
W. W. Peterson

M. 0. Rabin

On Codes for Checking Logical Operations

Abstract: Two types of codes for checking logical operations digit by digit on two vectors of binary digits are

studied. The first type attaches a check symbol to each vector of binary digits and requires that the check

symbol for the logical function of two vectors can be determined from the check symbols of the two input

vectors. The second type of coding i s ordinary block coding into vectors of binary digits, with the added

requirement that the coded vectors be processed digit by digit.

The constraints on the codes resulting from the assumptions for the coding system are studied by typical

algebraic arguments. It i s shown that for both types of coding and for all nontrivial logical functions of two

variables, except ”exclusive or” and its complement, there i s no system of checking simpler than duplication.

For “exclusive or” and its complement, group alphabets can be used, and for the block coding these are the

only codes which can be used.

Introduction

Checking the operation of a two-input, one-output logical
device such as an “and” circuit requires checking appa-
ratus which has three inputs (the inputs and output of
the circuit to be checked) and one output (the result of
the check). Thus, the check requires that the equipment
be more than doubled for the simple detection of errors.

If the problem were to transmit one binary digit of
information, checking would require that the bit be re-
peated, and thus would require at least either twice as
much time or twice as much equipment. If, on the other
hand, many binary digits are to be transmitted, it is possi-
ble to check much more economically. For example, a
“parity check” symbol added to a sequence of arbitrarily
many binary digits enables single-error detection, and the
Hamming code permits correction of any single errors
and detection of double errors with the addition of rela-
tively few parity-check digits.l

This suggests consideration of checking a number of
similar logical operations simultaneously, which is the
subject of this paper. The general approach is to define a
type of coding and then study the consequences of the
requirement that the coding has to be compatible with the
processing. The types of coding considered must be
chosen carefully to avoid misleading results. For example,
a device which detects single errors in the output but
which misses double errors in the output resulting from
the failure of a single circuit component could hardly be
considered “single-error-detecting.”

The two general types of coding considered are illus-

trated in Figs. 1 and 2. In the first case, bIocks of informa-
tion are processed in the usual way and in addition check
symbols, one for each block, are processed separately to
give a check symbol for the result. For this system, there
is no restriction assumed on the type of check symbols or
the method of processing, except that it be compatible
with the processing of the information. In the second
case, it is assumed that blocks of k binary digits to be
processed are coded into blocks of It binary digits, which
are processed digit by digit (either serially or in parallel).
The n-digit output is decoded into a k-digit sequence.

It is known that the parity-check-type binary codes
used in transmission of information1, can also be used
for checking the logical operation “exclusive or” and its
complement. For all other nontrivial logical operations,
all coding schemes considered require complete duplica-
tion of equipment for single-error detection, triplication
for single-error correction, et cetera.

The second type of coding described above was con-
sidered by E l i a ~ , ~ and he obtained the principal results for
this type of coding. The theory is carried out here in
somewhat more detail, thus giving a clearer concept of
the constraints on error-checking codes for logical oper-
ations.

Check-symbol coding

Let X , Y, Z denote vectors or sequences of k binary digits,
and x i , yi , zi the ith digits in the respective vectors. The
“and” operation on vectors means digit-by-digit “and,” 163

IBM JOURNAL APRIL 1959

that is, X * Y = Z means that for each i , xi-yi=zi .
For example, if k = 3 , X = (1 , 0 , l) , Y=(O, 1, 1) , then
X * Y = (O , O , 1).

Now consider check-symbol coding, which is repre-
sented in Fig. 1. Two sequences X and Y are combined to
form a new sequence X * Y . To the first input X is asso-
ciated a check symbol which is denoted a (X) to indicate
that it is a function of X , Le., that different sequences may
have different check symbols. Similarly, to the second
input Y is associated b (Y) , a check symbol which may be
a different function, and to the output Z is associated
c (Z) . The check symbols a (X) and b(Y) are put into a
checking device, and the output is supposed to be the
check symbol which matches the output of the logical
device being checked, i.e., c (Z) . This condition for com-
patibility of the checking with the logical operation on
vectors may be expressed

a (X) b(Y) = c (X * Y) ,
where * represents the operation done by the checking
device.

This is an extremely general check-symbol coding
scheme. A different code is allowed at each input and at
the output. The check symbols need not be processed in
any special way; in fact, no assumption has been made as
to the character of the check symbols except that they
be compatible with the logical operation. Even with these
very general assumptions, the following result holds:

Theorem I

I f for a given choice of functionsa(X), b(Y) , and c (Z) ,
and the operation *, i f the check-symbol coding described
above detects all single errors, the number of different
check symbols a (X) is 2k. The same holds for b(Y) .

Proof: Detection of single errors requires that whenever
only one of the digits in the output vector is incorrect,
the error can be detected. This implies that if Z and Z’
differ in exactly one position, c (Z) f c (2) . Let X and X
be two different k-bit vectors, and suppose that they differ
in the ith position. Let Di denote a vector which has a one
in the i th position and zeros in all other positions. Then
X * D i and X Di differ in exactly one position. Therefore,

c (X * D i) # c (X * D i) ,

and

a(X’) * b (D i) # a (X) * b (D i) .
Clearly then a (X) # a (X) , and the 2 k different k-bit
input vectors thus have pairwise unequal check symbols;
this completes the proof.

If in particular the check symbols are m-bit vectors,
then m Z k , so that the attempt to check for single errors
involves as many calculations as the operation to be
checked, or in other words, is no simpler than complete
duplication.

There are a total of sixteen different logical functions of
two variables. Six of these (f (x, y) = 1, 0, x, y , X, and J)

164 are trivial because they depend upon only one or neither

k - D I G I T V E C T O R S k - D I G I T VECTOR

V

z = X . Y

C H E C K S Y M B O L S C H E C K S Y M B O L

a(x)

b(Y)
c(Z) = C (X . Y)

Figure I ,Check-symbol coding.

of the arguments. Two others, “exclusive or” (f (x , y) =

x - y u 2 . y) anditscomplement (f (x ,y)=x*yUX*y) ,can
be checked using parity digits in error-detecting and
correcting codes of the type used in information transmis-
sion.l> The remaining eight functions are:

/(x, y) = x . y , X*?, 2 * y , X-y, x u y , X U ? , X U y , and XU?.

Theorem 1 (and the method of proof) applies to all
nontrivial logical functions except “exclusive or” and its
complement.

Somewhat stronger results can be obtained if it is as-
sumed that (1) the same type of encoding is used at both
inputs and output, i.e., a (X) = b (X) = c (X) for all X , and
(2) both “and” and “exclusive or” are to be checked, i.e.,
there are two types of checking devices, one to be used
with an “and” device and one with an “exclusive or” de-
vice. The symbol @ will be used to denote “exclusive or”
of vectors of binary digits.

Theorem 2

Let S be a set of symbols for which two operations and
@ are defined, and let C(V) be a function which attaches
an element of S to each vector V , in such a way that:

C(V1@Vz)=C(V1)@C(V2)

and

C(V1 V,) = C(VI) C(V,) .
Then the number of distinct elements of S which appear
as check symbols of some V is a power of 2, say 2”, and
there is a subset of m of the coordinates of V such that
C(V) depends only upon these coordinates and is dif-
ferent for any two vectors which differ in any of these
coordinates.

Note that it has not been assumed that the opera-
tions * and @ defined on the set S of check symbols are
actually multiplication or any kind of addition. However,
the assumptions that C (VI@ V Z) =C(VI) @C(V,) and
C(V I V Z) =C(V I) C(V z) make these operations have
the properties of addition and multiplication, as will ap-
pear in the proof, and hence the notation is natural.

Proof: Let Di denote a vector which has a one in the i t h

position and zeros elsewhere, and let 0 denote a vector of

IBM JOURNAL APRIL 1959

all zeros. Then, C(Di) may be unequal to C (0) for some,
say rn, of the vectors Di and equal to C(0) for the remain-
ing k-rn vectors. There will be no loss of generality in
assuming that the coordinates are arranged so that:

C(Di) #C(O) if i s m
C (D i) =C(O) if i>rn .

If OA is defined as C(0) and 1A is defined as A , for A
belonging to S,

C (a V) = a C (V) ,

where a=O or 1. Then any vector V = (V I , v2, . . . V I ,) can
be represented as follows:

V=VlD1@ V2D2 , @ V k D l c

and, therefore,

C (V) = v , * C (D ,) @ v z * C (D ,)$v,C(D,).

The rn + l s t to kt” components do not appear because
C (D i) = C (0) for these components, and C (X) $ C (O) =

C (X e 0) = C (X) for any vector X . Thus, C (V) depends
only upon the first rn components of V and not at all upon
the last k-rn components.

If V does not have all zeros in its first rn positions, and
if the ith position contains a “one,” then

C (V * D i) = C (V) . C (D i)

and since

V Di=Di,

C(Di) =C(V) .C(Di).

Now if C (V) =C(O) , then C (D i) -C(O) C (D i) =

C(O Di) = C(0) contrary to the assumption that C (D i)
#C(O) for the first rn positions. Therefore, C (V) f0.

Now suppose V I and V 2 differ in at least one of the first
rn positions. Then, V1@V2 is not all zeros in these posi-
tions, and hence

C(VI@V,)#C(O).

Then

C (~ , > @ C (V ,) # C (O)

and

C (V l) # C (V d ,

for if they were equal,

C (V d @ C (V ,) =C(V,)@C(V,) =C(V,$V,) =C(O).

Thus any two vectors which differ in the first rn coordi-

Figure 2 Block coding with digit-by-digit processing.

k - D I G I T V E C T O R S n - D I G I T V E C T O R S

nates have different check symbols and the check symbol
depends only upon the first rn coordinate. There must
then be 2m different check symbols, one for each possible
configuration of the first rn coordinate.

Since “exclusive or” can be defined in terms of “and”
and “not,” the theorem holds if an attempt is made to
check “and” and “not” rather than “and” and “exclusive
or,” or similarly, “or” and “not.” if a constant input
vector of all 1’s is allowed, “and” and “not” can both be
defined in terms of any one logical function except “and,”
“or,” “exclusive or,” the negation of “exclusive or,” or the
six trivial ones. Therefore, an attempt to check any one
of these remaining six using the same code at both inputs
and the output results in the same conclusion.

More general codes

Two types of more general coding systems are check-
symbol codes which are capable of correcting errors or
detecting multiple errors, and block codes capable of
detecting or correcting errors. i n either case, it is neces-
sary to classify errors so that the types of errors to be
corrected or detected can be specified. i f only sequences
of binary digits are used, then errors can be classified as
single, double, triple, et cetera, according to how many
digits are incorrect. In general there is no such simple
classification and, therefore, in the remainder of this
paper only sequences of binary digits will be considered.

If the failure of a single component in the circuits doing
the logical operations can cause two or more digits in the
answer to be in error, then “single-error detection” codes
might fail to detect the failure of a single component. To
insure against this, it will be assumed that the vectors of
binary digits are processed digit by digit, and thus one
error in processing can affect only one digit. The only
alternative appears to be to study the circuits themselves,
which is beyond the scope of this paper.

With digit-by-digit processing, no stronger results can
be obtained for check-symbol coding (illustrated in
Fig. 1) than for general codes (illustrated in Fig. 2) ,
and since for sequences of binary digits the check symbol
and information together can be considered the block in
the general block coding, check-symbol coding is a special
case of block coding. Therefore, the general block coding
with digit-by-digit processing is considered next.

Constraints on general block codes with digit-by-
digit processing

The coding system to be considered is illustrated in Fig. 2.
The k-digit first input X = = (x1 . . . x k) is coded into an
n-digit vector U = (u1 . . . u,) . The second input Y =

n - D I G I T V E C T O R k - D I G I T V E C T O R

X

Y
- Z

165

IBM JOURNAL APRIL 1959

(y ~ . . . y k) is coded into a second n-digit vector V =
(V I . . . v,) . Then U and V are combined digit by digit to
form an n-digit output vector W= (w1 . . . w,) . The as-
sumption “digit by digit” means mathematically that for
each i :

wi= f i (ui, V i) .

Note that it is not even assumed that the same function, or
rule of combination, is used for every digit. Finally, the
vector W is decoded into a k-bit vector Z which is sup-
posed to be

Z = X * Y .

It will also be assumed that in the absence of noise, the
decoding is one-to-one, i.e., Z is a one-to-one function of
W , and therefore W is a single-valued function of Z .

Any code which maps k-digit vectors of binary digits
into n-digit vectors can be transformed into a code which
maps the vector of all zeros into the vector of all zeros,
and which for all practical purposes is completely equiva-
lent to the original code. This can be accomplished by
simply locating all the digit positions which are ones in
the n-digit vector which is the code for the k-digit vector
of all zeros, and complementing these digit positions in all
the n-digit coded vectors. Since every code is equivalent
to a code of this type, only codes which map the vector of
all zeros into the vector o f all zeros will be considered
f rom here on.

Theorem 3

I f ui(O)=vi(O)=wi(O)=O and f i (u i (X) , v i (Y))=wi (X*Y) ,
then either w i (X) =O for all vectors X , or u i (X) = v i (X)
= w i (X) f o r all X , and f i (u i (X) , v i (Y)) = u i (X) * v i (Y) .

Proof: (a) If u i (Z) =0, then u i (Z) =ui(O) and f (u i (Z) ,
v i (Z)) = w i (Z) = f (u i (O) , v i (Z)) = w i (O * Z) =O. There-
fore, if w i (Z) = 1, u i (Z) = 1. Similarly, if w i (Z) = 1,
Vi (Z) = 1.

(b) If for any vector, say Xo, w i (Xo) = 1, then

i

I

~

f i (U i (O) , V i (0)) = w i (o * o) = f i (0 , O) =o
f i (U i (O) , Vi(X0)) =wi(O*Xo) = f i (o , 1) =o
f i (u i (x o) , v i (O)) = w i (X 0 * 0) = f i (l , O) = O

fi(Ui(X,), vi(Xo))=wi(Xo’Xo)=fi(1,1>=1 .
Thereforefi(ui(X),vi(Y))=ui(X) * v i (Y) i f foranyxo,

I w i (X o) = 1, and from this point on the latter notation will
be used.

(c) If a vector of all 1’s is represented by 1, and if
wi(Xo) = 1 , then ui(1) *vi(Xo) =wi(Xo* 1) = 1, and hence
ui(1) = 1. Similarly, v i (1) = 1, and it follows that
Wi(1) = 1.

(a) Finally, u i (X) vi(1) = u i (X) = w i (X * 1) = wi(X) .
Similarly, v i (X) = w i (X) .

This completes the proof.

166 In other words, the constraint that the coding must be

IBM JOURNAL- APRIL 1959

Table1 Relationship between input and output
codes.

Logical operation
between codes being checked
Relation

1. z=x* Y

2 . Z = X U Y

3. Z=X@ Y (exclusive or)

4 . Z = X @ Y
- i U i (X) = v i (x) = w i (x)

5. z=x *P
6. Z = X U T

& (X) = w t (X)

vi (X) = wi (X)
-

7. z=x. Y

8. Z = x U Y

ui (X) = wi (T)
V i (X) = w i (x)

”

9. z=x Y

10. Z = X U Y
”

compatible with the “and” operation requires that the
processing of the check symbols be done by an “and”
operation also and that the same code be used at both
inputs and the output.

Again the theorem can be generalized. It is true for all
nontrivial logical operations that if any one of the three
codes (either input code or the output code) is given, the
others are determined. The relationships are given in
Table 1.

It is also true that the operation on the coded digits
must be the same as the operation being checked except
for the complement of “exclusive or.” The proofs for the
other cases are similar to the proof given for “and.”
Furthermore, for Operations 1, 5 , 7, and 9 in the Table,

Wi(X) W i (Y) = w i (x * Y)

while for 2 , 6, 8, and 10,

W i (X) U W i (Y) = w i (x u Y) .

The following theorem completes the characterization
of codes for checking “exclusive or” or its complement:

Theorem 4

Let C(Y) be a function which takes on the values 0 and I
such that C(X)*C(Y)=C(X$Y). Then the operation *
is “exclusive or,” and C(X) is a parity check on some
subset o f the components of X . If C(X)*C(Y)= C(X@Y),
then again C(X) is a parity check on some subset of the
coordinates of X , and * is “exclusive or” if an even
number of positions are included, the complement of
“exclusive or” if an odd number of positions are involved.

The proof will be given only for “exclusive or.” The
proof for its complement follows the same lines but is
slightly more involved. Let X. be a vector for which
C (X o) = 1 . By hypothesis, C(0) =O. Then

o*o=c(o)*c(o) =C(O@O) =C(O) =o
o*1=c(o)*c (xo) =C(Ocl3Xo) =C(Xo) =1

1 *O= 1 similarly, and finally

1*1 =C(X,) * C (X ,) =C(Xo@X,) =C(O) =o .
Therefore the operation * corresponds to “exclusive or.”
Now suppose C (D i) =si, where Di is again the vector with
a “one” in the ith position and zeros elsewhere. Then
since :

1/“V1D1@V2D2@V3D3@. CBV~D,~ ,

C (V) = v1s1cl3v2sz@v3s3@ e 3 V k S k .
This can be considered the definition of a parity check,
where si= 1 for the coordinates included in the parity
check.

Each digit in the block of n digits to be processed satis-
fies the hypotheses of Theorem 4 if “exclusive or” or its
complement is to be checked. Thus parity checks, and
in fact only parity checks can be used to check these
operations with the type of coding assumed.

If Y 1 Y z = Y1, we will say Y 1 is contained in Y 2 , or
Y 1 c Y z . This will be the case if, and only if, every position
which contains a “one” in Y 1 also contains a “one” in Y z .

The next theorems completely characterize codes for
checking the other eight nontrivial logical operations:

0 Theorem 5 A

Let C(Y) be a function which takes on the value 1 or 0,
and such that C(Yl Y2) = C(Yl) C(Y2). Then there exists
a vector Yo such that C(Y)=1, i f and only i f YoCY.
Conversely, for any vector Y o the function C(Y) defined
to be one if and only i f Yo c Y has the property C(Y1 Y z)
=C(Y,)*C(Y,).

Proof: Let Y o be the vector which results from combining
by the “and” operation all the vectors Y such that
C(Y) = 1. Then C(Y o) = 1, and from the definition of Y O
it is clear that YoC Y if C(Y) = 1. Also, if YoC Y , then
Yo~Y=Yo,C(Yo)*C(Y)=C(Yo),andsinceC(Yo)=l,
l - C (Y) = l , a n d h e n c e C (Y) = l .

The converse follows from the observation that
Yo C Y 1 Y z if and only if Y o c Y 1 and YoC Y z . Therefore
C(Y 1 Y 2) = 1 if and only if C(Y ,) = 1 and C(Y z) = 1.

Theorem 5B

Let D(Y) be a function which takes on the values 1 and 0
and such that D(Y1 U Y2)= D(Y1)U D(Yz). Then there
exists a vector Yo such that the function D(Y)=O if and
only if Y c Yo. Conversely, for any vector Yo, the function
D(Y) defined to be zero i f and only i f Y c Yo has the
property D(YlUY2)=D(Yl)UD(Yz).

The proof is similar to that for Theorem 5A.

0 Theorem 6

Let C(F)=D(Y). I f C(Y,*Y2)=C(Y1)*C(Y2) for all
choices o f Y 1 and Y z , then D(Y1UY2)=D(Y1)UD(Yz)
f o r all choices o f Y l and Y2, and conversely. Also, i f Yoc
denotes the Yo defined in Theorem 5 for the function C,
and YO, is the Yo defined for D, Y ” d = z

Proof: D(Y1UYZ) =D(E;,*Fz) =C(Y,*Fz) =

C(yl)*C(Fz) = C (F l) U C (Y z) = D (Y l) U D (Y 2) . The
proof of the converse is similar. The relation between Yoc
and Yod is shown by noting that the assumed relation be-
tween C and D implies that for any vector Y , C (Y) = l if
and only if D (Y) =O. Let Y 1 , Y z , Y 3 , . . . be a list of all
vectors such that D (Y) =O. Then yl , y2, E, . . . is a list
of all vectors Y such that C (Y) = 1 . In the proof of Theo-
rem 5, it is shown that Yo, is the result of combining by
the “and” operation all vectors Y such that C(Y) = 1, Le.,

Yoc=Y1*Ys*Y:3.
Similarly,

Yoa= Y1 u Yz u Ys
and since in general A B = A U B , YOd= Yo, .

”

-

- ._ -

- -

Thus either Theorem 5A or Theorem 5B applies to
every checking code at input or output for all non-trivial
logical operations except “exclusive-or” and its comple-
ment.

Error detection and correction with block codes
and digit-by-digit processing

A binary code detects single errors if and only if every
pair of unequal k-digit vectors maps into a pair of n-digit
vectors which differ in at least two positions, i.e., have
minimum distance 2. Minimum distance 3 permits single-
error correction or double-error detection. Minimum dis-
tance 4 permits simultaneous single-error correction and
double-error detection, or triple-error detection, et cetera.
Therefore, the questions of error-correcting ability reduce
to questions of minimum distance for the code in ques-
ti0n.l Now the question of how long a code is required to
achieve minimum distance d will be considered for each
of the ten nontrivial logical operations.

Theorem 4 reduces the question of checking “exclusive
or” and its complement to that of finding group alphabets
with the required error-correcting ability, since a code is a
group alphabet if and only if all the digits in the coded
vectors are parity checks.2 A number of such coding
systems are described in the literature.l, 2 , 4 , 5

In a code for checking the “and” operation each digit
in the coded n-digit vector must satisfy the hypotheses of
Theorem 5. Then to achieve distance d , the distance be-
tween the vector 0 and the vector W(Dj) must have at
least d “ones.” (D j again denotes a k-digit vector with a
“one” only in the ith position.) Since the only vector
which is contained in Dj is Dj itself, the only type of
coded digits wi(Di) which will be 1 are those for which
Yo defined in the theorem is Dj itself. Such a digit will be 167

IBM JOURNAL’APRIL 1959

1 for any vector whose jth component is 1, since any such
vector contains Dj. Thus such a digit w i (x) a copy of the
jth digit of X . To maintain minimum distance d, d such
digits are required, i.e., d copies of each digit of X are
included among the components of W (X) .

Analogous results can be obtained for checking the
“or” operation, with exactly analogous proofs. In fact,
all codes used in checking all nontrivial logical operations
except “exclusive or” and its complement must satisfy
Theorem 5, and hence any such code must, if it is to
achieve distance d, have at least d copies of each uncoded
digit among the digits in the coded vector.

Conclusion

The most important results can be summarized as follows:
(1) For single error-detection codes which consist in

the original information with a check symbol, as indi-
cated in Fig. 1, there is no simpler system than making the
check symbols duplicates of the information for any non-
trivial logical operations except “exclusive or” and its
complement. These two operations can be checked by a
parity digit.

(2) For general block coding, with the output decod-
ing one-to-one in the absence of errors, and if the coded
blocks are processed digit by digit, for “and,” “or,” “exclu-
sive or,” and its complement, the same code must be used
at both inputs and at the output (assuming that in each
case the sequence of all zeros codes into the sequence of
all zeros). For the other six nontrivial logical operations,
the input and output codes are closely related. For all
logical operations except the complement of “exclusive
or,” the operation done on coded blocks must be the
same as the operation being checked. For “exclusive or”
and its complement, each digit in the coded blocks is a
parity check on some subset of the digits of the uncoded
block. In other words, group codes, and only group
codes, can be used to check these two operations.

(3) For the same restrictions on coding as in (2) , and
for all nontrivial logical operations except “exclusive-or”
and its complement, there is no simpler coding system
with a specified ability to detect or correct errors than a
system in which the coded sequence consists of a number
of copies of the uncoded sequence.

Elias stated this last result without proof.3 He also gave
some partial results for the case in which it is not assumed
that the decoding at the output is one-to-one in the ab-
sence of noise. He pointed out, however, that if the
decoding is not one-to-one in the absence of errors, there
is some information about the inputs which is not about

the logical function of the inputs, in the output. In a sense
this requires the decoder to do a part of the logical opera-
tion, or at least it leaves some doubt as to whether the
“processing” and “coding” operations have really been
isolated in the analysis.

It should be noted that the problem considered here
is essentially that of checking the operation of logical
devices. When the logical devices are combined into a
system, an over-all system check may still be possible. For
example, an adder can be constructed of “and,” “or,” and
“not” devices which cannot be simply checked, and yet
the addition operation as a whole can be checked quite
well without complete duplication.6 Also, a computer
programmed to solve a complex mechanical problem
frequently can be checked by considering the principles
of conservation of energy or momentum, although the
individual logical operations in the computer are not
checked.

It is interesting to note also that among the few very
simple problems considered here, some, namely “exclu-
sive or” and its complement, could be checked easily,
while others, like “and,” could not be checked short of
duplication or repetition of the problem. Larger problems
also seem to vary greatly in the degree to which their
inherent redundancy or structure aids checking.

Finally, while the results given in this paper and those
of Elias are not at all encouraging, it is still possible that
some economical way to check simultaneously a number
of logical “and” devices might be found by considering
the circuits themselves rather than the coding system. In
any case, the search for such a system is narrowed con-
siderably.

References

1. R. W. Hamming, “Error Detecting and Error Correcting
Codes,” Bell System Tech. J . 29, 147-160 (1950).

2. D. Slepian, “A Class of Binary Signaling Alphabets,” Bell
System Tech. J . 35,203-234 (1956).

3. P. Elias, “Computation in the Presence of Noise,” ZBM
Journal, 2, 346 (October, 1958).

4. A. B. Fontaine and W. W. Peterson, “On Coding for the
Binary Symmetric Channel,” Trans. AZEE, 648-656 (No-
vember, 1958).

5. R. R. Kuebler and R. C. Bose, “On the construction of a
Class of Error Correcting Binary Signaling Codes.” Znst. of
Statistics Mimeograph Series No . 199, University of North
Carolina.

6. W. W. Peterson, “On Checking an Adder,” ZBM Journal,
2, 166-168 (April, 1958).

Received August 22,1958

168

IBM JOURNALOAPRIL 1959

