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A. J. W. Duijvestijn*

On the Transition from Superconducting to
Normal Phase, Accounting for Latent Heat

and Eddy Currents

Abstract: A rigorous solution is given for the superconducting transition of a semi-infinite slab held at a

point below the critical temperature T, when a constant magnetic field above the critical value H,, is

applied. The solution accounts for both the absorption of latent heat and the dissipation of eddy-current heat

during the transition. A numerical example is calculated for the case of constants close to those of tantalum.

Introduction

It is well known that the transition between the supercon-
ducting and normal phase of metals is affected by electro-
magnetic damping according to Maxwell’s equations. A
rigorous solution for the switching of a plane half-space,
(Fig. 1), in which the critical field is assumed to be in-
dependent of temperature, has been obtained by Pippard.!
For a similar problem, the propagation of a phase bound-
ary during the melting or solidification of a material, a
rigorous solution has been given by Carslaw and Jaeger.?
Although Pippard and Carslaw-Jaeger dealt with essentially
the same mathematical problem, their methods of solution
were different.

Measurements on tantalum, however, have shown that
it is not always permissible to consider the material as iso-
thermal, in view of both the absorption of latent heat and
the production of eddy-current heat. An approximate solu-
tion has been obtained by Ittner,? in which he considers an
“effective latent heat,”” which assumes a hypothetical dis-
sipation of Joule heat from the moving boundary.

The results for a certain sample of tantalum according to
Pippard’s theory and Ittner’s results are given in Fig. 2.
This paper is concerned with a rigorous solution which
accounts for both eddy-current heating and latent heat.
Calculations have been carried out for values of parameters
which are typical for actual specimens; these calculations
are expected to be close to Ittner’s values.

The rigorous theory given here derives a reciprocal
switching time, of which the second derivative with respect
to the applied magnetic field varies monotonically with the
field. We find the same monotony in Ittner’s experimental
results. Ittner’s theoretical result, however, shows a non-
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monotony in this second derivative. Since the physical
constants in Ittner’s sample were not exactly known, one
might attempt to define the basic constants by fitting the
measured values to the calculated curves. This method of
determining the constants does not appear to be justified,
however, since the measurements were made on a hollow
cylinder instead of a semi-infinite slab, and since there are
uncertain effects due to the surface energies and to possible
thermal barriers at the outer boundary.
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Figure 1 Switching of o plane half-space in a
semi-infinite solid.




In order to check the model used in this paper, future
measurements should be made on specimens for which the
basic physical constants are precisely known.

Mathematical formvulation

A semi-infinite solid, which coincides with the half-space
x>0 is superconducting for ¢<0, as indicated in Fig. 1.
The temperature T of the solid then equals 7., which is
smaller than the critical temperature 7,. No magnetic field
is present for 1<0. At the time t=0 a homogeneous mag-
netic field of constant strength H.,, greater than the critical
field H,. at T=T, is apglied perpendicular to the x-axis.

After a certain time 7>0 the semi-infinite solid consists
of a normal conducting region 0<x<x;(f) and a super-
conducting region x>xi(r). The separation between the
normal and the superconducting regions is a function x;(7)
of time and will be called the moving boundary.

The magnetic field H=H{(x,t) in the normal conducting
region satisfies the equation:

0*H 10H

Ik ar O<x<x:(t) , )
where k =c*/4ms and c is the velocity of light in vacuwo and o
the conductivity of the solid.

The boundary conditions for the magnetic field are:

HO,)=H, , >0 )
and
Hx(),1=H(T)=H., >0, (3)

where T is the temperature at the moving boundary and
HAT) is a given function of the temperature 7.

Furthermore the derivative of the magnetic field with
respect to x in the normal material at the moving boundary
is related to the velocity of the moving boundary in the
following way:

(@H(x,t)) __H.dx(r) @)
z=x1(1)

dx k dt

Figure 2 Previous data for switching time of tantalum. Calculations by Pippard for semi-infinite plane
geometry; Pippard’s calculations modified by litner to include approximate thermal effects.
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The transition from the superconducting to the normal state
is accompanied by the absorption of latent heat and the
dissipation of heat due to the eddy currents.

The temperature in the normal material Ty and the
temperature 7 in the superconducting material satisfy the
equations (5) and (6).

FTy_1 0Ty 1 .,

9 Tk 01 oRy! 0 OSYSNO ©
&Ts_ 1 3Ts

=-. 95 >x() , 6
e p or P X1() ()

where the eddy current j is given by:

J= - — .

4r ox
The constants «xy and kg are the diffusivities of the normal
and superconducting material, respectively, and Ky denotes

the thermal conductivity of the normal material.

The temperature must be continuous at the moving
boundary while the difference of the derivatives of the
temperatures with respect to x at the moving boundary
equals the amount of latent heat absorbed at the moving

boundary.
We therefore have:
Txlx(0),t1=Ts[x.(1),f] , >0 ®
and
kv 0T — ki 9T —Lm®D | >0, 9
0x gD ox o (1) dt

where K< denotes the thermal conductivity of the super-
conducting material. The function L(T) is the latent heat
and is a given function of 7.

Figure 3 Reciprocal switching time as a function of magnetic driving field H, for thermal conductivity
Kn = 0.05 X 107 erg/{em sec °K). The slopes of the H—T curve: A —=300(20)380.
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Finally, there are two more boundary conditions for the
temperatures Ty and Ts:

Tv0,n=T. , t>0 (10)
and

Ts(w,nN=T. , 0<t<eo (11
The initial conditions of the problem are:

x(0)=0 (12)
and

Ts(x,0)=T. , x>0 . (13)

Analytical solution of the problem

We try to find a solution of the equations which is a func-
tion of u=xt"* only. Apparently we have

Figure 4 Reciprocal switching time as a function of magnetic driving field H, for thermal conductivity
Kn=0.15 X 107 erg/{cm sec °K). The slopes of the H —T curve: A=300(20)380.

9_1d
dx tidu’
o _Ld
axr tdu’
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o__ud
at  2tdu

Using this transformation and inserting the operators into
(1), 2), (3), (6), (8), (10) and (11) we find:

d'H | u dH _

du® ' 2k du =0 (1a)
H0)=H, (2a)
H(u1)=Hc > (33)

with wy=x,()¢t % .
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dTs, u 9Ts_ (6a)
du? ' 2xkg Ou

Tn(u) = Ts(ur) (8a)
TNO0)=T. (10a)
and Ts(=)=T., . (11a)
The transformation u=xr"% in (7) yields:

j= ¢ dH

=g (7e)

Consequently (5) transforms into the following equation:

dTy__u dly ¢ (dHY' (52)
du2 - 2KAV du 167!'2(7KN dll

Equations (4) and (9) finally become

dH 1 w , dw

and
(4T g (9T porg( e
(), () un(orm). o

Closer investigation of (4a) and (9a) shows that all the
equations become independent of ¢ if we make the choice
u,=ak?, where « is a constant. This implies that the tem-
perature 7} and critical field H.(7)) at the moving boundary
are constants. Furthermore the latent heat L(7;) at the
moving boundary does not depend on time.

It remains to obtain solutions of (1a), (5a) and (6a) which
satisfy the corresponding boundary conditions. A solution

Figure 5 Reciprocal switching time as a function of magnetic driving field H, for thermal conductivity
Kn —0.25 XX 107 erg/{cm sec °K). The slopes of the H —T curve: A—2300(20)380.
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of (1a) and (2a) is apparently
H=H,—8 erfzi% , (14)

where

erf w=7§rﬁwe‘52d$

and 3 is a constant.
A similar solution can be obtained for (6a) and (11a),

Ts=T.—6 erfc-ﬂi R (15)
2Ks’

with erf w=1—erfc w and 8§ a constant.
We notice that the initial condition (13) is also satisfied
by (15). Finailly, it can be verified that:

Ty=T,—~ erf-*
v ¥ fsz

+4 fo “exp(—f&)dt fo texp[—fz(zlk - ):Idg, (16)

with
Ae J 3

- 167r30'KNk— 47|"2KA\"

and v a constant, is a solution of (5a) and (10a).
The constants «, 3, v and § can be defined by the con-
ditions (3a), (4a), (8a) and (9a).

H,—H,
H,
(15) and (16) in these conditions one finds, after some cal-

culations,

After putting =p and using the expressions (14),

a\/rexp( )e f—— 2p an
6 ___He _He
erfs (18)

A j; a;ip( —%:;)du j; uexp[ ?( 21 4'1(N):|d£

a? _atk

K\exp( ZK—) Ksexp ya ) i

— ¥/ -5 — L ()%, (20)
V/TKN V' TKs 2
. _ /37
with A=— yy o
and finally
3
UT)=T— T+ erfc’g(Kﬁ) -0 @
S x

We notice that the solution for the moving boundary
x1(7) = a(kr)? also satisfies condition (12). If we now let the
boundary move a distance Ax, the switching time #, will be

g, =(BX)"
ek

Numerical solution

We observe that for a given field H, and temperature T,
a can be obtained from (17). Furthermore v and & can be
derived from two linear equations (19) and (20). Finally
T, can be changed until (21) is fulfilled.

In order to find « from (17), we used Newton’s method
for finding the root of the function ¢(a):

ofa)= a\/wexp( )erf—-Zp 22)

The value of the temperature T, was found as follows.
We started with an arbitrary value 7= T, and computed
the function

WTwtkh), k=1,2,3,..

with & a given constant. As soon as [{Y(Tw+kh)}-
{ YT+ k+1)h)} <0 was found, regula falsi was used to
obtain the zero of Y(T3).

For the computations of the integrals occurring in (19)
and (20) their Taylor expansions were used. These expan-
sions are as follows:

j; az(p( —Zlg—v)du j; uexp[ 22(2k 4KN):| £ =

KN 5250 (3
2 3573 B

and
__0‘2k a*t £ 1_ 1 - %m 28+1
exp( 4—KN> f exp[ g(ﬁ 4—KN)]ds—k 2 bsarSH
S=0
4
ith ()3 L2
R ZSS' 2 b=t
5= 25+1 and Bo=1 .

Calculation of a numerical example

As an example we choose the data for the constants in the

problem close to those of tantalum. The reciprocal switch-

ing time ¢, is drawn in Figs. 3 through 5 and the tem-

perature 7; at the moving boundary is given in Figs. 6

through 8. Numerical data are available from the author.
The following choices were made:

k= ks __cm* ky=n ¥ __ om*
57 6.44 10" sec NT3.22X10" sec

with Kyv=Ks=0.05>107(0.05X%1070.25 X107 —_g— .
m sec °K

The data selected for Figs. 3 to 8 were in the range
(0.10X107).
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Figure 6 Kn=—=0.05X 107 erg/(cm sec °K).
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Figure 7 Kn==0.15 X107 erg/(cm sec °K).

Figures 6, 7 and 8 Temperature at the moving boundary vs driving magnetic field for given values

138 of Ky and A.
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Figure 8 Kn=—0.25 X 107 erg/(cm sec °K}.

For the critical field H, we choose:
H,=H,—A(T-T) .
Consequently the latent heat becomes

TAH,
4

L(T)= .
The temperature T, of the bath was chosen to be equal to
4.2°K and the field H,.=68 oersteds. The conductivity ¢
had the value 1/(0.48 pohm-cm).

As indicated in the Figures, the values for 4 were taken
in the range 4 =300(20)380.

We calculated H,, T, a, 83, v, 6 and ¢, as a function of H,
up to 4 decimal places. The travel distance Ax was chosen
as 0.0048 cm.

A program was written by the author for the IBM 704
digital computer in order to carry out the necessary cal-
culations. In the program one can choose Ky, Ks, o, 4
and H,. arbitrarily. Furthermore the range in which H
varies can arbitrarily be chosen.
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List of symbols

A = negative slope of H—T curve at T=T,
¢ = velocity of light in vacuo

Ax = travel distance of moving boundary

H = magnetic field

H, = critical field

H, = magnetic field at x=0

H,. = critical field at T=T,

j = eddy current

Ky = thermal conductivity of normal material
Ks = thermal conductivity of superconducting material

kv = diffusivity of the normal material

ks = diffusivity of the superconducting material

o = electrical conductivity of the solid

t = time

t; = switching time ‘
T, = temperature at the moving boundary i
T, = temperature of the bath, i.e., at x=0and x= ‘

Tv = temperature of normal material

Ts = temperature of superconducting material
= distance

x:(H)= distance of the moving boundary

=
|
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