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Extension of Moore-Shannon Model
for Relay Circuits

Abstract: The Moore-Shannon model for switching circuits is extended to show how the number of
redundant relays needed to improve reliability depends on the logical function of the entire circuit.
The reliabilities of AND, or, and ExcLusive-or relay circuits are studied as a function of the number of
relays, the network topology, and the distribution of inputs. For the case of intermittent failures, a pro-
cedure is developed for calculating the reliability of combinational switching circuits, defined as the
probability that the circuit will function as specified, averaged over all possible inputs, and subject to the
idealizing assumptions of the Moore-Shannon model. The redundancies required to achieve a specified
increase in reliability, although considerably smaller than for alternative methods, are still enormous.
It is shown that a good way to improve an AND circuit, for example, is to use a series-parallel network
in which the number of parallel lines varies with the logarithm of the number of basic AND circuits con-

nected in series to form each line.

Introduction

Combinational switching circuits which can be found in the
arithmetic and control sections of digital computers, tele-
phone exchanges, and other control centers, tend to be
unreliable when the number of constituent switches be-
comes very large. Thus, an average time of about 10 hours
between breakdowns is perhaps a reasonable figure for a
large digital computer. A theoretically interesting and prac-
tically important question is to determine the possibility of
substituting a given switching circuit by another switching
circuit with more switches, but with the same number of
inputs, outputs, and the same behavior, and with as low a
failure probability as desired. After a precise formulation
of this problem in terms of the Moore-Shannon-von Neu-
mann model for relay circuits,’? it becomes a purely
mathematical problem of determining sufficient condi-
tions on the structure of several proposed nets to replace a
given circuit such that its probability of error, suitably
defined, becomes arbitrarily small for a sufficiently large
redundancy.

One such network is a replication of the given circuit,
with each switch replaced by a sufficiently large hammock
network which acts like a single switch of any specified
reliability. Moore and Shannon! have proved that this can
be done with relays of arbitrarily poor reliability by simply
using enough of them in the right way. They also showed

that in a hammock network it takes at least [(log b)/(log a)J?
relays of error probability a, where a< %, for the network
to function as a relay with error probability 5, where b<<a.
For example, suppose that an AND circuit is to be designed
which will fail at most once in half-a-million cases, on the
average. This design would consist of two relay contacts in
series connection, in which either relay contact would fail
at most once in a million cases, on the average, with the
conservative assumption that the circuit fails when a single
relay fails. If the only relays which are available, however,
have failure rates of 0.005, then we require at least nine
such relays, connected in a 3 X3 hammock network with a
common coil, to replace each of the two relays in series.
Thus, 18 relays of the above type are required to produce
such a circuit. If, however, we do not assume that the
circuit necessarily fails when a single relay fails, then we
might be able to produce such a circuit with fewer than 18
relays of the same type.

In this paper, the results of Moore-Shannon are extended
by showing that knowledge of the intended logical function
of the entire circuit leads to economies in the redundant
use of relays to improve reliability. In doing this, we have
defined the reliability of a circuit as the probability that it
functions as specified, averaged over all possible inputs.
Both analytical and computational methods for calculating
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this quantity for a large class of circuits are described.
Using these methods, we examine several redundant cir-
cuits and estimate the redundancies required to achieve a
desired reliability for the case of intermittent failures. The
significant findings are that increasing the redundancy will
not give arbitrarily high reliability, except under special
conditions on the proportions of the network, and that
these conditions have a very simple and interesting form.

The model

The starting point for our analysis is the Moore-Shannon
model for switching circuits.! It should be remembered
that we are dealing, not with a description of switches of
any particular physical nature, but with a model of
switching circuits involving many idealizations from actual
devices. Although electromechanical relays are probably
the switches which this model describes best, for some
purposes, cryotrons, magnetic cores, and other switches
are not grossly misrepresented by the assumptions; but
this is irrelevant for the exploration of the formal model.
To introduce the notation and emphasize the limitations to
which all the following results are subject, it will be helpful
to summarize the main assumptions of this model in its
extension to our problem.

(1) A switch (any operable bistable device) is regarded
as consisting of two parts, the “contact” and the “coil.”*
The contact is either open or closed, and the coil either is
or is not energized. All four combinations of coil and con-
tact states are considered possible.

(2) If more than one contact is served by the same coil,
it is assumed that all coils are in the same state. In an or
circuit, for instance, all the resistors, capacitors, and in-
ductors should be such as to cause a current in either
branch to be above the threshold to be called a *“1” at the
output. These circuit parameters are assumed to remain
consistently at fixed values.

(3) Only failures at the contacts are taken into account.
This excludes many common errors in the coils, such as
breaking of lines, loosening of solder joints, short circuits
of the coil and contact, et cetera.

(4) The mechanism which causes a relay to fail at any
time is independent of the relay’s prior history and past
failures and use. That is, wear, fatigue, and catastrophic
failure (e.g., a relay permanently welded shut) are excluded;
only intermittent failures are considered. Thus, the behavior
of a switch is supposed to be completely described by the
following two conditional probabilities:

a=P (contact is closed|coil is energized)
¢ =P (contact is closed|coil is not energized)

1)

*The abstract terms “contact” and “‘coil” refer to the storage and gating
functions of any switching device.
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(5) The final assumption on which our model is built
takes all the relays to be statistically independent. This is
perhaps the most severe idealization in this context, since
the cause for failure of one switch (e.g., dirt, moisture,
temperature) may also cause at least the neighboring relays
to fail at about the same time. For convenience of notation
we shall also make the (nonessential) assumption that all
relays are characterized by the same parameters a and c.

Unless stated otherwise, we shall regard all the relays
studied here as ideally normally open, which means that
a>c. This means that for a perfect relay, a=1 and ¢=0.

Basic AND and OR circuits

In order to introduce our definition of circuit reliability
with mathematical precision, it will be useful to start with
AND circuits and or circuits. Furthermore, in view of the
fact that a circuit with any logical function can be built in
terms of OR circuits, AND circuits, and normally closed
relays exclusively, the analysis of these special cases is of
central importance.

A simple way to construct an #-way AND circuit—that is,
a circuit which conducts current if and only if all » input
coils are energized—is to connect # normally open relays
in series. To construct an or circuit—which is open if and
only if all # input coils are unenergized—is to construct the
dual of the AND circuit, or # normally open relays connected
in parallel.

We shall suppose that the # states of the » input coils are
statistically independent, and p the probability that a given
input coil is energized. There are obviously 2" possible

input configurations, with (Z)p’“(l —p)** being the

probability of all input configurations in which exactly
k of the n coils are energized. An AND circuit should be
open for all input configurations in which k>n. The con-
ditional probability that » independent relays in series form
an open circuit, given one of the above input distributions
with k#n, is simply 1—a*c"*, because a*c** is the corre-
sponding probability of a closed circuit. When &k =n, we seek
the conditional probability that » relays in series form a
closed circuit, or that all the n independent relays are closed,
given that all coils are energized. This is simply a*. Each of

the n terms so generated, when multipled by (Z) Pl —p)vF,

k=0, 1,---,n gives the joint probability of an input con-
figuration with # coils energized and a correct response from
the circuit as a conjunction of n variables. To obtain the
probability that the circuit functions correctly, we sum over
all inputs, and obtain:

n-1

R= Z (Z )pkqn—k(l __akcn—k) +pnan




n n

= 2 (: )p"q""“ - 2 (Z)(pa)k(qc)"“‘

=0 k=0
+prat—p(1—a’)
=1—(pa+qcy~p(1—-2a) ,
where g=1—p . )

We shall use R as a measure of reliability of the circuit as
an AND circuit. It is clearly a function of @, ¢, p and #. This
measure treats all errors as equally important. This seem-
ingly plausible assumption leads to the possibly objection-
able result that, when n is very large, R is very close to 1
(in fact, if p>~1, then ll_l:l;l} R=1), implying that an open cir-
cuit or no circuit at all would function almost as reliably as
an AND circuit of » relays in series. This follows directly
from the nature of an AND circuit and the fact that the input
configuration with all coils energized is a rare event when » is
large. It is clear that if this input is very likely, in particular
if p>1—(1/n), then an open circuit is no longer comparable
to n relays in series. Also, if the cost of circuit failure when
all coils are energized is very high, this measure of reliability
is misleading. If the costs of various errors could be esti-
mated, then the expected loss of using the circuit would be
a more suitable measure of unreliability. For example, if it
were known that a failure of » relays in series to produce
an open circuit, when not all coils are energized, is u, and
the cost of failure to close when all coils are energized is v,
then the expected loss is

n—1

2 (Z)pkqn«kakcn—lfu+pn(1 __an).v

k=0
=ul(pa+qc)" —pral+op (1 —a") .

Note that if p<1, a#c, this converges to 0 for any u, v, a
and ¢, as n—. In the absence of realistic estimates for
such costs, the definition of reliability exemplified by Eq.
(2) will be accepted, and explored for its mathematical
properties. Finally, it should be emphasized that our
measure of reliability concerns only the restricted case of
an intermittent circuit failure in a single operation.

From the fact that the or and AND circuits are completely
dual, we obtain an important relation between R(a,c,n,p),
the reliability of » relays in series as an AND circuit, and
R'(a,c,n,p), the reliability of n relays in parallel as an or
circuit.

Theorem 1. R'(a,c,n,p)=R(1 —c,1 —a,nq) .
Proof:

ka n ‘
Ri@,cnp)=q'(1 —c)"+2( k)pkq"—k

k=1

X[l —=(l—-a)(1—o" .

The first term represents the joint probability that no coil
is energized and that the » relays in parallel are all open.
The At term in the sum is the joint probability that k& of
the coils are energized and that not all of the » relays in
parallel are open. After some simple algebraic steps, it is
readily seen that

Ra,c;np)=1-[p1—a)+q(1—l"~g 1 -21—=c)] . ()

If we substitute | —¢, | —a and p for a, ¢ and ¢, respectively,
wherever the latter appear in Eq. (3), we obtain Eq. (2),
which proves the theorem.

To obtain some feeling for how R and R’ vary as func-
tions of @ and ¢, consider the families of surfaces shown
in Fig. 2 for p=1.

The point (a,c)=(1,0) is an invariant on both surfaces.
The intersection of both surfaces with the plane a=1—c is
the curve: R=1—2"""(1—gq"). Both surfaces approach the
uppermost plane of the unit cube, R=1, except for one
point, where R=0 as n—«; for R, this discontinuity
occurs at a=c=1; for R, it occurs at a=c=0.

To get some understanding how R and R’ vary with p
and c, it will be convenient to let a=1—c¢ (an assumption
which will be made henceforth without explicit reiteration).
The results are shown graphically in Fig. 3.

If p=0, then R=1—¢" and R'=(1—¢)". If p=1, then
R=a"=(1—c¢)*and R'=1—(1—-a)"=1—c* If c=p=0 or
if a=p=1, we have perfect reliability, R=R'=1.

Improved series AND circuits

As mentioned in the Introduction, we can make an AND
circuit as reliable as we wish by connecting n “relays” in
series, but making each “relay’ sufficiently reliable by sub-
stituting for it a network of less reliable relays according to
the Moore-Shannon technique. In particular, we consider
the network shown in Fig. 1; suppose that each of its four
relays are replaced by a network just like that in Fig. I;
each of the 16 relays in the resulting network is also
replaced by the same circuit, et cetera, until a network Iike
Fig. 1 has been substituted for a single initial relay m times.
The coils of the 4™ contacts in this final circuit are con-
nected in series, so that the entire circuit acts like a single

Figure 1 Hammock network (2 X 2) to replace a
single relay.
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relay. Let a, be the probability that this “m-fold com-
posed” network is closed when the coil is energized, and
cn the probability that it is closed when the coil is not
energized. We interpret m=0 to represent a single, basic
relay, with ao=a, co=c; m=1 represents the network of
Fig. 1 in place of the single, basic relay, et cetera. It is
easily shown! that

apy1= am2(2 —_ am)2
and
Cnp1=Cn¥(2—cCn)? . 4)

We now consider the reliability of # such m-fold composed
relays in series as an AND circuit in the manner described
previously. To simplify the algebra, we shall take p =3 and

a=1—c throughout this section. Then, according to Eq. (2)
R, =1=-2"(an+c.y —2a,"+11=1—-Q. . 5)

We wish to determine the smallest integral value of m such
that the probability of error, Q,, is less than or equal to
any specified positive number ¢ for any given » and ¢. We
shall then show that this m is smaller than the correspond-
ing redundancy when the circuit logic is not taken into
account. We shall have occasion to use the fact that for
high-quality, normally open relays, ¢ is bounded by a num-
ber d, with d= 10~ being a reasonable figure.

Because of the difficulty of obtaining an explicit formula
for Q. in terms of m, n and ¢ and of solving an equation
like Q.. =¢ for m, we shall, instead, look for two numbers,
m; and m. with the following properties:

Figure 2a Circuit reliability as a function of element reliabilities. Conjunction
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(1) There is no m less than m, such that Q. <e.

(2) The value of m such that Q,,<e, need not exceed ..
If m=m, represents a solution to the equation Q,, =¢, then
m <mp< ms, and the smaller m,— m,, the better the bounds.

In the Appendix, it is demonstrated that Q,, is a mono-
tonically decreasing function of m, so that m> m, implies
that @,,<e. To obtain m, which is a lower bound on m,
we seek a function, Q..", which is a lower bound on Q,, and
let m=m, be the solution of Q,,=e.

Theorem 2. Let

0. = 2‘"[nx(cosh nm’x*—sinh nx)— g(Zc)‘l'" — ny:l y (6)

where

Figure 2b  Circuit reliability as a function of element reliabilities.

Rf (ac)

. x=[Q-d)c"/2—d}

and
y=[2—dyc"/Q-dy .
If c<d<%, then Q' < Q. for all m.

The proof of this result contains a number of interesting
mathematical techniques which may prove useful in a
similar analysis. Since it is lengthy and represents a digres-
sion from the main theme of this section, it will be found
in the Appendix.

To obtain m., which is an upper bound on m, we seek a
function Q,.”" which bounds Q.. from above, and let m=m.
be the solution of Q,” =e¢. This means that there is an m
not exceeding m- such that @, <e.

Disjunction
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Theorem 3. Ler
0. =27"n[(2c)*" — z(cosh n’z—sinh nz)] )
where
z=[Q—=d)I"|2—d?) — H4c)" .
Then Qn" > Qu for all m.

Proof: See Appendix.

Example: Suppose that we wanted to keep the proba-
bility of error below e=2"%2, and we wanted a 32-way AND
circuit, using relays with error probabilities of ¢=271, If
we take m=2, then, according to Theorems 2 and 3, a
circuit with a total of 512 relays has a probability of error

Figure 3a Circuit reliability as a function of input probability.

I

between 27% and 275, To achieve ¢=2"% without taking
the circuit logic into account, we let » be the reliability of
one of the n “m-fold composed relays’ in series and set
1—e=r". Hence, r=1—¢/n. According to Ref. 1, m must
be at least {[lg (e/m))/Ig c}?, or (67/10)2=45 (Ig will denote
log,). Thus, atleast 32 X45 = 1440 relays are required, which
is almost triple the number required when the circuit logic
is taken into consideration.

Other improved AND circuits
We shall now consider a number of ways of improving AND
circuits by looking at the circuit as a whole, rather than

optimizing parts of the circuit which will act as good relays
in series. It should be kept in mind that many of the tech-

Conjunction
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niques for improving the reliability will apply to oR circuits
with the appropriate dualization.

(1) The simplest redundant network which will function as
an AND circuit consists of m basic AND circuits (# relays in
series) connected in parallel. This is somewhat analogous to
the “system-standby’ method of Moskowitz and MclL.ean?,
where we switch to the redundant elements when required.

It is not obvious a priori whether there is an optimal m.
It is obvious that the reliability cannot be made arbitrarily
high. In fact, as m— o, we shall see that the reliability of
this circuit converges to 0. It is:

R, ® = 2 (Z) prg M1 —arc ] +-pr[1 — (1 —a™)™] ®)

k=0

Figure 3b Circuit reliability as a function of input probability.
Rn

m

=2 <Zz)[pa’f+(l —P)e (= D p 1 —2(1 —ay] .

k=0

While the above (nonlinear) sum cannot be expressed in
closed form, the following bounds on R, are helpful in
studying the variation of R,® with m.

Theorem 4. Ifp>c, and a=1—c and ¢<1/10, then

! —p"{é [( 1+E) -1 ][(1 +ay— (1 —a)]

+(l —a" ”‘}SRM")SI .
Proof: See Appendix.

Unfortunately, this lower bound decreases with m, and

Disjunction
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is, therefore, not very informative as it stands. From
Eq. (8), it is evident that if ¢540, p>1, then ,}Lingo R, ® =pr,
From the above lower bound, however, it is possible to
determine how 72 must increase as a function of # so that
Jlim R,® =1, ‘

Theorem 5. If¢c< —pnp and
exp [nc(1 — /Ol <m< exp [nc(1—c)] , then Lirrtlan(P) =1.
Proof: See Appendix.

Of course, for a given n, there is a maximum reliability
less than 1, and the m which achieves this maximum is
given by the hypothesis of Theorem 5. The result is mean-
ingful only for n>1/c, for example when very poor relays
are available or if n is unusually large. Except in such
special cases, paralleling is not a good method of improv-
ing an AND circuit.

It may be mentioned in passing that placing m basic
AND circuits in series is an equally poor method. The
reliability is:

n—1
Rm(,y) — 2 (Z)pkqn—k(l _amlccm(n—k)) +pnamn

k=0
=]1— [pam+qcm]n __pn(l _Zamn) .
Clearly, iirr(ln R,®=1—p", which means that this circuit

becomes like an open circuit as m increases.

(2) We shall now investigate the simplest series-parallel
net, consisting of m’ parallel lines, each a series of m basic
AND circuits. It is easy to see that such a circuit, with
m=m’=2 is “single-error preventing”, in the sense that
failure of any single relay will not cause malfunction of
the circuit, no matter which of the 2” inputs occur. It can
be shown that, for n=2, there is no “single-error pre-
venting” circuit having fewer than eight relays. Generally,
such an (m+4-1) X(m+-1) series-parallel circuit is “m-tuple
error preventing”. Since the number of relays increases as

Figure 4 Lattice network.
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nmnt', it is not obvious whether errors can be controlled
in this way. In general, for instance if m=n, it is no
better than an open circuit. The reliability of this circuit
is given by

Rm (8p) — 2 (Z)pk(l _p)n-k[l — cm(n—]c)amlc]m'

=0
+p1—2(1 —am)~] .

Are there any conditions, specifying a relation between
m’ and m, which make error control possible? The answer
is in:
Theorem 6. Ifc<e™"andm’ = Ae™ where A is a constant,
then lim R, 6P =1,
m—Co

Proof: See Appendix.

From the proof, it is seen that the larger the A, the
larger the reliability. As an example, let n=2, r=% m=3,
¢=¢"8=0.00034 and 4e™=400. The network will have a
total of 2400 relays, with a probability of error of about
1.17 10710,

(3) We now extend our investigation by connecting all the
parallel elements in the above series-parallel network, as
illustrated for the case of n=2 in Fig. 4 below. The circles
and the squares are used to distinguish between contacts
associated with the two different inputs. We shall call this
a lattice network.

In general, there will be m’ parallel lines. Each line will
contain m basic AND circuits, or mn relays in series. The
reliability of this circuit is:

n—1

R, = 2 (Z)p’“q""“

=0
X1 =[1 =1 =)™ P[] — (1 — gy Jmk}
+pn[l _(1 _a)m’]mn .




Figure 5a Redundant AND circuit with loop.

Figure 5b Single-error preventing AND circuit.

+

Figure 6a Series-parallel redundant AND circuit.

Figure 6b Lattice AND circuit.

We inquire again about special conditions under which
error control is possible. While the circuit of Theorem 6
required enormous redundancies, in the form of Ame™n,
we shall see that this is a far better circuit in this regard.
This is stated more precisely in the following basic result:

Theorem 7. If c<lj/e and m"=Bln m, where B is a
constant, then lim R, =1.
Proof: See Appendix.

(4) We shall now examine some special circuits which act
as two-way AND circuits, and show that the lattice network
of Fig. 4 is a very good network. Consider first the 6-relay
circuit of Fig. Sa. Its reliability is

R=g{1—[2¢(1 —)*+0(cH]} +p*{1 —3(1 —a)*a’+-0(c))]}
+2pg{1—[2c(1 — c)a*+3c¥(1 —c)ad
+4c(l—c)a* (1 —a)+0(cM]}

where [0(x*)/x¥]—1 as x—0. If c=1—a=2"1% and p=1%,
then R=44 — 4.27104-19.2-201-0(273%)]. Observe that this
circuit will prevent single errors when both coils are ener-
gized or unenergized but not if one coil is energized while
the other is not. The simplest circuit of this type which is
single-error preventing for every input configuration is
shown in Fig. 5b. Its reliability is

R=¢71-3c*(1 —c)*—0(c)]+2pq[1 —3c*(1 —c)*a*—0(c?)]
+p[1 —15(1 —a)*a*(1 — )*—0(cH] = 3[4 —21c*+-0(c®)]

for the above numerical values. This is, of course, much
better than the network of Fig. 5a, but requires four relays
more.

By comparison, consider two straightforward series-
parallel nets illustrated by Figs. 6a and 6b. The second
circuit is a special lattice network, as in Fig. 4, with m=2.
The reliabilities corresponding to these circuits, evaluated
with the above numbers, are:
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R, =q[1—-0(c")]42pgfl —4c*(1 —c)*a*+0(c?)]
+p?[1 —8c*(1 —c)*a*+-0(c®)] = 4[4 — 16¢24-0(c?)]

Ry =¢[1—0(c)]+2pgll —4c*(1 —cPa'~0(c%)]
+p2[1 —4c2(1 — c)a*4-0(cH)] = 44 — 12¢34-0(c?)] .

The lattice network is clearly the better. A comparison of
Fig. 5a with 6a shows an increase in reliability by about
12¢?/4 at the expense of only two additional relays. In
contrast, a change from Fig. 6a to Fig. 5b, gives an increase
in reliability of only 5¢%*4, also at the expense of two
additional relays.

A final special case which might be expected to work as
an improved AND circuit is based on putting a basic AND
circuit in parallel with a circuit which is equivalent to it
by DeMorgan’s theorem. That is, this circuit behaves
according to the logical function (x+y)+(X+») =z, where x
and y are Boolean variables (0 or 1), « denotes Boolean
multiplication (anD) and -+ denotes Boolean addition
(oRr); the two terms in parentheses denote the two parallel
lines as shown in Fig. 7.

Assuming the relay labelled L to be perfect, the reliability
of this circuit is given by:

R=1—[pa+tgcl"—[p(1 —a)+q(1 -0}
+[pa(l —a)+1 —p)c(1 —O)*+(ap)" ,

where @ and ¢ denote the values of a and ¢ for the normally
closed relays. If a=c and c=a=1—c, then

R=1-2[p(1 —c)+gcI"+[p(1 —c)+qcT*+[p(1—0O) .

It is possible to show that this circuit is more reliable than
a plain two-relay series circuit provided that n<3 and
¢>2p/(7p—1). While this result is due, in part, to the
looseness of the bounds on » and ¢, which are difficult to
improve because of the nonlinearity of the problem, it
does point to the conclusion that this is not a good way of
making an AND circuit except in very special cases (e.g.,
p>1/3, very bad relays except for L).

(5) Another possibility for improving the reliability of an
AND circuit consists of “‘composing”™ a series-parallel net-
work, like that of Fig. 7, m times, with the basic elements
of the circuit being the simplest series AND circuits instead
of the relays themselves. Let » be the probability that an
AND circuit is closed. Then, the probability that the entire
circuit is closed is

hry=3 At~V
k=0

where A, is the number of ways in which the entire net-
work of N relays can be closed when exactly k relays are
closed and N—4% are open. Consider the network of Fig. 7,
with an n-variable series AND circuit replacing each relay
in that figure, and suppose the input is 11...11, Let r=a".
If the new circuit is better than the plain series circuit,
then h(a™) must exceed @, and A[A[A--[h(aM)]]. ]--- =R (a™)
must converge to 1 as m— very rapidly. When the input
is not all 1I’s, then the probability that the network is
closed is at most a*'c. To function correctly as an AND
circuit, it should, however, be open, and we would expect
that A(a"'c) <a"'c, with ,££££‘o h™ (g 1c)=0. Since h(r) is a
monotonically increasing function of r, A(¥) <h(a"'c) for
all r<a"'c. Hence, we seek the smallest m such that
h™(g")>1—¢€ and A" (a"1c)<e for an arbitrary, positive
€. With the circuit of Fig. 7, it is, of course, well known
that such an m exists only if ¢*>0.38 and a*'¢<0.38.
Generally, improvement is possible provided that ac. It
is easily seen, however, that this is not a very economical
way of increasing redundancy because the number of re-
quired relays increases as n4™, while 2™(1 —8) =1 —4(25)2™.
That is, to achieve e=27%, with a"=(1—-2"10)%2=1-2-5
=1—4, m should be 4 and 2'? relays would be required.
Of course,

h(4)(r)S21:(4r)les%_(4‘17»—16.)16_—'_-%(4-2_10)16&2—126 .
Nevertheless, this technique of improving reliability, which
is readily adapted to circuits other than AND circuits, is
very useful when it is desired to control the probability of
error for each input.

Figure 7 Redundant AND circuit based on De Morgan’s theorem.
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Improved OR, EXCLUSIVE-OR, and general circuits

Recalling the duality between or and AND circuits and the results of the previous section, we might expect that the dual
of the lattice network shown in Fig. 4 would be a good way of building an or circuit. This circuit is shown in Fig. 8.

Its reliability is:

Re0= Y ()Pt —ar—0me 1 +ar 1=~ =0T

k=1

° _ ’(1_ )mk(l_c)m(n-k) , -
>3 (3o kexp{-1’"_(1_‘;)m,c(l_c)m(,,-k)}ntq"{l—exp[—m(l—c) 1.

k=1

Since we are dealing with normally open relays, we shall assume that a>c. It follows that (1 —~a)™(1 —¢)"® b >(1—ag)™",
and that (1 —a)™(1 — )= <(1 —a)™(1 — )@V for k=1, ,n. Therefore,

n

— (1 —aV(1 — Yy (n—D —mnc
S s )

k=1

We now seek a relation between m’ and m so that, for a sufficiently large m, the reliability can be made as close to 1 as
desired.

Theorem 8. If ' =Ae™"<, where A is a constant, and n~/c <1, then ,ltl_nx}o R, =1,

Proof: We continue the computation of the expression for R,'® which was started above by substituting for #’, and

setting c=1—a.

—_ mnVe .m —~mc(n—1) _ —mne
R,/O>(1—g") exp { AemTecne }+q"{l — exp [—Ae’""“c el ]}

1—c
=(1—g") exp { _lA - em(n\/n_‘l'lnc-c(n—l))}_'_qn{l —exp Ij_Aemn(‘/”HTc)]} . 9)-
From the condition nv/¢<1, and the fact that n>2, it follows that ¢<%, so that In ¢< —1.39. Therefore, nv/c—c(n—1)
+In c<nve+lIn e<1—1.39<0. Hence, as m— o, the argument of the first exp { } decreases to 0, and the first term of

Eg. (9) converges to 1—g". Next, observe that /c—(c/1—c)>0 because (1—c)*>c as a result of ¢<2. This causes the
argument of the second exp { } in Eq. (9) to diverge as m— o, so that the second term of Eq. (9) converges to ¢g*{1—0}.

Hence, R, V—1—g"+q"=1.
The leading term in the expression for the probability of error is

Q=g" exp [—Ae™ "I =q" exp [—Ae™7] .

The total number of relays is nmAde™°. Hence 4 and m should be chosen so that the first expression is as small as desired

Figure 8 Lattice network as an Or circuit.
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IBM JOURNAL * APRIL 1959




180

(say ¢ and the second one as small as possible. The number of relays to obtain a given ¢ can be approximated by —mn In
(¢/q™); m must be much larger than In 4 for Q to be a good approximation to the error probability.

Example: Let n=2, g=1%, c=271° and e<e 2. If we take 4=7.4 and m=16, we shall require a total of 2XX16X7.4
X eto2270 =32 % 55=1760 relays. The reliability is

Fexp [ —7.4e1%693) L 101 —exp [—7.4e02% ]} = 3[1 —T7.4e 2]+ 3l —e 2] =1 —}e 20 |

The techniques of improving AND circuits and or circuits which have been described can now be used to design reliable
circuits with arbitrarily specified logic, using the fact that any Boolean expression can be written as a sum of “maxterms”
or product of “minterms” (see Ref. 3). That is, any circuit can be built with only AND and or circuits and we know how
to design these for reliable operation. As an example of what can be done, let us design an EXCLUSIVE-OR circuit which
will fail at most once in 257 operations on the average. Assume that c=1—a=271 and for normally closed relays
a=1—c=2"1° Let p=4%. The basic circuit has two inputs, coils, and the circuit should be closed if and only if one of
the two input coils is energized and the other nonenergized. It is obvious how such a circuit can be built with two normally
open and two normally closed relays. Basically, this circuit consists of two series AND circuits connected in parallel as an
OR circuit. The circuit shown in Fig. 9 is an improved EXCLUSIVE-OR circuit. The reliability for this circuit is:

R=1-pr{1-[1-(1 =1 =)™ 24p{1 - [1 = (1 —c(1 = ))"]"}*
+2p(1 =p){1=[1 -1 =1 =) [1 = (1 =1 =)}
=[p+(1 —py1-2[1 = (1 —c(1 =))"1"+[1 — (1 — (1 =) )"}
= {2~ 2210 pyEm )20y =0m g2 =m{_ 2 =10m(] — 28
=1 —4[mm2tom)

The value of m such that 1m™2710m =2-57 jg m=8. Thus, a total of 8 X8 X4 =256 relays are required for this circuit.

Figure 9 Reliable ExcLusIVE-OR circuit.
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Figure 10 Labeling of a network.

We shall conclude by showing how a digital computer
may be used in the analysis, and possibly the synthesis, of
reliable circuits with an arbitrarily specified logic. We
start by assuming that an experienced circuit designer
presents us with a large circuit which should be very
reliable, and wishes to have its reliability computed by
means of a computer program. Suppose that he presents
this circuit by means of two incidence matrices, D and E,
and tells us the relay parameters @ and ¢ as well as the input
distribution parameter p. Assuming that all relays operate
perfectly, the behavior of the circuit is given by a sequence
of 2» bits, zy---ze»_y, which specify whether the circuit is
open (0) or closed (1) for the 27 input configurations, which
are enumerated in the order xi---x,=00--00; 00---01,
00---10, 00---11; ---; 11.--11. Here x;=1 denotes that the it
input line is energized and x;=0 that it is not. The nodes,
contacts and input lines of the circuit are arbitrarily
numbered 1, ,k,--,N; 1,.-.,j,-.,m; and 1,.--i,---,n respec-
tively. The matrix element of E,.,e;;, is 1 if input line i is
coupled with contact j, and 0 if it is not; the matrix element
of D,.«v,d:j, is 1 if contact j is connected to node k and 0
if not. This is best understood by examining an example,
the circuit shown in Fig. 10, with N=4 nodes (Roman
numerals), #=3 input lines (circled numbers) and m=4
contacts (arabic numerals).

Now let r, taking the values 0,1,---,2"—1, denote the rt
input configuration in the order of enumeration specified
above. Let s, also taking values 0,1,---,2” —1, denote the st®
contact configuration, also lexicographically enumerated.
Thus, s=0 means that all contacts are open, and s=2"—1
means that all m contacts are closed. The first step in com-
puting the circuit reliability, R(D, E), is to compute p.,
the conditional probability of contact configuration s,
given input configuration r. Let i, be the value of i for
which e;;=1. Then, using the assumption that the contacts
are independent, we have

prs=P[s=(S],"‘,Sm)/r=(rl,"',rn)]=i_ﬁ P(Sf/rii) ’

where the r;, s; are 0 or 1. Letting p, denote the probability
of the r** input configuration, for example, p,=(1—p)~,

Contact
Number
1 2 3 4
1 (1100
T {1 0 1 1
Node Number mlo 1 0 1 =D
v [0 0 1 1
Contact
Number
1 2 3 4
® (o1 00
Input Line Number (2) {1 0 1 0 |=E
® |00 01

Input
Configurations: 000 001 010 0l1 100 101 110 111
ZyrZ7) 0 0 1 1 O 1 1 l

we see that g,,=p,p,, represents the joint probability of
rand s.

We must now enumerate all the contact configurations
r which, for any given s, give the correct circuit response.
Thus, in a 2-relay AND circuit with both coils energized,
there are three contact configurations which close the
circuit. To this end, let w, be 1 if contact configuration s
closes the circuit, and 0 if it does not. Now observe that
the circuit operates correctly only if the variables z. and
ws are both 1 or both O for every r and s. From this, it is
easy to see that the reliability can be expressed as in
Theorem 9.

Theorem 9.
"1 2™-1

RID,E)=2 Z[z.qw+1—2)g(1—w)] .
r=0 s=0

A possible method for programming the exceedingly long
computation according to the above formula consists of
the following steps. )
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1. Compute the matrix (g,), which may require as many
as (m+1)2" multiplications.

2. To obtain the vector w, having w; as the st component,
proceed as follows: Suppose, for example, that s=2m—1
(all contacts closed). Starting with the first 1 of row 1 of D,
scan down the column in which that 1 was found, and
locate the other 1 in that column. Repeat this, using the
row in which the latter 1 was located, instead of using the
first row. Continue until either the last row is reached,
which means that w,=1, or until an entry is revisited and
we begin to cycle through the matrix in a nonterminating
loop. In the latter case, repeat the entire procedure by
starting with the second instead of the first 1 of the first
row, until either the last row is reached, or all possible
paths through the matrix have been exhausted without
reaching the last row, which means that w,=0. To test
configurations other than s=2m"—1, say the configuration
s=(010111..-1), simply replace columns 1 and 3 of D by
all 0’s and repeat the above program. Determination of
the vector w may take as many as roughly 2"A" searches
through D, where % is the maximum number of contacts
incident on any node; each search requires at most N?
decisions (whether an entry of D is 0 or 1).

3. Assuming that the vector z, with z, as the r*t component
is given, the calculation of R itself requires 2=+**2 multi-
plications. Assuming, for purposes of illustration, that a
multiplication (including fetching, storing and adding)
takes about 100 microseconds, and that a decision takes
about 10 microseconds, and letting n=8, m=24, N=35 and
h=4, the calculation would take us no more than 3000
hours.

It is possible to devise clever programs which do not
require as many as 4" passes, on the average. It is faster to
determine the presence of a closed path through a contact
configuration than to determine that the circuit is open.
The search is fastest for configurations where very few or
where very many contacts are closed. Finally, the same
paths through the circuit will be searched for several
different configurations, and this would be avoided by the
discovery of good algorithms for finding the shortest paths
between two given points of a class of graphs. Combina-
torial problems of this type present a challenge to pro-
grammers and analysts.

The synthesis problem, given a, ¢, 1, p and z, to find
N, m and matrices D and E such that R(D,E)=1—¢, is
even more difficult than the problem discussed above. One
possibility is to start with some judiciously chosen matrices
D and E, vary some of their entries at random, observe
the effect of this change on R(D,E), and repeat to accumu-
late information about how R varies as a function of D, E.
Further changes in D and E will be increasingly based on
such information. These steps would be much like those
that clever engineers have taken in the synthesis of switch-
ing circuits before systematic methods were developed.
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Conclusion

We have shown how the redundancies which are inherent
in the logic of switching circuit behavior can be used to
advantage for the control of errors. As a measure of
reliability, we used the probability that a given circuit
functions as specified, averaged over all possible inputs.
We investigated a number of redundant circuits which act
reliably as AND, OR, and EXCLUSIVE-OR, and obtained for-
mulas for bounds on the reliability. From these, we derived
sufficient conditions on the topology of the circuits and its
proportions for the possibility of error control. This means
that we can make the reliability as close to 1 as we please
by sufficiently increasing the redundancy of a circuit
satisfying these conditions. Various circuits can be com-
pared according to the redundancy required to achieve a
specified reliability.

The first network which we studied consisted of n “‘m-fold
iterated 2X2 hammock networks” connected in series,
designed to act like an n-way AND circuit. By choosing m
large enough, the reliability of this circuit can be made as
large as desired. For example, with n=32, a value of m=2,
involving a total of 512 relays, will suffice to produce a
probability of error between 2% and 27¢., Contrast this
with the Moore-Shannon technique of producing an AND
circuit of the same reliability, in which at least 1440 relays
are needed. This result is a consequence of our definition
of reliability with all inputs assumed equiprobable and all
errors equally important. Secondly, we showed that placing
a number of basic AND circuits in parallel or series was not
a good way of improving them. Neither was placing an
AND circuit in parallel with a circuit equivalent to an AND
by DeMorgan’s Theorem. Next, we studied a network
consisting of m’ parallel lines, each containing m basic
n-way AND circuits in series. It is an important fact that if
m’ = Ae™, where A is a constant, then as m increases with-
out bound, the reliability converges to 1. Thus, if =2, and
each relay has a failure rate of about 0.00034, then a total
of 2400 relays (m=3) gives an error probability of
1.17X107°, Among the circuits investigated, one resem-
bling the above m’ X m series-parallel net but with mn lines
connecting all neighboring parallel lines so as to form an
m’ X mn rectangular grid, seemed to be best. It was proved
that, if m” is proportional to log m, then the reliability tends
to 1 as m increases. Thus, if #=2 and the failure rate of a
relay is about 0.001, the unreliability of this circuit as an
AND is about ¢™2, requiring a total of 1760 relays (= 16).
Similar results were obtained for or circuits and EXCLUSIVE-
OR circuits.

A method for improving ““reliability”” which is not based
on averaging over all inputs was also studied and found to
require enormous redundancies. We have also outlined an
algorithm for computing the reliability of any switching
circuit and have indicated how this might be implemented
with a computer program.




The main contribution of this article is, however, in that such weights and the determination of either physical com-

it develops new analytical techniques, presents some novel ponents to which this model fits well, or a revised model
inequalities of primarily mathematical interest, and deepens more closely patterned after the physics of failing switches,
our understanding of the Moore-Shannon model for are two outstanding problems for empirical study.
switching circuits. As in previous reliability studies, a remarkable feature
The assumptions of this model represent the limitations common to all results is the enormous rate at which the
on the applicability of our results to physical switching redundancy required to produce a slight increase in relia-
circuits. All switches are thus supposed to be independent, bility grows with the desired reliability. In order to obtain
with no aging or catastrophic failures, and with failures reliability at more reasonable cost, if possible even in
occurring only in the contacts (nowirebreaks or loose solder principle, we seem to need a different method for organizing
joints). Possibly relays, and perhaps cryotrons, meet these circuits than has been studied so far. Possibly, the organ-
conditions to some extent. Since this model has, up to now, ization of the nervous system may provide clues. When
only investigated how to replace a single relay by a re- such a principle is proposed, the analytical tools developed
dundant network which should act reliably as a single in the meantime will be available to help us discover it.

relay, this study extends the scope of the model. There are,
furthermore, no other theoretical results on the reliability

of switching circuits comparable to those presented here. Acknowledgment

If considering all the failures of a circuit equally im-
portant is objectionable, then the various error probabilities Thanks are due to J. Berger, W. W, Peterson and M. S.
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Appendix 1: Proof to Theorem 2

To obtain a lower bound for 2"Q,, =(a,~+cx)" —2a,"+1, we shall first show that (2—d)?[c(2—d)?]*" is a lower bound for
c. From Eq. (3), it follows that c,,41< ¢, because ¢, — Cny1 = Cu[l —4Cn=4-4cn? — ¢, which is positive provided that ¢, <#;
thus, if ¢<%, then ¢;<c, and the result follows. Now, from this we infer that ¢, <d for all m so that ¢, > c,(2—d)
Observe that ¢;> ?Q2—d)?, 2> c?(2—d)*> c*Q—d)7?, 32 2?2 —d P> 32 —d)¥ %t cetera.

In general,

Cn>c"(2— d)z?ﬂ+2m-1+2'"*?+...+2 =22 _d)zm+1—: =Q2—dy 2 cR—d)T" ,

which will be abbreviated by y. We have thus also shown that ¢, decreases monotonically with m.

We shall now show that 1 —1(2¢)*" is a lower bound for a,.. Let a,,=1—e,,, with eg=c. By Eq. (3), @1 =1 —e.,)X(1 +e,,)?
=(1—e,)=1—e,22-—-e,2), so that e, ., =e¢,(2 —e,?). Hence, e, <2e, for all m. Consequently, e; <2¢2, e,<2e2<2(2c)?,
€3 <202 < 2122248 etc., and e, <2172 12" em = 1(2¢)?", Therefore, a,.1> 1 —3(2c)2".

It is only necessary to obtain an upper bound for a.,., or a lower bound on e,.. Proceeding as in the first part of this proof,
we note that e,:1<e,, and conclude that e,.;> c?(2 —d)HeHt 42" = (2 — g% [(2—d?)c]". We shall abbreviate the latter
quantity by x. It decreases towards O as m increases.

Substituting these bounds into Q,. we have: 270, >[1 =32 +yI" =2(1 —x)"+1>1 —n[$Q2c)" —y]—2(0 —x)"+1 .

In order to establish a useful lower bound for Q,.,, we must obtain as small an upper bound for (1 —x)* as we can. To
this end, we shall show that (1 —x)" <1 —nx(cosh n%x*—sinh nx) .

(- 2 3
To prove this, write (1—x)nge-m=1—nx[1—”7f+£’§? _)? ] )

4!
_x)f_(nx)* _

Observe that G D= for k=24,6.8,...

(nx)f  (ax)* - 1 " :
and (k+1)12 0 for k=1,3,5,7, because k_HZ(nx) , provided that 0<x<1/(ne) .
Hence, B

., nx , (nx)? _ (n’x?)? | (n*x»)*
(1—x) Sl-l—nxl;v]»!-}- 31 + nXl:H— 2!"—f+ 4!4-{--"

=1+ nx[sinh nx~cosh n*x? . 183
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Thus,

2"Q,, > 2 —n[4(2¢)*" —y] —2+nx(cosh n:x2—sinh nx) ,

so that

Q' =2""[nx(cosh n*x?*—sinh nx) —n/2Q2c)*"+ny] . QED.

Appendix 2: Proof to Theorem 3

We shall first derive an upper bound for ¢,. Starting from Eq. (3), we write: .1 <4c,?; hence, c1<4c%, co=4c2<4-4°c*
c3<4-42.4%¢3, et cetera, and generally, ¢, <4+t 2 = 1(4e)2”,
Substituting the upper and lower bounds for a,, which were derived in the proof of the Theorem 2, we have:
2"Q,,, <[(1 —x+34c)" 1 —-2(1 —3(2c)*™)"+1 <1 —nz(cosh n2z2—sinh nz) —2(1 —n/2(2c)*"+1
=n[(2c)*" +z sinh nz—z cosh n?z?] ,

[2—d)yx]”

where z= 2=

e 1C.19) QED.

A somewhat higher, but more informative, upper bound is obtained by using:

n

1—-3Qcp"<a, <1 and (1—6)"51—{—62 <

k=1

n

k)§1+2"e , for ¢¢<e .

Thus,
2"Qn <[14-3(40)"" 1 —2[1 = 3(20)*" ]+ 1 <1427 %(40)*" —2(1 —n[2(2c)*") +1
="+ =(40)"2 (3 +n27) S (4e)"2 M+ 1) < (4e)"n2n

Appendix 3: Proof to Theorem 4

First rewrite the expression for R,,® as:

m m
RO=14Y ( k)[pak+(1 —per—, ( k)[pa’v+<1 —peT+p 1l =21 —a)] .

keven. >2 k odd

Next, observe that p> ¢ implies that (1 —p)<a, so that (1 —p)c<c/p(pa), and (1 -p)c*<c/p pa*, k=1,2,3,---. Applying this
inequality for odd k, and setting e=c/p, we have:

m m
Ra»>1 +2 ( k)[pa’f " —2 ( k)[(1+e)pa'f1"+p"[1 —2(1~a)")

keven, >2 k odd
103 (D arvr—tator—y, () Jar—20-ayf
k=0 k odd
~tpra—ar—sarr—if Y (7 -, (7Y [-21 e}

k=0 k=0

=1—p {1+ - +a)—(1—a)" ]+ —a)"} .

For ¢ very small and m, n very large, this expression can be approximated by
1 —p"(ni sinh me‘"f—{—e‘m_’”) .
V4

In a similar manner, an upper bound can be derived for R,.®, but, unfortunately, it exceeds 1 for large m, so that R,,» <1

184 is the strongest inequality which can presently be stated.
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Appendix 4: Proof to Theorem 5

We shall first prove an inequality which will be frequently used in the sequel.
Lemma: If 0<x<1, n>1, then e =< (1 —x)"<e™=
The right-hand inequality is well known. To prove the left-hand side, let u=(1—x)".

Thenlnu=nln(1——x)=—nf % . _,* . QED.
, 1—§& 1—x

Let 0. =p"'{%[(1+§)" —1}[(1 +ay—(1=a) 1+ —an)m}

From the inequalities
me™ne

c _ne N e " . me _mar o _meTme
(1+;>"Se‘”* =, (I4aym<emem<em™, (1—a)mLe ™ <e ™ i, and (1 —a")"2e -2 e 1=,

it follows that:

Qm(p) S en In p{%[enr/p —1 jl[eme'—"c _e“%]_}_e—me_ll_n( }

=e" ‘“PJ 3| exp g—{—me*“ —exp . me:‘ —exp (me™)+exp| — me‘_ -] (Hexp —me_T—CC .
l p p 1 —e 1 —e ¢

3/2

From the hypothesis it follows that e ™" <e ™ <e ", so that:

,.MZ
Q”L<">S%|:exp (n In p+";c+e—wz> —exp (n In p+";C— 1 e_ )

e ne

’ILC3/2 11(‘3/2
—exp (e‘""“-l—n In p)—f—exp (—e’:ﬁ’ﬂ—n In p)]—}—exp (——e’ch +nln p> .

From c+pInp<0 it follows that #[In p+(c/p)] decreases linearly as n increases, from 2/p(pIn p+c), a large negative
quantity, to — «, while e " decreases from about 1 to 0. Hence, the first and second terms in the above expression con-
verge to 0 as m— . The third, fourth and fifth terms clearly also converge to 0, because In p<0. Hence lim Q,,® =0,
and the result follows. e

Appendix 5: Proof to Theorem 6

n—1

Rm (5.1 = z (Z)pk(l _p)n—k[l — Cm(n*k)amlx']/‘cm"__}_pn[l _(1 _a’Vn"rl)Aem"](.m (n—/c)amkg cmam(n—l) Sa

k=0

_Aemncmam(nﬁl)]

[1 _ Cm(n—k)amk]Ae’”" Zexp [ 1—a

Z exp [ _l_/Lemnem In refmc(nvl):l because amm—1) S e—mc(n—l)
—a

If e<e™, then n+In c—e(n—1)< —c(n—1)<0, so that each bracketed term in the above summation converges to 1 as
m— o, making the sum converge to 1 —p". Now,

—mne mn(1—c)—mnc mn (1—2¢)
(1 —a™)1e™ <exp [—Ae™"a™] <exp [—Ae’""e 1= ]=exp [—Ae 1—c :I=exp [—Ael—c :| .

Since ¢ <1, this term converges to 0 as m— o, and R,*P—1—p+p?=1. 185
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Appendix 6: Proof of Theorem 7

n—1

R, 0> 2 (Z)qun—k{ [ —emn—h (=0 g=mk1—a)y"’} +p7[1 — ' ]mm

k=)

n—1

= Z (Z)p’“q""‘{ [ —exp { —m[(n —k)e-T‘?+kc'"'] } }+p"[1 —mn(c™)*]

k=0
> (1 —p"I1 —exp (—mnc™)]4p"[1 —mnc*m']
=1—exp (—mnc™)4-p"[1 —mnc*™ —1+exp (—mnc™’)]
where a={In [1 —(1 —c™)™]—In mn}/In c™’
Setting m’ = B In m, we have:
R, >1—exp (—nmt+4me)4 prfenm!+00¢ _ppl+aBinc]

Choose B such that 4 In ¢> —1, so that both exponentials converge to 0 as m— ». We shall now show that aBIn c< —1,
so that the last term also converges to 0 and }nimw R,“=1. Now,

In[t—e " ]—Inn—Inm
(XZ In mAluc

so that

In{l—e™ )=Inn—Inm_,  Inn_In[l—e"""]

aBlntjcz —Inm Inm Inm

>1

because the last term is positive.

Note that 7’>>1. Hence, from B<1/In (1/¢) it follows that In m>1In 1/c and m>1/c. Hence, for relatively large ¢ this
is a good method for improving reliability.
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