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I- t o  - I 
Introduction 

The  anomalous transmission of x-rays through nearly 
perfect  thick  crystals was first observed by Borrmannl 
and Campbellz and  has been discussed theoretically by 
H i r ~ c h , ~  von L a ~ e , ~  Zachariasen5 and  Kato,6  and investi- 
gated  experimentally by Schwartz and Rogosa.' A brief 
note has been published by the  authors outlining  several 
experiments using anomalous transmission of x-rays, in- 
cluding the experiment described in  detail in this  paper. 

The intensity of the anomalous  transmission of x-rays 
depends upon  the degree of crystalline  perfection of the 
sample  used,  as well as upon  the geometry of the elec- 
tronic  structure of the crystal. It is necessary to use the 
most  perfect  crystals  obtainable and  then to correct  the 
results for  the residual  imperfections if one wishes to 
measure  the imaginary part of the  atomic scattering 
factor. 

In  recent times germanium single crystals of a very 
high  degree of perfection have become available.9 These 
crystals  show no dislocations,  as  revealed by etching  tech- 
niques.l0 They  do  show evidence of other imperfections, 
but it is possible to  correct  the transmitted  intensity 

106 measurements for these. The  purpose of this paper is to 
~ 

Abstract: In the dynamical theory of  the  anomalous 

transmission of x-rays through perfect thick  crystals, 

the  ratio of transmitted intensity to incident intensity 

depends upon I 1  -Kf&( (eh~J / f~e (OOl l  exponentially. 

Here K i s  the polarization factor and the f'&3hkl) 

and f,&(Oo) are the imaginary parts of the atomic 

scattering factors of germanium at the angle ( e m 6  

and 0", respectively. This paper describes the meas- 

urement of the ratio f&(Bhk~) / f~ee(OO)  for several dif- 
ferent sets of planes in  nearly perfect germanium 

crystals. 

F i w r c  I The anomalous transmission of x-rays. 

discuss the direct measurement of the angular  dependence 
of the imaginary part of the  atomic scattering factor using 
the anomalous transmission of x-rays through nearly 
perfect  thick crystals. The results  obtained on germanium 
will be given in some  detail. 

Theory 

The anomalous  transmission of x-rays can best be under- 
stood physically by reference  to Fig. 1. If the x-rays are 
monochromatic  and incident at  the Bragg angle, Be, there 
will result  multiple reflections between the  atomic planes 
of the crystal. Because of these  multiple reflections, we 
can resolve the  incident x-ray  traveling wave into two 
standing-wave  components; A ,  with the nodes of its elec- 
tric field coincident in position  with the family of atomic 
planes (hkl )  and, B, with the nodes of its  electric field 
elsewhere. As we proceed into  the crystal it is clear that 
B will be attenuated  much  more rapidly than A ,  and if 
the crystal is sufficiently thick,  only the  standing wave A 
will reach  the opposite face. In  this  case standing wave A 
alone will be resolved into  two traveling waves making 
equal angles B B  with the atomic  planes of the crystal.  One 
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tric field coincident in position  with the family of atomic 
planes (hkl )  and, B, with the nodes of its  electric field 
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will reach  the opposite face. In  this  case standing wave A 
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other wave will make an angle of 28a  with the incident 
wave and will be called the diffracted wave with intensity 
I,,. From symmetry  considerations, it is clear that if the 
standing wave B is completely  absorbed, the resolution of 
standing wave A will give I T ~ = I D .  If the atoms of the 
crystal are  at rest  in  perfect planes, and if,  in  addition, 
the atoms are point atoms in  the sense that  there will be 
no photoelectric  absorption of x-rays by the  atoms if there 
is zero electric field at  the  atom  center,  there will be no 
absorption of standing wave A as it passes through  the 
crystal. The consequence of this is that  IT=ID=&/4 
regardless of  the thickness of the crystal,  as long as it is 
thick  enough to completely absorb  standing wave B.  

To calculate the quantitative formulas which apply to 
real crystals we will follow  Hirsch,3 whose Eqs. ( 1  1)  and 
(12)  are reproduced below for the  symmetrical Laue 
reflection: 

equations (1) in the  form: 

10 - e x p [ - p o t ( 1 - e / ~ 1 + y 2 ~ 1  
Io 4(  1 +Y'> 

- 
" 

- 
+ e x p I - p O t ( l + ~ / ~ 1 + ~ ~ ) 1  

4(1  +Y2) - 
" I T  - exp[ -p~ t (1 - - / / 1+~*)1  
l o  4(1  +Y2) 

x { ( 1 + 2 y 2 ) - 2 y / W }  

+ e x p [ - p o t ( l + ~ / W ) l  
4(1 + Y 2 )  

x { ( 1  +2yZ) + 2 y V W }  . (2) 

It  turns  out experimentally that  0.75<~<1.00  for all of 
the reflections considered here, so we may neglect the 
second terms of the equations ( 2 )  compared  to  the first 
terms for  the thick-crystal case. This leaves us: 

- I D  - ~. e x p [ - p o t ( 1 - - ~ / ~ 1 + ~ ~ ) 1  
I O  4( 1 + y 2 )  

where 1 7 %  e ~ p [ - p ~ t ( 1 - ~ / ~ 1 + ~ ~ ) 1  
" 

- 
po is the  linear  absorption coefficient of the x-rays 10 4(1+y2) 

used. x { ( 1 + 2 y + 2 y ~ ~ } .  ( 3 )  

t is the thickness of  the crystal in the direction of 
the  x-ray beam. 

E=K(F&L/F&)  - 
K is the polarization factor  (unity  or cos28 for 

x-rays with the electric  vector  perpendicular or 
parallel to  the plane of incidence of the x-rays). 

F;jicL is the imaginary part of the crystalline structure 
factor  for  the ( h k l )  reflection ( I D ) .  

Fioo is the  imaginary part of the crystalline structure 
factor  for  the directly  transmitted beam ( I T )  . 

y =  ( 0 0 - 0 )  (sin26'~)/CKFj,kl. 

C =  4i~e'/mwo~V', where  e and m are  the charge and 
mass of the  electron, m0 is 2~  times the frequency 
of the x-rays,  and V is the volume of the unit cell 
of the crystal. 

F t r k f  is the crystalline structure  factor  for  the ( h k l )  
reflection. 

coshX= 1 + 2y2 and the sign of X is the  same as the sign 
of y. 

The  equations (1) are valid over  the  entire  range of 
crystal thicknesses from t=O to 00. They  are valid for 
finite atoms  but  do assume that  the atoms are  at rest in 
perfect  planes. For  our application we will be concerned 
only  with thick crystals. Here we will define thick  crystals 
to have pot> 10. By making  the thick-crystal approxima- 

Careful examination of the equations ( 3 )  shows that  for 
large values of pot the exponential term varies much 
faster than  the algebraic factors.  This means that,  for all 
practical  purposes, for thick  crystals we may consider 
that 

- In ~- - e x p [ - p o t ( l - - / \ / ~ ) ] .  1 
l o  l o  4 

In Fig. 2 is shown  a comparison of IT/&, I D / l O ,  and 
(1/4) exp[-pot( 1 - E / /  1 +y2)] plotted  against y for 
pot= 10 and E =0.9. This comparison shows that  the 
curve  of  Eq. (4) encloses an  area intermediate between 
the curves of ZT/Zo and ID/Zo. Numerical integration over 
y for these  curves yields the values shown  in the  table of 
Fig. 2. These integrated values are  proportional  to  the 
integrated intensities we  will measure in the experiments 
described  in  this paper,  and  the values of J ( I ~ / Z o ) d y  
and J (ID/Io)dy  are seen to differ less than 10% from 
the value of the integral of Eq. (4).  If the  same compari- 
son is made  at pot=20, the deviation of the  same values 
is less than 5%. In view of this we will proceed on  the 
basis that  the integrated  intensity of either the transmitted 
or diffracted  beam is adequately  represented by the 
integral of Eq. (4)  for crystals  with pot>lO. 

To integrate Eq. (4) we write it in the approximate 
form : 

-L= - =~exp(-pOt)exp[Epot/(1+qy*)] I In 
l o   l o  

(4) 

= f e x p ( - ~ o t ) e x p ( e p E - L o t ) e x p ( - - f e p ~ t y 2 ) .  ( 5 )  107 
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Numerically  integrated intensities 

z0.102 I T / I O  

__ ~ ~~ ~ - ~~ ~ -~ ~ 

I D / I O  =0.080 
exp[ -pot ( l -E /~ l+y~) l=0 .091  __ - ~ -~ ~ ~ ~~~ 

Figure 2 Calculated  intensity  curves  using E =0.90 
and  pot=  10. 

This approximation assumes that y* is small compared  to 
unity over  the  range of rapid variation of the exponential. 
Integrating, we get: 

This approximate result is good to 10% for all values of 
pot in excess of 20 and values of ~>0 .75 .  If it is desired 
to calculate the integrated  intensities for values of pot and 
E lower than these, it must  be done numerically. 

Equation (6) gives the  ratio of the  sum of the intensi- 
ties at all values of y to  the incident monochromatic x-ray 
intensity. It should  be  pointed out  that Eq. (6) really 
represents two equations, one  for  the parallel  polarization 
component of the incident x-rays and a second  for  the 
perpendicular component. Writing  Eq. (6)  to bring  this 
out, we have: 

108 In  order  to develop  these equations  for use, we must 

consider them in  connection with the actual  method we 
will use to measure  integrated  intensity  experimentally. 
This  method consists of collimating the x-rays to a narrow 
beam of about 40 seconds  divergence and reflecting the 
beam from a monochromator crystal. After leaving the 
monochromator crystal, the Kap line is suppressed by a 
slit system, leaving the  monochromatic Kal line to fall on 
the  surface of the sample  crystal. The intensity of this  line 
in x-ray photons  per sec is the Io referred to above. The 
sample crystal is now rotated  at a  uniform angular speed 
o through  the angle OB and  over a range somewhat  greater 
than  the  natural width of the transmitted-intensity curve 
(Fig.  2) plus the  angular divergence of the incident  beam. 
The  total  number of x-ray photons received behind the 
sample during  the  entire crystal rotation minus the back- 
ground is the integrated  intensity  measured. 

The integration  over  y  represented by the equations 
(6) must be corrected  to give the equivalent sum  over 0 
and  the effect of the  monochromator crystal  must be 
evaluated. No special  integration over  the divergency of 
the beam is necessary because  each ray of the beam can 
be considered  as  merely  requiring  a slightly different 
crystal  setting of the sample; and as long as our  rotation 
is over an angle  greater than  the divergency of the beam, 
we will be utilizing the  full intensity of the beam to 
exactly the  same degree as if all the rays  were  parallel and 
we rotated  over an angle  just sufficient to include the 
natural  angular width of the transmitted line. 

From  the definition of y we  are able to relate  the inte- 
grations over y (RF and R&) to corresponding  integrations 
over O(R:.and R i ) .  These relations are given below: 

and in  terms of two different polarization  directions we 
have : 

exp [ -po t  (1 - 2 cos2OB . (7b) )I 
If we now  assume that  the x-ray beam  leaving the 

monochromator crystal and incident upon  the sample 
crystal is practically  unpolarized, the  total integrated 
intensity will be given by the average of Eqs. (7a)  and 
(7b).  This assumption is good for  the  quartz  monochro- 
mator used since the diffracting  angle from  the  quartz 
was only 13.2", and this gives only about 5% polariza- 
tion. The total  integrated intensity, R ,  transmitted by the 
crystal in either the transmitted or diffracted beam is 
given by the  average: 
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If the  sample  crystal is rotated  at  angular speed a, the 
experimentally  determined total x-ray count, E, is related 
to R by the relation: 

Em 
- = R  , (9)  

10 

where lo is the intensity of the  monochromatic  beam 
striking the sample  crystal. 

Combining  Eqs. ( 8 )  and (9) we find the following 
relation: 

Examination  of Eq. (10) shows that  the last  logarithmic 
term is negligible compared  to  the  others  for pot>lO.'k 

The  ratio FLkz /Finn of the imaginary parts of the crys- 
talline structure factors can be  expressed  as the  ratio 
f ~ , ( f 3 ~ ) / f & , ( O o )  of the imaginary parts of the  atomic 
scattering factor of germanium  for  the  particular meas- 
urements  described  in this paper. This may be demon- 
strated  from the fact  that  the  germanium crystal  lattice 
possesses a center of symmetry. The definition of the 
crystalline structure  factor is given by: 

where f j  is the  atomic scattering factor for the jtil atom in 
the unit cell of the crystal, Bhkl is the reciprocal  lattice 
vector for  the crystal  planes ( h k l ) ,  and Pi is the vector 
from  the origin to  the j t h  atom in the  unit cell. 

In a  crystal of germanium  there  are eight  germanium 
atoms per  unit cell. All of the fj's, therefore, equal  the 
atomic scattering factor of germanium, foe. The atoms of 
the germanium crystal are  arranged  in  two  interpenetrat- 
ing fcc  lattices which are  separated by the coordinates 
(f f *). Such a system obviously has a  center of sym- 
metry at  the position (Q- Q- Q-). (The coordinates are ex- 
pressed in fractions of a unit-cell edge.) If the coordinates 
of the eight atoms of the unit cell are substituted into 
Eq. ( 1 l) ,  it will be seen that  the imaginary parts of Fhkl  

vanish for all values of ( h k l )  for this  symmetry of atomic 
coordinates, leaving the only  remaining source of an 
imaginary component as the fGe itself. 

*This is  equiralenr to IlRH-+O brcausr of COS?BR drprnderlce in the expo- 
nential term. 

By calculation it is readily found  that all atomic planes 
with odd ( h k l )  values give IFhk l l  = 8 f ~ ~ / 4 2 ;  all  planes 
with even ( h k l )  values where the  sum h + k +  l is a  multi- 
ple of 4 give I FhklI =8fGe;  and all other planes give 
IFt,klI = O .  From this it is clear that  the  ratio ( F i k L / F & , )  
becomes O.707vge( &k[) / f&, (O")]  for reflections from 
atomic  planes  with  odd ( h k l )  values  and  becomes 
1 . 0 0 ~ ~ , ( 8 ~ ~ )  / f g e  ( O " ) ]  for reflections from  atomic 
planes  with even (hkl )  values whose sum is a  multiple of 
4.  Since the intensity of the  anomalous transmission 
depends  quite  strongly  on  minimizing  the  quantity 
( 1 -F;ikz/F;60 ) , we must use reflections with  even ( h k l )  
values so that  the  ratio (Fikl/F;, , , ,> is as  large  as possi- 
ble. Accordingly we may  rewrite Eq. ( lo),  dropping neg- 
ligible terms and substituting for  the  ratio (F;t>cl /F;on),  

Equation  (12) is the final equation we will use for  the 
reduction of the experimental  measurements. Examina- 
tion of this equation shows that a plot of the  left-hand 
side  against the second term  on  the right-hand  side will, 
to  the  first  approximation,  yield a 45-degree  line 
with an intercept on  the  ordinate  equal  to  the quantity 
[1 -tie( O B ) / f ~ , ( O " ) ] .  If this quantity is determined for 
several different reflections (different values of O B ) ,  we 
will have achieved our goal of the direct measurement of 
the  angular dependence of the imaginary part of the 
atomic scattering factor of germanium. 

Experiment 

The experimental arrangement is shown  in  Fig. 3. The 
x-ray source was a standard Philips  x-ray generator with 
a standard Philips copper tube. The  focal  spot is nomi- 
nally 1 mm X 10 mm  and  the takeoff angle was about 6" 
in  a  plane  perpendicular to  the long  axis of the  focal spot. 
This gives an effective projected  line source of about 
0.1 mm x 10 mm. The collimating slits were 0.1 mm x 
1 mm. The  monochromator crystal was quartz  cut  to 
reflect from  the (101) planes. The exit slit was  also 
0.1 mm x 1 mm  and was set to eliminate the CuKw 
radiation. The germanium  crystal  sample was mounted  at 
the  center of rotation of a  spectrometer on traverse screws 
so that  the crystal  might be scanned  both vertically and 
horizontally while still keeping the axis of rotation in the 
crystal and parallel to  the reflecting planes. A motor- 
driven micrometer was placed  against the  end of a  long 
lever arm  and was used to  rotate  the crystal through its 
diffracting position. The  angular position of the  occur- 
rence of the peak  transmission  could  be read  on  the 
micrometer. 

The x-ray detector used was a proportional  counter 
with  a pulse-height discriminator  circuit, so that  the 
higher  harmonics  coming through  the  monochromator 
would not be counted. A check was made for the presence 
of higher harmonics by using different  combinations of 1 09 
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voltage and  current  on  the x-ray tube  to see if the ratio 
I T / &  were  higher for  the higher voltage settings. Since 
no effect was found,  it was concluded that  no significant 
intensity of higher  harmonics was being counted. 

The initial  samples used for  the measurements  were 
cut wedge-shaped, with the diffracting planes perpendicu- 
lar  to  the direction of taper of the wedge. The wedges 
were mounted so that  the long  dimension of the x-ray 
beam was parallel to  the crystal planes. The crystal trans- 
lations  mentioned  above  provided the ability to  scan along 
the length of the wedge without  changing its angle to  the 
x-ray  beam and maintaining the axis of rotation within 
the crystal. A typical wedge was 20  mm long,  3 mm wide 
and  tapered  from a  thickness of about 0.5 mm  to 1.5 mm. 

A study was made of the effects of surface  damage  due 
to grinding the sample to shape. It was found  that  the 
anomalous transmission  measured on a  1-mm  sample, 
ground  to  shape  and  lapped with 1200-mesh  abrasive to 
remove all grinding  scratches, was only about 5% of the 
transmission  measured after a  heavy CP4 etch. (This 
percentage  includes correction  for  the reduced  thickness.) 
Experimentation  showed that if 20 microns or more were 
removed by etching from  the surfaces through which the 
x-rays pass, there was no reduction of the anomalous 
transmission by surface damage. 

The measurement of l o  was achieved by using the thin 
end of the sample  crystal wedge as  a filter. The x-ray tube 
was first set at a current  and voltage within the regulating 
range of the x-ray generator  and yet at a sufficiently low 
level that  the  proportional  counter could measure  the 
direct  beam from  the  monochromator.  At this  setting of 
current  and voltage both  the direct  beam and  the inte- 
grated intensity through  the thin end of the crystal wedge 
were measured. The x-ray generator was now set  at  the 
usual operating  current  and voltage, and  the integrated 
intensity was again  measured through  the  same point on 

the crystal wedge, thus providing  a  calibrating factor. 
In  order  to use the equations developed above, we must 

know the po of single-crystal germanium  for  the wave- 
lengths of the x-rays to be used. Even  though values of PO 
are  to be found in the  literature  it was felt desirable to 
measure it directly. For this  purpose  a  slab of germanium 
single crystal was lapped  and etched to a  thickness of 
0.210 mm. The  normal transmission of the  monochro- 
matic x-rays was measured through this  slab for several 
different angles of incidence of  the x-rays. Since this slab 
was taken from a good single crystal it was possible to use 
the anomalous  transmission method of determining l o  as 
described  above. The  normal transmissions at  the various 
angular settings were  corrected for  the cosine of the angle, 
and  the resulting values of Z T / Z o  were averaged to yield 
po=326 per cm  for CuKal radiation. 

Wedge  samples  were used to  determine  the value of 
[1 - f ie (  0,) /f&( 0° ) ]  for the (220) and (400) reflections 
by the extrapolation method described  in the discussion 
of Eq.  (12).  The plotting of  Eq. (12), as  described, 
requires  only that we have  measured the  anomalous 
transmission  as  a function of pot. Since scanning our 
wedge-shaped samples  provides  a  variation in t ,  we can 
get enough  data  from  one wedge sample to give a com- 
plete  determination of [1-f&(0,)/fQ,(O0)] for  one  re- 
flection. 

For higher-order reflections wedge samples  were  not 
used, because the reduced anomalous transmission of the 
higher orders will not allow sufficiently large values of t 
to be measured to give a good extrapolation to t =  a. To 
measure the higher-order reflections, samples  were pre- 
pared  in  the  form of flat discs of uniform thickness and 
oriented so that  the [110] crystallographic  direction is 
perpendicular to  the plane of the disc. A disc oriented in 
this way has  the  [loo], [110] and [112]  crystallographic 
directions at different azimuths in the plane of the disc. 

Figure 3 Schematic arrangement of apparatus for anomalous-transmission measurement. 
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voltage and  current  on  the x-ray tube  to see if the ratio 
I T / &  were  higher for  the higher voltage settings. Since 
no effect was found,  it was concluded that  no significant 
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cut wedge-shaped, with the diffracting planes perpendicu- 
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A study was made of the effects of surface  damage  due 
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ground  to  shape  and  lapped with 1200-mesh  abrasive to 
remove all grinding  scratches, was only about 5% of the 
transmission  measured after a  heavy CP4 etch. (This 
percentage  includes correction  for  the reduced  thickness.) 
Experimentation  showed that if 20 microns or more were 
removed by etching from  the surfaces through which the 
x-rays pass, there was no reduction of the anomalous 
transmission by surface damage. 

The measurement of l o  was achieved by using the thin 
end of the sample  crystal wedge as  a filter. The x-ray tube 
was first set at a current  and voltage within the regulating 
range of the x-ray generator  and yet at a sufficiently low 
level that  the  proportional  counter could measure  the 
direct  beam from  the  monochromator.  At this  setting of 
current  and voltage both  the direct  beam and  the inte- 
grated intensity through  the thin end of the crystal wedge 
were measured. The x-ray generator was now set  at  the 
usual operating  current  and voltage, and  the integrated 
intensity was again  measured through  the  same point on 

the crystal wedge, thus providing  a  calibrating factor. 
In  order  to use the equations developed above, we must 

know the po of single-crystal germanium  for  the wave- 
lengths of the x-rays to be used. Even  though values of PO 
are  to be found in the  literature  it was felt desirable to 
measure it directly. For this  purpose  a  slab of germanium 
single crystal was lapped  and etched to a  thickness of 
0.210 mm. The  normal transmission of the  monochro- 
matic x-rays was measured through this  slab for several 
different angles of incidence of  the x-rays. Since this slab 
was taken from a good single crystal it was possible to use 
the anomalous  transmission method of determining l o  as 
described  above. The  normal transmissions at  the various 
angular settings were  corrected for  the cosine of the angle, 
and  the resulting values of Z T / Z o  were averaged to yield 
po=326 per cm  for CuKal radiation. 

Wedge  samples  were used to  determine  the value of 
[1 - f ie (  0,) /f&( 0° ) ]  for the (220) and (400) reflections 
by the extrapolation method described  in the discussion 
of Eq.  (12).  The plotting of  Eq. (12), as  described, 
requires  only that we have  measured the  anomalous 
transmission  as  a function of pot. Since scanning our 
wedge-shaped samples  provides  a  variation in t ,  we can 
get enough  data  from  one wedge sample to give a com- 
plete  determination of [1-f&(0,)/fQ,(O0)] for  one  re- 
flection. 

For higher-order reflections wedge samples  were  not 
used, because the reduced anomalous transmission of the 
higher orders will not allow sufficiently large values of t 
to be measured to give a good extrapolation to t =  a. To 
measure the higher-order reflections, samples  were pre- 
pared  in  the  form of flat discs of uniform thickness and 
oriented so that  the [110] crystallographic  direction is 
perpendicular to  the plane of the disc. A disc oriented in 
this way has  the  [loo], [110] and [112]  crystallographic 
directions at different azimuths in the plane of the disc. 

Figure 3 Schematic arrangement of apparatus for anomalous-transmission measurement. 
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This  means that.we can measure the  (220),  (400),  (2241, 
and  (440) reflections by mounting the disc  with  its  per- 
pendicular  in the plane of reflection of the x-rays and 
selecting different azimuths. In this way we can  compare 
the anomalous transmission intensities of the different 
reflections at  one  point in the disc and  compute  the 
[1-&( 0,) / f ; , ( O " ) ]  values of the higher orders in terms 
of the values of this quantity  for  the lower orders.  For- 
mulae  for this  calculation will be given later. 

Results 

In Fig.  4 are shown results of measurements made  on five 
samples cut  from  three different  crystals of germanium. 
The  (220) reflection is used and  the crystal wedges were 
cut so that  the [110]  direction is parallel to  the direction 
of taper of the wedge. Crystal  1 was grown in the [110] 
direction and Crystals  2 and 3  were grown in the [111] 
direction. This means that  the wedge of Crystal 1 was cut 
parallel to  the axis of growth of the crystal and  the wedges 
cut  from Crystals  2 and 3  were cut perpendicular to  the 
axis of growth. All of these crystals were free of disloca- 
tion etch pits. Figure 4 is a plot of Eq. (12) and should 
be a  45'  line  except for  the slight variation introduced by 
using an assumed  value of fie( 0,) /f&( 0") in the calcu- 
lation of  the abscissa. In making the plot  shown,  a pre- 
liminary  plot was made assuming j ; , (  19,) /f &( 0 " )  = 1.00. 
The resulting intercept  [l-f&(OB)/f;,(Oo)] was 0.05, 
giving a value of f ; , ( O , ) / f ; , ( O o )  =0.95.  The final plot 
Fig. 4 was then  made using this value, and  the intercept 
finally becomes [1-f~,(0B)/f~,(Oo)]=0.047~0.002 for 
the best straight line through all the points  shown. 

Brief consideration of the effect of crystal  imperfec- 
tions shows that they should  tend to increase  this numeri- 
cal value of  the intercept  since they would tend to decrease 
E. A  correction for  the effect of microstrains will be 
discussed later. Since a transmission  greater than  that of 
of a  perfect  crystal is very unlikely, we conclude that this 
value of the  intercept is an  upper limit. 

For higher-order reflections it is easier to  compare  the 
transmitted intensities of such reflections with the trans- 
mitted  intensity of the  (220) reflection at a given point in 
a  crystal of uniform thickness, rather  than try to measure 
wedges cut separately for each reflection. We  accordingly 
will derive appropriate comparison  formulas. 

Remembering  that t=to/cosO,, and  letting E,= 

f & ( O B ) / f & ( O o ) ,  we may  rewrite Eq.  12 as: 

We will now  calculate (1 - E B )  in  terms of (1 -ezzn).  

First taking the  ratio of Eq.  (13)  for (1 - e n )  to  Eq. ( 13) 
for  (1 - ~220), we have: 
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Figure 4 Plot of Eq. (1 2) for five  wedges cut from 
three  different crystals of  germanium. 
Sample 1 ( + I  was cut parallel to the axis 
(1 10) of Crystal 1; samples 2 (0) and 3 (0) 
were cut perpendicular to the axis (1 1 1)  of 
Crystal 2; and samples 4 (A) and 5 (A) 
were cut perpendicular to the axis (1 11 )  
of Crystal 3. 

Equation (15) is in a form which  makes the calculation 
of 1 - F B  from  the known E220  quite easy. In  Table 1 are 
listed the  numerical  forms of Eq.  (15)  ready  for  the 
calculation of 1 - E,  for several reflections in germanium, 
using CuKal radiation. It should be pointed out  that 
Eq. (15) assumes a  symmetrical Laue reflection for  each 
of the measured reflections to be compared. If a crystal 
cut is used in  which  a  nonsymmetrical  condition exists, 

Table 1 Equation (1 5) reduced for use with CuKa, radiation. 
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Table 2 11 -f;,(e,)/f;,(o")~ for several reflections 
in germanium using CuKa, radiation. 

220 22.6" 

400 33.1" 

224 41.7" 

440 50.4" 

0.047 

0.10 

0.15 

0.22 

0.953 

0.90 

0.85 

0.78 

special comparison equations  must be derived using both 
sets of direction  cosines throughout. As pointed out  pre- 
viously, all of the reflections listed in Table 1 can be ob- 
tained  in the symmetrical Laue condition from a  crystal 
slab cut so that  the [110] direction is perpendicular to 
the plane of the slab. 

Examination of Table 1 shows that relatively thin crys- 
tal slabs must be used for measuring the higher-order 
reflections. For example,  a 1 mm slab will show Ezzo/ 
E440=20,000. Because of this it is usually better  to use 
more  than  one crystal  slab to  measure a  large range of 
reflections. 

In  Table 2 is given the results for several reflections 
measured by comparison with the (220) reflection. The 
value of ( 1 - ~ 2 2 0 )  was determined by the extrapolation 
plot of Eq. (12) described above. 

These results  were  obtained on crystals  which showed 
no dislocation etch pits but which  showed  considerable 
evidence of the presence of microstrain.ll  The effect of 
the microstrain on  the measured  transmitted  intensity 
can  be calculated from  the variation of transmitted in- 
tensity as the sample is bent elastically. From Reference 
1 1 we have  the  relation: 

a=(To/Eo)a,  (16) 

where 

a = 6.2 X lo4 cm-l/*, and is evaluated from  the  theory 
of a bent crystal. 

CY is the  measured  slope of an experimental curve of 
(lnTo/T)1/2 vs Zd;. 

Eo is the transmitted  intensity of a  perfect unbent crystal. 

To is the transmitted  intensity of the  imperfect unbent 
crystal. 

T is the transmission of the  imperfect crystal under  the 
conditions of an elastic  bend of 8 units of strain in 
the  extreme fiber. 

t is the thickness of the bent  crystal. 

Since it is necessary to  have a  sample of uniform 
thickness for the measurements on a bent crystal, it 

112 was not possible to  make  the determination of (TO/Eo) 

220 22.6" 

400 33.1" 

224 41.7" 

440 50.4" 

0.039 

0.085 

0.130 

0.185 

0.961 

0.9 15 

0.870 

0.815 

on  the identical  crystals used in  the measurements of 
[ l - f ; , (~B) / f ; , (OO)] .  A crystal bar  cut  from  the  same 
ingot used for obtaining  most of the above  results  was 
used for  the bending  measurements, and its exact relation 
to the  other samples is shown  in Fig. 5. The wedge-shaped 
sample 0 shown  in  Fig. 5 is also the sample 1( +) of 
Fig. 4. This  sample was cut  adjacent  to  the  central axis of 
the crystal ingot. Sample 0 is a  1-mm thick bending 
specimen used to determine the ( To/Eo) ratio for mate- 
rial near  the axis of the ingot.  Samples @ and @ are 
transverse discs used to measure the  comparative trans- 
missions of the various orders  reported above. (These 
are  not  the samples 2 ( 0 )  and 3 (0)  of Fig. 4.) 

In Fig. 6 is shown the results of the bending  measure- 
ments  on sample @ of Figure 5. From  the slope of this 
curve we find ( To/Eo) =0.57. Correcting  the WE readings 
of sample 0 by a factor of 1/57= 1.75, we find a  cor- 
rected  value of 0.039 for  the [l - f&, (e , )  / f ~ , ( O " ) ]  inter- 
cept. Making a similar correction  for  the higher order 
reflections we get the  corrected results  shown  in Table 3. 

Conclusions 

The results given above  show that  it is possible to  measure 
directly the imaginary part of the  atomic scattering factor 
as a function of the  order of reflection and  thus  as a func- 
tion of angle. It could  similarly  be  measured for  the  same 

Figure5 Location of samples in germanium ingot. 
Samples 0, @ and @ were used for 
f~,(O,)/f~,(O") determinations and sam- 
ples @ and 0 were used for bending 
determinations of T, , /E, .  
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Figure 6 Bending curve of sample 4, $=extreme fi- 
ber strain, €,=transmission for zero strain. 

reflection as  a function of wavelength. Such a measure- 
ment would vary  the energy difference between the x-ray 
photons and  the L absorption edge as well as the angle. 
It seems reasonable that  such measurements  should  be 
made in order  to collect  enough data  to calculate the 
electron-density function of the L electrons  in  germa- 
nium. Even  more interesting  results  might be obtained 
in silicon if sufficiently perfect crystals are available. 

It should  be  pointed out  that  the only other way of 
finding the imaginary part of the  atomic scattering factor 
is through  the well-known Honl corrections.12 These cor- 
rections are  not capable of yielding values comparable in 
accuracy to  the results reported here. 

The  accuracy of the results reported  here depends 
upon the accuracy of the corrections for strain in the 
sample. Since the  strain correction used here is only  a 
first-order  correction  depending upon  strain which shows 
a  monotonic  variation of lattice  spacing through  the 
thickness of the crystal, we can  conclude that all of the 
corrected ( 1 - E )  values are, if anything, too large. It is 
difficult to estimate the size of  the second-order  correc- 
tions due  to  strain,  but they probably only affect the 
( 1 - E )  values to  about 10% at  the most and indeed  may 
actually  be negligible. It seems reasonable that  the accu- 
racy of these  measurements could be improved if the 
determination of ( 1 - E )  and of ( To/Eo) were made  at a 
single point on the  same crystal. This would ensure  that 

the microstrain  distribution would be the  same  for all 
measurements. Such a measurement could  be  accom- 
plished by starting  with  a  thick  crystal bar  and slowly 
reducing  its  thickness to  obtain various values of pot. 
Since the thickness would be uniform  for  each set of 
measurements, it would be possible to  make  both a bend- 
ing experiment and a  transmitted-intensity  measurement 
at  each thickness. 

It should  be  pointed out  that it is impractical to meas- 
ure Z.r/Z0 directly  as  a function of y in Eq. ( 1) in order 
to determine F better. This is true because  microstrain 
shows up in a change of intensity rather  than a  line 
broadening for  anomalous transmission in thick  crystals 
( p 0 t > 2 0 ) .  The results of Schwarz and Rogosa7 are  for 
relatively thin crystals where pot<lO. In  our case, the 
theoretical line width would be about 4 seconds of arc 
and quite insensitive to microstrain. 

Another interesting  line of investigation which  sug- 
gests itself is the measurement of the  temperature varia- 
tion of the  anomalous transmission  as  a function of the 
order of the reflection. Such  a  measurement  should yield 
considerable information  about  the lattice  vibration am- 
plitudes  in  the  various directions. 
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