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On  Codes for Checking Logical Operations 

Abstract:  Two types of codes for checking logical operations digit  by  digit on two vectors  of binary  digits are 

studied. The first type attaches a check symbol to each  vector  of binary  digits and requires that the check 

symbol for the logical function of two vectors  can be determined from the check symbols of the two  input 

vectors. The second type of coding i s  ordinary block coding into vectors of binary digits, with the added 

requirement that the  coded  vectors be processed digit  by digit. 

The constraints on the codes resulting from the assumptions for the coding system are studied by  typical 

algebraic arguments. It i s  shown that for both types of coding and  for all nontrivial  logical functions of two 

variables, except ”exclusive or” and its complement, there i s  no  system  of  checking simpler than  duplication. 

For “exclusive or” and its complement, group alphabets can be used, and  for the block coding these are the 

only codes which can be used. 

Introduction 

Checking the  operation of a  two-input,  one-output logical 
device such as an  “and” circuit  requires  checking appa- 
ratus which has  three inputs  (the  inputs  and  output of 
the  circuit to be checked)  and  one  output  (the result of 
the check).  Thus,  the check  requires that  the equipment 
be more  than doubled for  the simple  detection of errors. 

If the problem  were to transmit one binary digit of 
information, checking would require  that  the bit be re- 
peated, and thus would require  at least  either twice as 
much time or twice as much equipment. If,  on  the  other 
hand,  many binary digits are to be  transmitted, it is possi- 
ble to check much  more economically. For example,  a 
“parity  check”  symbol  added to a  sequence of arbitrarily 
many binary digits enables  single-error  detection, and  the 
Hamming  code permits  correction of any single errors 
and detection of double errors with the addition of rela- 
tively few  parity-check digits.l 

This suggests consideration of checking  a number of 
similar logical operations  simultaneously,  which is the 
subject of this  paper. The general approach is to define a 
type of coding and  then study the consequences of the 
requirement  that  the coding has  to be compatible with the 
processing. The types of coding  considered  must be 
chosen  carefully to avoid misleading results. For example, 
a device which detects single errors  in  the  output  but 
which misses double  errors in the  output resulting from 
the  failure of a single circuit component could hardly be 
considered “single-error-detecting.” 

The two  general types of coding  considered are illus- 

trated in Figs. 1 and 2.  In  the first case, bIocks of informa- 
tion are processed in the usual way and in addition  check 
symbols, one for  each block, are processed separately to 
give a  check  symbol for  the result. For this  system, there 
is no restriction assumed on  the type of check symbols or 
the method of processing, except that  it be  compatible 
with the processing of the information. In  the second 
case, it is assumed that blocks of k binary digits to be 
processed are coded into blocks of It binary digits, which 
are processed digit  by digit (either serially or in parallel). 
The n-digit output is decoded into a k-digit sequence. 

It is known that  the parity-check-type  binary  codes 
used in transmission of information1, can also be used 
for checking the logical operation “exclusive or” and its 
complement. For all other nontrivial logical operations, 
all  coding  schemes  considered require complete  duplica- 
tion of equipment  for single-error  detection,  triplication 
for single-error correction, et  cetera. 

The second type of coding described above was con- 
sidered by E l i a ~ , ~  and  he obtained the principal  results for 
this  type of coding. The  theory is carried  out here  in 
somewhat more detail, thus giving a  clearer  concept of 
the constraints on error-checking  codes for logical oper- 
ations. 

Check-symbol coding 

Let X ,  Y, Z denote  vectors or sequences of k  binary digits, 
and x i ,  yi ,  zi the ith digits in  the respective vectors. The 
“and” operation  on vectors means digit-by-digit “and,” 163 
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that is, X *  Y = Z  means that  for each i ,  xi-yi=zi .  
For example, if k = 3 ,  X = ( 1 , 0 ,  l ) ,  Y=(O, 1, 1 ) ,  then 
X * Y = ( O , O ,  1). 

Now  consider  check-symbol  coding, which is repre- 
sented  in Fig. 1. Two sequences X and Y are combined to 
form a new sequence X *  Y .  To the first input X is asso- 
ciated a  check  symbol which is denoted a ( X )  to indicate 
that it is a function of X ,  Le., that different sequences  may 
have different check symbols. Similarly, to  the second 
input Y is associated b ( Y )  , a  check  symbol which may be 
a different function,  and  to  the  output Z is associated 
c ( Z )  . The check symbols a ( X )  and b( Y )  are  put  into a 
checking device, and  the  output is supposed to be the 
check  symbol which matches the  output of the logical 
device being checked, i.e., c ( Z ) .  This condition for com- 
patibility of the checking with the logical operation  on 
vectors  may be expressed 

a ( X )  b( Y )  = c ( X *  Y )  , 
where * represents the  operation  done by the checking 
device. 

This is an extremely  general  check-symbol  coding 
scheme. A different code is allowed at each  input  and at 
the  output.  The check  symbols  need  not  be processed in 
any special way; in  fact,  no assumption  has been made as 
to  the  character of the check symbols except that they 
be  compatible with the logical operation. Even with these 
very general  assumptions, the following result  holds: 

Theorem I 

I f  for a given  choice of  functionsa(X),  b( Y ) ,  and c ( Z ) ,  
and the operation *, i f  the check-symbol coding described 
above  detects all single errors, the number of  different 
check symbols a ( X )  is 2k. The same holds for b( Y ) .  

Proof: Detection of single errors requires that whenever 
only one of the digits in the  output vector is incorrect, 
the error  can be detected. This implies that if Z and Z’ 
differ in exactly one position, c ( Z )   f c ( 2 ) .  Let X and X 
be two different k-bit vectors, and suppose that they differ 
in the ith position. Let Di denote a  vector  which has a one 
in the i th  position and zeros  in all other positions. Then 
X *   D i  and X Di differ in  exactly one position. Therefore, 

c ( X * D i ) # c ( X * D i ) ,  

and 

a(X’ )  * b ( D i )   # a ( X )  * b ( D i )  . 
Clearly then a ( X ) # a ( X ) ,  and  the 2 k  different k-bit 
input vectors thus  have pairwise unequal check  symbols; 
this  completes the proof. 

If in particular  the check  symbols are m-bit vectors, 
then m Z k ,  so that  the  attempt  to check for single errors 
involves as many calculations  as the  operation  to be 
checked, or in other words, is no simpler than complete 
duplication. 

There  are a total of sixteen different  logical functions of 
two variables. Six of these ( f  (x, y )  = 1, 0, x, y ,  X, and J )  

164 are trivial because  they depend  upon only one  or neither 
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c(Z) = C ( X . Y )  

Figure I ,Check-symbol coding. 

of the arguments. Two others, “exclusive or” ( f ( x ,  y )  = 

x - y u 2 . y )  anditscomplement ( f (x ,y)=x*yUX*y) ,can 
be checked using parity digits in error-detecting and 
correcting  codes of the type used in information transmis- 
sion.l>  The remaining eight functions  are: 

/(x, y )  = x . y ,  X*?, 2 * y ,  X-y, x u y ,  X U ? ,  X U y ,  and XU?. 

Theorem 1 (and  the method of proof) applies to all 
nontrivial logical functions except “exclusive or” and its 
complement. 

Somewhat  stronger  results can be  obtained if it is as- 
sumed that ( 1 )  the  same type of encoding is used at both 
inputs and  output, i.e., a ( X )   = b ( X )   = c ( X )  for all X ,  and 
(2) both  “and”  and “exclusive or” are  to be  checked, i.e., 
there  are two types of checking devices, one  to be used 
with an  “and” device and  one with an “exclusive or” de- 
vice. The symbol @ will be used to  denote “exclusive or” 
of vectors of binary digits. 

Theorem 2 

Let S be a set of symbols for which two operations and 
@ are defined, and let C( V )  be a  function which  attaches 
an element of  S to each vector V ,  in such a way that: 

C(V1@Vz)=C(V1)@C(V2) 

and 

C( V1 V,) = C( VI) C( V,) . 
Then the number of distinct  elements of S which  appear 
as check symbols of some V is a  power of 2, say 2”, and 
there is a subset of m of the coordinates of V such that 
C(V)  depends only upon these coordinates and is dif- 
ferent  for any two  vectors which differ in any of these 
coordinates. 

Note  that  it  has not been assumed that  the  opera- 
tions * and @ defined on  the set S of check symbols are 
actually  multiplication or any kind of addition.  However, 
the assumptions that C (  VI@ V Z )  =C( VI) @C( V,) and 
C( V I  V Z )  =C( V I )  C( V z )  make these  operations have 
the properties of addition and multiplication,  as will ap- 
pear  in  the  proof,  and hence the notation is natural. 

Proof: Let Di denote a  vector  which has a one  in  the i t h  

position and zeros  elsewhere, and let 0 denote a  vector of 
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all zeros. Then, C( Di )  may  be unequal  to C (  0) for some, 
say rn, of the vectors Di  and equal to C( 0) for the remain- 
ing k-rn vectors. There will be no loss of generality in 
assuming that  the coordinates  are arranged so that: 

C(Di)  #C(O) if i s m  
C ( D i )  =C(O) if i>rn . 

If OA is defined as C(0) and 1A is defined as A ,  for A 
belonging to S, 

C ( a V )  = a C ( V )  , 

where a=O or 1. Then any vector V =  ( V I ,  v2, . . . V I , )  can 
be represented  as  follows: 

V=VlD1@ V2D2 , . . . . . . . . . . . @ V k D l c  

and,  therefore, 

C ( V ) = v , * C ( D , ) @ v z * C ( D , ) .  . . . . . . .$v,C(D,). 

The rn + l s t  to kt” components do  not  appear because 
C ( D i )  = C ( 0 )  for these components, and C ( X ) $ C ( O )  = 

C ( X e 0 )  = C ( X )  for any  vector X .  Thus, C ( V )  depends 
only upon  the first rn components of V and  not  at all upon 
the  last k-rn components. 

If V does not have all zeros in its first rn positions, and 
if the ith position contains  a  “one,”  then 

C ( V * D i ) = C ( V ) . C ( D i )  

and since 

V Di=Di, 

C(Di )   =C(  V )  .C(Di).  

Now if C ( V )  =C(O) ,  then C ( D i )  -C(O) C ( D i )  = 

C(O Di) = C(0) contrary  to  the assumption that C ( D i )  
#C(O) for the first rn positions. Therefore, C (  V )  f0.  

Now suppose V I  and V 2  differ in  at least one  of  the first 
rn positions. Then,  V1@V2 is not all zeros in these posi- 
tions, and hence 

C(VI@V,)#C(O).  

Then 

C ( ~ , > @ C ( V , ) # C ( O )  

and 

C ( V l ) # C ( V d ,  

for if they were equal, 

C ( V d @ C ( V , )  =C(V,)@C(V,)  =C(V,$V,) =C(O). 

Thus  any two vectors which differ in the first rn coordi- 

Figure 2 Block coding with  digit-by-digit processing. 

k - D I G I T   V E C T O R S   n - D I G I T   V E C T O R S  

nates have different check symbols and the check symbol 
depends  only upon  the first rn coordinate. There must 
then be 2m different check symbols, one  for  each possible 
configuration of the first rn coordinate. 

Since “exclusive or”  can be defined in  terms of “and” 
and  “not,”  the  theorem holds if an  attempt is made  to 
check “and”  and  “not”  rather  than  “and”  and “exclusive 
or,” or similarly, “or” and “not.” if a constant  input 
vector of all 1’s is allowed, “and”  and  “not”  can  both be 
defined in  terms of any one logical function except  “and,” 
“or,” “exclusive or,”  the negation of “exclusive or,” or the 
six trivial ones. Therefore,  an  attempt  to check any one 
of these  remaining six using the  same code at  both  inputs 
and  the  output results  in the  same conclusion. 

More  general codes 

Two types of more general  coding systems are check- 
symbol  codes  which are capable of correcting errors or 
detecting  multiple errors,  and block codes  capable of 
detecting or correcting errors. i n  either  case, it is neces- 
sary to classify errors so that  the types of errors  to be 
corrected or detected can be specified. i f  only  sequences 
of binary digits are used, then  errors can  be classified as 
single, double,  triple,  et cetera, according to  how  many 
digits are incorrect. In general there is no  such simple 
classification and,  therefore, in the  remainder of this 
paper only  sequences of binary digits will be considered. 

If the  failure of a single component in the circuits  doing 
the logical operations can cause  two or more digits in the 
answer to  be  in  error,  then “single-error detection”  codes 
might  fail to detect the  failure of a single component. To 
insure  against  this, it will be assumed that  the vectors of 
binary digits are processed digit by digit, and  thus  one 
error in processing can affect only one digit. The only 
alternative appears  to be to study the circuits themselves, 
which is beyond the scope of this paper. 

With digit-by-digit processing, no stronger  results can 
be  obtained  for  check-symbol  coding  (illustrated  in 
Fig. 1) than for general  codes  (illustrated  in  Fig. 2 ) ,  
and since for sequences of binary digits the check  symbol 
and information  together  can  be  considered the block in 
the general block coding,  check-symbol  coding is a special 
case of block coding. Therefore,  the general block coding 
with digit-by-digit processing is considered next. 

Constraints on general block codes with digit-by- 
digit processing 

The coding system to be considered is illustrated in Fig. 2. 
The k-digit first input X = =  (x1 . . . x k )  is coded  into an 
n-digit vector U =  ( u1 . . . u,) . The second input Y = 

n - D I G I T   V E C T O R   k - D I G I T   V E C T O R  

X 

Y 
- Z 
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( y ~  . . . y k )  is coded into a second n-digit vector V =  
( V I  . . . v,) . Then U and V are combined digit by digit to 
form  an n-digit output vector W= ( w1 . . . w,) . The as- 
sumption “digit by digit” means mathematically that  for 
each i :  

wi= f i (  ui, V i ) .  

Note  that it is not even assumed that  the same function,  or 
rule of combination, is used for every digit. Finally, the 
vector W is decoded into a k-bit vector Z which is sup- 
posed to be 

Z = X * Y .  

It will also be assumed that in the absence of noise, the 
decoding is one-to-one, i.e., Z is a  one-to-one function of 
W ,  and  therefore W is a single-valued function of Z .  

Any  code which maps k-digit vectors of binary digits 
into n-digit vectors can be transformed  into a  code which 
maps the vector of all  zeros into  the vector of all zeros, 
and which for all practical purposes is completely  equiva- 
lent to  the original  code. This can  be  accomplished by 
simply locating all the digit positions which are ones in 
the n-digit vector  which is the  code  for  the k-digit vector 
of all  zeros, and complementing these digit positions in all 
the n-digit coded vectors. Since  every code is equivalent 
to a code of this  type, only  codes  which  map  the  vector of 
all zeros  into  the  vector o f  all zeros will be considered 
f rom here on. 

Theorem 3 

I f  ui(O)=vi(O)=wi(O)=O and f i (u i (X) ,   v i (Y ) )=wi (X*Y) ,  
then  either w i ( X )  =O for all vectors X ,  or u i ( X )  = v i ( X )  
= w i ( X )  f o r  all X ,  and f i ( u i ( X ) ,   v i ( Y ) )   = u i ( X )   * v i ( Y ) .  

Proof: (a) If u i (Z )  =0, then u i (Z )  =ui(O) and f ( u i ( Z ) ,  
v i ( Z ) )  = w i ( Z )  = f ( u i ( O ) ,   v i ( Z ) )   = w i ( O * Z )  =O. There- 
fore, if w i ( Z )  = 1, u i ( Z )  = 1. Similarly, if w i ( Z )  = 1, 
Vi (Z)  = 1. 

(b) If for any  vector, say Xo,   w i (Xo)  = 1, then 

i 

I 

~ 

f i ( U i ( O ) ,  V i ( 0 ) )  = w i ( o * o )  = f i ( 0 , O )  =o 
f i ( U i ( O ) ,  Vi(X0))  =wi(O*Xo) = f i ( o ,  1) =o 
f i ( u i ( x o ) , v i ( O ) ) = w i ( X 0 * 0 ) = f i ( l , O ) = O  

fi(Ui(X,), vi(Xo))=wi(Xo’Xo)=fi(1,1>=1 . 
Thereforefi(ui(X),vi(Y))=ui(X) * v i ( Y )  i f foranyxo,  

I w i ( X o )  = 1, and  from this point on  the  latter  notation will 
be used. 

(c) If a  vector of all 1’s is represented by 1, and if 
wi(Xo)  = 1 ,  then ui( 1 )  *vi(Xo)   =wi(Xo* 1 )  = 1, and hence 
ui(1) = 1. Similarly, v i (1 )  = 1, and  it  follows  that 
Wi( 1) = 1. 

(a) Finally, u i ( X )  vi( 1 )  = u i ( X )  = w i ( X *  1 )  = wi(X) .  
Similarly, v i ( X )  = w i ( X ) .  

This completes the  proof. 

166 In other words, the  constraint  that  the coding must be 
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Table1 Relationship  between  input  and  output 
codes. 

Logical operation 
between  codes being checked 
Relation 

1. z=x* Y 

2 . Z = X U Y  

3.  Z=X@ Y (exclusive or) 

4 . Z = X @ Y  
- i U i ( X )   = v i ( x )   = w i ( x )  

5. z=x *P 
6. Z = X U T  

& ( X )  = w t ( X )  

vi ( X )  = wi (X) 
- 

7. z=x. Y 

8. Z = x U Y  

ui ( X )  = wi (T) 
V i ( X )  = w i ( x )  

” 

9. z=x Y 

10. Z = X U Y  
” 

compatible  with the  “and”  operation requires that  the 
processing of the check  symbols  be done by an  “and” 
operation also and  that  the  same  code  be used  at both 
inputs and  the  output. 

Again the  theorem  can be generalized. It is true  for all 
nontrivial logical operations that if any  one of the  three 
codes (either  input  code  or  the  output  code) is given, the 
others  are determined. The relationships are given in 
Table 1. 

It is also true  that  the  operation  on  the  coded digits 
must  be the  same as the  operation being checked  except 
for  the complement of “exclusive or.” The  proofs for the 
other cases are similar to  the proof given for “and.” 
Furthermore,  for Operations 1, 5 ,  7, and 9 in the  Table, 

Wi(X)  W i ( Y )  = w i ( x *  Y )  

while for 2 ,  6, 8, and 10, 

W i ( X )  U W i ( Y )  = w i ( x u Y ) .  

The following theorem completes  the  characterization 
of codes for checking “exclusive or” or its complement: 

Theorem 4 

Let C(Y)  be a function  which  takes on the values 0 and I 
such  that C(X)*C(Y)=C(X$Y).  Then the  operation * 
is  “exclusive or,” and C(X) is a  parity check on some 
subset o f  the  components of X .  If C(X)*C(Y)=  C(X@Y), 
then again C(X)  is a parity check on some subset of the 
coordinates of X ,  and * is “exclusive or” if an  even 
number of positions are included,  the  complement of 
“exclusive or” if  an  odd  number  of  positions are involved. 



The proof will be given only for “exclusive or.” The 
proof for its  complement follows the  same lines but is 
slightly more involved. Let X. be  a  vector for which 
C ( X o )  = 1 .  By hypothesis, C(0) =O. Then 

o*o=c(o)*c(o) =C(O@O) =C(O) =o  
o*1=c(o )*c (xo)  =C(Ocl3Xo) =C(Xo) =1  

1 *O= 1 similarly, and finally 

1*1  =C(X,) * C ( X , )  =C(Xo@X,) =C(O) =o . 
Therefore  the  operation * corresponds to “exclusive or.” 
Now  suppose C ( D i )  =si, where Di is again the vector  with 
a  “one”  in the ith position  and  zeros elsewhere. Then 
since : 

1/“V1D1@V2D2@V3D3@. . . . . . CBV~D,~ ,  

C (  V )  = v1s1cl3v2sz@v3s3@ . . . . . . e 3 V k S k  . 
This can be considered the definition of a  parity  check, 
where si= 1 for  the coordinates  included  in the parity 
check. 

Each digit in the block of n digits to be processed satis- 
fies the hypotheses of Theorem 4 if “exclusive or” or its 
complement is to be  checked. Thus parity  checks, and 
in fact only parity  checks  can  be used to check these 
operations  with the type of coding assumed. 

If Y 1  Y z  = Y1, we will say Y 1  is contained  in Y 2 ,  or 
Y 1  c Y z .  This will be  the case if,  and only if, every  position 
which contains  a  “one”  in Y 1  also contains  a  “one” in Y z .  

The next theorems  completely  characterize  codes for 
checking the  other eight nontrivial logical operations: 

0 Theorem 5 A  

Let C(Y) be  a  function which takes on the  value 1 or 0,  
and such that C(Yl Y2)  = C(Yl) C(Y2). Then there  exists 
a  vector Yo such that C(Y)=1, i f  and only i f  YoCY.  
Conversely,  for  any  vector Y o  the function C(Y) defined 
to  be  one if and only i f  Yo c Y has  the property C(Y1 Y z )  
=C(Y,)*C(Y,).  

Proof: Let Y o  be the vector which results from combining 
by the “and” operation all the vectors Y such  that 
C( Y )  = 1. Then C( Y o )  = 1,  and  from  the definition of Y O  
it is clear that YoC Y if C( Y )  = 1. Also, if YoC Y ,  then 
Yo~Y=Yo,C(Yo)*C(Y)=C(Yo),andsinceC(Yo)=l, 
l - C ( Y ) = l , a n d h e n c e C ( Y ) = l .  

The  converse  follows  from  the  observation  that 
Yo C Y 1  Y z  if and only if Y o  c Y 1  and YoC Y z .  Therefore 
C( Y 1  Y 2 )  = 1 if and  only if C( Y , )  = 1 and C( Y z )  = 1. 

Theorem 5B 

Let D(Y) be  a  function  which  takes  on the  values 1 and 0 
and  such  that D(Y1 U Y2)=  D(Y1)U D(Yz). Then there 
exists a  vector Yo such  that  the function D(Y)=O if  and 
only if Y c Yo.  Conversely,  for  any  vector Yo, the  function 
D(Y) defined to  be  zero i f  and only i f  Y c Yo has  the 
property D(YlUY2)=D(Yl)UD(Yz). 

The proof is similar to  that  for  Theorem 5A. 

0 Theorem 6 

Let C(F)=D(Y).  I f  C(Y,*Y2)=C(Y1)*C(Y2) for  all 
choices o f  Y 1  and Y z ,  then D(Y1UY2)=D(Y1)UD(Yz) 
f o r  all choices o f  Y l  and Y2,  and conversely. Also, i f  Yoc 
denotes the Yo defined in Theorem 5 for  the function C, 
and YO, is the Yo defined for D, Y ” d = z  

Proof: D(Y1UYZ)  =D(E;,*Fz) =C(Y,*Fz)  = 

C(yl)*C(Fz) = C ( F l ) U C ( Y z )   = D ( Y l ) U D ( Y 2 ) .  The 
proof of the converse is similar. The relation between Yoc 
and Yod is shown by noting that  the assumed relation be- 
tween C and D implies that  for  any vector Y ,  C (  Y )  = l if 
and only if D ( Y )  =O. Let Y 1 ,   Y z ,   Y 3 ,  . . . be a list of all 
vectors such  that D (   Y )  =O. Then yl ,  y2, E, . . . is a list 
of all vectors Y such  that C (  Y )  = 1 .  In  the proof of Theo- 
rem  5,  it is shown that Yo, is the result of combining by 
the  “and”  operation all vectors Y such that C( Y )  = 1, Le., 

Yoc=Y1*Ys*Y:3. .  . . . . . . . 
Similarly, 

Yoa= Y1 u Yz u Ys . . . . . . . . . 
and since  in  general A B = A  U B ,  YOd=  Yo, . 

” 

- 

- ._ - 

- - 

Thus either Theorem  5A or Theorem 5B applies to 
every  checking code  at  input  or  output  for all non-trivial 
logical operations  except “exclusive-or” and its  comple- 
ment. 

Error detection and correction with block codes 
and digit-by-digit processing 

A  binary code detects single errors if and only if every 
pair of unequal k-digit vectors maps  into a pair of n-digit 
vectors  which differ in  at least  two positions, i.e., have 
minimum distance 2. Minimum distance 3 permits single- 
error correction or double-error  detection. Minimum dis- 
tance 4 permits  simultaneous  single-error  correction  and 
double-error  detection, or triple-error  detection, et cetera. 
Therefore,  the questions of error-correcting  ability  reduce 
to questions of minimum  distance for  the  code in  ques- 
ti0n.l Now  the question of how  long a code is required to 
achieve  minimum  distance d will be  considered for each 
of the ten  nontrivial logical operations. 

Theorem 4 reduces the question of checking “exclusive 
or”  and its complement to  that of finding group alphabets 
with the required  error-correcting ability, since  a code is a 
group  alphabet if and only if all the digits in the coded 
vectors are  parity checks.2  A number of such coding 
systems are described  in the  literature.l, 2 , 4 , 5  

In a  code for checking the  “and”  operation each digit 
in  the coded n-digit vector  must satisfy the hypotheses of 
Theorem 5. Then  to achieve  distance d ,  the distance be- 
tween the vector 0 and  the vector W(Dj)  must  have at 
least d “ones.” ( D j  again  denotes  a k-digit vector  with  a 
“one”  only  in the ith position.)  Since the only  vector 
which is contained  in Dj is Dj  itself, the only type of 
coded digits wi(Di )  which will be 1 are those for which 
Yo defined in the theorem is Dj  itself. Such  a digit will be 167 

IBM JOURNAL’APRIL 1959 



1 for any  vector whose jth component is 1, since any such 
vector  contains  Dj. Thus  such a digit w i ( x )  a copy of the 
jth digit of X .  To maintain  minimum  distance d, d such 
digits are required, i.e., d copies of each digit of X are 
included among  the components of W ( X )  . 

Analogous  results  can be obtained for checking the 
“or”  operation, with exactly  analogous  proofs. In  fact, 
all codes used in  checking all nontrivial logical operations 
except “exclusive or”  and its  complement  must satisfy 
Theorem  5,  and hence any  such  code must, if it is to 
achieve  distance d, have  at least d copies of each  uncoded 
digit among the digits in the coded  vector. 

Conclusion 

The most important results can be summarized as follows: 
( 1 )  For single error-detection  codes  which consist in 

the original information with a  check  symbol,  as  indi- 
cated in Fig. 1, there is no simpler system than making the 
check symbols duplicates of the  information  for any  non- 
trivial logical operations  except “exclusive or”  and its 
complement.  These  two  operations  can be checked by a 
parity digit. 

( 2 )  For general block coding,  with the  output decod- 
ing  one-to-one  in the absence of errors,  and if the coded 
blocks are processed digit by digit, for “and,”  “or,” “exclu- 
sive or,”  and its complement, the  same  code must  be used 
at  both  inputs  and  at  the  output (assuming that in  each 
case the sequence of all zeros  codes into  the sequence of 
all zeros).  For  the  other six nontrivial logical operations, 
the  input  and  output codes are closely related. For all 
logical operations  except the complement of “exclusive 
or,”  the  operation  done  on coded blocks must be the 
same as the operation being checked. For “exclusive or” 
and its complement,  each digit in the coded blocks is a 
parity  check on some  subset of the digits of the uncoded 
block. In  other words, group codes, and only group 
codes, can be used to check these two  operations. 

( 3 )  For  the  same restrictions on coding  as  in (2) ,  and 
for all nontrivial logical operations  except “exclusive-or” 
and its  complement, there is no simpler coding system 
with a specified ability to  detect  or correct errors  than a 
system in which the coded  sequence consists of a number 
of copies of the uncoded  sequence. 

Elias stated this last  result  without  proof.3 He also gave 
some partial results for  the case in which it is not assumed 
that  the decoding at  the  output is one-to-one  in the ab- 
sence of noise. He pointed out, however, that if the 
decoding is not one-to-one in  the absence of errors,  there 
is some information  about  the inputs which is not about 

the logical function of the inputs, in the  output.  In a sense 
this requires the decoder to  do a part of the logical opera- 
tion, or  at least it leaves some doubt as to whether the 
“processing” and “coding”  operations have really been 
isolated in the analysis. 

It should be noted that  the problem  considered here 
is essentially that of checking the  operation of logical 
devices. When  the logical devices are combined into a 
system, an over-all system check  may still be possible. For 
example, an  adder  can be constructed of “and,” “or,” and 
“not” devices which cannot be simply checked, and yet 
the addition operation as a whole can be checked  quite 
well without  complete  duplication.6 Also, a computer 
programmed to solve a  complex  mechanical  problem 
frequently can  be  checked by considering the principles 
of conservation of energy or  momentum,  although  the 
individual logical operations  in the  computer  are not 
checked. 

It is interesting to  note also that  among  the few very 
simple  problems  considered here, some,  namely “exclu- 
sive or”  and its complement,  could be checked easily, 
while others, like “and,” could not be checked short of 
duplication or repetition of the problem.  Larger  problems 
also seem to vary  greatly  in the degree to which  their 
inherent redundancy or  structure aids  checking. 

Finally, while the results given in this paper  and those 
of Elias are  not  at all encouraging, it is still possible that 
some  economical way to check  simultaneously  a  number 
of logical “and” devices might be found by considering 
the circuits themselves rather  than  the coding system. In 
any case, the search for  such a system is narrowed  con- 
siderably. 
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