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Interatomic-Force Constants 
From a Central-Force Law 

Abstract: Interatomic-force constants may  be predicted from standard central-force laws using thermo- 

dynamic data. For the three cases where diffraction data  are  available (aluminum, copper, and iron) the 

predicted values agree within  an order of magnitude for aluminum and iron, but differ strongly in the case 

of copper. It i s  suggested that Jacobsen's (~1, for copper, represents the strongest departure from a central- 

force model and should therefore be the most promising point for further theoretical work. 

Introduction 

The  problem of calculating from first principles the effec- 
tive potential of an  atom or ion in  a  crystal  lattice is an 
extremely difficult one  and  has  yet  to  be satisfactorily 
treated.l9 However,  in view of the increasing availability 
of experimental data  on  the Born - von  K6rm6n  inter- 
atomic-force  constants for some  lattice^,^-^ it is  of interest 
to see whether certain  simple  phenomenological  poten- 
tials might not be used to represent results  adequately to 
date  and  perhaps  to  act as  a guide to  future theory. 

Of the  many  forms available,F two forms of a  spheri- 
cally  symmetric,  four-parameter,  two-body  potential 
which have been successfully used in thermodynamic 
studies are given in Eqs. (1) and (2) : 

$ ( r )  = - - +bcr/P r / p > O  , ( 2 )  
a 

m a '  

where a and b are constants of the system, r the nuclear 
separation  and r n ,  It, or m', p are adjustable  parameters. 
These forms  are purely  heuristic,  except perhaps  for  the 
exponential term in ( 2 )  which is suggested by quantum 
mechanics. These  forms  do  not even permit prediction 
of the crystal structure,  although they  lead to a  stable 
system if the  structure is considered  as  a given parameter. 
However, the constants appearing in Eq. (1 ) have been 
evaluated by Furth,7  and  Dayal  and  SharmaS  for a great 
number of elements from  thermodynamic  data,  and  it is 
of interest to see if the  same laws can yield the inter- 
atomic-force  constants  as given by x-ray and  neutron- 
scattering  experiments. 

In  the following  sections we  will consider the two spe- 
cific forms, Eqs. (1) and ( 2 ) ,  in some detail in order  to 

126 get explicit numbers to compare with  experiment, and 
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then  in the Discussion we will consider  some  general as- 
pects of central forces. 

Review of theoryg 

The inverse-power form, ( 1) , is usually rewritten in terms 
of the  pair equilibrium  distance ro' and potential depth p'. 

Equation (3) is shown schematically  in  Fig. 1. 
Although  Fig. 1 represents the interaction of any two 

atoms  in  the lattice, it is not  meant to represent  their 
interaction if isolated from  the lattice,  in which case it 
may be  radically different. 

When particles are  arranged  in a  three-dimensional 
array,  the potential  energy contributed  to  the lattice by 
an interior atom interacting with all of its neighbors 
becomes: 

where r1 is the nearest  neighbor  distance and S,,  S, are 
lattice sums of the  form: 

which have been  evaluated by MisraIO for simple  cubic, 
fcc, and bcc  arrays. The gj's in the above expression 
represent  the  number of atoms  which are a  distance rlvj 
away from  the origin atom; j takes on integral  values for 
fcc  and simple  cubic lattices. The value of the  sum (5) 
decreases  with  increasing  power p ,  but  never gets smaller 
than g,, the  number of first neighbors, nor gets much 



larger than twice this value for  the smallest power  con- 
sidered. 

The  pair parameters, ro’ and p’, are usually replaced by 
lattice parameters  through  the following: 

a )  The value of r l ,  say rlo, which  makes @( r l )  a  minimum 
is readily obtainable by setting d@( r l )  0 and solving 
for rl0. This value, rl0, is the static  lattice  nearest-neighbor 
spacing, and is, to a first approximation, the observed 
spacing. For potential ( 1) : 

Taking  the published values of Dayal  and  Sharma: 
S, 2S,, n =7, rn= 4, we see that ro) = (2)  lflrlo, and  thus 
the nearest  neighbor is pushed  considerably closer1’ than 
the equilibrium  distance by the  attraction of the  farther 
neighbors to  the origin atom (see  Fig. 1). 

b) The total  binding  energy of the lattice for r1=rl0 
should  equal the  heat of dissociation (neglecting the usu- 
ally small  correction for  the  thermal energy’) : 

X=- - N @ ( r l o ) ,  

where A is the heat of dissociation per  mole and N =  
Avagadro’s number. We then  obtain  for p’: 

1 
2 

Equation (4) may now be rewritten in terms of rlo and 
X and becomes: 

Figure I Isolated-pair  central-force potential. 

This  equation is shown  schematically in Fig. 2, and is 
the  same  curve as Fig. 1 ,  except for  the value of r at which 
it has its  minimum. In Fig. 1, yo’ is the atom-pair  distance 
for minimum  pair  energy,  whereas rlo (Fig. 2) is the 
atom-pair  distance for minimum total lattice  energy. 

The constants m and n are usually evaluated for the 
so-called static  lattice,  a fictitious absolute zero, where 
all parameters  have their room-temperature behavior 
merely  extrapolated  to T=O. Although  Dayal  and 
Sharma,  and  Furth, use more elaborate  developments, 
one may essentially take for  the equation of state: 

where P and V are pressure and volume, respectively. 
From this are obtained  relations for compressibility such 
as : 

and 

m+n+9 
3 ’  

from which m and n may be evaluated. 

Figure 2 Lattice potential, central-force model. 
(rl is nearest-neighbor  distance.) 
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Results with inverse-power law 

We may c3w rewrite (3),  using (6) and (7), in terms 
of rl0 and X and  treat  the potential as representing that 
describing the interaction  between  a pair of atoms in the 
lattice. Thus  the lattice-pair  potential  becomes: 

$ ( r )  = ---__ 2X mn 
N n-m 

which is again  represented  by  the curve  in Fig. 1. 

exert on  each  other in the usual way: 
One  may now calculate the forces  which  a  lattice  pair 

W ( r )  F,.= - - &=" 
2X mn 

ar N n-m 

Each  atom exerts some  force  on every other  atom, 
even if all atoms  are in their  equilibrium positions. Ex- 
pressing the  force as  a  vector sum of its x, y ,  and z com- 
ponents, the interatomic-force  constants are defined as the 
negatives of the partials  in  the following array: 

dF,= (s) dx+ ($) dy+ (%) dz 

The partials, and  therefore  the interatomic-force  con- 
stants, are actually,  as is well known, the second  deriva- 
tives of the potential. 

The  nine interatomic-force  constants  needed to de- 
scribe the forces between a pair of atoms  due to relative 
displacement dx, d y ,  dz is reduced  in number by the 
crystal  symmetry. Thus,  for example, the  array describ- 
ing the  interaction between the origin atom  and a first 
neighbor at position x=a/2,  y =0, z=a/2 in  a  fcc  lattice 
is (from  Walker3) : 

I 
Walker's symbols,  in our notation, are: 

and all other partials are zero. That this is actually the 
case is easily seen by taking the  proper derivatives of (9) : 

"" 

1 r1Om 1 rlOn +--" + 
ax N n-m 

(m+2)  rlonEx2 ( n f 2 )  rlonx2 
S, S, r n f 4  
"" 

rm+4 

aF, - 2X mn 
ay N n-m 
"" 

and using the known values for x, y ,  z. We need  list  only 
two of the derivatives in detail, since all others may  be 
obtained from these by interchanging x ,  y ,  z. The rela- 
tionships  derived on  the basis of a central  force will 
contain  the  proper identities, since the  force contains  all 
the necessary symmetries  in  these simple cases. 

Each  author  adopts his own list of symbols for  the 
interatomic-force  constants. Walker's D symbol (see 
above) is very convenient: D ( x y z )  ij; the x, y ,  z are 
the  coordinates of the neighbors  in  question with respect 
to  an  atom  at  the origin of the  standard crystallographic 
cell, and ij indicates which partial derivative is required. 
With a list of atomic  coordinates and Eqs. ( 1 1 ) and ( 12) , 
an expression can easily be written out  for  any  particular 
interatomic-force  constant  in any simple structure. If the 
lattice sums  have been evaluated,  and m, n, YIO, h are 
known,  then the value of the  force  constant  can be pre- 
dicted within the assumptions used in the derivation. 

In  Table 1 are listed the definitions of the symbols used 
and  the values of the interatomic-force constants  reported 
by the various authors listed in  References 3, 4, and 5 ,  
for first and  second neighbors. Third neighbors have  not 
been listed, even though  reported, because  neither the 
experimental numbers  nor  the potential curve is thought 
to be very satisfactory at this  distance. The calculated 
values, based on  the  formulas above, and  the  data in Table 
2 taken  from  Dayal  and  Sharma,  and  Fiirth,  are listed in 
the next column. 

For  aluminum  and iron the calculated values agree 
with the experimental values within an  order of magni- 
tude,  and  have  the  same sign. For copper  there is violent 
disagreement  in  the  case of al, at least in the sign of the 
term,  and practically no fit for second neighbors. 

Results with  exponential law 

It is tempting to see if a  better fit could be obtained by 
using the exponential form of the repulsive potential ( 2 ) ,  
if a  suitable  approximation  could be made in the  mathe- 
matics. 

Equation ( 2 )  may be rewritten in terms of yo" and p", 
the pair  equilibrium  constants, and becomes: 

if  we set ro"/p 3 17 . 



Table 1 Comparison of experimental force constants and values  calculated  from central-force laws. 

Force  Constants 

aFx D ( 3  0 + I l l = -  - 
ax 

D ( 3  0 * ) 2 2 = -  - aF, 
aY 

aF, D ( +  0 f)13=- - 
az 

D (  1 0 0)11= - - a Fx 
ax 

D(lOO)*n=-- aF, 
aY 

D( t -  t- + I l l = -  - a Fz 

a Fx D ( +  4 + ) I z = -  - 
aY 

D(100)11=- - a Fx 
ax 

D(100)12=- - aF, 
aY 

ax 

D ( t  0 * I l l = -  - a Fx 
ax 

D(f 0 t - ) 2 2 = -  - aF, 
aY 

D(f 0 + I n =  - - aFx 
az 

aF, D (  1 0 0)11= - - 
ax 

D(100)22=-- aF, 
aY 

t l n  units of 103 dynes/cm. 
*Symbols used by author  reporting data. 

AI" 

Fe* 

a 

P 

a' 

P' 

c u  * 

Experiment+ 

8.45 

- .93 

10.67 

2.14 

.40 

11.7 

11.9 

11.6 

- 2.5 

8.7 

4.8 

12.5 

3.50 

- .70 

Inverse- 
Power  Law 

18.6 

- 3.9 

22.5 

.5 

.13 

27.6 

37.0 

21.2 

- 1.25 

29.8 

- 5.7 

35.6 

.3 

.26 

Table2 Values of constants of central-force, in- 
verse-power law from Dayal  and Sharma, Element 
and Furth. 

A1 

Fe 

c u  

Exponential 
Law 

19.8 

-4.1 

24.1 

.4 

.02 

28.7 

38.8 

23.8 

- 1.0 

I I I 

x Kcal 
gm-atom 

n m V0cm3 

67.6 

7 4 7.16 96.5 

6.5 4 10.025 

81.7 I 7.1 1 4 1 7 
\ 
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The  total potential  energy of the lattice becomes: 

1 1 m’q 
2 2 17-m’ 
- @ ( r l )  = -~ { - f 

Setting - = 0 for rl = r1o gives: d @  
drl 

f -  - 
1  exp [ -n’ (r / r lo) l  
n‘ S n  

Since Sn,em’ugluSn for all practical  purposes, for 
first and second  neighbors, the exponential law produces 
no startling differences in the interatomic-force  constants. 
The last column  in Table 1 lists the values obtained by 
using the above expressions and m’=3.1, n‘=10.5. 

Discussion and conclusions 

The specific central-force laws considered,  with  constants 
( 15) evaluated from thermodynamic data, predict  interatomic- 

force constants for first and second neighbors which agree 

This transcendental equation blocks further analytical but which disagree strongly for the of cu. Although 
qualitatively with experimental values for AI and  Fe, 

results. it is impossible to conclude that  the inverse-power law 
If,  for convenience, we write R =  - and recall that we with constants  as given is a  satisfactory  heuristic  potential YO 

r10 for A1 or  Fe, nonetheless  certain  irreconcilable  features 

the i= 1 term is by far  the  dominant one. In  that case we the one hand, and cu on the other, suggest that cu is far 

less “central like.” For any  central-force system we may 

expect R>l, then if 7 is Of the Order Of magnitude Of lo, between the observed force constants for A1 and Fe on 

shall make  the following approximation: 

On  the basis of the above, which is somewhat  equiva- 
lent  to assuming  only first-neighbor repulsive interaction 
in the  evaluation of R, we obtain: 

__ 2h  (7-m’) 
N (q-rn‘R)Sm,Rm’ 

To get some  idea of what values m‘ and q might take, 
we recall that they are determined by the behavior of 
@ ( r l )  near rl=rlo; 

dF55(r1) 
drl 

= 0 ,  

despite the approximation made in ( 16). Deriving anal- 
ogous compressibility relations and using the same data 
from which m and n were evaluated previously, we have 
two sets of values: 

(1)  m’=3.1, (q/R) = 10.5 and 

( 2 )  m’=9,  (q/R)  =2.6. 

The first is consistent with our assumptions. 
Making the  further substitutions that 

n’=q/R= - r1o 
P 

and 

S m ,Rm’+lESn,en‘R 

130 we can write for  the lattice-pair  potential : 

write: 

- d F = f l ( r ) d r + r f 2 ( r ) r . d r  , 

where fl( r )  is proportional to d+( r )  / d r  and fi( r )  con- 
tains  second  derivatives as well (Eqs. ( 11)  and ( 12) are 
explicit forms of this  relationship for  the inverse-power 
law).  If,  for example,  in the previous  sections, rl0 were 
assumed  to  be  the  pair  equilibrium  position,  then 
d + ( r )   / d r  at r=r1o would be zero  for the first neighbors 
and fl(r)  =O. This condition leads to what is generally 
called the “Born Central  Field”  and  to  the following 
identities for  fcc: 

D(tO,),,=O 

D(tO:)l l=D(:O:)13 

0(100)2*=0 ; 

for  bcc: 

0(::3)11=D(f33),, 

D (  100)22=0. 

Thus  the inclusion of the  fact  that first neighbors are 
not at  the pair  equilibrium  position leads to  more detail 
in the predicted  constants. The predicted  value of p1 for 
AI and 011 for  Cu depends explicitly on  the  fact  that 
dqNr)/dr=l=O at r=r10. From Fig. 1 we see that  the slope 
is negative at r=r10, leading to a negative force constant, 
and in order  to have  a positive for  Cu,  it would be 
necessary that rlo>ro’. This would imply  a repulsive force 
of longer range  than  the  attractive  force,  contrary  to all 
physical reasoning. We may therefore conclude that  for 
Cu it would be impossible to discover a  central-force law 
which would predict,  for  the  static lattice, force constants 
equal  to  the experimentally  determined force constants. 
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Element e44 e12 c11 

Fe 

.75 1.21 1.68 c u  

.28 .62 1.08 AI 

1.16 1.41 2.37 

The  Cauchy condition that C12=Cq4 has been shown 
to follow from  the central-force assumption12 for these 
elements. From  Table 3 it can  be seen that  the above 
results were perhaps to be  expected for Cu and  Fe,  but 
n,hat is unexpected is that  the constants for A1 are given 
so well by the inverse-power law. Only a small modifica- 
tion is needed in the inverse-power law constants to 
change the first-neighbor force constants by a factor of 
two to bring  them more in line with the experimental 
values. Thermal expansion,  leading to a  larger rl0, would 
lower all values;  however, the change  in r10 should  not be 
greater  than 0.5 % over  the  temperature range.  A  dynami- 
cal rlo due  to  the  thermal notion  should be nearer  to ro’ 
and  could easily change the first-neighbor constants by the 
desired amounts. Thus it probably would be in the second- 
or farther-neighbor  interaction that  the  important  part of 
the noncentral  nature of the  force would appear. 

~~~ ~~~ ~ ~~ ~- 
~ 
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