for a single initial relay rn times. 
The coils of the 4" contacts  in this final circuit are con- 
nected in series, so that  the entire circuit acts like a single 

Figure I Hammock  network 12 X 2) to replace a 
single relay. 
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relay. Let a, be the  probability that this "nl-fold com- 
posed" network is closed when the coil is energized, and 
c, the  probability that it is closed when the coil is not 
energized. We interpret m=O to represent a single, basic 
relay, with ao= a, co= c; m = 1 represents the network of 
Fig. 1 in place of the single, basic relay, et cetera. It is 
easily shown' that 

U,+l =a,,,2(2 -amy 

and 

cm+1= c,y2 - c,)2 . (4) 

We now consider the reliability of n such m-fold composed 
relays in series as  an AND circuit  in the manner described 
previously. To simplify the algebra, we shall take p = + and 

a= 1 "c throughout  this section. Then, according to Eq. (2)  

R ,  = 1 - ~-"[(u,+c,). --urnn + 11 3 1 - Qm . (5 )  

We wish to determine the smallest integral value of m such 
that  the probability of error, Qr,,, is less than or equal to 
any specified positive number E for any given n and c. We 
shall  then show that this m is smaller than  the correspond- 
ing redundancy when the circuit logic is not taken into 
account. We shall  have occasion to use the fact  that  for 
high-quality, normally  open relays, c is bounded by a num- 
ber d, with d A  IOp4 being a reasonable figure. 

Because of the difficulty of obtaining an explicit formula 
for Qm in terms of m ,  n and c and of solving an equation 
like Qm = E for m, we shall,  instead, look for two numbers, 
m 1  and mz with the following properties: 

Figure 2a Circuit reliability as a function of element  reliabilities. Conjunction 

t R" 
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(1) There is no ~n less than m l ,  such that Q,<c  
( 2 )  The value of rn such that ern_<€, need not exceed mr. 

i f  m = mo represents a solution to the equation Qm = 6, then 
m l _ < m o l m ? ,  and  the smaller t n ? - m , ,  the better the bounds. 

In  the Appendix, it is demonstrated that Qm is a  mono- 
tonically decreasing function of m ,  so that m2ml implies 
that ern_<€. To obtain ml, which  is a lower bound on m, 
we seek a function, Qm', which is a lower bound on Qm and 
let m=ml be the solution of Qm'= e. 

Theorem 2. Let 

nx(cosh n?x'-"sinh n x ) - 2 ( 2 ~ ) ~ " - n y  , (6) 
n 1 

where 

x=[(2-d?)c]'"/(2-d)* 

and 

~ = [ ( 2 - d ) ~ ~ ] ~ ' " / ( 2 - d ) *  . 

If c<d<+,  then Qm'<Qm  for all m. 

The  proof of this result contains  a  number of interesting 
mathematical techniques which may prove useful in  a 
similar analysis. Since it is lengthy and represents a digres- 
sion from  the main theme of this section, it will be found 
in  the Appendix. 

To obtain m 2 ,  which is an upper  bound on rn, we seek a 
function Qm" which bounds Qm from above, and let m=rnz 
be the solution of em"=€. This means that there is an m 
not exceeding m2 such that Qrnie.  

Figure 2b Circuit reliability a s  a function of element  reliabilities. Disjunction 

C - 
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Theorem 3. Let 

em'' = 2"?2[(2~)~" -z(cosh n2z - sinh nz)] (7) 

where 

z=[(2-d"c]?"/(2-d2) - ;t(4c)?" . 
Then Qml'> Qn for all m. 

Proof:  See Appendix. 

Example: Suppose that we wanted to keep the proba- 
bility  of error below 6 = 2-", and we wanted a 32-way AND 

circuit, using relays with error probabilities of c=2-l0. If 
we take m =2, then, according to Theorems 2 and 3, a 
circuit with a total of 512 relays has a probability of error 

between 2P3  and 2-". To achieve e=2-62 without taking 
the circuit logic into account, we let r be the reliability of 
one of the n "m-fold composed relays" in series and set 
1 - E  =r". Hence, rA 1 - cjn. According to Ref. 1, m must 
be at least { [Ig (~/n)]/lg cj2, or (67/10)2G45 (lg  will denote 
log2). Thus, at least 32x45 = 1440 relays are required, which 
is almost triple the number required when the circuit logic 
is taken into consideration. 

Other improved AND circuits 

We shall now consider a number of ways of improving AND 

circuits by looking at  the circuit as a whole, rather  than 
optimizing parts of the circuit which  will act as good relays 
in series. It should be kept in mind that many of the tech- 

Figure 3a Circuit reliability as a function of input probability. Conjunction 

t R n  
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niques for Improving the reliability will apply to OR circuits 
with the  appropriate dualization. 

(1) The simplest redundant network which  will function as 
an AND circuit consists of rn basic AND circuits (n relays in 
series) connected in parallel. This is somewhat analogous to 
the "system-standby'' method of Moskowitz and McLean3, 
where we swltch to  the redundant elements when required. 

It is not obvious a priori whether there is an optimal m. 
It is obvious that  the reliability cannot be made  arbitrarily 
high. In fact, as m+ m , we shall see that  the reliability of 
this circuit converges to 0. It  is: 

n -1 

&W =E (;)pk4"-"[1 -akc"-k]m+pn[l-(l -a9q (8) 

k-0 

=$ (Y)lpa"+(l -p)c"]"(-l)k+p"[1-2(1 -a")'"] . 
k=O 

While the above (nonlinear) sum cannot be expressed in 
closed form, the following bounds on &,(IJ) are helpful in 
studying the  variation of RV,(?') with m. 

Theorem4. I f p > c , a n d a = l - c a n d c < l / l O ,  then 

Unfortunately, this lower bound decreases with m, and 

Figure 3b Circuit reliability as a function of input probability. Disjunction 
!Rh 
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We inquire  again about special conditions  under which 
error  control is possible. While the circuit of Theorem 6 
required enormous redundancies, in the form of Awemn, 
we shall see that this is a far better circuit in this regard. 
This is stated more precisely in the following basic result: 

Theorem 7. If c< l/e and m'= B In m, where B is a 
constant, then l&R,,,(') = 1 .  

Proof: See Appendix. 

(4) We  shall now examine some special circuits which act 
as two-way AND circuits, and show that  the lattice network 
of Fig. 4 is a very good network. Consider first the 6-relay 
circuit of Fig. 5a. Its reliability is 

R=${ 1 -[2~'(1 -c)'+0(c3)]) +pz{ 1 - [~(~-u)~u~+O(C~)]}  

+2pq( 1 -[2c(l -c)2a3+3c2(1 +a3 

+4c(l -c)2a2(1 -a)+0(c3)1) , 

where [O(xk)/xk]-l as x+O. If c =  1 -a=2-l0 and p =f, 
then R=+[4 - 4~2-10+19~2-20+0(2-30)]. Observe that this 
circuit will prevent single errors when both coils are ener- 
gized or unenergized but  not i f  one coil is energized while 
the  other is not.  The simplest circuit of this type which is 
single-error preventing for every input configuration is 
shown  in Fig. 5b. Its reliability is 

R=q2[l -3c4(1 -~)~-0(~~)]+2pq[l  -3c2(1 -c)~u'-O(C~)] 

+p*[l- 15(1 -a)W(l -c)4-O(c3)]~~[4-21c2+O(c3)] ~ 

I 
i for  the above  numerical values. This is, of course, much 

better  than the network of Fig. 5a, but requires four relays 
more. 

By comparison,  consider two straightforward series- 
parallel nets illustrated by Figs. 6a  and 6b. The second 
circuit is a special lattice  network, as in Fig. 4, with m = 2 .  
The reliabilities corresponding to these circuits, evaluated 
with the  above  numbers, are: 177 

~ 
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Ra=q2[1 -0(c4)]+2pq[l  -4c2(1 -C)~U~+O(C~)] 

+p2[1 - ~ C ~ ( ~ - C ) ~ ~ ~ + O ( C ~ ) ] ~ $ [ ~ - ~ ~ C ~ + O ( C ~ ) ]  

Rb=q2[1  -o(C4)]+2pq[l -4c2(l -C)'a4-O(C3)] 

+p2[1 -4c2(1 - ~ ) ~ ~ ~ + 0 ( ~ ~ ) ] ~ $ [ 4 - 1 2 ~ ~ + 0 ( ~ ~ ) ]  . 
The lattice network is clearly the better. A comparison of 
Fig. 5a with 6a shows an increase in reliability by about 
12c2/4 at  the expense of only two additional relays. In 
contrast, a change from Fig. 6a to Fig. 5b, gives an increase 
in reliability of only 5c2/4, also at the expense of two 
additional relays. 

A final special case which might be expected to work as 
an improved AND circuit is based on putting a basic AND 

circuit in parallel with a circuit which is equivalent to it 
by DeMorgan's  theorem. That is, this circuit behaves 
according to the logical function (x*y)+(X+y3 =z,  where x 
and y are Boolean variables (0 or I), denotes Boolean 
multiplication (AND) and + denotes Boolean addition 
(OR); the two terms  in parentheses denote the two parallel 
lines as shown  in Fig. 7 .  

Assuming the relay labelled L to be perfect, the reliability 
of this circuit is given by: 

~ 

R=l-[pa+qc]"-[[p(l--Zi)+q(l--)]" 

+ b 4 l  -$+(I -PMl "C)l"+(W)" , 
where ii and C denote the values of a and c for  the normally 
closed relays. If u = c and C = a = 1 - c, then 

R =  1 -2[p(l -~)+q~]"+[p(l   -~)~+q~~]"+[p(l  -c)P . 
It  is possible to show that this circuit is more reliable than 
a plain two-relay series circuit provided that n s 3  and 
c>2p/(7p- 1). While this result is due,  in part,  to  the 
looseness of the bounds on n and c, which are difficult to 
improve because of the nonlinearity of the problem, it 
does  point to  the conclusion that this is not a good way  of 
making an AND circuit except in very special cases (e.g., 
p >  1/5, very bad relays except for L). 

(5) Another possibility for improving the reliability of an 
AND circuit consists of "composing" a series-parallel net- 
work, like that of Fig. 7 ,  m times, with the basic elements 
of the circuit being the simplest series AND circuits instead 
of the relays themselves. Let r be the probability that  an 
AND circuit is closed. Then, the probability that  the entire 
circuit is closed is 

h(r) = 2 A&(l -r)N"lc , 

where A k  is the number of  ways in which the entire  net- 
work of N relays can be closed when exactly k relays are 
closed and hl-k are open.  Consider the network of Fig. 7 ,  
with an n-variable series AND circuit replacing each relay 
in that figure, and suppose the  input is 1  1 .. . 1 1.  Let r = an. 
If the new circuit is better than  the plain series circuit, 
then h(a") must exceed an, and h[h[h...[h(a")]] . ] - e  =h(m)(an) 
must converge to 1 as m-+m very rapidly. When  the input 
is not all l's, then the probability that  the network is 
closed is at most an-lc. To function correctly as  an AND 

circuit, it should, however, be open, and we would expect 
that h(an-lc) <an--lc, withflt~~h(")(u""c)=O. Since h(r) is a 
monotonically increasing function of r ,  h ( r ) s  h(a""c) for 
all r<an"c. Hence, we seek the smallest m such that 
h(m)(an) > 1 -E and h(m)(a.-lc) < E for  an arbitrary, positive 
E. With the circuit of Fig. 7 ,  it is, of course, well known 
that such an rn exists only if a">0.38 and an"c<0.38. 
Generally, improvement is possible provided that a#c.  It 
is easily seen, however, that this is not a very economical 
way  of increasing redundancy because the number of re- 
quired relays increases as n4m, while h(m)(l - 6 )  = 1 -+(26)2m. 
That is, to achieve E = 2 F ,  with a" = (1  -2-10)32A 1-2-5 
= 1-6,  m should  be 4 and 213 relays would be  required. 
Of course, 

N 

k-0 

h( ( r )<T(  - 1 4,)lGi$(4a"-'c)16~.(4.2-10)'6~22-'26 . 
Nevertheless, this technique of improving reliability, which 
is readily adapted  to circuits other  than AND circuits, is 
very useful when it is desired to control the probability of 
error  for each  input. 

Figure 7 Redundant AND circuit based on De Morgan's theorem. 

" - 
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Improved  OR, EXCLUSIVE-OR, and general circuits 

Recalling the duality between OR and AND circuits and  the results of the previous section, we might expect that  the dual 
of the lattice  network shown in Fig. 4 would be a good way of building an OR circuit. This circuit is shown in Fig. 8. 
Its reliability is: 

k=l 

Since we are dealing with normally open relays, we shall assume that a>r. It follows that ( l - -a)m(l-c)"(~-l)>(l  -a)"", 
and  that (1 - a ) m k ( l - ~ ) m ( n - - k ) ~ ( l  - ~ ) ~ ( l  -c )" (~-~)  for k =  l , . .  ,n. Therefore, 

k=l 

w e  now seek a relation between m' and m so that,  for a sufficiently large m, the reliability can be made as close to 1 as 
desired. 

Theorem 8. If m'= Aemn4\/- where A is a constant, and nJZ < 1,  then liliR,'(l) = 1. 

proof: We continue the computation of the expression for Rm'(l) which was started above by substituting for m', and 
setting c = 1 -a. 

From  the condition n&< 1 ,  and  the fact that n 2 2 ,  it follows that c<+,  so that In r <  - 1.39. Therefore, nd/c -c (n -  1) 
+In c<nv'ic+ln c<l -1.39<0. Hence, as m+m, the argument of the first exp { ) decreases to 0, and the first term of 
Eq. (9) converges to 1 -q". Next, observe that 4 Z  -(c/l -c) > O  because ( 1  -c)* > c as a result of c <+. This causes the 
argument of the second exp { ) in Eq. (9) to diverge as nz+a,, so that  the second  term of Eq. (9) converges to qn{ 1-0). 
Hence, R,'("+l -qn+qn= 1 .  

The leading term in the expression for the  probability of error is 

Q = q n  exp [ -Aemn(*/Fc)] q" exp [ -Aemnq . 
The  total number of relays is nmAemn4< Hence A and m should be chosen so that  the first expression is as small as desired 

I 

Figure 8 lattice network as an OR circuif. 
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(say E )  and  the second one as small as possible. The number of relays to obtain  a given E can  be  approximated by " m n  In 
( c / q n ) ;  rn must be much larger than In A for Q to be a good  approximation to  the  error probability. 

Example: Let n=2,  q=+,  c=2-l0 and ~ s e - ~ l .  If  we take A=7.4 and rn=16, we shall  require  a total of 2X16X7.4 
Xe'G.2.2-5=32X55=1760 relays. The reliability is 

$ exp { -7.4e-16XF.93j ++{ 1 -exp [-7.4e'G.2.2-5] j &$[I -7.4e-l1*]+$[1  -e+O]& 1 -+e-20 . 
The techniques of improving AND circuits and OR circuits which have been described can now be used to design reliable 

circuits with arbitrarily specified logic, using the  fact  that any Boolean expression can  be written as a sum of "maxterms" 
or product of "minterms" (see Ref. 3). That is, any  circuit can be built with only AND and OR circuits and we know how 
to design these for reliable operation. As an example of what  can  be  done, let us design an EXCLUSIVE-OR circuit which 
will fail at  most once in 257 operations on  the average. Assume that c =  1 "a =2-1°, and  for normally closed relays 
a= 1 -c=2-Io. Let p =f. The basic circuit has two  inputs, coils, and  the circuit should be closed if and only if one of 
the two input coils is energized and  the  other nonenergized. It is obvious how such  a  circuit can be built with two normally 
open and two normally closed relays. Basically, this circuit consists of two series AND circuits connected in parallel as  an 
OR circuit. The circuit shown in Fig. 9 is an improved EXCLUSIVE-OR circuit. The reliability for this circuit is: 

R=(l-p)2{ 1 -[1-(1 -(l-C)c)"]")2+p2{ 1-[l-<1  -c(l -c))m]m)2 

+2p(l  -p)( 1 -[1-<1-(1 -C)*m)m] [I -<1-(1 -C*)m)m]) 

=[p2+(1 -p)?]( 1 -2[1 -<l-C(l -C))"]"+[l-<l -c(l -c))m]f)mj 

&+{ ~~2rnm2-10m+rn2m2-20m+rnm2-20m~rn~-9m+mm~-10m(~ --2-9m) 

1 -+[mm2-10m I .  
The value of rn such that 3rnm2-lom = F 7  is rn = 8. Thus,  a total of 8 X8 X 4  =256 relays are required for this circuit. 

Figure 9 Reliable EXCLUSIVE-OR circuit. 
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Figure 10 labeling of a network. 

We shall  conclude by showing how a digital computer 
may be used in the analysis, and possibly the synthesis, of 
reliable circuits with an arbitrarily specified logic. We 
start by assuming that  an experienced circuit designer 
presents us with a  large circuit which should  be very 
reliable, and wishes to have its reliability computed by 
means of a  computer  program.  Suppose that  he presents 
this  circuit by means of two incidence matrices, D and E, 
and tells us the relay parameters u and c as well as the  input 
distribution  parameter p .  Assuming that all relays operate 
perfectly, the behavior of the circuit is  given  by a sequence 
of  2" bits, Z~...Z~"-~, which  specify whether the circuit is 
open (0) or closed (1) for  the 2" input configurations, which 
are enumerated  in the  order xl...x,=OO...OO; OO.-OI, 
00...10, 00...11; ...; 1 1 . . . 1 1  . Here x i = l  denotes that  the ith 
input line is energized and xi=O that  it is not. The nodes, 
contacts and  input lines of the circuit are arbitrarily 
numbered l , . . . ,k,. . . ,N; l , . . . , j , - . ,m; and I,...,i,...,n respec- 
tively. The matrix element of Enx,,e,;, is 1 if input line i is 
coupled with contactj,  and 0 if it  is not;  the matrix element 
of D,x.v,d+i, is 1 if contact j is connected to node k and 0 
if not.  This is best understood by examining an example, 
the circuit shown  in Fig. IO, with N = 4  nodes (Roman 
numerals), n = 3 input lines (circled numbers) and m = 4  
contacts (arabic numerals). 

Now let r, taking the values 0,1,...,2"-1, denote  the rth 
input configuration in the order of enumeration specified 
above. Let s, also taking values 0,1,-.,2m- 1 ,  denote  the sth 
contact configuration, also lexicographically enumerated. 
Thus, s = O  means that all contacts are open, and s = 2" - 1 
means that all m contacts  are closed. The first step in com- 
puting the circuit reliability, R(D, E),  is to compute prs,  
the conditional  probability of contact configuration s, 
given input configuration r. Let i, be the value of i for 
which eii = 1. Then, using the assumption that  the contacts 
are independent, we have 

prs  = P[s = (s,,.-,.sJr = (r,,...,r,J] = n P(s;/r,J , 

where the ri, si are 0 or 1.  Lettingp, denote  the probability 
of the rth input configuration, for example, po=(l - p ) n ,  

m 

,=1 

I 
11 
TI1 
IV 

Node Number 

Contact 
Number 

1 2 3 4  
I" 

1 1 0 0  
1 0 1 1  
0 1 0 1  

-1 

10  0 1 1 1  
L 

0 

0 
Input Line Number @ 

= D  

_I 

Contuci 
Number 

1 2 3 4  

0 0 0 1  
L _I 

we see that qrs=p,prs represents the joint  probability of 
r and s. 

We must now enumerate all the contact configurations 
r which, for any given s, give the correct circuit response. 
Thus, in a 2-relay AND circuit with both coils energized, 
there are three  contact configurations which close the 
circuit. To this  end, let w, be 1 if contact configuration s 
closes the circuit, and 0 if it does  not. Now observe that 
the circuit operates correctly only if the variables zr and 
ws are  both 1 or  both 0 for every r and s. From this, it is 
easy to see that the reliability can be expressed as  in 
Theorem 9. 

Theorem 9. 

A possible method for programming the exceedingly long 
computation  according to  the above  formula consists of 
the following steps. 181 
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1. Compute the matrix (qrs), which may require as many 
as (m+ 1)2"+" multiplications. 

2. To  obtain  the vector w, having ws as  the sth component, 
proceed as follows: Suppose, for example, that .s=2"- 1 
(all contacts closed). Starting with the first 1 of row 1 of D, 
scan down the column in which that 1 was found, and 
locate the  other 1 in that column.  Repeat this, using the 
row in which the  latter 1 was located,  instead of using the 
first row. Continue until either the last row is reached, 
which means that ws = 1, or until an entry is revisited and 
we begin to cycle through the matrix  in  a  nonterminating 
loop. In  the  latter case, repeat the entire  procedure by 
starting with the second  instead of the first 1 of the first 
row, until  either the last  row is reached, or all possible 
paths through the matrix have been exhausted without 
reaching the last row, which means that w,=O. To test 
configurations other  than s =2"- 1, say the configuration 
s=(010111.-1), simply replace columns 1 and 3 of D by 
all O s  and repeat the above  program.  Determination of 
the vector w may take as many as roughly 2mhN searches 
through D, where h is the maximum number of contacts 
incident on any node; each search requires at most N 2  
decisions (whether an entry of D is 0 or 1). 

3. Assuming that the vector z, with zr as the rth component 
is given, the calculation of R itself requires 2m+n+2 multi- 
plications. Assuming, for purposes of illustration, that a 
multiplication (including fetching, storing and adding) 
takes about 100 microseconds, and  that a decision takes 
about 10 microseconds, and letting n = 8, m = 24, N =  5 and 
h = 4 ,  the calculation would take us no more  than 3000 
hours. 

It is possible to devise clever programs which do  not 
require as many as hN passes, on the average. It is faster to 
determine the presence of a closed path through  a  contact 
configuration than  to determine that  the circuit is open. 
The search is fastest for configurations where very  few or 
where very many contacts are closed. Finally, the  same 
paths  through the circuit will be searched for several 
different configurations, and this would be avoided by the 
discovery of good algorithms for finding the shortest  paths 
between two given points of a class of graphs. Combina- 
torial  problems of this type present  a challenge to  pro- 
grammers and analysts. 

The synthesis problem, given a, c, n, p and z, to find 
N ,  m and matrices D and E such that R(D,E) = 1 - c, is 
even more difficult than  the problem discussed above.  One 
possibility is to  start with some judiciously chosen matrices 
D and E, vary some of their  entries at  random, observe 
the effect of this change on R(D,E), and repeat to accumu- 
late information about how R varies as  a function of D, E. 
Further changes in D and E will be increasingly based on 
such information. These steps would be much like those 
that clever engineers have taken in the synthesis of switch- 

182 ing circuits before systematic methods were developed. 

Conclusion 

We have shown how the redundancies which are inherent 
in  the logic of switching circuit behavior can be used to 
advantage  for the control of errors. As a measure of 
reliability, we used the probability that a given circuit 
functions as specified, averaged over all possible inputs. 
We investigated a  number of redundant circuits which act 
reliably as AND, OR, and EXCLUSIVE-OR, and obtained for- 
mulas for bounds on the reliability. From these, we derived 
sufficient conditions on the topology of the circuits and its 
proportions for  the possibility of error control.  This means 
that we can make  the reliability as close to 1 as we please 
by  sufficiently increasing the redundancy of a circuit 
satisfying these conditions. Various circuits can  be com- 
pared  according to  the redundancy required to achieve a 
specified reliability. 

The first network which we studied consisted of n "m-fold 
iterated 2 x 2  hammock networks" connected in series, 
designed to  act like an n-way AND circuit. By choosing m 
large enough, the reliability of this circuit can be  made as 
large as desired. For example, with n = 32, a value of m = 2, 
involving a total of 512 relays, will  suffice to produce  a 
probability of error between 2P3 and 2F1. Contrast this 
with the  Moore-Shannon technique of producing an AND 

circuit of the same reliability, in which at least 1440 relays 
are needed. This result is a consequence of our definition 
of reliability with all  inputs assumed equiprobable and all 
errors equally important. Secondly, we showed that placing 
a number of basic AND circuits in parallel or series was not 
a good way  of improving them. Neither was placing an 
AND circuit in parallel with a circuit equivalent to  an AND 

by DeMorgan's Theorem. Next, we studied a network 
consisting of m' parallel lines, each  containing m basic 
n-way AND circuits in series. It is an  important fact that if 
m'= Aemrk, where A is a  constant,  then  as m increases with- 
out bound, the reliability converges to 1 ,  Thus, if n = 2, and 
each relay has a failure rate of about 0.00034, then  a total 
of 2400 relays (n7=3) gives an  error probability sf 
1.17X 10"". Among the circuits investigated, one resem- 
bling the above m'xm series-parallel net but with mn lines 
connecting all neighboring parallel lines so as  to form an 
m'Xmn rectangular  grid, seemed to be best. It was proved 
that, if m' is proportional to log m, then the reliability tends 
to 1 as m increases. Thus, if n = 2 and the failure rate of a 
relay is about 0.001, the unreliability of this circuit as an 
AND is about e-21, requiring a total of 1760 relays (m = 16). 
Similar results were obtained for OR circuits and EXCLUSIVE- 

OR circuits. 
A method for improving "reliability" which  is not based 

on averaging over all  inputs was also studied and found to 
require enormous redundancies. We have also outlined an 
algorithm for computing the reliability of any switching 
circuit and have indicated how this might be implemented 
with a  computer program. 
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The main contribution of this article is, however, in that 
it develops new analytical techniques, presents some novel 
inequalities of primarily mathematical interest, and deepens 
our understanding of the Moore-Shannon model for 
switching circuits. 

Thc assumptions of this model represent the limitations 
on  the applicability of our results to physical switching 
circuits. All switches are  thus supposed to be independent, 
with no aging or  catastrophic failures, and with failures 
occurring only in  the  contacts (nowirebreaksor loosesolder 
joints). Possibly relays, and perhaps  cryotrons, meet these 
conditions to some extent. Since this model has, up  to now, 
only investigated how to replace a single relay by a  re- 
dundant network which should act reliably as  a single 
relay, this  study extends the scope of the model. There  are, 
furthermore, no  other theoretical results on  the reliability 
of switching circuits comparable to those presented here. 

If considering all the failures of a circuit equally im- 
portant is objectionable, then thevarious  error probabilities 
should be weighted according to their  importance in com- 
puting the average error probability. The estimation of 

such weights and  the determination of either physical com- 
ponents to which this model fits well, or a revised model 
more closely patterned  after the physics of failing switches, 
are two outstanding  problems for empirical study. 

As in previous reliability studies, a  remarkable  feature 
common to all results is the enormous rate  at which the 
redundancy required to produce  a slight increase in relia- 
bility grows with the desired reliability. In  order  to  obtain 
reliability at more  reasonable cost, if possible even in 
principle, we seem to need a different method  for organizing 
circuits than  has been studied so far. Possibly, the organ- 
ization of the nervous system may provide clues. When 
such a principle is proposed, the analytical tools developed 
in the meantime will be available to help us discover it. 
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Appendix 1: Proof to Theorem 2 

TO obtain a lower bound for 2"Qm =(a,+~,)~ -2amn+ 1, we shall first show that (2-d)-2[c(2-d)2]2" is a lower bound for 
c,. From Eq. (3), it follows that C,+~<C,, because c , - ~ ~ + ~ = c , [ l  -4c,+4cn?-cCm3], which  is positive provided that e,<+; 
thus, if c < t ,  then c1 < c, and  the result follows. Now,  from this we infer that e, <d for all rn so that c,+~> ~ , & ~ ( 2  -d)2. 
Observe that ~ ~ > c ? ( 2 - - d ) ~ ,  ~ , > c ~ * ( 2 - d ) ~ ~ c ~ ( 2 - ~ ) ~ + ~ ,  c ~ > c ~ ~ ( 2 - d ) ~ ~ c ~ ( 2 - d ) * + ~ + ~ e t  cetera. 
In general, 

em 2 c2"'(2 -(/)2"+2"--1+2m--? +. . .+2 = c~"(2 -l/~P"''l-: = (2  -d)-2[c(2 - d)?]2" 

which will be abbreviated by y .  We have thus also shown that c,  decreases monotonically with m. 
We shall now show that 1 -4(2c)?"' is a lower bound  for a,. Let a,=l -ern, with eo=c. By Eq. (3), ~ , + ~ = ( l  -e,)z(l+e,)2 

= (1 - e,2)2 = 1 -e,2(2 -e,,*), so that e,  ,-, = e,?(2 -em2). Hence, e ,+,  5 2e,' for  all n7. Consequently, el < 2c2, e2< 2e1* < 2 ( 2 ~ ~ ) ~ ,  
e3<2c,2<212j24c8 etc., and e nL - <21+21...f2""1 c - - "( 2~)'""' . Therefore, a,+l 2 1 -+(2c)*"'. 

It is only necessary to  obtain  an upper  bound for n,, or a lower bound on e,. Proceeding as in the first part of this  proof, 
we note  that emGl l e , ,  and concIude that e,,, 2 c2"(2 -d2)'+2+4+...+2"-1= (2-d2)"[(2-d2)~]2". We shall abbreviate the  latter 
quantity by x. It decreases towards 0 as rn increases. 

Substituting these bounds  into Q, we have: 2nQ.,2[1-+(2e)2"+y]n-2(1 -x).+l >1-n[f(2c)2'"-y]-2(1 -x)"+l . 
In  order to establish a useful lower bound for Qm, we must obtain as small an upper  bound  for (1 -x>. as we can. To 

this end, we shall show that (1 -x)"< 1 -nx(cosh n'2x2-sinh nx) . 

To prove this, write (1 -,>,<e-..= 1 "nx I --pi-... 

nx (nx)2 (nx)" 
2! 3! 4! 

Observe that -__ 
<o" 

(k+l)!- k !  

and 
(nx)k >W 

(k+l)!-  k! 

= 1 +nx[sinh nx-cosh n2x7 . 183 
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We shall first derive an upper  bound for cm. Starting from Eq. (3), we write: c,+,<4cm2; hence, c154c2, ~ ~ = 4 c ~ 2 < 4 . 4 ~ ~ 4  
~ ~ < 4 . 4 ~ . 4 ~ c * ,  et cetera, and generally, cm <41+2+4+.~.+2""'c2m =+(4~)2". 

Substituting the upper and lower bounds for urn which were derived in the proof of the Theorem 2, we have: 

2"?Qm<[(l -~++(4~)~"]"-2(1-4(2~)~'")~+1<1 -nz(cosh nzzz-sinh HZ)-2(1 -n/2(2c)2"+1 

=n[(2c)*"'+z sinh nz-z cosh nzz*] , 

where z= 
[(2-d)2c]?" 

(2 - d2)  -+(4~)~"' . QED 

A somewhat higher, but more informative, upper  bound is obtained by using: 

Appendix 3: Proof to Theorem 4 

First rewrite the expression for R,(P) as: 

Ireven. 2 2  k odd 

Next, observe that p > c  implies that (1 -p)<a, so that (I  -p)c<c/p(pa),  and (I  --p)ck_(c/ppak. k =  1,2,3,... . Applying this 
inequality for odd k,  and setting E = clp, we have: 

6=0 k=" 

=1 -p"(~[(l+E)"-l][(1+u")"-(1--a")"]+(l--a")"J . 
For c very small and m, n very large, this expression can  be  approximated by 

In a similar manner, an upper  bound can be derived for R,(P), but, unfortunately, it exceeds 1 for large m, so that R m ( p ) <  1 
~ 184 is the  strongest inequality which can presently be stated. 
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Appendix 4: Proof to Theorem 5 

We shall first prove an inequality which  will be frequently used in the sequel. 

Lemma: I f O < x < l ,  n21, then e-nC<(l-x)"<e-nz 

The right-hand inequality is  well known. To prove the left-hand side, let u = ( l  -x>". 

it follows that: 

From  the hypothesis it follows that < < e-"", so that : 

Appendix 5: Proof to Theorem 6 

n-I 

t=0 

If c<e-", then n+ln c-c(n - 1 )  < -c(n - 1) <0,  SO that each bracketed term in the above summation converges to 1 as 
m- m , making the sum converge to 1 -pn. Now, 

Since c<+, this term converges to 0 as m-m , and R,(J")+l -p2+p2= 1 185 
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Appendix 6: Proof of Theorem 7 

n-1 

n-1 

>(I --pm)[I "exp (-mncm')]+pn[l -mnc'm'] 

= 1 "exp ( -mncm')+plLII -mncam'- 1 +exp (-mncm')] 

where a= (In [l -(I - ~ ~ ' ) ~ ~ ] - l n  mn)/ln em' 

Setting  m'= B In m, we  have: 

Rm(l) 2 1 "exp ( -nml+A Inc)+pn[e--nml+B'"C"nml+aB Inc 1 
Choose B such  that A In e >  - 1, so that  both  exponentials  converge  to 0 as m+ 00. We  shall  now  show  that aB In e <  - 1, 
so that  the  last  term  also  converges  to 0 and ,hirn R,(l) = 1. Now, 

In [I -e-"m'+BI"' 1-Inn-In m 
ff2 In mAlne 

so that 

because  the  last  term  is positive. 

Note  that  m'>l.  Hence,  from  B<l/ln (l/c) it follows that In m>ln  l/c and  m>l/c.  Hence,  for relatively large c this 
is a good  method  for  improving reliability. 
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