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H. Cole

Interatomic-Force Constants

From a Central-Force Law

Abstract: Interatomic-force constants may be predicted from standard central-force laws using thermo-

dynamic data. For the three cases where diffraction data are available {aluminum, copper, and iron) the
predicted values agree within an order of magnitude for aluminum and iron, but differ strongly in the case
of copper. It is suggested that Jacobsen’s a1, for copper, represents the strongest departure from a central-
force model and should therefore be the most promising point for further theoretical work.

Introduction

The problem of calculating from first principles the effec-
tive potential of an atom or ion in a crystal lattice is an
extremely difficult one and has yet to be satisfactorily
treated.l2 However, in view of the increasing availability
of experimental data on the Born - von Kirman inter-
atomic-force constants for some lattices,3-5 it is of interest
to see whether certain simple phenomenological poten-
tials might not be used to represent results adequately to
date and perhaps to act as a guide to future theory.

Of the many forms available,® two forms of a spheri-
cally symmetric, four-parameter, two-body potential
which have been successfully used in thermodynamic
studies are given in Eqgs. (1) and (2):

d(r)=— 4. b n>m (1)

ym rt

$(r)=— —— berp  r/p>0, (2)
r

where a and b are constants of the system, r the nuclear
separation and m, n, or m’, p are adjustable parameters.
These forms are purely heuristic, except perhaps for the
exponential term in (2) which is suggested by quantum
mechanics. These forms do not even permit prediction
of the crystal structure, although they lead to a stable
system if the structure is considered as a given parameter.
However, the constants appearing in Eq. (1) have been
evaluated by Fiirth,” and Dayal and Sharma® for a great
number of elements from thermodynamic data, and it is
of interest to see if the same laws can yield the inter-
atomic-force constants as given by x-ray and neutron-
scattering experiments.

In the following sections we will consider the two spe-
cific forms, Eqgs. (1) and (2), in some detail in order to
get explicit numbers to compare with experiment, and
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then in the Discussion we will consider some general as-
pects of central forces.

Review of theory?

The inverse-power form, (1), is usually rewritten in terms
of the pair equilibrium distance ro" and potential depth .

o [ () (5 o

Equation (3) is shown schematically in Fig. 1.

Although Fig. 1 represents the interaction of any two
atoms in the lattice, it is not meant to represent their
interaction if isolated from the lattice, in which case it
may be radically different.

When particles are arranged in a three-dimensional
array, the potential energy contributed to the lattice by
an interior atom interacting with all of its neighbors

becomes:
mn ' 1 < ro >’” - 1 ( ro' )n 1.
—m l m 1 n r |
(4)

where r; is the nearest neighbor distance and Sy, S, are
lattice sums of the form:

0 1 »
Sp=281<—_>, (5)
j=1 \/ ]
which have been evaluated by Misral® for simple cubic,
fce, and bee arrays. The gy's in the above expression
represent the number of atoms which are a distance r1/j
away from the origin atom; j takes on integral values for
fcc and simple cubic lattices. The value of the sum (5)
decreases with increasing power p, but never gets smaller
than g, the number of first neighbors, nor gets much

CI)(rl) =




larger than twice this value for the smallest power con-
sidered.

The pair parameters, ro’ and y’, are usually replaced by
lattice parameters through the following:

a) The value of rq, say r10, which makes ®(ry) a minimum
is readily obtainable by setting d®(r1) /dr1=0 and solving
for r1o. This value, rio, is the static lattice nearest-neighbor
spacing, and is, to a first approximation, the observed
spacing. For potential (1):

ro Sp \H/™
2 = . 6
r10 < Sn > ( )

Taking the published values of Dayal and Sharma:

S = 2S,, n=7, m=4, we see that ro’=(2) */3r0, and thus
the nearest neighbor is pushed considerably closer!! than
the equilibrium distance by the attraction of the farther
neighbors to the origin atom (see Fig. 1).

b) The total binding energy of the lattice for ri=ry
should equal the heat of dissociation (neglecting the usu-
ally small correction for the thermal energy?) :

1
A=— 7 N<I>(r10) N

where A is the heat of dissociation per mole and N=
Avagadro’s number. We then obtain for p':

, 27 Sm m/n—-m
M= TV"' Sm (S > . (7)

Equation (4) may now be rewritten in terms of r1o and
A and becomes:

Figure 1 lsolated-pair central-force potential.
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This equation is shown schematically in Fig. 2, and is
the same curve as Fig. 1, except for the value of r at which
it has its minimum. In Fig. 1, r¢’ is the atom-pair distance
for minimum pair energy, whereas rio (Fig. 2) is the
atom-pair distance for minimum total lattice energy.

The constants m and n are usually evaluated for the
so-called static lattice, a fictitious absolute zero, where
all parameters have their room-temperature behavior
merely extrapolated to T=0. Although Dayal and
Sharma, and Fiirth, use more elaborate developments,
one may essentially take for the equation of state:

AL ‘
2\ v /.

where P and V are pressure and volume, respectively. ]
From this are obtained relations for compressibility such

1 ok _ m+n+9
ke? \ 2P /, 3 ’

from which m and n may be evaluated.

Figure 2 Lattice potential, central-force model.
(r1 is nearest-neighbor distance.)
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Results with inverse-power law

We may now rewrite (3), using (6) and (7), in terms
of rio and A and treat the potential as representing that
describing the interaction between a pair of atoms in the
lattice. Thus the lattice-pair potential becomes:

mn

2\
B ==

n—m

_ 1 10 " 1 + —_1‘ Fi0 " 1 ) (8 )
m r S n r Sn
which is again represented by the curve in Fig. 1.

One may now calculate the forces which a lattice pair
exert on each other in the usual way:

po_260) 20
or N n—m
[— AL S :Ir. 9
S"l r7n+2 Sn r‘n+2

Each atom exerts some force on every other atom,
even if all atoms are in their equilibrium positions. Ex-
pressing the force as a vector sum of its x, y, and z com-
ponents, the interatomic-force constants are defined as the
negatives of the partials in the following array:

e (o ()
°x dy 0z
ox oy 0z

JF— (_an_> ot (an>dy+ (az«;)dz‘ (10)
ox oy oz

The partials, and therefore the interatomic-force con-
stants, are actually, as is well known, the second deriva-
tives of the potential.

The nine interatomic-force constants needed to de-
scribe the forces between a pair of atoms due to relative
displacement dx, dy, dz is reduced in number by the
crystal symmetry. Thus, for example, the array describ-
ing the interaction between the origin atom and a first
neighbor at position x=a/2, y=0, z=a/2 in a fcc lattice
is (from Walker?) :

a1 0 1
DHEO3)={ 0 B 0 ).
71 0 o

Walker’s symbols, in our notation, are:
= — oF:\ [ 9F;  Bim— oF, .
0x 0z oy
= oF, oF,
1i=—\—}==1—1;
0z ox

and all other partials are zero. That this is actually the
case is easily seen by taking the proper derivatives of (9):
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(m+2) ry™x? (n+2) rye"x?
Sm rm+4 B Sn rn+4

oF, 20 mn

oy N n—m

Sm prtd Sn vt

and using the known values for x, y, z. We need list only
two of the derivatives in detail, since all others may be
obtained from these by interchanging x, y, z. The rela-
tionships derived on the basis of a central force will
contain the proper identities, since the force contains all
the necessary symmetries in these simple cases.

Each author adopts his own list of symbols for the
interatomic-force constants. Walker’'s D symbol (see
above) is very convenient: D(xyz)ij; the x, y, z are
the coordinates of the neighbors in question with respect
to an atom at the origin of the standard crystallographic
cell, and ij indicates which partial derivative is required.
With a list of atomic coordinates and Eqs. (11) and (12),
an expression can easily be written out for any particular
interatomic-force constant in any simple structure. If the
lattice sums have been evaluated, and m, n, ri0, A are
known, then the value of the force constant can be pre-
dicted within the assumptions used in the derivation.

In Table 1 are listed the definitions of the symbols used
and the values of the interatomic-force constants reported
by the various authors listed in References 3, 4, and 5,
for first and second neighbors. Third neighbors have not
been listed, even though reported, because neither the
experimental numbers nor the potential curve is thought
to be very satisfactory at this distance. The calculated
values, based on the formulas above, and the data in Table
2 taken from Dayal and Sharma, and Fiirth, are listed in
the next column.

For aluminum and iron the calculated values agree
with the experimental values within an order of magni-
tude, and have the same sign. For copper there is violent
disagreement in the case of ay, at least in the sign of the
term, and practically no fit for second neighbors.

Results with exponential law

It is tempting to see if a better fit could be obtained by
using the exponential form of the repulsive potential (2),
if a suitable approximation could be made in the mathe-
matics.

Equation (2) may be rewritten in terms of r,” and p”,
the pair equilibrium constants, and becomes:

’ r \m’
By = Ly {— 1 <’° >
n—m m’ r
+——1—exp[—n< r —1>}} (13)
Ui o

if weset o’ /p=7n.




Table I Comparison of experimental force constants and values calculated from central-force laws.

Inverse- Exponential
Force Constants Al* Experimentt Power Law Law
D(30H)u=-— a:’ a 8.45 18.6 19.8
x
oF
D(304)p=— —~ B1 —-.93 -39 —4.1
D(30%)1=— oF Y1 10.67 22.5 24.1
D(100);=— oF a2 2.14 5 4
F
D(100)2=— oy B2 40 13 .02
oy
Fe*
D313 u=-— oF. o 11.7 27.6 28.7
D(1313)i=— oF B 11.9 37.0 38.8
oy
D(100)11=— oF, o 11.6 21.2 23.8
ox
D(100)12=— oFy B —2.5 —1.25 —1.0
oy
Cu*
D3 03)u=— oFs B1 8.7 29.8 30.3
ox
oF,
D(%O%)'zg:— aq 48 —‘5.7 “64
oy
D(104%)13=— oFs Y1 12.5 35.6 36.7
0z
F,
D(100);1=— 2 az 3.50 3 .6
D(100)2=— aaF” B —.70 .26 .02
*Symbols used by author reporting data.
FIn units of 103 dynes/cm.
Table2 Values of constants of central-force, in-
verse-power law from Dayal and Sharma, Element Kcal Voem? m n
and Firth. gm-atom
Al 67.6 10.025 4 6.5
Fe 96.5 7.16 4 7 '
Cu 81.7 7.1 4 7
129
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The total potential energy of the lattice becomes:

1 1 m 1/ re" \
_(ﬁ(rl):__ 7], M" -— 0 Sm,
2 2 5—m m r

Setting de
dr1

rOII m+1 l —
= &giV]
<r10> Sm' ; ]\/
exp|:—1; <%\/71>]. (15)
0

This transcendental equation blocks further analytical
results.

=0 for r1=r1o gives:

”

. . r
If, for convenience, we write R= % and recall that we

r10
expect R>1, then if y is of the order of magnitude of 10,
the j=1 term is by far the dominant one. In that case we
shall make the following approximation:

STn'R?’L'+1=Egj\/Texp [_7] <—_\I/{] - 1>}
J

e[ (L] ao

On the basis of the above, which is somewhat equiva-
lent to assuming only first-neighbor repulsive interaction
in the evaluation of R, we obtain:

b_ 27 (p—m')
p= T (17)
N (n—m'R)Sm R™

To get some idea of what values m’ and » might take,
we recall that they are determined by the behavior of
P (r1) near ry=ryo;

as(n)

>

dl’]_

despite the approximation made in (16). Deriving anal-
ogous compressibility relations and using the same data
from which m and n were evaluated previously, we have
two sets of values:

(1) m'=3.1, (y/R) =10.5 and
(2) m'=9, (7/R)=2.6.

The first is consistent with our assumptions.
Making the further substitutions that

r
nlE’I]/R= 10

and
Sy R +1=S, e’ R

we can write for the lattice-pair potential:
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2 m'n' 1 r1o0 w 1
¢(r)_ N R— [ m' < r > Sm'
+-lﬁ exp [—n'(r/rw)] ] (18)
n Sar

Since §,.e" =g;=~S, for all practical purposes, for
first and second neighbors, the exponential law produces
no startling differences in the interatomic-force constants.
The last column in Table 1 lists the values obtained by
using the above expressions and m'=3.1, n'=10.5.

Discussion and conclusions

The specific central-force laws considered, with constants
evaluated from thermodynamic data, predict interatomic-
force constants for first and second neighbors which agree
qualitatively with experimental values for Al and Fe,
but which disagree strongly for the case of Cu. Although
it is impossible to conclude that the inverse-power law
with constants as given is a satisfactory heuristic potential
for Al or Fe, nonetheless certain irreconcilable features
between the observed force constants for Al and Fe on
the one hand, and Cu on the other, suggest that Cu is far
less “central like.” For any central-force system we may
write:

—dF=f1(r)dr+rfe(r)r-dr , (19)

where f1(r) is proportional to d¢(r) /dr and f2(r) con-
tains second derivatives as well (Egs. (11) and (12) are
explicit forms of this relationship for the inverse-power
law). If, for example, in the previous sections, 7o were
assumed to be the pair equilibrium position, then
d¢(r) /dr at r=rio would be zero for the first neighbors
and f1(r) =0. This condition leads to what is generally
called the “Born Central Field” and to the following
identities for fcc:

D(303)22=0
D(304)11=D($0%) 13

D(100)22=0;

for bec:
D($3%)11=D(4%%) 12
D(100)22:=0.

Thus the inclusion of the fact that first neighbors are
not at the pair equilibrium position leads to more detail
in the predicted constants. The predicted value of 8; for
Al and ay for Cu depends explicitly on the fact that
d¢(r) /dr=0 at r=ryo. From Fig. 1 we see that the slope
is negative at r=ryp, leading to a negative force constant,
and in order to have a positive «; for Cu, it would be
necessary that rio>>7¢". This would imply a repulsive force
of longer range than the attractive force, contrary to all
physical reasoning. We may therefore conclude that for
Cu it would be impossible to discover a central-force law
which would predict, for the static lattice, force constants
equal to the experimentally determined force constants.




Table 3 Elastic constants in units of 10'2 dynes/cm?,

Element Ci1 Ci2 Cy
Fe 2.37 1.41 1.16
Al 1.08 .62 .28
Cu 1.68 1.21 75

The Cauchy condition that Cy2=C44 has been shown
to follow from the central-force assumption'? for these
elements. From Table 3 it can be seen that the above
results were perhaps to be expected for Cu and Fe, but
what is unexpected is that the constants for Al are given
so well by the inverse-power law. Only a small modifica-
tion is needed in the inverse-power law constants to
change the first-neighbor force constants by a factor of
two to bring them more in line with the experimental
values. Thermal expansion, leading to a larger ry0, would
lower all values; however, the change in ryo should not be
greater than 0.5% over the temperature range. A dynami-
cal rip due to the thermal notion should be nearer to ry’
and could easily change the first-neighbor constants by the
desired amounts. Thus it probably would be in the second-
or farther-neighbor interaction that the important part of
the noncentral nature of the force would appear.

The question of how far out the potential curve one
should be willing to venture in calculating force constants
for further neighbors is of some interest and can perhaps
be approached through the relationship between the ex-
perimental elastic constants and sums of the force con-
stants. These relationships are derived by using the
method of long waves in the Born-von Karman theory.
For a fcc lattice they become, for example:

aCi1=4a1+4as+16as+ 883+« - -
aCys=2e1+2B1+4Bs+4as+20Bs+ - - -
a(Ci2+Cas) =4y, +8y3+3285+ - -

in which Walker’s symbols are used, and where a is the
lattice parameter. The experimental force constants satis-
fy this consistency check with the elastic constants by the
time third neighbors are reached. The force constants
predicted by the inverse-power law require consideration
of further neighbors before converging.

Although the results of this paper bear out the conten-
tion that a simple phenomenological central-force law is
not adequate to describe in detail the atomic interactions
in simple metals, still it is gratifying to note that the pre-
dicted values are, more often than not, within an order of
magnitude of the observed values. The strong departures
should serve as guides for the development of more satis-
factory theories.
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