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Two-Parameter Lifetime Distributions
for Reliability Studies of Renewal Processes”

Abstract: Probability functions are defined for use in reliability studies of equipments which are main-
tained over a long period of time through replacement of components. These are: lifetime distribution
function, lifetime density function, probability of survival, hazard, expected number of replacements, and
renewal rate. Theoretical results of renewal theory are adapted to reliability studies of complex systems.

The “exponential law” is equivalent to the assumption that survival probability for any given time interval
is independent of the age of a component at the beginning of the interval. It seems more realistic, however,
to assume that this survival probability is a monotonically decreasing function of initial age, or, equiva-
lently, that the hazard is a monotonically increasing function of the age of the component. Consequently,
three two-parameter models of distribution functions, with the properties: (1) initial lifetime density
greater than zero, and (2} monotonically increasing hazard, are proposed and discussed. The lifetime
behavior associated with these models ranges from complete determindacy to complete randomness. An
entropic measure of this randomness is introduced.

The expected number of replacements is numerically calculated and plotted as a function of time for
several different parameter values in each model.

I. Introduction

Probabilistic methods used in reliability studies of equip-
ments which are maintained over a period of time through
replacement of components are examined in this paper. We
propose several mathematical models to which statistical
data obtained in studies of this kind may be fitted.

Tt is assumed that an equipment consists of many com-
ponents, all needed for correct operation of the system. A
component may be removed either because it has failed in
operation or because its removal is prescribed by a mainte-
nance procedure. Upon removal, it is immediately replaced
by a new and statistically identical component.

In a reliability study, a record of these removals is kept
for a period of time. The statistical data collected are used
to determine the parameters in an analytic expression de-
signed to approximate the probability of removal as a
function of time. This expression is applied in predicting
the behavior of this equipment and other similar systems.
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There are several probability functions useful for this
type of analysis. They are all mathematically related to each
other in such a way that any one uniquely determines all
the others. The precise mathematical definition of these
functions is given in Section II. At this point, we present
an intuitive discussion of the statistical properties of equip-
ment behavior which they represent.

Given a large number of components, new at time zero,
which constitute the original population, the following
functions will be approximated by the ratios they represent:

F(1t), the distribution function of lifetimes, represents that
fraction of the original population which has been removed
by time ¢.

R(1), the probability of survival to age 7, represents that
fraction of the original population which is still operating
at time ¢. Clearly, R(f)=1—F(r). If components are re-
moved only when they fail, this function is identical with
component reliability, as the term is commonly used.

(D), the lifetime density function, represents the number
of members of the original population being removed per




unit time at time 7 divided by the entire original population.
Thus f(t) =dF(f)/dt.

z(1), the hazard, represents the number of members of
the original population being removed per unit time at
time ¢ divided by the number which are still operating at
time t. Thus z(r) =f(¢)/R(¢). Hazard is often referred to as
“force of mortality.”

U(1), the expected number of replacements, represents
the total number of removals (from the original population
plus later generations) up to time 7, divided by the original
population.

u(r), the renewal rate, represents the total number of
components (from the original population plus later gen-
erations) being removed per unit time at time ¢, divided by
the original population. Thus «(f) =dU(t)/dr.

F, R, f, and z essentially describe the underlying be-
havior of a component as a function of its age. On the
other hand, U and u are the functions which describe the
behavior of an equipment containing many components in
a renewal process.

It should be emphasized that the distribution function
F() defined below is dependent not only on the physical
characteristics of the components, but also on the way in
which they are used in the specific equipment, the environ-
mental strains to which they are subjected, and, to a large
degree, on the criteria for their removal.

These removal criteria are determined by the mainte-
nance procedures which are prescribed for the equipment,
and vary widely between two extremes. At one extreme a
component is replaced only after it has caused the system
to fail, while at the other, blocks of components are re-
placed simultaneously on a fixed schedule or whenever the
maintenance engineer deems it advisable. Between these
two extremes, diagnostic procedures have been developed,
designed to find components which are likely to fail within
a short time and to replace them before they cause the
system to fail.

Another important factor in determining the distribution
function is the choice of a particular measure of time. This
choice will depend on the application for which the theory
is to be used and may, for example, be calendar time,
power-on time, or operating time.

Thus, our F(?) is a distribution function of lifetimes of a
specified type of component in a specified system under
specified conditions of operation and maintenance.

1. Mathematical definition of functions
used to characterize renewal processes

Consider a system maintained continuously in operating
condition. Whenever a component is removed, it is immedi-
ately replaced by a new and statistically identical compo-
nent in good condition. The time required for this replace-
ment is assumed negligible. Removal may be due to failure
or to preventive maintenance procedure. It is assumed that
the system is observed for a certain period of its operating
life, which we will call the observation period. The com-
ponents in the system at the beginning of this observation
period will have some age distribution.

In the following, upper case letters denote random vari-

ables and lower case letters denote the numerical values
which they may assume. Let:

t be time measured from the beginning of the observa-
tion period,

x be time measured backwards from the beginning of the
observation period,

T be the time-to-removal of a specific component in the
system, measured from the beginning of the observation
period,

X be the age of a specific component at time =0, i.e. the
time the component has been in the system prior to the
start of the observation period,

L = T + X = the total lifetime of the component in the
system, i.e., the time-to-removal measured from the time
the component was first put into the system.

a) The distribution function of lifetimes in a given applica-
tion of a component of age zero at time =0, is F(?),
defined as the probability that a component is removed
by time 1.

F(r)=Pr§Lgt|X=o§ , >0 ;

F(H=0, <0, (L)

where Pr{A|B} denotes “the probability of A, conditional
on B.”

Our discussion will be limited to functions F(f) which
have the following properties:

i) F0)=0 ;
i) F(t) is continuous, —» <t< % ;
iii) F'(?) exists and is continuous everywhere except at
=0 ;
iv)  lim F(H=1 .
—®

v) f tdF(t) exists.

0
b) The lifetime density function is f(t) :

fy=F @, t>0 or <0 ;
f(0)=F'(0-+) = the right derivative of F(r) at =0 . (IL.2)

¢) The probability of survival to age t is R(t) :
R(ty=1—F(@) . (I1.3)

d) The distribution function of times-to-removal for a com-
ponent of age x at time =0 is defined as the probability
that a component of initial age X'=x is removed by time ¢.
This is the truncated distribution :!

F(t;x)=Pr3T§t| T>0, X=x§

For x>0, F(x)<l ,
Flx+1)—F(x)

F(t;x)= T—Fx) for t>0 (1.4)
and
Fit;x)=0, for <0 .
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Clearly
F(t:0)=FQ) .

e) The corresponding removal density function, f(t;x), is
defined as:

dF(t;x) _ fix+0)
dt T 1—Fx) > (I1.5)
=0, 1<0,x>0, Fx)<1 .

f(t;x)= t>0,x>0, o<1

f) The probability of survival, R(t;x), of a component of age
x at time t=0, is the probability that it is not removed
during the time interval O to t.

Rt =1=F60 =S50 120, x20, F<1, gy o

=1, <0, x>0, Fx)<1.

g) Hazard:

i) Consider a component of age 0 at =0 which is known
to survive to time t. The truncated function F(Ar;¢) is the
distribution function of times to removal A¢, with origin
at time ¢.

F(t+AD—F()
1—F(1) ?

Then the hazard z(7) is defined as:

FAt;H)= Ar>0, Fn<it.
. 1
(1 =A}g§+ (ZtF(A’;’)) =£(0;7)

_

=y 120, FO<I. (L]

ii) For a component of age x at t=0, which is known to
survive to time ¢ or age x+t,

z2(t;x)= lim (éF(Ar;x—}—t))

At—0+
_ S&x+n
=T—Fx+0°’ 120, x>0, Fix+H<1 . (IL8)
Thus,
zZ(t;x)=z(x+1) , (I1.9)

or, in other words, z(r,x) is a function only of the total age
of the component.

A useful relation between hazard, z(f;x), and survival
probability, R(#;x), may be derived as follows, making use
of (I1.6):

2t xX)=z(x+1)= —% In R(x+1)

5}
=2 In R(¢;x)
Therefore
z+t
R(t;x)=exp [—f z(u)du:, . (11.10)

h) The mean lifetime, t., of a component in the system,
i.e. the expected time-to-removal measured from the time
the component is put into the system, is!
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tm= f tf(Hdr= f R(Hdr . (L.11)
0 0

i) When considering a component in a system which is im-
mediately replaced by a new and statistically identical com-
ponent when it is removed, two quantities are of interest
and are defined as follows:

Let M1;x) be the number of replacements up to time ¢,
where the initial component has age x at r=0. N{¢;x) is
a random variable for any ¢ and x. Then the expected
number of replacements by time t, U(t,;x), is defined as

U(t;x):E%N(t;x)% , (1.12)
and the renewal rate is u(f;x), where
u(t;x)=aU(g§;x) (L.13)

The quantities U(#;x) and u(#;x) may be expressed in terms
of the previously defined functions as follows:

Given an initial component with a known age X=x at
time t=0, and considering each component to have the
same lifetime distribution function, F(#), the distribution
for the ith generation is

Ui(t;x)=Pr;T1+L2+- : .+Li§z§ , (L14)
where T3 is the time-to-removal of the first component, L.,
L; . - - are the operating lifetimes for the second, third, - - -
components respectively. The distribution function of the

sum of i random variables is obtained by i—1 convolu-
tions,!® so that

Ut;x)=F(;x) ,

Untsx)= f Uit —730f ()dr
0

. (I1.15)

t
Ui(t;x) =fUi_1(t—T;x)f(T)dT .
1)
Then it may be shown? that
U(t;x)=E$N(r;x)$ =S Utx) . aL16)
=1

From (II.15) and (I1.16) one may derive an integral equa-
tion for U(z,;x):

Ult;x)= Ul(t;x)-l-f {OZO) Ui(t—r;x)}f(r)dr ,
0 i=1
and therefore
U(t;x)=F(I;x)+fU(r—T;x)f(T)dr . {L.17)

By (I1.13), and since U(0;x)=0 ,




u(t;0)=f(t;x)+ f u(t—7;)f(7)dr . (11.18)

In the special case where the initial component has age 0
at r=0, we let

Un=U@:00=F0+ f U(t —)f(r)dr 11.19)

u(®=u(t;0) =f(r)+fu(t— nf(n)dr . (11.20)

In general the age, X, of the initial component at the be-
ginning of an observation period may not be precisely
known. However, if its distribution function ®(x) is known,
F may be generalized as follows:

Fq,(r)=fF(t;x)d<1>(x) . (IL.21)

Then, the integral equation determining U may be gen-
eralized to:

Uq>(t)=Fq>(f)+fU¢(f—T)f(T)dT . (11.22)

These integral equations, (I1.19), (I1.20) and (I1.22),
sometimes known as the renewal equations, have been ex-
tensively studied both in the theory of integral equations
and in the theory of renewal processes.2?*57 The follow-
ing results applicable to this study of systems maintained
by renewal processes have been obtained:

a) Since F(r) and Fy(r) are finite, non-decreasing, continu-
ous functions for 0<7< «, with F(0)=0, F3(0)=0, there
exists, for all >0, a unique, non-decreasing continuous
function U(#) or Us(?) satisfying (11.19) or (I1.22).

b) Since f(#) is continuous and non-negative for 0<¢< o,
and right-continuous at r=0, there exists, for all r1>0, a
unique, non-negative, continuous function u(f) satisfying
(11.20).

c) Since f{(r) is continuous and finite for 0<r< w0,

f fdr=1, and t,,= f tf(Hdt exists, then
(1}

0

lim u(r)=;— ; (11.23)
t—eo m

i.e. as t approaches infinity, the renewal rate approaches a
constant value. This implies

lim Ut+H U0 _ 1

) 1
P B i for all A,
and (J1.24)
t
lim YO _lim ! __-l
Ll_f}; r sz t Ou(T)dT tm

These results have been proved by Feller* using Laplace
transform methods, and by Doob? using probabilistic
methods.

d) For r=0, the lifetime density function, f(#), the hazard,
z(1), and the renewal rate, u(t), are all equal:

f0)=2z(0)=u(0) . (I1.25)

Moreover, if the right derivative of f(r) at r=0 exists, by
differentiating (I1.7) and (11.20), it may be seen that at =0
the slopes of the hazard, z(r), and renewal rate, u(?), are
equal:

dz’ _ dul _df

Ao, dt o, di z:0++[f o) . (IL.26)

ill. Exponential law

A special case of interest is that in which the probability of
survival of a component for any interval O to ¢ is inde-
pendent of the age of the component at the beginning of
the interval:

R(t+x)

R(t;x)= RO

=R(® , for all tand x>0 .

Therefore
R(t+x)=R(R(x) . {1L1)

The only continuous function which will satisfy these con-
ditions is an exponential function.’” Since lim R(1)=0, we
have oo

R(H=e, A>0 . (111.2)

Then

Ft;x)=F(f)=1—e™ , >0

fx)=fO =N, >0

fu= f edr=" (I1L3)
0 A

2= {% =X. >0 (111.4)

Also, it is shown in Appendix A that for this case

Ut;x)=»t , t>0 (111.5)

and

u(t;x)=A , >0 . (111.6)

This distribution function is the model for the well-
known “exponential failure law.” For this distribution, and
only for this distribution, the hazard and renewal rate are
equal for all 1>0, and have a constant value equal to the
reciprocal of the mean lifetime.

wt)y=z()=1/t,=X , 0<r<om . (111.7)

The exponential law corresponds to maximum “random-
ness” of lifetimes. This idea will be precisely defined in
Section VII.

IV. Proposed models

The lifetime distribution, F(#), of a component in a complex
system is generally an unknown function which depends on
the physical properties of the component and its environ-
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ment. Available information about F(r) may be classified
into two categories: first, failure data observed in the sys-
tem which provide a statistical image of F(7), and second,
knowledge of the physical causes of failure. In order to
utilize this information in reliability studies of systems,
mathematical models of F(¢) are postulated. It is required
that the mathematical form of these models be plausible in
the light of existing knowledge of the physics of failure, and
that they have undetermined parameters which may be
estimated from available statistical data.

The basic assumption underlying the exponential model
is that the probability of survival of a component for any
given time interval is independent of its age at the begin-
ning of the interval. However, in most practical situations
it seems far more reasonable to assume that this sur-
vival probability will decrease with increasing initial age.
(We rule out “infant mortality”” on the assumption that
adequate acceptance testing will eliminate this effect.) In
Appendix B, it is shown that the assumption that survival
probability, R(¢;x), decreases with increasing initial age x
for any given time interval, ¢, is equivalent to the assump-
tion that hazard is a monotonically increasing function of
the age of the component. All the models considered in the
following have this property.

The second important property common to all the
models we consider is:

20)=f0)=u(0)>0 ,

i.e. the initial hazard for a new component is non-zero.
This assumption is justified by the fact that, in many reli-
ability studies, large quantities of data which lead to defi-
nite positive values for z(0) have been obtained.'?'? In gen-
eral, more information is available about the value of the
lifetime density near zero than at any other time. Therefore,
the value of f(0) is an important quantity in the selection
of an appropriate distribution to describe the lifetime be-
havior of a class of components.

Several models in which hazard increases with age have
been proposed in the past. Among these are the normal,
the log normal, the gamma, and the Weibull distribu-
tions. %1 For each of these models, z(0) is zero. For all
the models considered below, z(0) may assume any pre-
scribed positive value, so that the required flexibility in the
choice of a model is achieved.

At least two parameters are needed to fit a model with
the above properties to observed data. However, it is felt
that the quality of lifetime data which can be obtained in
most practical situations does not justify the use of more
than two parameters. The following discussion is therefore
limited to two-parameter distribution functions.

Three models have been considered and will be denoted
by the superscripts (1), (2), and (3). F®O and F® were
derived from assumptions of linear and quadratic depend-
ence of hazard on the age of a component. F® is a “trun-
cated normal” distribution and will be discussed in detail
in Section V.

Let
zW()=a+2b% , where 0<a<on,0<b<w , (IV.1)
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z®(H=a+3c%>, where 0<a<»,0<c<» . (IV.2)
By (I1.10) for x=0 ,

FO@=1—RY()=1— exp [—(ar+b?)] , (Iv.3)
FO()y=1—R(H=1— exp [—(at+c*H)] . (Iv.4)
Similarly
SO =(a+2b%) exp [—(ar+b2)] , (Iv.5)
FOM) =(a+3c2) exp [—(at+c3%)] , Iv.6)
RO(t;x)= exp [—(at+bx2+2b%x)]

= R®(r) exp (—2b%x) , av.n
R®(t;x)= exp [—(at+ P+ 332x+3c3x?)]

=RO(f) exp [-3Ptx(t+x)] . av.g)

For the mean life of a component, we have

£ = f R<1)(t)dt=11, f exp I:——(yZ+ZJ’)] dy .
0

0

VT 1a? a
o=V"T e _“
tn B exp ( i b2>P( \/21’) , (IV.9)

where
1 - 1
P(u)=72:1rf Xp <—§ $2> df .
tm(2>=fR<2>(t)dt=%fexp l:—(y3+gy)J dy . (IV.10)
0 0

This integral may be evaluated numerically for any value
of ajc. For the limiting case of a=0,

1 1 0.893
@) — — 1=
o= Ln() 082,

In both these models, the initial hazard, z(0), is rep-
resented by the parameter, a, and the rate of increase of
the hazard with age is determined by parameter b or c.
Thus, as & or ¢ approaches zero, with a finite, either of
these distributions approaches the exponential. Conversely,
as a approaches zero, with b or ¢ finite either function ap-
proaches a Weibull distribution.®

These models may be reparameterized in a manner which
sheds additional light on their properties. One parameter,
7, represents the mean life of a component and the other
determines the shapes of the probabilistic functions on a
time scale normalized in terms of the mean life. The ratios
a/b and a/c determine the functional dependence of hazard,
survival probability, and the lifetime density function on
the normalized variable, 6 =t/t». For example, given

FO(ty=1— exp [—(at+b*)] , b>0 ,
with

a0 = }) f exp [—(y2+gy)] dy= }205(”(%) , av.in
0




the corresponding functiont of the normalized variable is
F*0(@):

F*O@)=1— exp [—(ab+3%7)] av.12)
determined by the conditions

gm___éd,(l)(g):], %:% . av.13)
Thus,

B=¢"(a/b)

and

a=(a/b)p(a/b) . (v.14)

For the limiting case of =0, with a finite,
FrO@)=1—e? ,
so that a=1.

Correspondingly, for

FO()=1— exp [~ (at+F)] , c>0,

we have

F*®@)=1— exp [~ (af+7F)] , av.15)

where

7=¢<2><§) = f exp [—<y3+jy)] dy 5 av.16)
o

and

a=(alc)p®(a/c) .
For the limiting case of ¢=0, with a finite,
F*O@)=1—ef and a=1 .

The values of the parameters o, 8, and v for various
values of a/b and a/c are given in Table 1.

In Figs. 1 to 6, z*®), z*@ R*® R*2 0 and f*® are
plotted as functions of the normalized variable 6. These
curves indicate the range of behavior which may be de-
scribed by models of this form.

V. Truncated normal distribution

The normal distribution, for which

1 1{t—1\2
f(t)=a 27re><p[—2< po >],

has been widely used in reliability studies, and a careful
analysis of its properties as applied to the present discus-
sion yields interesting results. It must be borne in mind
that the normal distribution extends from — e« to 4,
while lifetimes of components are limited to positive values.

tIn what follows, the asterisk indicates that function of the normalized variable
6 obtained from the corresponding function of 4, by change of scale with
8 = t/tm. For example:

R*(0)=R(),
r*(a):jéf*(e)=:,,, £(2).

Thus, one is led to use a distribution which is truncated at
t=0.

fOn=0, <0 ;
_ 1 1 _1{t=toy?
" P(—1tof0) a\/Z—WeXp[ 2( o ) :| > 120 w.1n
where
1 1
(0)-vl ool +) -
Then
orn_ pfi—t —1l
ro=p("20) /P(3) V.2

" _f(s)(t) _ 1 ) 1 1 ﬂ 2
Z¢ )(t)—R(g)(t) Vp(t;to> Ux/z;expl:—§( - ) :I, v.3)
2

R<s>(t;x)=1>(i’;l’°) / P(x;t") ~ (V.4)

Figure 7 (at top of page 66) indicates the relative posi-
tion of 7=0 on the normal curve corresponding to various
values of fo/o. Let us consider the behavior of this truncated
distribution as fo/¢ ranges from — « to + «. For #o/0 large,
say >3, it differs only slightly from the normal. As ¢—0,
with £,>0, F®(f) approaches a step function with the lim-
iting case
lim F&(f)=0 , 1<ty ; (V.5)

g-—0

=1 t>1 .

This corresponds to a fixed lifetime equal to fo.

Table 1
FO©
%:l‘; o 8 Ht
1
0 0 i\/7r=0.886 0.717
0.4 0.287 0.717| 0.854
1.2 0.604 0.503| 0.950
o 1 0 1
F®
o a
¥"¢ @ ( 2% Ht
1_/1
0 0 §1‘<§) ~0.893] 0.399
0.5 0.353 0.705| 0.733
2.0 0.798 0.399| 0.954
o 1 0 1

1This quantity is defined in Section VIL
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As to/o — — », such that fo/o2——X\ where \ is a positive
constant, the truncated normal distribution approaches the
exponential :

f €Xp ("b’?) dy
lim R®(f)= lim (' M=t
tofo =@

LI exp (—%ﬁ) dy

-/

1/t—10\?
ew| —3(5")

= lim 1 7, 2
ew| -3 (5)
= lim exp l:t“t(l 1_’):’
(T 2 ty

= lim exp (t"t)

to/e

Thus,

lim RO@)=e
tofe P (V.6)

to/az_,_)‘

For any value of #¢/o, the truncated normal distribution
satisfies the conditions previously required of a lifetime dis-
tribution, namely that z(0)=/(0)>0, and z(¢) is a mono-
tonically increasing function of ¢. The latter is shown in
Appendix C. The mean life associated with this distribution
is obtained as follows:

to 3) = ftf(:i)(t)dt

V)

P( to ft exp[ t_t()) ] dt

1:0
exp { —x—
=1 14 — ~v.0
N P(__")
g o
or
tn® =100®(t0/0). (V.8)

For the limiting cases discussed previously,
as t0/0—>°o, tm(g)_‘)tﬂ s
as fo/o—— =, such that tofo2——NX\, 1, —1/\ .

To normalize the distribution as a function of 8 for any
value of to/a, we set 8,, =0p®(8o/c¢") =1, and /o’ =1o/0.
Thus

1
T ¢ (tof0)’ (V.9

and
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to/7=14 3 2 1 0 -1

Figure 7 Truncation of normal density function,
showing position of  — 0 corresponding
to values of t,/0.

.1
 tofae®(tfo) (V.9)

Then

. 1 6—6,
Fo0=p= 60/0)0’\/27reXp|: 2<T>:I (V.10)

The values of 9, and ¢’ for various values of 7,/ are given
in Table 2.

Table 2
F®

Oofa’ =to]c B pe HT

—1 —1.90 1.90 0.985
0 0 1.253 0.952
1 0.778 0.778 0.850
2 0.974 0.487 0.621
3 0.999 0.333 0.313

4 1.000 0.250 0.017

4 This quantity is defined in Section VII.

In Figs. 8-10, R*®_ z*® and f*® are plotted as functions
of 8 for the above values of 7o/s. The dotted lines represent
the limiting cases of the step function and the exponential.
A comparison of these curves with Figs. 1-6 reveals that
this truncated normal distribution is capable of fitting a
wider range of lifetime behavior than either of the other
two-parameter distributions studied.




Figure 8 l
Hazard z*©N6) 50
(truncated normal).

Values of §,/¢" indicated on curves.
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V1. Numerical solution of the renewal equation
for the proposed distributions

U*(), the expected number of replacements for a com-
ponent of age zero at =0, has been numerically calculated
as a function of normalized time 8=1/t,, for all the dis-
tributions discussed in the last two sections.

It was shown in Section II (Egs. I1.15 and I1.16) that

UHO=2U"6) (VL1)

where
U*(8)=F4®)

and
8
U%(6)= f U* (=) 4y, i1,

To perform the numerical calculation, the last equation
was approximated by the trapezoidal rule, giving:

U*(0)= Azl[ U*i_((0)f0)+ U*i—l(o)f(o)]
12 U 0= AT

where 7,=jA7, T,=nAT=0. (V1.2)

The U*(0) were calculated with Ar=0.2 for 8 ranging
from O to 3. In Figs. 11-13, U*(8) is plotted for distributions
(1), (2), and (3). Tt is estimated that these results are correct
to within 1%. The relative rate of growth of the distribution
functions U*:(8) for successive renewals may be observed
in Fig. 18, where U*; is plotted against U*, for the truncated
normal distributions.

VII. Entropy as a measure of ‘“‘randomness’

It was pointed out in Section 1II that the exponential
law corresponds to maximum “randomness’ of lifetimes.
This arises from the fact that the age of an exponential-law
component tells nothing about its subsequent probability
of survival. However, we have adopted the more realistic
assumption that R(r;x) decreases with initial age x, i.e.
hazard increases with time. This behavior is usually char-
acterized as a wear-out effect. We have seen that we can
obtain models ranging from an exponential law limit, cor-
responding to complete randomness, to a step function,
corresponding to fixed lifetime or complete determinacy.
It is clear that a measure of the degree of the wear-out
effect or, what is the same thing, the deviation from ex-
ponential law behavior is needed.

In Statistical Mechanics®® and Information Theory, the
quantity H, often called entropy, has been used as a meas-
ure of disorder or randomness. This quantity will serve as
a measure of the “randomness” of lifetimes too. We define

0

- f F46) In f46)d6 (VILD)
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where f(0) is the lifetime density function, 6 is time nor-
malized so that the mean life is equal to 1. By the Calculus
of Variations, it may be shown that, of all lifetime density
functions with unit mean life, H is maximum for the ex-
ponential, f*(6) =¢9, and is then equal to 1.

For all the models considered in this paper, H de-
creases monotonically as the parameter ratios vary from
their exponential-law limits to their “wear-out” limits. For
the truncated normal distribution, as fs/c— = (the behavior
approaches complete determinacy), H approaches — «.

The values of H as functions of the parameter ratios
alb, alc, and t,/c are listed in Tables 1 and 2, and plotted
in Figs. 19 and 20. H® and H® were obtained by numerical
integration and H® was calculated from the result

HO(E) = — In [En(n— DI+ —£) , (VIL.2)
where §=1,/0,

by o (538)
V2rEP(—§)

The range of values of H gives a measure of the range
of lifetime behavior which a model will describe. Thus, the
three models discussed in this paper bave limiting values of
H displayed in Table 3.

Table 3

F(1) Max. H Min. H
1—exp [—(at+b2)] 1 (a/b= ) 0.717 (a/b=0)
1 —exp [—(at+c'1¥)] | (afc= ) 0.399 (a/b=0)
Truncated normal 1 (to)o = — ) — o0 (fofg =)

The three ranges of H give a numerical measure to our
previous statement that the truncated normal distribution
is capable of fitting a wider range of lifetime behavior than
either of the other two-parameter models considered. It is
interesting to note the range of values of H for other life-
time distributions, with increasing hazards, which are used
as models in reliability theory. These are listed in Table 4.

Table 4
Distribution Entropy Range
Weibull —w to 1
Gamma — o to 1
Log Normal —x t0 0.919

Thus, as measured by “entropy,” the Weibull and
Gamma distributions describe as wide a range of lifetime
behavior as does the truncated normal. However, as was
pointed out in Section IV, these functions do not allow any
flexibility in the choice of a value of z(0).




3.2

2.8

2.4 ’/%’
/)

//// //

1.6
d /é
/ 4
1.2 S Al
. Q
A%
v 0
pid A//
0.8
A0
s’/
B 0.4 /’ éLNM
= /7 V7
= ’///’ |
*D Z /‘/
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8
6 = '/'m——.

Figure 11
Expected number of replacements u*m).
Values of a/f8 indicated on curves.

Figure 13
Expected number of replacements U*Bo).
Values of 8,/o" indicated on curves.

32

2.8

2.4

2.0

u*(3)(8)

2.8

\ ,‘T g
7 4
2t u %
. ‘ . 7
| el 7L
.
o
7/

2.0 l ‘ -

Jesaseeeansaases

/
1.6 7
\ e Y%
| 8
1.2 4 v
\ Vav4vis
A
7 | T’
7 7
0.8 / Z.’/
e 7 ||

d
U4

4

v
/|
/
N
2.

u*{2)(p)y —
(o)
.
\Y
AS
N\
R;
T
|

0 0.4 0.8 12 1.6 0 2.4 2.8

8 = t/t,, —

Figure 12
Expected number of replacements U*2g),
Values of a/y indicated on curves.

Figure 14
Renewal rate u*"(4).
Values of o/f indicated on curves.

1.4
1.2
1.0 forerepe kO AN R A ;,.::"‘~
O
7
0.8 T3 //
/7

0.6 /
i+
of

69

IBM JOURNAL * JANUARY 1959




1.6
1.4
1.2
AN
4
/ AT~
1.0 feeeecke B T '/ ..... S RO
-~ -
II / ] =
2.0 7
0.8 b
i/
7 o
0.6 A
0. I
vl L
0.4 ]
<
,4
;e 0/
; 0.2 7 [
) :
*3 //~ ‘
o] 0.4 Q0.8 1.2 1.6 2.0 2.4 2.8
8 = t/t ———m
Figure 15

Renewal rate v*2)(g).
Values of a/y indicated on curves.

Figure 17

U normalized to time over
time at which U®{#) = 0.1.
Values of t,/¢ indicated on curves.

3.2
4
® /
2.8 / //
i /
2.4 3 /
/ / J
2.0 / / /
/ 2 g
' V|
1.6 / /
1 4
V4 ] % /'/’
1.2 7/ / O//,/ ,/”
- A AL
0.8 /[ // .//,l:la—/-
// /0///”_,/
' 0.4 ;I.Té/”’
- . | Zdl e|= MEAN LIFE
E RN
0 2 4 6 8 10 12 14
TIME
70 TIME AT WHICH u(3) () = 0.1

IBM JOURNAL * JANUARY 1959

1.0
//‘ //17
0.8 0/,/1
0s 11/
/]

0.4
, 2/ «© e~ fee]
2/ T
™ :
2 ; ,
*3 ] T

] 0.4 0.8 1.2 1.6 20 2.4 2.8
8 = t/ty——

Figure 16

Renewal rate u*i3(g),
Values of §,/¢" indicated on curves.

Figure 18
U2 versus UM,
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Entropy versus parameter ratios.
H? vs, a/b and H? vs. a/c.

VIIl. Discussion of curves

On the accompanying graphs, probability of survival R*,
hazard z*, lifetime density f*, expected number of replace-
ments U*, and renewal rate u*, have been plotted as func-
tions of normalized time 8 for the three models considered
in this paper. In all cases, it was assumed that the initial
age was zero. The plots have been made for selected values
of the parameter ratios a/b, af/c, and f/o, varying from
the limits (a/b= =, ajc= =, tyJo=— =) corresponding to
maximum entropy (exponential law), to the limits (a/b=0,
afe=0, tofo= =) corresponding to the minimum entropy
for the given models.

Figs. 1 and 2 illustrate the assumption of linear and
quadratic increase of hazard with age. The dotted curves
indicate the limits. Fig. 8 shows the hazard as a function of
age for the truncated normal distribution. It is clear that
the latter is capable of fitting a wider range of behavior
than either of the other two.

In Figs. 3, 4, and 9, it may be observed that the survival
probability for times short compared to the mean life in-
creases as the parameter values depart from their expo-
nential-law [imits. Thus, for equal mean lives, those models
with lower entropy have greater short-term survival prob-
abilities than that associated with the exponential law.

Conversely, suppose available data provide information
about survival probability over a short period of time, and
a prediction of mean life is desired. The predicted value
will vary widely with the value of the parameter ratio of

Figure 20
Entropy versus parameter ratio.
H® vs, I,,/a'.

the model used in prediction. For example, suppose it is
known that the survival probability for the first 1000 hours
of operation is 0.95. Then, an exponential distribution pre-
dicts a mean life of 19,600 hours. Any model with lower
entropy predicts a shorter mean life. The truncated normal
with ty/c =4 predicts a mean life of 1700 hours. Thus, pre-
diction of long-term behavior from short-term data without
prior knowledge of the nature of the distribution is a mean-
ingless process.

In Figs. 11, 12, and 13, the numerically calculated values
of U*(0), the expected number of replacements up to time
6=t/t,, are plotted. For the parameter values we have used,
these curves clearly approximate straight lines of unit slope
by the time §=3. However, in most cases of practical in-
terest, the most significant portions of these curves corre-
spond to values of @ less than one. For the exponential law,
we have U*(#)=0 for all 6>0. However, for any other
model considered here, U*(6) <#.

The approximate slopes of the U*(6) curves, representing
w*(0), the renewal rates, are plotted in Figs. 14, 15, and 16.
For exponential law, we have u*(f)=1 for all §>0. For
all our other models, #*(0)=/*(0)<1, and for #<1, the
renewal rate is a monotonically increasing function of 4.
u*(f) reaches a peak value >1 for some value of §>>1 and
then oscillates with decreasing amplitude around its limit-
ing value of 1. The amplitude of these oscillations increases
as the values of the parameter ratios approach their “wear
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out” limits. Once again, these curves indicate that the trun-
cated normal distribution is capable of representing the
widest range of behavior.

When the expected number of replacements is plotted as
a function of time normalized in terms of the mean life of a
component (as in Fig. 13), the curves for various values of
the parameter ratios are not startlingly different. However,
it should be borne in mind that, in current practice, mean
life is usually estimated from data obtained in a time that
is a small fraction of the mean life. The fallacy of this type
of prediction is illustrated in Fig. 17, in which U® is plotted
as a function of time normalized in terms of the time at
which U(#)=0.1.

Fig. 18 illustrates the relative behavior of successive gen-
erations in renewal processes governed by a truncated nor-
mal distribution with various values of #/o. In each case,
the distribution function for the second generation of com-
ponents is plotted against the distribution for the first
generation. [t may be seen from the plot that, for an ex-
ponential distribution, when half the first generation has
been replaced (U, =0.5), more than 0.15 of the second gen-
eration has also been removed. As the entropy approaches
— o, the value of U, corresponding to U;=0.5 approaches
zero. These curves are dependent only on the ratio #/o and
are independent of the time scale.

In conclusion, we propose that the truncated normal dis-
tribution be used as 2 model for fitting component removal
data obtained in long-term reliability studies. This, of
course, is based on our assumption that survival probabil-
ity for a given time interval is a decreasing function of the
initial age of a component. We feel that, under this assump-
tion, this model provides the maximum flexibility for a two-
parameter distribution.

Appendix A

Solution of the renewal rate equation

u(t;x) =f(t;x)—}—fu(t-—r;x)f(7-)d'r , 11.18)

by Laplace transforms :
Let u(s;x) = L{u(t;x)}
= f u(t;x) exp (—st)dt, be the Laplace transform
1}
of u(z;x).
Similarly fis:x)= L{f(t;x)} .

Now, since

L{ f u(t—7;x)f(7) d-r}=z7(s;x)f(s) s

we may transform both sides of the equation and obtain
u(s3x) =fls; 0 +As)uis;x) or
1=£1s)

u(s;x)=

1BM JOURNAL * JANUARY 1959

This is the general Laplace transform solution of this type
of integral equation. Now consider the special case of the
exponential distribution, where

ft;x)=f)=nre P,
Rs;x>=i‘(x>=L§xe-~} =MG+N)

and hence

u(s;x)=MNJs .

Then, using the inverse Laplace transformation, we find
w(t;x)y=u(t)=\ , >0 ;

Ui, x)=U[B =\t , t>0 .

Appendix B

We will prove that for any given ¢>0, statement (1), R(¢;x)
is a monotonically decreasing function of x, is equivalent
to statement (2), z(/) is a monotonically increasing function
of I (the age of the component), by showing (a) that (1)
implies (2) and conversely (b) that (2) implies (1).

a) Let

OR(t;x) <0
ox i

We have
OR(t;x) _ 0 R(x+1) _ —RX)fx+6)+Rx+Df(x) ,

all >0, all x>0 .

dx Ox R [R(x)]?
and hence

flx+1) S f(x)

RGx+0)7 RX)
That is,
z(x+DH>z(x) ,
or

z(l)>z(l)

b) Let
z(y>z() ,
Then

all >0, all x>0 ;
a]l 12>112 0.

for any /,>1,>0 .

t t
fz(x2+r)dr>fz(x1-l-r)d'r . for x,>x,>0 .
Q

0

That is,

1:2-H z 1+t
exp [— f z(u)du] < exp [— f z(u)du:l

or
R(t;x) < R(t;x1) .
Appendix C

To prove that z®(¢) is a monotonically increasing function
of &




By (V.3), we have

aoy_ o0 [4(5")]

dt 0 2
[o f exp (—iy‘-’)dy]
(t—to)/o
t—rfo\ 2 t—1 “ X
{exp [—%(7 °) ]— (7 °) f exp (—%r)dy}
(t—tp)/eo

The expression outside the curly brackets is positive for
all «. The expression inside the cuily brackets equals

< r—t
f [y—<7‘>}3xp (b dy .
(¢—tg)io

Since the integrand is positive for all y greater than (r —t,)/o,
this last integral must be positive. Therefore dz/dt is posi-
tive, and z(r) is monotonically increasing.
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