46

B. Dunham
D. Middleton

. W. Weltzien

The Multipurpose Bias Device”

Part ll

The Efficiency of Logical Elements

A test of logical efficiency

Part I of this paper dealt with the Rutz commutator as a
typical multipurpose element.? Such elements should pro-
vide economy in both number and assortment of logical
building blocks. A way of evaluating them, however, is
needed. Suppose we find, for two comparable devices,
that fewer units of 4 are generally required than of B in
performing logical operations. We judge A more efficient,
but seek an easy test of this supremacy. The class of sub-
functions a multipurpose device realizes upon biasing or
duplication of inputs is easily determined. The larger the
class, the more versatile we expect the device to be, since
it can be used in a greater variety of ways. Versatility, in
turn, should lead to efficiency, since given logical opera-
tions can generally be performed by fewer units of a
more versatile device. Here, then, is the basis of the test
we need.

The technique of biasing inputs was fully explained in
Part I of this paper.? If extra signal loads® are permitted,
subfunctions can also be obtained by duplicating inputs.
Consider the 3-variable function indicated in the follow-
ing table:

*Portions of this paper were presented to the International Symposium on
the Theory of Switching at Harvard University, April 4, 1957, and as a
lecture at Oxford University on May 5, 1958,

IBM JOURNAL *%JANUARY 1959

Abstract: The efficiency of a logical element can be
equated with the set of subfunctions it realizes upon
biasing or duplication of inputs. Various classes of
elements are considered, and optimum or near-
optimum examples are presented. Some related
areas of study are suggested.

Row l P q r Output
1 1 1 1 1
2 0 1 1 1
3 1 0 1 0
4 0 0 1 1
5 1 1 0 0
6 0 1 0 0
7 1 0 0 1
8 0 0 0 0

The input states are shown (as in Part 1) by the three
columns under ‘p’, g ’, and ‘r’. Biasing of individual
inputs yields the 2-variable functions EXCLUSIVE-OR, IF-
AND-ONLY-IF, IF-THEN, and NOT-IF-THEN. Suppose now
we duplicate the inputs indicated by ‘ p’ and ‘ r’, that is,
we introduce the same signal at both locations. We can
determine the effect of this by looking at those rows of
the table in which ‘p’ and ‘r’ are assigned like values,
namely, rows 1, 3, 6, and 8. The function AND is obtained.
If the inputs denoted by © ¢ * and * r ’ are duplicated (rows
1, 2, 7, and 8), the function INCLUSIVE-OR is generated.

A convenient way of labeling functions is required. If
values are assigned input variables in the familiar truth-
table manner,* the table of inputs need not be shown.
Every function of n variables is uniquely designated by a
27 bit (binary) number representing an output. By this

scheme, for example, 10010110and 11101000
would denote the sum and carry, respectively, of a full
adder.

Further refinement is possible. Four bits can easily be
correlated with a single octal digit, primed or unprimed.
The three leftmost bits determine which octal digit is
selected. The rightmost bit causes the prime to be added
or not. The sixteen possible cases are shown below:

Binary Primed octal Binary Primed octal
0000 0 1 0 00 4
0001 o 1 001 4
0010 1 1010 5
0011 1 1011 5
0100 2 1100 6
0101 2! 1101 6
0110 3 1110 7
0111 3’ 1111 7

The primed octal numbers are thus abbreviations for
binary numbers which, in turn, designate logical func-
tions. Octal labels will be bracketed to avoid confusion.
Some of the more familiar functions are as follows:

Function Label
AND [4]
INCLUSIVE-OR [71]
EXCLUSIVE-OR [31]
IF-AND-ONLY-IF [4']
NEITHER-NOR [0']
NOT-BOTH [3']
SUM (FULL ADDER) [43]
CARRY {FULL ADDER) [7 4]

In Part I, functions like [5] and [6’], equivalent
under permutation of input variables, were grouped into
interchange classes.” For ease of reference, such classes
will often be represented by the precursor, the member
with the smallest label numerically.

We now return to the scheme of evaluation mentioned
above. Assume three kinds of three-input, one-output
device: F, G, and H (see Table 1), We fabricate from
each (without time or feedback), those of the 68 full
3-variable precursors which require no more than two
units. Table 1 is the box score of our effort. Device H
is more efficient than G, which in turn surpasses F.

We now apply the direct test suggested earlier, Only
subfunctions that are full (that is, without vacuous vari-
ables) are counted and but one member from each inter-
change class. In terms of 2-variable subfunctions through
biasing alone, F has a rating of 2; G, 4, and H, 4. When
duplication is also considered, F and G have the same
rating as before; but H scores 6.

One further comment is pertinent. Because F (the
carry of a full adder) is commutative, the results obtained
from biasing its different inputs are identical. Such is not
the case, however, for H. The Jatter’s non-commutativity
makes the choice of input for biasing significant. As a
result, a greater number of subfunctions is produced.

Commutative devices of a higher order should prove even
less satisfactory. Such elements achieve only commutative
subfunctions upon biasing: yet as shown in Table 2, the
proportion of commutative functions varies inversely with
the number of variables.

The test in operation

If we count subfunctions of two variables, 4 is the highest
rating a 3-variable function obtains from biasing only,
and 7, two such functions jointly. These “high-scoring”
functions, shown in Table 3, define superior three-input
devices. Only the relevant precursors are indicated.

On duplication of inputs, the scores of [16'] and
[4’ 51 are increased to 6; the others remain 4. In fact, 6
is the highest score possible, since any given choice of
the two extreme “end bits” will eliminate two of the eight
possible subfunctions. A choice of 1...1 prevents [1]
and [31;0...1,[4]and [7);1...0,[0'Jand [3'];
0...0,{4'1and [5). Hence we regard these two func-
tions as optimum for the three-input, one-output case.
The two functions are related, however, since the denial
of [16'] is interchange equivalent to [4' 5]. Obviously,
a function and its denial will have identical scores; also,
a function and its “mirror image.” The mirror image is
the function obtained when the order of bits is reversed—

Table I Full 3-variable precursors which can be ob-
tained in each case from two or less units.t

Device Output Precursors obtained
F [74] 5
G [56] 26
H [16] 44

Table 2 Number of commutative and non-commu-
tative functions.”

Full functions Commutative Non-commutative
2-variable 6 2
3-variable 14 54
4-variable 30 3874

Table 3 High-scoring three-input logical elements.

3-variable function 2-variable functions obtained

[0°5] [0y (11 31 [5]
[14] (o1 11 131 [4]
[15] (01 111 131 [5]
[16] (11 (31 [41 [5]
[35] (31 (31 141 151
[43] (t1 (31 [41 [4]
(471 (1] 41 [51 [7]
{4'5] [ry [31 [4] [5]
[47] [31 [41 5] [7]
[56] (11 41 [51 [7]

47

IBM JOURNAL s JANUARY 1959

48

in other words, the most significant bit is replaced by the
least significant bit, and so on. The function 11011010,
for example, is the mirror imageof 0 101101 1. In the
particular case, the mirror image of [1 6’] is interchange
equivalent to the denial of [1 6’ }; but this is not always
so. Hence, given a score for one interchange class of
functions, we know the score for other related inter-
change classes: that is, denials, mirror images, and denials
of mirror images. This collection of at most four inter-
change classes we shall call a ¢ycle. The precursor with
the smallest label numerically for a given cycle is the
chief precursor. The function [1 6] is thus chief precur-
sor for the one cycle of three variables which has a first
score (biasing only) of 4 and a second score (biasing plus
duplication) of 6.

As noted above, 7 is the highest first score obtained by a
three-input, two-output device. Several such devices also
have a maximal second score of 8. It should be empha-
sized, however, that the immediate count of subfunctions
is a less telling measure of efficiency when multi-output
elements are considered. Individual high-scoring func-
tions are helpful, but they must be aptly suited to one
another—they must “team” well together. A good esti-
mate can be made, however, as to how well suited differ-
ent elements are by team scoring. The latter technique,
which, as we shall see, is ultimately based upon the
method of counting subfunctions, can also be used as an
added test in one-output cases. Suppose, for example, we
must choose between the high-scoring one-output func-
tions [47] and [5 6]. Both have first and second scores
of 4. To resolve this difficulty, we examine teams of two,
—that is, all possible hookups (non-feedback) involving
two or less units are tested and a single team score pro-
duced. From [47] (by second scoring), /7 4-variable
and 19 3-variable functions are obtained; from [56], 24
4-variable and 26 3-variable functions. Hence we judge
[5 6] the more powerful device.

When all 80 3-variable precursors are examined by
team-of-two scoring, [16’] and [4' 5] (the only two
precursors scoring 6 in 2-variable subfunctions) score far
better than any other precursor. [1 6’] has a team-of-two
second score of 44 3-variable subfunctions and [4' 5],
41. No other precursor has a larger score than 32. It is
of note, however, that [16'] and [4' 5], interchange
denials of one another, team score differently. There is
apparent advantage in a 0...1 as againsta 1 ... 0 end-
bit situation; and, indeed, we see by reflection that this is
the case. With 1. .. 0 end-bits, all two-unit hookups of a
given device are equivalent when the five variable inputs
are alike, that is, all on or all off. Such is not the case,
however, when the end bits are 0. .. 1. As it turns out,
every full non-commutative 3-variable precursor with
0...1 end bits team scores higher than its interchange
denial.

Three-input, two-output elements may best be exam-
ined by team scoring. Again, we count only 3-variable
subfunctions obtained from biasing plus duplication. As
it turns out, the device with outputs [0’ 57 and [4’ 5']
has a highest team-of-two score, although it individually

IBM JOURNAL * JANUARY 1959

generates but 6 2-variable subfunctions. Of the eighty
precursors of three variables, 79 can be obtained with
two or less units. Table 4 indicates the appropriate hook-
ups.

A binary representation ot this device with its table of
inputs is revealing:

Row Inputs Outputs
p q r [00s1 [45]

1 1 1 1 0 1
2 0 1 1 0 0
3 1 0 1 0 0
4 0 0 1 1 1
5 1 1 0 1 1
6 0 1 0 0 0
7 1 0 0 1 1
8 0 0 0 0 1

Both [0’5] and [4' 5’] are members of the same
cycle. They differ only in their two extreme “end bits.”
This difference is fundamental, however, since functions
which are interchange equivalent always agree in this
respect. If the end bits were not thus opposite, a sizable
part of the 80 3-variable precursors would probably be
missed, since the latter are subdivided into four equal
classes by end bits. It can be seen also that, if the two
functions must differ in both end bits, there is advantage
in the fact that the first function has two ZEROs and the
second two ONEs. In this way, [0’ 5] has a total of
three ONEs and [4’ 5’] five, instead of both having four.
This lack of balance is preferable, since an output with
fewer ONEs is more likely to produce functions with
fewer than average ONEs; and an output with more
ONEs, those with more than average ONEs. A check of
Table 4 shows that the great majority of precursors with
fewer than four ONEs are derived via [0'5] and of
those with more than four ONEs, via [4' 5’]. The re-
maining precursors are more or less evenly split between
the two outputs. By this analysis, we see why none of the
high-scoring individual functions shown in Table 3 was
used. None of these has like end bits. There remains the
question as to why ONEs and ZEROs are so arranged in
the six inner rows of the table. Clearly, for each function
they must be three in number. Since non-commutativity
is desired, the ONEs must be parceled among the input
rows with two ONEs (rows 2, 3, and 5) and one ONE
(rows 4, 6, and 7). They must also be uniform with re-
spect to no input variable. For example, ONEs in rows 2,
4, and 6 would coincide with assignment of ZERO to ‘p’.
But why should the two functions exactly agree in rows
2 to 7? Undue orientation generally restricts the variety
of operation; but it must be remembered the critical end
bits provide an opposite orientation. Hence, the like as-
signment of rows 2 to 7 compensates for this.

It is of some note that the two-input, two-output device
which seems most versatile is quite similar to the three-
input device just described. By team-of-two scoring, an
element with outputs [1] and [5’] has a highest rating
of 8 2-variable and 8 3-variable functions. The reader

Table 4 Generation of eighty 3-variable precursors from three-input, two-output element.

Precursor Appropriate hookup Precursor Appropriate hookup
L. [00] A000 41. [4 0] AgqO0Or 0Bp
2. [0 0] ArgpAp B 42. [4 0] Ar qpBp A
3. [01] ArgpApr 43. [41] AgqqrpBA
4, [0 1] Agr 1 44. [4 1] ApOqgr g B
5. [03] AgqgpABr 45. [43] AqOpABr
6. [0 3] BrqgpApB 46. [4 3] AqO0OpBAr
7. [04] AgplAr B 47. [44] Ag010 4p
8. [0 4] AgppAr B 48. [4 4] AO0Oqgr p AB
9. [05] Aplr 49. [45] Arqqp B A
10. [05] Agr pBAg 50. [45] BpqgqgBagr
11 [07] AgplAr 1 51. [47] Brgpp Br i
12. [0 7] Al11r 52. [4 7] BqOpBOr
13. [0'3] ArgpApagq 53. [43] AgqqpAO0r
14. [0°3] BrgpApgq 54. [43] BrqpByp
15. [0 41 ArgqAByp 55. [44] AOqgr AB
16. [0'4] AlrpAByg 56. [4 4] Bpagl
17. [0°5] Apaqgr 57. [45] ArgqgAdop
18. [0"5] ApglAr p 58. [4"5] Bpgqgr
19. [0°7] Ar gpABg 59. [4'7] BgplBr A
20. [0'°7] ArgpB Ag 60. [47] BpgpBr A
21. [14] Argr ABp 61. [5 4] Arqgpp B A
22. [1 4] Agr 1A4Bp 62. [5 4] Bpgr Bg A
23. [15] Apgqr Agqr 63. [55] Bpl1l
24. [1s'] BpgrAdgr 64. [55] BpgrBagqr
25. [16] ArgqgpB A1 65. [56] BpqgrgqBr
26. [16] AgppB Ar 66. [5 6] BplgBr 4
27. [17] ApqgqgAr q 67. [57] BrqqpB A
28. [17] Bgqpr Aq B 68. [57] BproO
29. [176] AqOr 69. [561] BlpgBr A
30. [1"6'] BOgpBr 4 70. [5°6] BpgqgqBr A
3L [1'7] Bgplr Ag 71. [57] BrqrpBA
32. [r7] B qOr 72. [57] BgppAdOr
33. [3 4] Agplr AB 73. 17 4] (three units required)
34. [3 4] ApgpBAr 74. [7 41 BqOpr AB
35. [3 5] Apqgr ABr 75. [7 5] Brpgp B A
36. [3 5] Apqgr BAr 76. [7 5] Bgqr Bp A
37. [37] Blrqgp AB 77. [7 7] Apgll1BA
38. [3 7] BqgppBAr 78. [7 7] BqpOBAvr
39, [37] BrgpB Al 79. (77] Bgplr A0
40. [37] BrqgpBAp 80. (771 B0OO 49

IBM JOURNAL ¢ JANUARY 1959

50

can readily observe, from the following table, the various
properties in common with the three-input device.

Row Inputs Outputs
7 q (L1 [5']
1 1 1 0 1
2 0 1 0 0
3 1 0 1 1
4 0 0 0 1

The notation of Table 4 requires some explanation.
The letter ‘4’ is used to denote the output obtained
through [0’ 51; ‘B, through [4' 5"]. The first ‘4’ or
¢ B’ designates which function serves as the final output.
The indicated hookup requires one or two units insofar
as three or six characters follow the initial ‘4’ or ‘B,
The first three of these characters indicate the inputs to
the first unit; and the next three, to the second. ONEs
and ZEROs indicate positive and negative biases, respec-
tively. “p’, “q’, and ‘r’ are used in the familiar manner
to designate variable inputs. Outputs from the first unit
may serve as inputs to the second. The precursors are
arranged in numerical order, as against the alphabetic
ordering scheme used throughout Part I.

With functions of more than three variables, a com-
puter is generally required, and the IBM 704 Data Proc-
essing Machine has been used. The 65,536 functions of
four variables break down into 3984 interchange classes.
Of the latter, 436 have a maximal first score of 8 3-varia-
ble subfunctions. When we differentiate among the 436
by second scores, eight have a maximal rating of 4.
These eight compose two cycles which have the following
chief precursors:

[00571] [1564]

These represent the most versatile four-input, one-output
devices according to the present criteria. Part III will
include a study of 4-variable functions by team scoring.

As our requirements vary, we may attach more or less
weight to first and second scores. If extra signal loads are
to be avoided, first scores are of greater consequence;
otherwise, second scores. Hence, it is important that we
evaluate functions in both ways.

From the 436 functions maximal by first scoring, four-
input devices of six outputs at most are irredundant in
that no 3-variable subfunction is repeated. The outputs
of one such are shown immediately below. Irredundant
devices with less outputs are (obviously) included.

[41'76] [376'5 1] [3'324]
[4452] [372°0'3] [76'31]

When second-scoring is followed, no four-input device
of more than one output is irredundant, if all 3-variable
subfunctions are full. Two-output devices which achieve
as many as 27 such subfunctions are possible, however.
The outputs for one of these are as follows:

[7270°6] [37402]
It is simpler to judge functions at hand than to identify
unknown optimum cases. Specific elements are easily

IBM JOURNAL » JANUARY 1959

Table 5 Estimated highest first scores of functions.

6-variable 60 (4-var.) 68 (3-var.)
7-variable 84 (5-var.) 280 (4-var.)
8-variable 112 (6-var.) 448 (5-var.) 1120 (4-var.)

compared to one another, and we can estimate the scores
of maximal functions without producing them. Reflection
shows, for example, that by first scoring, a top 5-variable
element should fall somewhat short of the 3-variable limit
40. Some other probable scores are shown in Table 5.

To obtain higher-scoring functions beyond four vari-
ables, simple exhaustion of cases is unfeasible. Several
strategies can be adopted. We may decide, in advance,
probable characteristics of good functions and sample
accordingly. Or, without preconception, we may let the
computer search as follows. A randomly derived function
is changed slightly. Scores are compared and the loser
dropped. The process continues until a dead end is
reached. Then the computer starts over with a new ran-
dom element. Both strategies have been used with some
success.

In terms of 3-variable subfunctions, 36 is the highest
first score we have obtained for 5-variable elements. Four
such are as follows:

[14477402]
[14476622]

[14476062]
[14476262]

If the first of these is written as a binary number,
00101000100111111111100100010100

the two halves are mirror images of one another. Indeed,
all of the 36’s found show balance. ONEs and ZEROs
are of equal number in every case. Also, the arrangement
of ONE:s is such that the subfunctions obtained are dis-
tributed as evenly as possible into the four subclasses fixed
by the two end bits of the available subfunctions. Al-
though many 36’s were independently produced, they all
fall into but four cycles, representatives of which are
shown above.

The best first-scoring five-input, two-output elements
we have found generate 57 3-variable subfunctions.
Three-output elements that first-score a near maximal 67
and have no redundant 4-variable subfunctions have
also been attained. Table 6 provides an example of each.

In the actual fabrication of devices, it is not difficult to
obtain the denial of a given function. Hence there is pos-
sible economy in two-output elements with one output
the denial of the other. For five-input, two-output de-
vices of this kind, 56 is the highest first score we have

Table 6 High-scoring five-input logical elements.

Two-output [41015644]
[003'3171'"56']
Three-output [S4646320]
[26133776]
[003 04 6552]

Table7 Generation of eighty 3-variable precursors from six-input, one-output device by biasing only.

Precursor Code Equivalent Precursor Code Equivalent
1. [00] 100000 41. [4 0] pllgr]l
2. [0 0] plgr 01 42. [4 0] 110pgr
3. [01] Ogr 10p 43. [4 1] pgr 100
4. [01] 001q0r 44, [41] lglpri
5. [0 3] 1p0qgOr 45. [4 3] prllgqgl
6. [0 3] 01prO0g 46. [4 3] pqglr 00
7. [0 4] plglOr 47. [4 4] 110pgqgl
8. [0 4] 11 pqgOr 48. [4 4] 1r01gqgp
9. [05] pr 1001 49. [45] gq0pO0Orr
10. [0 5] 0Olrgpl 50. [4 5] pO0OlrOg
11 [07] Opgr 00 51. [4 7] pllglr
12. [0 7] 10100 52. [4 7] 1plglryr
13. [0°3] 1p0O0qgro 53. [43] 1lpgr 00
14. [0°3] pqgr 011 54. [4"3] plqgOr O
15. [0°4] prq001 55. [4"4] pOgr 01
16. [0°4] plqgqOl1r 56. [4 4] 011pgqg0O
17. [0'5] lr p00gqg 57. [45] 10pr O0g
18. [0"5] r10qgpo0 58. [45] O0rlgpo
19. [0°7] rp0qgl0 59. [4"7 1] lpl1lgr
20. [0°71] 01rO0pgyg 60. [47] pqgr 11
21. [14] P 11 r 61. [5 4] q000pr
22. [14] Lgpl1Or 62. [5 4] 11 pgr O
23. [15] gp 000r 63. [55] 0001po0O
24. [15] 0gri1pl 64. [55] lgpr 10
25. [16] pqgOr 00 65. [56] 11gplr
26. [16] 1lr1p0g 66. [5 6] rlpglo
27. [1 7] 0pqg0O0r 67. [5 7] 0ro01pgqg
28. [17] Or lplyg 68. [5 71 010rpo
29. [1"6] 10qg0r1 69. [56] 1lpgllr
30. [1'6'] 101 pgqgr 70. [56] plgllryr
31. [1"7 1] Ogr 01p 71. [571] qO0pr 10
32. [1"7'] gqO0r 011 72. [57] gr 0pl
33. [34] p00gqgro 73. [7 4] 000pgqr
34, [3 4] 10plgr 74. [7 4] pllqgro
3s. [35] gqp00roO0 75. [75] O0p0O0O0gqgr
36. [351 qgO0r 1 pl 76. [7 5] lglrpo
37. [3 7] OpgOr O 71. [7 7] 000p1lyg
38. [37] p010gqgr 78. [7 7] prlglo
39. [371 p0g0O1r 79. [77] OpOglr
40. [37] Opgllr 80. [77] 010000 51

IBM JOURNAL * JANUARY 1959

found. The element obtained from [033'545 7 0]
and its denial is an example.

When second-scoring is considered, five-input, one-
output functions have been found which produce 54
3-variable subfunctions. None of these has a first score
higher than 34, however, so that we must consider the
probable application in choosing an optimum function.
Two of these high-scoring 54’s are as follows:

[144° 6647 2] [1462"752 6]

The element on the left has a first score of 33; the one
on the right, 34. When 4-variable subfunctions are
counted by second-scoring, however, the leftmost func-
tion achieves a maximum 20; but the other, only I8.
Because the particular choice of end bits (1...1 or
O0...1or1...00r0...0) require that no new sub-
functions will be gotten by duplication after biasing in one
of the four exclusive classes of subfunctions determined
by end bits, we see that a 3-variable second score in the
mid-50’s is the highest possible for 5-variable functions.

No 5-variable functions with opposite end bits have
been found with a higher second score than 53 3-variable
subfunctions. Because the best three-input and four-
input functions have opposite end bits, special interest
attaches to these 53’s. All of those found fall into two
cycles, whose chief precursors are as follows:

[0045175°32"] [14647356']

Five-input, two-output devices are available with a
maximum second score of 68 3-variable and 40 4-variable
subfunctions. Indeed, such an element is accomplished
from [0"3"414'51 1'] and its denial. Thus by a single
added inversion, a 5-variable function can be extended
so as to realize all possible functions of three variables.

As indicated earlier, a top 6-variable function should
first-score 68 and 60 in subfunctions of three and four
variables, respectively. Two such are shown below:

[601320363274646'3]
[4703101272534136]
Either of these will, of course, realize all possible func-
tions of three variables upon biasing. In Table 7, we have

shown how the latter of the two generates the eighty pre-
cursors of three variables. As in Part I, the column under

Table 8 Significant outputs of three-bit multipliers.

Code Equivalent indicates an input selection necessary to
obtain the desired function.®

The two high-scoring 6-variable functions just shown
have second scores of 234 and 231, respectively, in sub-
functions of four variables out of 245 possible cases. The
score 244, obtained by the function [264° 050" 3" 1'7
4435 454], is the highest we have found thus far.

To illustrate the suggested method of testing further, it
may be helpful to consider a more familiar logical ele-
ment. Binary multipliers are typical “black boxes” found
in computers. To multiply three-bit numbers, six 6-vari-
able functions are required, of which four are full. These
four (in order of significance) and their individual first
and second scores are shown in Table 8. Combined first
scores of 33 and 38 subfunctions of three and four vari-
ables, respectively, are obtained. Combined second scores
of 39 and 100, respectively, are also produced. Such
scores for a six-input, four-output device are poor even by
comparison with six-input, one-output logical elements.

Some related questions

The present study can be extended in various ways. First
of all, a greater use can be made of the computer in ana-
lyzing data as against obtaining it. What is required are
more direct methods of determining optimum cases. To
do the latter, we must express in more formal terms the
characteristics of high-scoring functions. It is felt the
data already gathered are sufficient for a good start in
this endeaver.

Questions of optimum size of basic elements need also
be considered. Suppose we grant that for reasons of econ-
omy and reliability it is desirable to build our machine
out of relatively standardized blocks. The present test
enables us to compare elements of comparable inputs
and outputs, but we have not yet examined the problem
as to how large our building blocks should be for given
purposes. Suppose, for example, avoiding duplication of
inputs, we must choose between one-output elements of
four or six inputs. The latter will obviously cost more to
fabricate; but fewer units will be required in assembling
circuits because of the very much greater versatility. As
we have seen, a four-input, one-output device has a high-
est first score of 8 3-variable subfunctions; a six-input
element can achieve 68 such subfunctions.

First scores
Logical element

(3-var., 4-var., resp.)

Second scores
(3-var., 4-var., resp.)

[5400400044000000] 4 4

5 5

[614415003 1005500] 19 20

13 29

[0731360053556600] 21 33

21 61

[2'3532'5551'6667'000] 14 29

52 12 31

IBM JOURNAL * JANUARY 1959

Table 9 Partial team first-scores (est.) of elements.

Element One unit Two units Three units
Two-input 1 (2-var.) 2 (3-var.) 5 (4-var.)
Three-input 1 (3-var.) 3 (5-var.) 12 (T-var.)
Four-input 1 (4-var.) 4 (7-var.) 21 (10-var.)

Team scoring may prove helpful on this problem. Sup-
pose we wish to compare one-output devices of two, three,
or four inputs. Initial proportions of cost and versatility
are determined. Then progressively larger teams are ex-
amined. The former relationship remains constant; but,
as Table 9 indicates, a block initially favored gains in
versatility.

It appears advantageous to have blocks large, but not
too large. Optimum size may well vary with the objective.
Paradoxically, one must use enough elements for econ-
omy. Otherwise, team versatility is lost. Boxes assembled
from lesser elements may in turn serve as building blocks
for larger boxes, and so on. Because team membership
need not be restricted to devices all from the same class,
team scoring can also help determine which assortment
of elements is best in a given case.

Methods for assembling economical circuits from op-
timum sets of elements are needed. As argued in Part I,
techniques which minimize expressions formed from one
set of functions may not prove relevant if another is
assumed.® With the use of new basic elements, new ways
of synthesizing and simplifying circuits may be required.

Questions of time can be introduced. In the hookup:

[e] | »
I [¢] -—

[7]

if all blocks operate instantaneously, the 3-variable func-
tion [3 0'] is realized. Assume, on the other hand, all
three elements have some equal inherent delay and input
signals follow one another at corresponding intervals.
Because the lower path requires more time, two of the
input terminals are used twice. Hence, the 5-variable
function [0 3" 7' 4 7' 4 0 3’] is obtained. It is well known
that we may trade time for hardware, and vice versa, but
the precise relationship of the two is not understood. In
terms of the present study, a more systematic analysis can
be undertaken.

An associated study can be made of circuit reliability.
Clearly, building from uniform blocks simplifies the de-
scription of hardware. Isolation of defective parts is more
readily accomplished and replacement is more immediate.
The redundancy intrinsic to multipurpose elements might
also be used to insure reliability. Beyond this, a more
general approach to the redundancy-reliability question
may be possible, since existing proposals are often ori-
ented to specific kinds of devices.'?

The interplay of order codes and hardware need also
be examined. A modern computing machine can be
thought of as an extended multipurpose bias device.
Alternative logical operations are performed, depending
upon the presence or absence of certain signals. In gen-
eral, we desire the widest range of orders possible from
the least hardware. The present study is pertinent. The
class of subfunctions generated by a logical element will
determine the variety of orders it can execute.

We have thus only scratched the surface in our investi-
gation of multipurpose elements. Part III, to be published
at a later time, will carry the argument further.!

References

1. B. Dunham, “The Multipurpose Bias Device, Part I: The
Commutator Transistor,” IBM Journal of Research and
Development, Vol. 1, 117-129 (April, 1957). See also
R. F. Rutz, “Two-Collector Transistor for Binary Full
Addition,” IBM Journal, Vol. 1, 212-222 (July, 1957).

2. Ibid., p. 118.

3. 1bid., p. 120.

4. Ibid., p. 119. For a more comprehensive discussion, see
W. V. Quine, Mathematical Logic (Revised Edition, Har-
vard University Press, 1955), 42-43.

5. Ibid., 120. The word “class” seems preferable to “group”
in this context.

6. The fact that four full adders are not required in two of
the 3-variable cases, as suggested on p. 123, Pt. I, was first
pointed out to us by J. R. Logan, Senior Scientist, Litton
Industries. He comments in a private correspondence:
“You state tentatively that four full adders might be used
to accomplish either [05'] or [17']. In the following
logical hookup

L S

X2 <

Xo— . | <
X1 3

[17] will emerge on the sum output and reversing the
indicated biases will cause the same inputs to deliver
[05'] on the same line.” The results shown in Table 1
were obtained by computational means.

7. The number of interchange classes of four variables was
calculated by A. Cobham of these laboratories before we
obtained it by computational means.

8. Dunham, op. cit., pp. 126-127.

9. Ibid., p. 117.

10. See, for example, J. von Newmann’s treatment in terms
of majority organs, “Probabilistic Logics and the Syn-
thesis of Reliable Organisms from Unreliable Compo-
nents,” Automata Studies, Princeton, 1956, pp. 43-98.

11. Errata for Part I are as follows: p. 116—case (7-22-BCE),
omit dot from second box; case (17-46—BCFH), omit
bar over ‘r’; p. 121—case (35) ABDF, insert paren-
thesis before first ‘ p’ and insert bar over second ‘p’;
case (58) ABDFH, add *|(q|r)’ after second p’; case
(66) BDFGH, change second ‘p’ to ‘gq’; p. 123—first
column, sixteenth line from bottom, insert ‘(See p. 116)’
after ‘Schematic Diagram 1’; p. 124—insert dot in fourth
box from top; p. 129—first column, second line from
bottom, change ‘1948’ 'to 1938’.

Received March 26, 1958

53

IBM JOURNAL *%JANUARY 1959

