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Abstract: Probability functions are  defined  for use in  reliability studies of equipments which  are  main- 
tained over  a long  period  of  time  through  replacement  of components. These are: lifetime  distribution 
function, lifetime  density function, probability  of survival,  hazard, expected  number  of replacements, and 
renewal rate.  Theoretical results of  renewal  theory  are  adapted  to  reliability studies of complex systems. 

The “exponential law” i s  equivalent  to the  assumption that  survival  probability  for  any  given  time  interval 
i s  independent  of  the  age  of a component at the  beginning  of  the  interval.  It seems more realistic,  however, 
to assume that this survival  probability i s  a monotonically decreasing function  of  initial age, or, equiva- 
lently, that  the  hazard i s  a monotonically  increasing  function  of  the  age  of  the component. Consequently, 
three  two-parameter  models  of  distribution functions, with the properties: (1) initial  lifetime  density 
greater  than zero, and (2) monotonically  increasing hazard, are  proposed  and discussed. The lifetime 
behavior associated with these models  ranges from complete determinacy  to complete randomness. An 
entropic  measure of this  randomness i s  introduced. 

The expected  number  of replacements i s  numerically  calculated and plotted as a function of time  for 
several  different  parameter  values in each  model. 

1. Introduction 

Probabilistic methods used in reliability studies of equip- 
ments which are maintained over a period of time through 
replacement of components are examined in this paper. We 
propose several mathematical models to which statistical 
data obtained in studies of this kind may be fitted. 

It is assumed that  an equipment consists of many com- 
ponents, all needed for correct operation of the system. A 
component may be removed either because it  has failed in 
operation or because its removal is prescribed by a mainte- 
nance procedure. Upon removal, it is immediately replaced 
by a new and statistically identical component. 

In  a reliability study, a record of these removals is kept 
for  a period of  time. The statistical data collected are used 
to determine the parameters in an analytic expression de- 
signed to approximate  the probability of removal as a 
function of time. This expression is applied in predicting 
the behavior of this equipment and other similar systems. 

58 *Presented at the NYU Industry Conference on Reliability Thwry on June 9, 
1958. 

There are several probability functions useful for this 
type of analysis. They are all mathematically related to each 
other in such a way that any  one uniquely determines all 
the others. The precise mathematical definition of these 
functions is  given in Section 11. At this point, we present 
an intuitive discussion of the statistical properties of equip- 
ment behavior which they represent. 

Given a large number of components, new at time zero, 
which constitute  the original population,  the following 
functions will be approximated by the ratios they represent: 

F(t), the distribution function of lifetimes, represents that 
fraction of the original population which has been removed 
by time t .  

R(t), the probability of survival to age t, represents that 
fraction of the original population which is still operating 
at time t .  Clearly, R ( t ) = l  --F(r). If components are re- 
moved only  when they fail, this function is identical with 
component reliability, as the  term is commonly used. 

f(t), the lifetime density function, represents the number 
of members of the original population being removed per 
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unit  time at time t divided by the entire original population. 
Thus f ( t )  = dF(t)/dt. 

z(t), the  hazard, represents the number of members of 
the original population being removed per  unit  time at 
time t divided by the number which are still operating at 
time t. Thus z(t)=f(t)/R(t). Hazard is often referred to  as 
“force of mortality.” 

U(t), the expected number of replacements, represents 
the  total number of removals (from the original population 
plus later generations) up to time t ,  divided by the original 
population. 

u(t), the renewal rate, represents the  total number of 
components (from the original population plus later gen- 
erations) being removed per unit  time at time t, divided by 
the original population.  Thus u(t)=dU(t)/df. 

F, R, f ;  and z essentially describe the underlying be- 
havior of a component as a function of its age. On  the 
other  hand, U and u are  the functions which describe the 
behavior of an equipnzent containing many components  in 
a renewal process. 

It should  be emphasized that  the distribution function 
F(t) defined below is dependent not only on  the physical 
characteristics of the components, but also on  the way  in 
which they are used in the specific equipment, the environ- 
mental  strains to which they are subjected, and,  to a large 
degree, on  the criteria for their removal. 

These removal criteria are determined by the mainte- 
nance procedures which are prescribed for the equipment, 
and vary widely between two extremes. At one extreme a 
component is replaced only after it  has caused the system 
to fail, while at the  other, blocks of components are re- 
placed simultaneously on a fixed schedule or whenever the 
maintenance engineer deems it advisable. Between these 
two extremes, diagnostic procedures have been developed, 
designed to find components which are likely to fail within 
a short time and  to replace them before they cause  the 
system to fail. 

Another important factor  in determining the distribution 
function is the choice of a particular measure of time. This 
choice will depend on  the application for which the theory 
is to be used and may, for example, be  calendar time, 
power-on time, or operating time. 

Thus, our F(t) is a distribution  function of lifetimes of a 
specified type of component  in a specified system under 
specified conditions of operation and maintenance. 

II. Mathematical definition of functions 
used to characterize renewal processes 

Consider a system maintained continuously in  operating 
condition. Whenever a component is removed, it is immedi- 
ately replaced by a new and statistically identical compo- 
nent  in good condition. The time required for  this replace- 
ment is assumed negligible. Removal may be due to  failure 
or to preventive maintenance procedure. It is assumed that 
the system is observed for a certain period of its operating 
life, which we  will call the observation period. The com- 
ponents  in the system at  the beginning of this observation 
period will have  some age distribution. 

In  the following, upper  case letters denote random vari- 

ables and lower case letters denote the numerical values 
which they may assume. Let: 

t be time measured from the beginning of the observa- 
tion period, 

x be time measured backwards  from the beginning of the 
observation period, 

T be the time-to-removal of a specific component in the 
system, measured from the beginning of the observation 
period, 

X be the age of a specific component at time t =0, i.e. the 
time the component has been in the system prior to  the 
start of the observation period, 

L = T + X = the total lifetime of the  component  in  the 
system, i.e., the time-to-removal measured from the time 
the  component was first put  into  the system. 

a) The distribution fimction of lifi.times in a given applica- 
tion of a component of age zero at time t =0, is F(t), 
defined as  the probability that a component is removed 
by time t .  

(11.1) 

where Pr( AIB)  denotes “the probability of A,  conditional 
on B.” 

Our discussion will be limited to functions F(t) which 
have the following properties: 

i) F(0) = O  ; 
ii) F(t) is continuous, - < t <  ; 

iii) F ( t )  exists and is continuous everywhere except at  
t=O ; 

iv)  lim F(t)= 1 . 
I+” 

v) l & t )  exists. 

b) The lvetirne density function is f ( t )  : 

f ( 0  = F‘U) 3 t>O or t < O  ; 
f(0) =F‘(O+) = the right derivative of F(t) at t=O . (11.2) 

c) The probability of survival to age t is R(t) : 

R(t)= 1 -F(t)  . (11.3) 

d) The distribution function of times-to-removal for a com- 
ponent of age x at time t = 0 is defined as  the probability 
that a component of initial age X = x  is removed by time t. 
This is the  truncated distribution :11 

F(t;x) = Pr { T< t I T ,  ’0, x = x  

For x 2 0 ,  F(x)<I , 

and 

F(t;x) =o , 

for t 2 0  (11.4) 

for t<O . 59 
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Clearly 

F(t;O) = F(t) . 
e) The corresponding removal density function, f ( t ; x ) ,  is 
defined as: 

=o  , t<O , x 2 0  , F(x)<l  . 
f )  The probability of survival, R(t;x) ,  of a  component of age 
x at time t = O ,  is the probability that it is not removed 
during the time interval 0 to t. 

= 1 ,  t < O ,  x 2 0 ,   F ( x ) < l  . 
g) Hazard: 

i) Consider a  component of age 0 at t = O  which is known 
to survive to time t. The truncated  function F(At;t)  is the 
distribution function of times to removal At, with origin 
at time t .  

F(At;t)  = 
F(t+At)-F(t) 

1 -F(t) ' 
Then  the hazard r(t) is  defined as: 

ii) For a  component of age x at t = O ,  which is known to 
survive to time t or age x+?, 

i) When considering a  component in a system which is im- 
mediately replaced by a new and statistically identical com- 
ponent when it is removed, two quantities are of interest 
and  are defined as follows: 

Let N(t;x)  be the  number of replacements up  to time t, 
where the initial component has age x at t=O.  N(t;x)  is 
a random variable for any t and x. Then the expected 
number of replacements by time t,  U(t;x), is defined as 

(11.12) 

and the renewal rate is u(t;x), where 

a u ( t  
u(t;x) = __ dt (II. 13) 

The quantities U(t ;x )  and u(t ;x )  may be expressed in terms 
of the previously defined functions as follows: 

Given an initial component with a  known  age X=x at 
time t=O, and considering each  component to have the 
same lifetime distribution  function, F(t), the distribution 
for the ith generation is 

ui( t ;x)=Pr T,+L~+. . . + ~ i < t j  , (11.14) 

where TI is the time-to-removal of the first component, L?, 
LB % . . are  the operating lifetimes for the second,  third, . . . 
components respectively. The distribution  function of the 
sum of i random variables is obtained by i-1 convolu- 
tions,16 so that 

U,(t;x) =F(t;x)  , 

3 

uz(t;X)=  fLl(t-T;X)f(T)dT 
. f (X+ t )  t 2 0 , x 2 0  , F(x+t)<l  . (11.8) 

J O  
=" 

1 -F(x+t) ' 

Thus, (11.15) 

z ( t ;x)=z(x+t )  , (11.9) 

or, in other words, z(t;x) is a  function only of the total age Ui(?;x) = ui-l(t -T;x)f(T)dT . 
of the component. s,' 
probability, R(r;x),  may be derived as follows, making use 
of (11.6): u(t;x)=EjN(t;x) /  =z m U,(t;x)  . 

z ( t ;x )=z (x+ t )=  -- In R(x+t) 

A useful relation between hazard, z( t ;x) ,  and survival Then it may be that 

(11.16) 
d i= 1 

at From (11.15) and (11.16) one may derive an integral equa- 

=" it In R(t;x)  

Therefore 

tion for U(t;x): 

x+ t 

R(t;x)  =exp [ -S, z(u)du] . (11.10) and therefore 

h) The mean lifetime, t,,,, of a  component in the system, u(t;x)=F(t;x)+ U(t-T7;X)f(T)dT 
i.e. the expected time-to-removal measured from the time 1 (11.17) 

60 the  component is put  into  the system, is'  By (11.1 3), and since U(0;x)  = O  , 



I f (0)  = z(0) = u(0) . (11.25) 
In the special case where the initial component  has age 0 
at t = O ,  we let Moreover, if the right derivative off(t)  at t = O  exists, by 

differentiating (11.7) and (11.20), it may be seen that  at t = O  

(11.26) 

In general the age, X ,  of the initial component at  the be- 
I l l .  Exponential law 

ginning of an observation period may not be Precisely A special case of interest is that in which the probability of 

F may  be generalized as follows : pendent of the age of the  component at the beginning of 
known. However, if its distribution  function @(X) is known, survival of a  component for any interval 0 to t is  in&- 

m the interval : 
(11.21) 

R ( t ; x )  ziz = R(t) , 
R ( x )  

for all land x>O . 
Then, the integral equation determining U may be gen- 
eralized to : 

Ua(t) = Fdt)+ U*(t - ~ l f ( ~ ) d ~  . s,’ (17.22) 

These integral equations, (11.19), (11.20) and (17.22), 
sometimes known as  the renewal equations, have been ex- 
tensively studied both in the theory of integral equations 
and in the theory of renewal p r o c e s s e ~ . ~ ~ ~ ~ ~ ~ ~ ~ ~  The follow- 
ing results applicable to this study of systems maintained 
by renewal processes have been obtained : 

a) Since F(t) and F+(t) are finite, non-decreasing, continu- 
ous functions Tor 0 5  t <  00, with F(0) =0, F*(O) =0, there 
exists, for all t 2 0 ,  a  unique, non-decreasing continuous 
function U(t)  or U+(t) satisfying (11.19) or (11.22). 

Therefore 

R(t+x) =R(t)R(x) . ( I f  1.1) 

The only continuous function which will satisfy these con- 
ditions is an exponential function.” Since lim R(t)  =0, we 
have 

R( t )  = t ,  x>o . (111.2) 

Then 

F(t;x) =F(t)  = 1 , t 2 o  

f(t;x) =.f’(t) = Xe-Xf , t yo  

t - k  

(111.3) 

b) Since f(t) is continuous  and non-negative for 0 < t < ~4, z ( f )  = f ( t )  =x . t>O (111.4) 
and right-continuous at t=O,  there exists, for all t>O,  a 
unique, non-negative, continuous function u(t)  satisfying Also, it is shown in Appendix A that  for this  case 
(11.20). U(t;x) = A t  , t 2 0  (111.5) 

R(t) 

c) Since f ( t )  is continuous and finite for O < t <  00, and 

s: c f ( t )c / f  = 1, and = tf(t)dt exists, then u(t;x)=X , t 2 0  . (111.6) 

1 
This distribution function is the model for the well- 

lim u ( t ) = - -  . (11.23) known “exponential failure law.” For this distribution, and 
t-m t,n ’ only for this distribution, the hazard and renewal rate are 
i.e. as t approaches Infinity, the renewal rate approaches  a  equal for all t>o, and have a constant value eqLIal to  the 
constant value. This implies reciprocal of the mean lifetime. 

and 

I&) = z(t> = 1 It,,& = x , O _ < t < m  . (1 11.7) 

The exponential law corresponds to maximum “random- 
(11.24) ness” of lifetimes. This idea will  be  precisely  defined in 

Section VII. 

IV. Proposed models 

These results have been proved by Feller” using Laplace The lifetime distrlbution, F(t),  of a  component in a complex 
transform methods, and by Doob’ using probabilistic system is generally an unknown function which depends on 
methods. the physical properties of the  component and its environ- 61 
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ment. Available information about F(t) may be classified 
into two  categories: first, failure data observed in the sys- 
tem which provide a statistical image of F(r), and second, 
knowledge of the physical causes of failure. In  order to 
utilize this  information  in reliability studies of systems, 
mathematical models of F(t) are postulated. It is required 
that  the mathematical  form of these models be plausible in 
the light of existing knowledge of the physics of failure, and 
that they have  undetermined  parameters which may be 
estimated from available statistical data. 

The basic assumption underlying the exponential model 
is  that  the probability of survival of a  component for  any 
given time  interval is independent of its age at  the begin- 
ning of the interval. However, in most practical situations 
it seems far  more reasonable to assume that this  sur- 
vival probability will decrease with increasing initial age. 
(We rule out  “infant mortality” on  the assumption that 
adequate  acceptance testing will eliminate this effect.) In 
Appendix B, it is shown that  the assumption that survival 
probability, R(t;x), decreases with increasing initial  age x 
for any given time interval, r, is equivalent to  the assump- 
tion  that  hazard is a monotonically increasing function of 
the age of the component. All the models considered in the 
following have this  property. 

The second important property  common to all the 
models we consider is: 

z(0) =f (O)  = u(0) > 0 , 
i.e. the initial hazard  for a new component is non-zero. 
This  assumption is justified by the  fact  that, in many reli- 
ability studies, large quantities of data which lead to defi- 
nite positive values for z(0) have been obtained.’0J2 In gen- 
eral,  more  information is available about  the value of the 
lifetime density near zero than  at any other time. Therefore, 
the value of f(0) is an  important quantity  in the selection 
of an  appropriate distribution to describe the lifetime be- 
havior of a class of components. 

Several models  in which hazard increases with age have 
been proposed in the past.  Among  these are  the normal, 
the log normal, the gamma, and  the Weibull distribu- 
tions. 8,y-10For each of these models, z(0) is zero. For all 
the models considered below, z(0) may assume any pre- 
scribed positive value, so that  the required flexibility in the 
choice of a  model is achieved. 

At least two parametets  are needed to fit a model with 
the above  properties to observed data. However, it is felt 
that  the quality of lifetime data which can be obtained  in 
most  practical  situations  does not justify the use of more 
than two parameters. The following discussion is therefore 
limited to two-parameter  distribution functions. 

Three models have been considered and will be denoted 
by the superscripts (l), (2) ,  and (3).  F(’) and F(2) were 
derived from  assumptions of linear and  quadratic depend- 
ence of hazard on  the age of a component. F(3) is a  “trun- 
cated  normal”  distribution and will be discussed in detail 
in Section V. 

Let 

z(l)(t)=a+2b2t , where O<u< m, O<b< m , (IV.1) 62 
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F(’)(t)= 1 -R(’)(t)= 1 - exp [-(at+b2t2)] , (IV.3) 

F @ ) ( f )  = 1 -R(2)(r) = 1 - exp [ -(ur+c3t3)] . (IV.4) 

Similarly 

f( ’ )( t)  =(a+2b2t) exp [ -(at+b2t2)] , (IV.5) 

f ( 2 ) ( r )  =(a+3c3t2) exp [ -(at+c3t3)] , (IV.6) 

R(l)(t;x) = exp [ -(at+b2r2+2b2tx)] 

= R(’)(t) exp (- 2b2rx) , (IV.7) 

R(2)(t;x)= exp [ -(ar+c3r3+3CCSt2x+3c3tx2)] 

=R@)(t) exp [-3&x(t+~)] . OV.8) 

For  the mean life of a  component, we have 

(IV.9) 

where 

This integral may be evaluated numerically for  any value 
of alc. For  the limiting case of a =0, 

In  both these models, the initial hazard, z(O), is rep- 
resented by the parameter, a, and  the  rate of increase of 
the hazard with age is determined by parameter b or c. 
Thus, as b or c approaches zero, with a finite, either of 
these distributions  approaches the exponential. Conversely, 
as a approaches zero, with b or c finite either  function ap- 
proaches a Weibull distribution.8 

These models may be reparameterized in a manner which 
sheds additional  light on their  properties.  One  parameter, 
tm, represents the mean life of a  component and  the other 
determines the shapes of the probabilistic  functions on a 
time scale normalized in terms of the mean life. The ratios 
alb and ajc determine the functional dependence of hazard, 
survival probability, and  the lifetime density function on 
the normalized variable, 0 = titm. For example, given 

F(’)(t) = 1 - exp [ -(at+bzt2)] , b>O , 
with 



I determined by the conditions 

(IV.13) 

Thus, 

p = +(')(a/b) 

and 

a = (a/b)@)(a/b) . (IV.14) 

For  the limiting case of b = 0, with a finite, 

F*(1)(0) = 1 -e-9 , 

so that a= 1. 

Correspondingly, for 

P V t ) =  1 - exp [-(at+c3t3)] , c>o , 
we have 

F*@)(e) = 1 - exp [ -(a0+y303)] , (IV.15) 

where 

(IV. 16) 

and 

cy = ( a / c ) p ( a / c )  . 
For the limiting case of c=O, with a finite, 

F*(2)(0) = 1 -e-O, and a = 1 . 
The values of the parameters a,  P, and y for various 

values of a/b and a/c are given in  Table 1 .  
In Figs. I to 6, z*(I), z * ( ~ ) ,  R*('), R*(2), f * ( l ) ,  and f * @ )  are 

plotted as functions of the normalized variable 0. These 
curves indicate the range of behavior which may be de- 
scribed by models of this form. 

V. Truncated normal distribution 

The normal  distribution, for which 

1 1 1 t-to =____. " 
P(-to/a) ad\/2.1rexP [ -i(6)1] ' t2° W.1) 

where 

Then 

R(3j(t;x)=P(7) t+x--to / P (  x-to 7) 

Figure 7 (at  top of page 66) indicates the relative posi- 
tion of t = O  on  the normal  curve  corresponding to various 
values of tola. Let us consider the behavior of this truncated 
distribution as to/a ranges from - 00 to + M . For to/u large, 
say >3,  it differs only slightly from  the normal. As u+O, 
with to>O, W ( t )  approaches a step  function with the lim- 
iting case 

lim F(V(t) = 0 , f < t o  ; W.5) 
U"0 

= 1  t2to . 
This  corresponds to a fixed lifetime equal to to .  

1 l- I 

0.4 0.287 
1.2 I :604 ~ 

M 0 

has been widely used in reliability studies, and a careful 
analysis of its properties as applied to  the present discus- 
sion yields interesting results. It must  be  borne in mind 
that  the normal  distribution extends from - m to + m, Y C  

F(2) 

while lifetimes of components are limited to positive values. 
0 

~ ~ 

t I n  what follows, the  asterisk  indicates  that  function of the normalized  variable 0.5 0.353  0.705  0.733 
9 obtained  from  the  corresponding  function of t ,  by  change of scale  with 2.0 ~ Y798 I t3991 0.954 
8 = t / t n .  For  example: 

R*(e )=R( t ) ,  M 1 

tThis  quantity is defined in Section VII. 63 
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Figure 1 
Hazard z*(11(8) = 01 + 2p28. 
Values of ./p indicated  on  curves. 

Figure 2 
Hazard Z * ~ ~ W )  = (Y + 37382. 
Values of 01/y indicated on curves. 

Figure 3 
Survival probability 
R*'l1(8I = exp I- ((YO + p282)1. 
Values of ( ~ / p  indicated on curves. 

64 
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Figure 6 
lifetime density 
f * ' w )  = (ff + 3y303) exp I- (01 + ~ ~ 0 ~ 1 1 .  
Values of f f / y  indicated on curves. 



As tola -+ - m , such that to/u2-+ -X where X is a positive 
constant, the truncated  normal  distribution  approaches the 
exponential : 

m 

= lim exp (3) 

For any value of tala, the  truncated normal distribution 
satisfies the conditions previously required of a lifetime dis- 
tribution, namely that r(0) = f ( O ) > O ,  and r(t) is a mono- 
tonically increasing function of t .  The  latter is shown in 
Appendix C .  The mean life associated with this distribution 
is obtained as follows: 

m 

0 

For  the limiting cases discussed previously, 

as tola+ 00, t,(3)+to , 

as tn/u+- m , such that to/u2+-X, t , ( 3 )  j l /X . 
TO normalize the distribution  as a function of 0 for any 
Value of tn/u, we set 8, = I~~(P(~)(&,/U’) = 1, and O o / ~ ‘ =  to/,,. 
Thus 

66 and 

(V.9) 

-1  

Figure 7 Truncation of normal density function, 
showing position of t = 0 corresponding 
to values of to/o.  

Then 

Table 2 
F(3) 

eo/u’= tnlU 8 0  U‘ H t  
- 1  - 1.90 1.90 

0 0 1.253 

2 0.974 0.487 

4 1 .ooo 0.250 

0.985 
0.952 

0.778  0.778 0.850 
0.621 

0.999 0.333  0.313 
0.017 

1 

3 

______ 
tThis  q u a n t i t y  is defined in Section VII. 

In Figs. 8-10, R*C3), z*c3), and f*@) are plotted as functions 
of 0 for the  above values of tolu. The dotted lines represent 
the limiting cases of the step  function and  the exponential. 
A comparison of these curves with Figs. 1-6 reveals that 
this truncated  normal  distribution is capable of fitting R 

wider range of lifetime behavior than either of the other 
two-parameter distributions studied. 
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Figure 8 
Hazard z * ‘ ~ ’ ( O )  
(truncated normal). 
Values of OO,fU‘ indicated on curves. 

Figure 9 
Survival probability R*‘3’(01 
(truncated normal). 
Values of oO/u’ indicated on curves. 

Figure IO 
Lifetime density f*‘3’(0) 
(truncated normal). 
Values of 0,la’ indicated on curves. 



U*(O), the expected number of replacements for a com- 
ponent of age zero at 0 = 0, has been numerically calculated 
as a  function of normalized time O = t / tm,  for  all the dis- 
tributions discussed in  the last two sections. 

It was shown  in Section I1 (Eqs. 11.15 and 11.16) that 

(VI. 1) 

of Variations, it may be shown that, of all lifetime density 
functions with unit mean lire, H is maximum for the ex- 
ponential, f * ( O )  =e-o, and is then equal  to 1. 

For all the models considered in  this  paper, H de- 
creases monotonically as the parameter  ratios vary from 
their exponential-law limits to their “wear-out” limits. For 
the  truncated  normal  distribution,  as fo/m+m (the behavior 
approaches complete determinacy), H approaches - m . 

The values of H as functions of the  parameter  ratios 
a/b, a/c ,  and fo/u are listed in Tables 1 and 2, and plotted 
in Figs. 19 and 20. H(’) and were obtained by numerical 
integration and  H(3) was calculated from the result 

and H(:j)(E) = - In [t2q17(rl- 1)1+3(1 - f 2 r l )  , (vrI.2) 
0 

u*,(e) = Ju*~-,(o - r)f*(r)dr, 
where 6 = t,/a , 

i > l  . 
exp ( - 3 ~ )  1 

To  perform  the numerical calculation, the last equation q =  ’ ‘ 

was approximated by the trapezoidal rule, giving: J2&FJ( - (1 

r-1 +Z: U*~-~(O-T~).P(T~)AT , 
,=1 

where ri=jAr, rVL=nAr=O. (V1.2) 

The U*,(O) were calculated with Ar=O.2 for O ranging 
from 0 to 3. In Figs. 11-13, U*(O) is plotted  for distributions 
(I) ,  (2), and (3). Tt is estimated that these results are correct 
to within 1%. The relative rate of growth of the distribution 
functions U*,(O) for successive renewals may be observed 
in Fig. 18, where U** is plotted against U*l for  the truncated 
normal  distributions. 

VII. Entropy as a measure of “randomness” 

It  was pointed out in Section 111 that  the exponential 
law corresponds to maximum “randomness” of lifetimes. 
This arises from the fact that  the age of an exponential-law 
component tells nothing about its subsequent probability 
of survival. However, we have adopted the more realistic 
assumption that R(r;x)  decreases with initial age x,  i.e. 
hazard increases with time. This behavior is usually char- 
acterized as a wear-out effect. We have seen that we can 
obtain models ranging from  an exponential law limit, cor- 
responding to complete  randomness, to a  step function, 
corresponding to fixed lifetime or complete determinacy. 
It is clear that a  measure of the degree of the wear-out 
effect or, what is the same thing, the deviation from ex- 
ponential law behavior is needed. 

In Statistical Mechanics13 and Information Theory,’? the 
quantity H ,  often called entropy,  has been used as a meas- 
ure of disorder or randomness. This quantity will serve as 
a measure of the  “randomness” of lifetimes too. We define 

(VJI.1) 
6a 
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The range of values of H gives a measure of the range 
of lifetime behavior which a model will describe. Thus, the 
three models discussed in this paper have limiting values of 
H displayed in  Table 3. 

Table 3 
____ 
F(t) Max. H Min. H 
1 -exp [-(at+h’tl)] I (a/b= m) 0.717 (a/b=O)- 
1 “exp [-(at+c’’t”)] 1 (a/c= m) 0.399 (a/b=O) 
Truncated  normal 1 (tola = - m ) - 00 (fo/u = 00 ) 

The three ranges of H give a numerical measure to our 
previous statement that the  truncated  normal distribution 
i s  capable of fitting a wider range of lifetime behavior than 
either of the  other two-parameter models considered. It is 
interesting to  note  the range of values of H for  other life- 
time  distributions, with increasing hazards, which are used 
as models in reliability theory. These are listed in Table 4. 

Table 4 

Distribution  Entropy Range 

Weibull “00 to 1 
Gamma “00 to 1 
Log Normal - 00 to 0.919 

Thus,  as measured by “entropy,” the Weibull and 
Gamma distributions describe as wide a  range of lifetime 
behavior as  does the truncated  normal. However, as was 
pointed out in Section IV, these functions do not allow any 
flexibility in the choice of a value of z(0). 



2.4 2 . 8  

e = t / t m -  

Figure 11 
Expected number of replacements u*"'(8). 
Values of ./p indicated on curves. 

Figure I3  
Expected number of replacements U*'3'(8). 
Values of 80/cr' indicated on curves. 

I e = t / t m -  

Figure 14 
Renewal  rate u*"'(8). 
Values of ./p indicated on curves. 

e = t/t,- 

,~ 
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0.4 0.8 1.2 1.6 2.0 2.4 2.8 

Figure 15 
Renewal rate u * W 3 ) .  
Values of a/v indicated on curves. 

Figure 17 
U'3) normalized to time over 
time at which U(3'(t) = 0.1. 
Values of t , /o indicated on curves. 

70 

0 4  0.8 1.2  1 

e = t/tm- 

Figure 16 
Renewal rate u*'~' (O) .  
Values of Oo/o' indicated on curves. 

Figure 18 
U12) versus U").  
Values of to/a indicated on curves. 
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l a / b  OR a / c  - 
Figure 19 
Entropy versus parameter ratios. 
W )  vs. a / b  and f f f 2 )  vs. a / c .  

VIII. Discussion of curves 

On  the accompanying graphs,  probability of survival R*, 
hazard z*, lifetime density f*, expected number of replace- 
ments U*, and renewal rate u*, have been plotted as func- 
tions of normalized time 0 for the  three models considered 
in this paper. In all cases, it was assumed that  the initial 
age was zero. The plots have been made  for selected values 
of the parameter ratios alb, ale, and to/c, varying from 
the  limits (a/b= m ,  a/c= m ,  tola= - m) corresponding to 
maximum entropy (exponential law), to  the limits (a/b=O, 
a/c=O, tola= w )  corresponding to  the minimum entropy 
for the given models. 

Figs. 1 and 2 illustrate the assumption of linear and 
quadratic increase of hazard with age. The dotted curves 
indicate the limits. Fig. 8 shows the  hazard  as a  function of 
age for  the truncated  normal  distribution. It is clear that 
the latter is capable of fitting a wider range of behavior 
than either of the other two. 

In Figs. 3,4,  and 9, it may be observed that  the survival 
probability for times short compared to  the mean life in- 
creases as  the parameter values depart from their expo- 
nential-law limits. Thus, for  equal mean lives, those models 
with lower entropy  have  greater  short-term survival prob- 
abilities than  that associated with the exponential law. 

Conversely,  suppose available data provide  information 
about survival  probability  over  a short period of time, and 
a  prediction of mean life is desired. The predicted  value 
will vary widely with the value of the  parameter  ratio of 

the model used in prediction. For example, suppose it is 
known that  the survival probability for the first I000 hours 
of operation is 0.95. Then, an exponential distribution pre- 
dicts a mean life of 19,600 hours. Any model with lower 
entropy predicts a  shorter mean life. The truncated  normal 
with t,,/u=4 predicts a mean life of 1700 hours. Thus, pre- 
diction of long-term behavior from short-term data without 
prior knowledge of the nature of the distribution is a mean- 
ingless process. 

In Figs. 11, 12, and 13, the numerically calculated values 
of U*(f3), the expected number of replacements up to time 
0 = t/t,,,, are plotted. For the parameter values we have used, 
these curves clearly approximate  straight lines of unit slope 
by the time 0 = 3 .  However, in most cases of practical in- 
terest, the most significant portions of these curves corre- 
spond to values of 0 less than one. For  the exponential law, 
we have U*(O)=O for all 020. However, for any other 
model considered here, U*(0) < 0. 

The approximate slopes of the U*(0) curves, representing 
u*(0) ,  the renewal rates, are plotted in Figs. 14, 15, and 16. 
For exponential law, we have ~ * ( 0 ) = 1  for  all 020. For 
all our other models, u*(O) =f*(O)  < 1 ,  and for 0 <  1 ,  the 
renewal rate is a monotonically increasing function of 0. 
u*(0) reaches a peak value > 1 for some value of f3> 1 and 
then oscillates with decreasing amplitude around its limit- 
ing value of 1 .  The amplitude of these oscillations increases 
as  the values of the  parameter  ratios  approach  their “wear 71 
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widest range of behavior. 
When the expected number of replacements is plotted as 

a function of time normalized in terms of the mean life of a 
component (as in Fig. 13), the curves for various values of 
the parameter  ratios are  not startlingly different. However, 
it should  be  borne in mind that,  in  current practice, mean 
life is usually estimated from  data obtained  in a time that 
is a small fraction of the mean life. The fallacy of this  type 
of prediction is illustrated  in Fig. 17, in which UC3) is plotted 
as a function of time normalized in terms of the time at 
which U(t)=O.l. 

Fig. 18 illustrates the relative behavior of successive gen- 
erations in renewal processes governed by a truncated  nor- 
mal distribution with various values of to/u. In each case, 
the distribution  function for  the second generation of com- 
ponents is plotted  against the distribution for  the first 
generation. It may be seen from the  plot  that,  for  an ex- 
ponential  distribution, when half the first generation has 
been replaced ( UI =OS), more than 0.1 5 of the second gen- 
eration has also been removed. As the entropy  approaches 
- 00, the value of U2 corresponding to Ul = O S  approaches 
zero. These curves are dependent only on  the  ratio to/u and 
are independent of the time scale. 

In conclusion, we propose that  the truncated normal dis- 
tribution be used as a model for fitting component removal 
data obtained  in long-term reliability studies. This, of 
course, is based on  our assumption that survival probabil- 
ity for a given time  interval is a decreasing function of the 
initial age of a component. We  feel that, under  this  assump- 
tion, this model provides the maximum flexibility for a two- 
parameter distribution. 

Appendix A 

Solution of the renewal rate equation 

zt(t;x)=f(t;X)+ U(t-T;X)f(T)dT , l 
by Laplace transforms : 

Let U(s;x)=L{ u ( t ; x ) )  

01.18) 

=l"i;, exp (-st)&, be the Laplace  transform 

of u(t;x). 

Now, since 

we  may transform  both sides of the equation and  obtain 
- 
u(s;.x) =f(s;x)+f(s)II(s;x) , or 

exponential distribution, where 

f ( t ;x )  = f(t) = he-xt , 

and hence 

&x) =XIS . 
Then, using the inverse Laplace  transformation, we find 

u(t;x)=u(t)=h , t>o ; 

U(t;x)  = U(t) =At  , t 2 o  . 
Appendix B 
We will prove that  for  any given t>O, statement (l), R(t;x)  
is a monotonically decreasing function of x ,  is equivalent 
to statement (2), z(l) is a monotonically increasing function 
of 1 (the age of the component), by showing (a) that (1) 
implies (2) and conversely (6 )  that (2) implies (1). 

a) L,et 

dR(t.x) 2 <o , all t > O ,  all x 2 0  . 
ax 

We  have 

and hence 

f ( x f 0  > m . 
R(x+t) R(x) 

That is, 

z(x+t) > z(x) , all t > O ,  all x20  ; 

or 

z(12) >Z(ll) , all 1,>112 0 . 
b) Let 

z(f3 >Z(lS , for any l,>Z,>O . 
Then 

S : ( r , + d ~ T > ~ ~ ( x ~ + T ) ~ T  0 9 for x2>xl>0 . 

That is, 

exp [ - ~ : : ( u ) d u ]  < exp [ - ~ : ' + ; ( u ) d u ]  

or 

R(t;x2)<R(t;xJ . 
Appendix C 

To prove that z("(t) is a monotonically increasing function 
of t: 
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(exp [ - 4 ( 7 0 )  ‘1 - (70) J exp (- +y?)c/y tive, and  z ( t )  is  monotonically  increasing. 
cn this  last  integral must be  positive.  Therefore dz/dt is posi- 

(t- tO)Ir 
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