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On  the Transition  from  Superconducting to 
Normal  Phase, Accounting for  Latent Heat 
and Eddy Currents 

Abstract: A rigorous solution is  given for the superconducting transition of a semi-infinite slab held  at a 
point below the critical temperature T, when a constant magnetic field above  the critical value H,, is 
applied. The solution accounts for both the absorption of latent  heat  and the dissipation of eddy-current heat 

during  the transition. A numerical example is  calculated for the case of constants  close  to  those of tantalum. 

Introduction 
It is  well known that  the transition between the supercon- 
ducting and normal  phase of metals is affected by electro- 
magnetic damping  according to Maxwell’s equations. A 
rigorous  solution for  the switching of a plane half-space, 
(Fig. l), in which the critical field is assumed to be in- 
dependent of temperature, has been obtained by Pippard.l 
For a similar problem, the propagation of a phase bound- 
ary during the melting or solidification of a material, a 
rigorous  solution has been given  by Carslaw and Jaeger.2 
Although Pippard  and Carslaw-Jaeger dealt with essentially 
the same  mathematical problem, their  methods of solution 
were different. 

Measurements on tantalum, however, have shown that 
it is not always permissible to consider the material as iso- 
thermal, in view of both  the absorption of latent  heat and 
the production of eddy-current  heat. An approximate solu- 
tion has been obtained by Ittne~-,~ in which he considers an 
“effective latent heat,” which assumes a hypothetical dis- 
sipation of Joule  heat from  the moving boundary. 

The results for a certain  sample of tantalum according to 
Pippard’s theory and Ittner’s results are given in Fig. 2. 
This paper is concerned with a rigorous  solution which 
accounts for  both eddy-current  heating and latent  heat. 
Calculations have been carried out  for values of parameters 
which are typical for  actual specimens; these calculations 
are expected to be close to Ittner’s values. 

The rigorous  theory given here derives a reciprocal 
switching time, of which the second derivative with respect 
to  the applied magnetic field varies monotonically with the 
field. We find the  same monotony  in Ittner’s experimental 
results. Ittner’s theoretical result, however, shows a non- 

132 
*Philips Research  Laboratories,  Eindhoven,  Netherlands. The work  reported 
here was  done  at the  IBM Research  Center,  Poughkeepsie, N. Y. 

IBM JOURNAL * APRIL 1959 

monotony in this second derivative. Since the physical 
constants  in Ittner’s sample were not exactly known, one 
might attempt  to define the basic constants by fitting the 
measured values to  the calculated curves. This  method of 
determining the constants  does not  appear to be justified, 
however, since the measurements were made on a hollow 
cylinder instead of a semi-infinite slab, and since there are 
uncertain effects due  to  the surface energies and  to possible 
thermal  barriers at  the outer boundary. 
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Figure 1 Switching of a plane half-space in a 
semi-infinite solid. 



In order to check the model used in this paper, future 
measurements should be made  on specimens for which the 
basic physical constants are precisely known. 

Mathematical formulation 

A semi-infinite solid, which coincides with the half-space 
x>O is superconducting for t<O, as indicated in Fig. I .  
The temperature T of the solid then equals T,, which is 
smaller than  the critical temperature T,. No magnetic field 
is present for t <O. At  the time t=O a homogeneous mag- 
netic field of constant strength H,, greater than  the critical 
field Hoc at T= T, is apl;lied perpendicular to  the x-axis. 

After a certain  time t>O the semi-infinite solid consists 
of a normal  conducting region 0 <x<xl(t)  and a super- 
conducting region x>x, ( t ) .  The separation between the 
normal and  the superconducting regions is a function xdt) 
of time and will be called the moving boundary. 

The magnetic field H=H(x, t )  in the normal  conducting 
region satisfies the  equation : 

the conductivity of the solid. 
The boundary  conditions  for the magnetic field are: 

H(O,t)=H, , t>O 

and 

H[xl(t),t]=H,(T)=Hc 3 t > O  

where TI is the temperature at  the moving boundary and 
Hc(T) is a given function of the temperature T. 

Furthermore  the derivative of the magnetic field with 
respect to x in the normal  material at  the moving boundary 
is related to  the velocity of the moving boundary  in the 
following way: 

Figure 2 Previous data for switching time of tantalum. Calculations by Pippard for semi-infinite plane 
geometry; Pippard's calculations modified by lttner to include approximate thermal effecfs. I 
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The transition from the superconducting to the  normal state 
is accompanied by the absorption of latent  heat and the 
dissipation of heat due  to  the eddy  currents. 

The temperature in  the normal  material TV and  the 
temperature TS in the superconducting material satisfy the 
equations ( 5 )  and (6). 

where the eddy current j is given by : 

. c dH 
4n dx 

I =  "_ - . 
The constants KN and KS are  the diffusivities of the normal 
and superconducting material, respectively, and KLq- denotes 

the thermal conductivity of the normal material. 
The  temperature must be  continuous at  the moving 

boundary while the difference of the derivatives of the 
temperatures with respect to x at  the moving boundary 
equals the  amount of latent heat absorbed at  the moving 
boundary. 

We therefore have: 

T ~ [ x , ( t ) , f ] =   T d x , ( t ) , t l  , t>O (8) 

and 

where K S  denotes the thermal conductivity of the super- 
conducting material. The function L(T) is the  latent  heat 
and is a given function of T. 

Figure 3 Reciprocal switching time a s  a function of magnetic  driving  field He for thermal conductivity 
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Finally, there are two more  boundary  conditions for the 
temperatures TN and Ts:  

T.\(O,t)=T, , t>O (10) 

and 

Ts(m, t )=T,  , O < t < m  (1 1) 

The initial conditions of the problem are: 

x.(O)=O (12) 

and 

T,S(x,O) = T, x> 0 . (1 3) 

Analytical solution of the problem 

We try to find a solution of the  equations which is a func- 
tion of u=xt-* only. Apparently we have 

d2H u dH 
du? 2k du 

=o 

H( 0) = He 
H(ud=Hc Y 

with u1 =x,(t)t-* . 

Figure 4 Reciprocal switching time as a function of magnetic  driving  field He for thermal conductivity 
K ~ = 0 . 1 5  X 1 0 7  erg/(cm sec O K ) .  The  slopes of the H - T curve: A =300(201380. 
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c dH 
j =  -G$ 

Consequently (5) transforms into  the following equation: 

Equations (4) and (9) finally become 

and 

Closer investigation of (4a) and (9a) shows that all the 
equations become independent of t if we make  the choice 
ul=aki, where a is a constant.  This implies that  the tem- 
perature TI and critical field H,( Tl) at the moving boundary 
are constants. Furthermore  the latent  heat L(Tl) at the 
moving boundary  does not depend on time. 

It remains to  obtain solutions of (la), (5a) and (6a)  which 
satisfy the corresponding  boundary conditions. A solution 

Figure 5 Reciprocal switching time as a function of magnetic  driving  field He for thermal conductivity 
KN = 0.25 X 1 O7 erg/(cm sec O K ) .  The  slopes of the H - T curve: A = 300(20)380. 

- 

136 

I I I 

1 I I 

00 200 300  400 5 
I ,  I N  O E R S T E D S  

IBM JOURNAL APRIL 1959 



of (la) and (2a) is apparently 

H=He-/3 erf- U (14) 2kb ’ 
where 

erf w =\/.I 2 w  

with erf w = 1 -erfc w and 6 a constant. 

by (15). Finally, it can be  verified that: 
We notice that the initial condition (13) is also satisfied 

-X)dt l ’exp[  4KN -p( &-A)).$ , (16) 

with 

and y a constant, is a solution of (sa)  and (loa). 

ditions (3a),  (4a),  (8a) and (9a). 
The constants a, 0, y and 6 can be defined  by the con- 

After putting --p and using the expressions (14), 

(15) and (16) in these conditions one finds, after some cal- 
culations, 

He -Hc - 
HC 

We notice that the solution for the moving boundary 
xl(r) = a(kt)$ also satisfies condition (12). If we now let the 
boundary move a distance Ax, the switching time t ,  will be 

Numerical solution 

We  observe that for a given  field H,  and temperature TI, 
a can be obtained from (17). Furthermore y and 6 can be 
derived from two linear equations (19) and (20).  Finally 
TI can be changed until (21)  is  fulfilled. 

In order to find a from (17),  we  used Newton’s method 
for finding the root of the function (p(a): 

p(a) = a-\/Fexp (Y) - erf ; --2p . (22) 

The value of the temperature TI  was found as follows. 
We started with an arbitrary value TI= T1o and computed 
the function 

+(Tlu+kh), k =  1,  2, 3,***** 

with h a given constant. As soon as (+(Tlo+kh)}. 
(J/(Tlo+(k+l)h)} <O was found, regula falsi was  used to 
obtain  the zero of +(TI). 

For  the computations of the integrals occurring in  (19) 
and (20) their Taylor expansions were  used. These expan- 
sions are  as follows: 

s=a 

and 

-7 erfc( 2 Kx & ) I =  -6 erfcF(”)” 2 KS (19) Calculation of a numerical example 

AK.~exp( - * ) ~ “ ~ x p [  - t 2 ( 2 k - ~ ) ) i  1 1  

K.vexp -- - Ksexp -- - 

As an example we choose the data for the constants in the 
problem close to those of tantalum. The reciprocal switch- 
ing time ts-l is drawn in  Figs. 3 through 5 and the tem- 

a2 k perature Tl at the moving boundary is  given in Figs. 6 

4KN 

a2 k 
--Y (4 KN))=6 (. 2 “)-L(Tl)? , (20) through 8. Numerical data are available from the author. 

~ T K N  ~ T K s  
The following  choices  were made: 

P with A=-- 
4a2K,v 

and finally 

ks cmy  KN 
K s =  6.44x lo4 s z  3.22x lo4 sec 

9 KN=- 

with = Ks =0.05 X 107(0.05 X 10’)0.25 x 10’ erg 
cm  sec OK ’ 

$(TI)= Tl-T,+6 erfc- - a k t  
~ ( K s )  = O  

The data selected for Figs. 3 to 8 were  in the range 
, (21) (0.10~107). 137 
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Figure 6 K ~ = 0 . 0 5  X 10’ erg/(cm sec O K ) .  
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Figure 7 K ~ = 0 . 1 5  X IO7 erg/(cm sec O K ) .  

Figures 6, 7 and 8 Temperature at  the moving  boundary vs driving magnetic field for given values 
138 of KN and A. 
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For the critical field H, we choose: 

H, =Hoc - A( T-  TJ . 
Consequently the  latent heat becomes 

L ( n = -  TAH, 
47r 

The temperature T, of the  bath was chosen to be  equal to 
4.2”K and  the field Ho,=68 oersteds. The conductivity u 
had  the value 1/(0.48 pohm-cm). 

As indicated  in the Figures, the values for A were taken 
in  the  range A = 300(20)380. 

We calculated H,, TI,  CY, p, y, 6 and t, as a function of He 
up to 4 decimal places. The travel distance Ax was chosen 
as 0.0048 cm. 

A program was written by the  author  for  the  IBM 704 
digital computer  in order to carry out  the necessary cal- 
culations. In  the program  one can choose K.v, Ks, u, A 
and Hoc arbitrarily. Furthermore  the range  in which H 
varies can arbitrarily be chosen. 
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List of symbols 
A = negative slope of H -  T curve at T= T, 
c = velocity of light in vacuo 
Ax  = travel distance of moving boundary 
H = magnetic field 
H, = critical field 
He = magnetic field at x = 0 
Hoc = critical field at T= T, 
j = eddy current 
KN = thermal conductivity of normal  material 
Ks = thermal conductivity of superconducting  material 
KN = diffusivity of the normal  material 
KS = diffusivity of the superconducting  material 
r = electrical conductivity of the solid 
t = time 
t, = switching time 
TI = temperature at  the moving boundary 
T, = temperature of the  bath, i.e., at x=O and x =  m 

TN = temperature of normal material 
TS = temperature of superconducting  material 
x = distance 
x&) = distance of the moving boundary 
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