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Introduction

The anomalous transmission of x-rays through nearly
perfect thick crystals was first observed by Borrmann!
and Campbell? and has been discussed theoretically by
Hirsch,? von Laue,* Zachariasen® and Kato,5 and investi-
gated experimentally by Schwartz and Rogosa.” A brief
note has been published by the author® outlining several
experiments using anomalous transmission of x-rays, in-
cluding the experiment described in detail in this paper.

~ The intensity of the anomalous transmission of X-rays
depends upon the degree of crystalline perfection of the
sample used, as well as upon the geometry of the elec-
tronic structure of the crystal. It is necessary to use the
most perfect crystals obtainable and then to correct the
results for the residual imperfections if one wishes to
measure the imaginary part of the atomic scattering
factor.

In recent times germanium single crystals of a very
high degree of perfection have become available.? These
crystals show no dislocations, as revealed by etching tech-
niques.’® They do show evidence of other imperfections,
but it is possible to correct the transmitted intensity
measurements for these. The purpose of this paper is to
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Abstract: In the dynamical theory of the anomalous
transmission of x-rays through perfect thick crystals,
the ratio of transmitted intensity to incident intensity
depends upon [1—Kf, (0:)/f;,(0°)] exponentially.
Here K is the polarization factor and the #; {0:x:)
and f;,(0°) are the imaginary parts of the atomic
scattering factors of germanium at the angle 65
and 0°, respectively. This paper describes the meas-
urement of the ratio f; (01:)/f.(0°) for several dif-
ferent sets of planes in nearly perfect germanium

crystals.

Figure ]  The anomalous transmission of x-rays.

discuss the direct measurement of the angular dependence
of the imaginary part of the atomic scattering factor using
the anomalous transmission of x-rays through nearly
perfect thick crystals. The results obtained on germanium
will be given in some detail.

Theory

The anomalous transmission of x-rays can best be under-
stood physically by reference to Fig. 1. If the x-rays are
monochromatic and incident at the Bragg angle, 6z, there
will result multiple reflections between the atomic planes
of the crystal. Because of these multiple reflections, we
can resolve the incident x-ray traveling wave into two
standing-wave components; A4, with the nodes of its elec-
tric field coincident in position with the family of atomic
planes (hkl) and, B, with the nodes of its electric field
elsewhere. As we proceed into the crystal it is clear that
B will be attenuated much more rapidly than A4, and if
the crystal is sufficiently thick, only the standing wave 4
will reach the opposite face. In this case standing wave 4
alone will be resolved into two traveling waves making
equal angles g with the atomic planes of the crystal. One
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traveling wave will be paraliel to the incident wave I and
will be called the transmitted wave of intensity Ir. The
other wave will make an angle of 265 with the incident
wave and will be called the diffracted wave with intensity
Ip. From symmetry considerations, it is clear that if the
standing wave B is completely absorbed, the resolution of
standing wave A4 will give Iy=Ip. If the atoms of the
crystal are at rest in perfect planes, and if, in addition,
the atoms are point atoms in the sense that there will be
no photoelectric absorption of x-rays by the atoms if there
is zero electric field at the atom center, there will be no
absorption of standing wave A as it passes through the
crystal. The consequence of this is that Iy=Ip=I,/4
regardless of the thickness of the crystal, as long as it is
thick enough to completely absorb standing wave B.

To calculate the quantitative formulas which apply to
real crystals we will follow Hirsch,? whose Egs. (11) and
(12) are reproduced below for the symmetrical Laue
reflection:

1 1 — ot t
D exp(— pot) cosh 1t

To 2 (149 VITy?

Iy 1 — wol t

Ir 1 exp(=pl) cosh % ix , @)
Iy 2 (1+y2) \/1—}—}72

where

uo is the linear absorption coefficient of the x-rays
used.

¢t is the thickness of the crystal in the direction of
the x-ray beam.

8=K(F};’Icl/F(l),00) .

K is the polarization factor (unity or cos2f for
x-rays with the electric vector perpendicular or
parallel to the plane of incidence of the x-rays).

F}\., 1is the imaginary part of the crystalline structure
factor for the (hkl) reflection (Ip).

F;,, 1is the imaginary part of the crystalline structure
factor for the directly transmitted beam (/).

y=1(0p—0)(sin20p) /CKFy .

C=4ze?/mwo®V, where e and m are the charge and
mass of the electron, v, is 27 times the frequency
of the x-rays, and V is the volume of the unit cell
of the crystal.

Fpa is the crystalline structure factor for the (Akl)
reflection.

coshX =14 2y? and the sign of X is the same as the sign
of y.

The equations (1) are valid over the entire range of
crystal thicknesses from t=0 to oo. They are valid for
finite atoms but do assume that the atoms are at rest in
perfect planes. For our application we will be concerned
only with thick crystals. Here we will define thick crystals
to have uot>10. By making the thick-crystal approxima-

tion we can considerably simplify the equations (1). First
expanding the cosh in terms of exponentials, we may write
equations (1) in the form:

Ip _ exp[—pot(1—e/\/1+y*)]

I 4(1+y2)
n exp[—pot(1+e/y/1+y%)]
4(1+y%)
Ir _ expl—pot(1—e/\/1+¥%)]
Iy 4(1+y?)

X {(1+2y2) =2y T+
exp[—pot (1+¢//T+y)]
4(1+y%)
X {(142y?) +2y/T+y*} . (2)

It turns out experimentally that 0.75<e<(1.00 for all of
the reflections considered here, so we may neglect the
second terms of the equations (2) compared to the first
terms for the thick-crystal case. This leaves us:

I expl—uet(1—e//14¥%)]

+

I, 4(1+y2)
Ir _ expl—pot(1—e/VT1+¥?)]
Iy 4(1+y?)
x {(142y%) —2y\/TF¥%) . (3)

Careful examination of the equations (3) shows that for
large values of pmo! the exponential term varies much
faster than the algebraic factors. This means that, for all
practical purposes, for thick crystals we may consider
that
Ir To L ol ot (1= e/ TT31. @
I I, 4
In Fig. 2 is shown a comparison of Ir/lo, In/lo, and
(1/4) exp[—uot(1—e/+/1+y%)] plotted against y for
uot=10 and £=0.9. This comparison shows that the
curve of Eq. (4) encloses an area intermediate between
the curves of Ir/l, and I /1. Numerical integration over
y for these curves yields the values shown in the table of
Fig. 2. These integrated values are proportional to the
integrated intensities we will measure in the experiments
described in this paper, and the values of §(Ir/Io)dy
and §(Ip/Iy)dy are seen to differ less than 10% from
the value of the integral of Eq. (4). If the same compari-
son is made at pof=20, the deviation of the same values
is less than 5%. In view of this we will proceed on the
basis that the integrated intensity of either the transmitted
or diffracted beam is adequately represented by the
integral of Eq. (4) for crystals with uot>10.

To integrate Eq. (4) we write it in the approximate
form:

.1
;—”: Do g exp(— pot)explepot/ (14 3y%)]
0 0

=3exp(— pot) exp(epor) exp( —2epoty?) . (5)
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Figure 2 Calculated intensity curves using :=0.90
and ;t=10.

This approximation assumes that y? is small compared to
unity over the range of rapid variation of the exponential.
Integrating, we get:

+00
Ry=Rj =+ exp[—pot(1—¢)] / exp(— $epoty?)dy
—o0

=/=n/8epotexp[— pot(1—¢)]. (6)

This approximate result is good to 10% for all values of
uot in excess of 20 and values of £>>0.75. If it is desired
to calculate the integrated intensities for values of pof and
¢ lower than these, it must be done numerically.

Equation (6) gives the ratio of the sum of the intensi-
ties at all values of y to the incident monochromatic x-ray
intensity. It should be pointed out that Eq. (6) really
represents two equations, one for the parallel polarization
component of the incident x-rays and a second for the
perpendicular component. Writing Eq. (6) to bring this
out, we have:

try= 1Ry =~ Fow Vexp| — o ((1— Eiir Y | ¢6a)
4 b 8t Flr, P Ho F.,
000

” 1/2
'Ry =Ry = T Fow
Buot cos2fp F i,

exp [—,uot<1— F’f/’” c05203>:] . (6b)
FUUU -

In order to develop these equations for use, we must
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consider them in connection with the actual method we
will use to measure integrated intensity experimentally.
This method consists of collimating the x-rays to a narrow
beam of about 40 seconds divergence and reflecting the
beam from a monochromator crystal. After leaving the
monochromator crystal, the Ko line is suppressed by a
slit system, leaving the monochromatic Ko, line to fall on
the surface of the sample crystal. The intensity of this line
in x-ray photons per sec is the [, referred to above. The
sample crystal is now rotated at a uniform angular speed
o through the angle 85 and over a range somewhat greater
than the natural width of the transmitted-intensity curve
(Fig. 2) plus the angular divergence of the incident beam.
The total number of x-ray photons received behind the
sample during the entire crystal rotation minus the back-
ground is the integrated intensity measured.

The integration over y represented by the equations
(6) must be corrected to give the equivalent sum over 6
and the effect of the monochromator crystal must be
evaluated. No special integration over the divergency of
the beam is necessary because each ray of the beam can
be considered as merely requiring a slightly different
crystal setting of the sample; and as long as our rotation
is over an angle greater than the divergency of the beam,
we will be utilizing the full intensity of the beam to
exactly the same degree as if all the rays were parallel and
we rotated over an angle just sufficient to include the
natural angular width of the transmitted line.

From the definition of y we are able to relate the inte-
grations over y(R% and R}) to corresponding integrations
over 8(RfLand R}). These relations are given below:

————Ry, (7)

and in terms of two different polarization directions we
have:

” /2
J.Rg:J-R"= CFpy < - Fono)1

D

sin28p 8ot F}’z,kl
exp [_W(l— ﬁM)] (7a)
F 000
I8 _lpo - CFucos2fy - Fro \'*
R’l' = R” = n ]
sin26z 8uot cos2dp Fiy,

exp l:—,uot <1 — i’f’ﬁ c05203>] . (7b)
FDOO

If we now assume that the x-ray beam leaving the
monochromator crystal and incident upon the sample
crystal is practically unpolarized, the total integrated
intensity will be given by the average of Eqs. (7a) and
(7b). This assumption is good for the quartz monochro-
mator used since the diffracting angle from the quartz
was only 13.2°, and this gives only about 5% polariza-
tion. The total integrated intensity, R, transmitted by the
crystal in either the transmitted or diffracted beam is
given by the average:




” 72
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If the sample crystal is rotated at angular speed o, the
experimentally determined total x-ray count, E, is related
to R by the relation:

E(r)
Lo
where I, is the intensity of the monochromatic beam
striking the sample crystal.

Combining Egs. (8) and (9) we find the following
relation:

=R, &)

In(ly/oE) _ (1 B ﬁ;‘lﬂ_> " J»ln 2 sin26g
ol F(’W,(m l CFh
SR (M i’i) In [1 + (cos'/220)
2 7 Fly

Fj
exp (—mt F’j,“ (1—cos28g) )] }/Mz. (10)

000

Examination of Eq. (10) shows that the last logarithmic
term is negligible compared to the others for pet>10.*

The ratio Fy,, /F,, of the imaginary parts of the crys-
talline structure factors can be expressed as the ratio
fee(08) /fe,(0°) of the imaginary parts of the atomic
scattering factor of germanium for the particular meas-
urements described in this paper. This may be demon-
strated from the fact that the germanium crystal lattice
possesses a center of symmetry. The definition of the
crystalline structure factor is given by:

Fua=f; exp(2xiBnuf;) , (i)
J

where f; is the atomic scattering factor for the jth atom in
the unit cell of the crystal, By is the reciprocal lattice
vector for the crystal planes (hkl), and 7; is the vector
from the origin to the jt" atom in the unit cell.

In a crystal of germanium there are eight germanium
atoms per unit cell. All of the f;’s, therefore, equal the
atomic scattering factor of germanium, f;.. The atoms of
the germanium crystal are arranged in two interpenetrat-
ing fcc lattices which are separated by the coordinates
(#41%). Such a system obviously has a center of sym-
metry at the position (4 4 4). (The coordinates are ex-
pressed in fractions of a unit-cell edge.) If the coordinates
of the eight atoms of the unit cell are substituted into
Eq. (11), it will be seen that the imaginary parts of Fy,
vanish for all values of (hkl) for this symmetry of atomic
coordinates, leaving the only remaining source of an
imaginary component as the fg, itself.

*This is equivalent to "R®—0 because of Cos26r dependence in the expo-
nential term.

By calculation it is readily found that all atomic planes
with odd (hkl) values give |Fuu|=8fs.//2; all planes
with even (hkl) values where the sum h-+k+1is a multi-
ple of 4 give |Fuu|=8fs.; and all other planes give
| Fraa| =0. From this it is clear that the ratio (Fy,/F,,)
becomes 0.707[fg, (8n) /14.(0°)] for reflections from
atomic planes with odd (hkl) values and becomes
1.000f e (Orrt) /6. (0°)]1 for reflections from atomic
planes with even (hkl) values whose sum is a multiple of
4. Since the intensity of the anomalous transmission
depends quite strongly on minimizing the quantity
(1—F},,/F{,), we must use reflections with even (hkl)
values so that the ratio (Fy,;/F;,) is as large as possi-
ble. Accordingly we may rewrite Eq. (10), dropping neg-
ligible terms and substituting for the ratio (Fj,,/F; ),

In(lo/wE) _ <1~ ge(af)>+{ln 2 sin26y
pot 14.(0%) C8fc.

1 8uot fg.(98)
—1 —Ger 7 . 12
2 "( " fgew"))}/’“' (12)

Equation (12) is the final equation we will use for the
reduction of the experimental measurements. Examina-
tion of this equation shows that a plot of the left-hand
side against the second term on the right-hand side will,
to the first approximation, yield a 45-degree line
with an intercept on the ordinate equal to the quantity
[1—7Fs.(68)/17.(0°)]. If this quantity is determined for
several different reflections (different values of #z), we
will have achieved our goal of the direct measurement of
the angular dependence of the imaginary part of the
atomic scattering factor of germanium.

Experiment

The experimental arrangement is shown in Fig. 3. The
x-ray source was a standard Philips x-ray generator with
a standard Philips copper tube. The focal spot is nomi-
nally 1 mm x 10 mm and the takeoff angle was about 6°
in a plane perpendicular to the long axis of the focal spot.
This gives an effective projected line source of about
0.1 mm x 10 mm. The collimating slits were 0.1 mm x
1 mm. The monochromator crystal was quartz cut to
reflect from the (101) planes. The exit slit was also
0.1 mm x 1 mm and was set to eliminate the CuKe.
radiation. The germanium crystal sample was mounted at
the center of rotation of a spectrometer on traverse screws
so that the crystal might be scanned both vertically and
horizontally while still keeping the axis of rotation in the
crystal and parallel to the reflecting planes. A motor-
driven micrometer was placed against the end of a long
lever arm and was used to rotate the crystal through its
diffracting position. The angular position of the occur-
rence of the peak transmission could be read on the
micrometer.

The x-ray detector used was a proportional counter
with a pulse-height discriminator circuit, so that the
higher harmonics coming through the monochromator
would not be counted. A check was made for the presence
of higher harmonics by using different combinations of
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voltage and current on the x-ray tube to see if the ratio
Ir /I, were higher for the higher voltage settings. Since
no effect was found, it was concluded that no significant
intensity of higher harmonics was being counted.

The initial samples used for the measurements were
cut wedge-shaped, with the diffracting planes perpendicu-
lar to the direction of taper of the wedge. The wedges
were mounted so that the long dimension of the x-ray
beam was parallel to the crystal planes. The crystal trans-
lations mentioned above provided the ability to scan along
the length of the wedge without changing its angle to the
x-ray beam and maintaining the axis of rotation within
the crystal. A typical wedge was 20 mm long, 3 mm wide
and tapered from a thickness of about 0.5 mm to 1.5 mm.

A study was made of the effects of surface damage due
to grinding the sample to shape. It was found that the
anomalous transmission measured on a l-mm sample,
ground to shape and lapped with 1200-mesh abrasive to
remove all grinding scratches, was only about 5% of the
transmission measured after a heavy CP4 etch. (This
percentage includes correction for the reduced thickness.)
Experimentation showed that if 20 microns or more were
removed by etching from the surfaces through which the
x-rays pass, there was no reduction of the anomalous
transmission by surface damage.

The measurement of I, was achieved by using the thin
end of the sample crystal wedge as a filter. The x-ray tube
was first set at a current and voltage within the regulating
range of the x-ray generator and yet at a sufficiently low
level that the proportional counter could measure the
direct beam from the monochromator. At this setting of
current and voltage both the direct beam and the inte-
grated intensity through the thin end of the crystal wedge
were measured. The x-ray generator was now set at the
usual operating current and voltage, and the integrated
intensity was again measured through the same point on

the crystal wedge, thus providing a calibrating factor.

In order to use the equations developed above, we must
know the uo of single-crystal germanium for the wave-
lengths of the x-rays to be used. Even though values of po
are to be found in the literature it was felt desirable to
measure it directly. For this purpose a slab of germanium
single crystal was lapped and etched to a thickness of
0.210 mm. The normal transmission of the monochro-
matic x-rays was measured through this slab for several
different angles of incidence of the x-rays. Since this slab
was taken from a good single crystal it was possible to use
the anomalous transmission method of determining I, as
described above. The normal transmissions at the various
angular settings were corrected for the cosine of the angle,
and the resulting values of Ir/I, were averaged to yield
ro=2326 per cm for CuKe; radiation.

Wedge samples were used to determine the value of
[1—f4.(08) /f4,(0°)]for the (220) and (400) reflections
by the extrapolation method described in the discussion
of Eq. (12). The plotting of Eq. (12), as described,
requires only that we have measured the anomalous
transmission as a function of uet. Since scanning our
wedge-shaped samples provides a variation in ¢, we can
get enough data from one wedge sample to give a com-
plete determination of [1—fg (0&8)/f.(0°)] for one re-
flection.

For higher-order reflections wedge samples were not
used, because the reduced anomalous transmission of the
higher orders will not allow sufficiently large values of ¢
to be measured to give a good extrapolation to t=2. To
measure the higher-order reflections, samples were pre-
pared in the form of flat discs of uniform thickness and
oriented so that the [110] crystallographic direction is
perpendicular to the plane of the disc. A disc oriented in
this way has the [100], [110] and [112] crystallographic
directions at different azimuths in the plane of the disc.

Figure 3 Schematic arrangement of apparatus for anomalous-transmission measurement.
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This means that.we can measure the (220), (400), (224),
and (440) reflections by mounting the disc with its per-
pendicular in the plane of reflection of the x-rays and
selecting different azimuths. In this way we can compare
the anomalous transmission intensities of the different
reflections at one point in the disc and compute the
[1—£4.(08) /f5,(0°)] values of the higher orders in terms
of the values of this quantity for the lower orders. For-
mulae for this calculation will be given later.

Results

In Fig. 4 are shown results of measurements made on five
samples cut from three different crystals of germanium.
The (220) reflection is used and the crystal wedges were
cut so that the [110] direction is parallel to the direction
of taper of the wedge. Crystal 1 was grown in the [110]
direction and Crystals 2 and 3 were grown in the [111]
direction. This means that the wedge of Crystal 1 was cut
parallel to the axis of growth of the crystal and the wedges
cut from Crystals 2 and 3 were cut perpendicular to the
axis of growth. All of these crystals were free of disloca-
tion etch pits. Figure 4 is a plot of Eq. (12) and should
be a 45° line except for the slight variation introduced by
using an assumed value of f;,(85) //¢.(0°) in the calcu-
lation of the abscissa. In making the plot shown, a pre-
liminary plot was made assuming f¢,(0z) /f4,(0°) =1.00.
The resulting intercept [1—7g.(0z8)/f;(0°)] was 0.05,
giving a value of f},(0z) /f4,(0°) =0.95. The final plot
Fig. 4 was then made using this value, and the intercept
finally becomes [1—77,.(05) /f¢,(0°)]=0.047+0.002 for
the best straight line through all the points shown.

Brief consideration of the effect of crystal imperfec-
tions shows that they should tend to increase this numeri-
cal value of the intercept since they would tend to decrease
E. A correction for the effect of microstrains will be
discussed later. Since a transmission greater than that of
of a perfect crystal is very unlikely, we conclude that this
value of the intercept is an upper limit.

For higher-order reflections it is easier to compare the
transmitted intensities of such reflections with the trans-
mitted intensity of the (220) reflection at a given point in
a crystal of uniform thickness, rather than try to measure
wedges cut separately for each reflection. We accordingly
will derive appropriate comparison formulas.

Remembering that t=t,/cosfp, and letting ez=
fi.(08) /15,(0°), we may rewrite Eq. 12 as:

\ 1/2
epr: molo (1—83):|= IoC4fGe <WCOS€B> . (13)

cosf g oEpsin20p \ 8uotoen

We will now calculate (1—ep) in terms of (1—ez20).
First taking the ratio of Eq. (13) for (1—ez) to Eq. (13)
for (1—e220), we have:

1—ep 1—g220
exp [poto - =
cosfp cosflazo
E220 8in260220(£220/€0860220) /2
Ep sin205(ep/cosfp)/?

. (14)

Taking the logarithm and solving for (1-—e35), we get:

0.8

0.7 i /0/
0.6 /

0.5 o

N

AN

$ 02 A
~
//
w
3 0.1/
°
‘_:' ("i)
—

0.1 0.2 0.3 0.4 0.5 0.6 0.7

[=]

{10.65 +3In (2.4pqt)
Mot }

Figure 4 Plot of Eq. (12) for five wedges cut from
three different crystals of germanium.
Sample 1 (+) was cut parallel to the axis
(110) of Crystal 1; samples 2 (O) and 3 (@)
were cut perpendicular to the axis (111) of
Crystal 2; and samples 4 (A) and 5 (A)
were cut perpendicular to the axis (111)
of Crystal 3.

cosfp Ess $in26220
1—eg=(1—c¢: +| In + In
B ( 5220) 0050220 [ EB sin201;
1
LA £220C0885 | cosfp ) (15)
2 8BC080220 Moto

Equation (15) is in a form which makes the calculation
of 1— 5 from the known e22¢ quite easy. In Table 1 are
listed the numerical forms of Eq. (15) ready for the
calculation of 1— ep for several reflections in germanium,
using CuKe; radiation. It should be pointed out that
Eq. (15) assumes a symmetrical Laue reflection for each
of the measured reflections to be compared. If a crystal
cut is used in which a nonsymmetrical condition exists,

Table I Equation (15) reduced for use with CuKq, radiation.

Reflection (hkl) | Comparison with (220) for (1—e22) =0.047

(400) (1— £400) =0.043 +[In(E220/E400) — % Inesg0—0.32] /38810
(224) (1—g224) =0.039+[In(E220/E224) — % Ine224—0.46] /4351,
(440) (1— £440) =0.033+ [In(E220/Fs10) — % Ineqqo—0.54] /51010
(444) (1 —£444) =0.017+ [In(Es20/E144) — % Ing444—0.60]1/952t0
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Table2 [1—#;(65)/F5,0°)] for several reflections
in germanium using CuKa, radiation.

Table 3 11 —f4.(05)/§5,(0°)] for several reflections
in germanium corrected for strain in the
sample. (CuKq, radiation.)

RKL | 05 | [L—f3,(88) /f4,(0°)1 | fie(88) /f5,(0°) Rkl 08 | [1—f4.(08) /F4,(0°)] | fe(08) /14,(0°)
220 | 22.6° 0.047 0.953 220 22.6° 0.039 0.961
400 | 33.1° 0.10 0.90 400 | 33.1° 0.085 0915
224 | 41.7° 0.15 0.85 224 | 41.7° 0.130 0.870
440 | 50.4° 0.22 0.78 440 | 50.4° 0.185 0.815

special comparison equations must be derived using both
sets of direction cosines throughout. As pointed out pre-
viously, all of the reflections listed in Table 1 can be ob-
tained in the symmetrical Laue condition from a crystal
slab cut so that the [110] direction is perpendicular to
the plane of the slab.

Examination of Table 1 shows that relatively thin crys-
tal slabs must be used for measuring the higher-order
reflections. For example, a 1 mm slab will show Egz0/
E,140=20,000. Because of this it is usually better to use
more than one crystal slab to measure a large range of
reflections.

In Table 2 is given the results for several reflections
measured by comparison with the (220) reflection. The
value of (1—e220) Was determined by the extrapolation
plot of Eq. (12) described above.

These results were obtained on crystals which showed
no dislocation etch pits but which showed considerable
evidence of the presence of microstrain.!* The effect of
the microstrain on the measured transmitted intensity
can be calculated from the variation of transmitted in-
tensity as the sample is bent elastically. From Reference
11 we have the relation:

a=(To/Ep)a, (16)
where

a = 6.2 x 10* cm/2, and is evaluated from the theory
of a bent crystal.

ais the measured slope of an experimental curve of
(InTo/T)1/2 vs 3/t

E, is the transmitted intensity of a perfect unbent crystal.

Ty is the transmitted intensity of the imperfect unbent
crystal.

T is the transmission of the imperfect crystal under the
conditions of an elastic bend of 3, units of strain in
the extreme fiber.

t is the thickness of the bent crystal.

Since it is necessary to have a sample of uniform
thickness for the measurements on a bent crystal, it
was not possible to make the determination of (To/Ey)
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on the identical crystals used in the measurements of
[1—77.(88) /fae(0°)). A crystal bar cut from the same
ingot used for obtaining most of the above results was
used for the bending measurements, and its exact relation
to the other samples is shown in Fig. 5. The wedge-shaped
sample @ shown in Fig, 5 is also the sample 1(+) of
Fig. 4. This sample was cut adjacent to the central axis of
the crystal ingot. Sample @ is a 1-mm thick bending
specimen used to determine the (7To/Ey) ratio for mate-
rial near the axis of the ingot. Samples ® and ® are
transverse discs used to measure the comparative trans-
missions of the various orders reported above. (These
are not the samples 2(O) and 3(@) of Fig. 4.)

In Fig. 6 is shown the results of the bending measure-
ments on sample @ of Figure 5. From the slope of this
curve we find (To/E,) =0.57. Correcting the oF readings
of sample @ by a factor of 1/57=1.75, we find a cor-
rected value of 0.039 for the [1—£7,(65) /f;(0°)] inter-
cept. Making a similar correction for the higher order
reflections we get the corrected results shown in Table 3.

Conclusions

The results given above show that it is possible to measure
directly the imaginary part of the atomic scattering factor
as a function of the order of reflection and thus as a func-
tion of angle. It could similarly be measured for the same

Figure 5 Location of samples in germanium ingot.
Samples (), @ and (@ were used for
f,.(05)/1;,l0°) determinations and sam-
ples & and (5) were used for bending
determinations of T,/E,.
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Figure 6 Bending curve of sample 4, = =extreme fi-
ber strain, E,=transmission for zero strain.

reflection as a function of wavelength. Such a measure-
ment would vary the energy difference between the x-ray
photons and the L absorption edge as well as the angle.
It seems reasonable that such measurements should be
made in order to collect enough data to calculate the
electron-density function of the L electrons in germa-
nium. Even more interesting results might be obtained
in silicon if sufficiently perfect crystals are available.

It should be pointed out that the only other way of
finding the imaginary part of the atomic scattering factor
is through the well-known Honl corrections.? These cor-
rections are not capable of yielding values comparable in
accuracy to the results reported here.

The accuracy of the results reported here depends
upon the accuracy of the corrections for strain in the
sample. Since the strain correction used here is only a
first-order correction depending upon strain which shows
a monotonic variation of lattice spacing through the
thickness of the crystal, we can conclude that all of the
corrected (1—¢) values are, if anything, too large. It is
difficult to estimate the size of the second-order correc-
tions due to strain, but they probably only affect the
(1—¢) values to about 10% at the most and indeed may
actually be negligible. It seems reasonable that the accu-
racy of these measurements could be improved if the
determination of (1—¢) and of (T,/E,) were made at a
single point on the same crystal. This would ensure that

the microstrain distribution would be the same for all
measurements. Such a measurement could be accom-
plished by starting with a thick crystal bar and slowly
reducing its thickness to obtain various values of uof.
Since the thickness would be uniform for each set of
measurements, it would be possible to make both a bend-
ing experiment and a transmitted-intensity measurement
at each thickness.

It should be pointed out that it is impractical to meas-
ure Iy/Io directly as a function of y in Eq. (1) in order
to determine ¢ better. This is true because microstrain
shows up in a change of intensity rather than a line
broadening for anomalous transmission in thick crystals
(10t>20). The results of Schwarz and Rogosa’ are for
relatively thin crystals where uot<<10. In our case, the
theoretical line width would be about 4 seconds of arc
and quite insensitive to microstrain.

Another interesting line of investigation which sug-
gests itself is the measurement of the temperature varia-
tion of the anomalous transmission as a function of the
order of the reflection. Such a measurement should yield
considerable information about the lattice vibration am-
plitudes in the various directions.
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