
B. Dunham
D. Middleton
J. H. North
J. A. Sliter
J. W. Weltzien

The Multipurpose Bias Device*
Part II
The Efficiency of Logical Elements

Abstract: The efficiency of a logical element can be

equated with the set of subfunctions it realizes upon

biasing or duplication of inputs. Various classes of
elements are considered, and optimum or near-

optimum examples are presented. Some related

areas of study are suggested.

A test of logical efficiency

Part I of this paper dealt with the Rutz commutator as a
typical multipurpose e1ement.l Such elements should pro-
vide economy in both number and assortment of logical
building blocks. A way of evaluating them, however, is
needed. Suppose we find, for two comparable devices,
that fewer units of A are generally required than of B in
performing logical operations. We judge A more efficient,
but seek an easy test of this supremacy. The class of sub-
functions a multipurpose device realizes upon biasing or
duplication of inputs is easily determined. The larger the
class, the more versatile we expect the device to be, since
it can be used in a greater variety of ways. Versatility, in
turn, should lead to efficiency, since given logical opera-
tions can generally be performed by fewer units of a
more versatile device. Here, then, is the basis of the test
we need.

The technique of biasing inputs was fully explained in
Part I of this paper.2 If extra signal loads3 are permitted,
subfunctions can also be obtained by duplicating inputs.
Consider the 3-variable function indicated in the follow-
ing table:

*Portions of this paper were presented to the International Symposium on
the Theory of Switching at Harvard University, April 4, 1957, and as a

46 lecture at Oxford University on May 5 , 1958.

Row I p q r

1 0 0 1 4
0 1 0 1 3
1 0 1 1 2
1 1 1 1 1

Output

5 1 1 0 0
6 0 1 0 0
7 1 0 0

0 0 0 0 8
1

The input states are shown (as in Part I) by the three
columns under ' p ',' q ', and ' r '. Biasing of individual
inputs yields the 2-variable functions EXCLUSIVE-OR, IF-

we duplicate the inputs indicated by ' p ' and ' r ', that is,
we introduce the same signal at both locations. We can
determine the effect of this by looking at those rows of
the table in which ' p ' and ' r ' are assigned like values,
namely, rows 1, 3, 6, and 8. The function AND is obtained.
If the inputs denoted by ' q ' and ' r ' are duplicated (rows
1, 2, 7, and 8), the function INCLUSIVE-OR is generated.

A convenient way of labeling functions is required. If
values are assigned input variables in the familiar truth-
table manner,4 the table of inputs need not be shown.
Every function of n variables is uniquely designated by a
2" bit (binary) number representing an output. By this

AND-ONLY-IF, IF-THEN, and NOT-IF-THEN. Suppose now

IBM JOURNAL JANUARY 1959

adder.
Further refinement is possible. Four bits can easily be

correlated with a single octal digit, primed or unprimed.
The three leftmost bits determine which octal digit is
selected. The rightmost bit causes the prime to be added
or not. The sixteen possible cases are shown below:

Binary Primed octal Binary Primed octal

0 0 0 0 0 1 0 0 0 4
0 0 0 1 0 1 0 0 1 4‘
0 0 1 0 1 1 0 1 0 5
0 0 1 1 1‘ 1 0 1 1 5‘
0 1 0 0 2 1 1 0 0 6
0 1 0 1 2‘ 1 1 0 1 6‘
0 1 1 0 3 1 1 1 0 7
0 1 1 1 3’ 1 1 1 1 7’

The primed octal numbers are thus abbreviations for
binary numbers which, in turn, designate logical func-
tions. Octal labels will be bracketed to avoid confusion.
Some of the more familiar functions are as follows:

Function Label
AND 1 4 1
INCLUSIVE-OR 1 7 1
EXCLUSIVE-OR 1 3 1
IF-AND-ONLY-IF I 4’ 1
NEITHER-NOR [O’I
NOT-BOTH [3’1
SUM (FULL ADDER) r 4 ‘ 3 1
CARRY(FULLADDER) r 7 4 1

In Part I, functions like [5’] and [6‘ 1, equivalent
under permutation of input variables, were grouped into
interchange classes.5 For ease of reference, such classes
will often be represented by the precursor, the member
with the smallest label numerically.

We now return to the scheme of evaluation mentioned
above. Assume three kinds of three-input, one-output
device: F , G, and H (see Table 1) . We fabricate from
each (without time or feedback), those of the 68 full
3-variable precursors which require no more than two
units. Table 1 is the box score of our effort. Device H
is more efficient than G, which in turn surpasses F .

We now apply the direct test suggested earlier. Only
subfunctions that are full (that is, without vacuous vari-
ables) are counted and but one member from each inter-
change class. In terms of 2-variable subfunctions through
biasing alone, F has a rating of 2; G, 4; and H , 4. When
duplication is also considered, F and G have the same
rating as before; but H scores 6.

One further comment is pertinent. Because F (the
carry of a full adder) is commutative, the results obtained
from biasing its different inputs are identical. Such is not
the case, however, for H . The latter’s non-commutativity
makes the choice of input for biasing significant. As a
result, a greater number of subfunctions is produced.

subfunctions upon biasing: yet as shown in Table 2, the
proportion of commutative functions varies inversely with
the number of variables.

The test in operation

If we count subfunctions of two variables, 4 is the highest
rating a 3-variable function obtains from biasing only,
and 7, two such functions jointly. These “high-scoring’’
functions, shown in Table 3, define superior three-input
devices. Only the relevant precursors are indicated.

On duplication of inputs, the scores of [1 6’ 1 and
[4’ 5] are increased to 6; the others remain 4. In fact, 6 l
is the highest score possible, since any given choice of
the two extreme “end bits” will eliminate two of the eight
possible subfunctions. A choice of 1 . . . 1 prevents [1]
a n d [3] ; 0 . . . 1 , [4] a n d [7] ; 1 . . . 0 , [0 ‘ I a n d [3 ’ 1 ;
0 . . . 0, [4’] and [5‘ 1. Hence we regard these two func-
tions as optimum for the three-input, one-output case.
The two functions are related, however, since the denial
of [1 6’] is interchange equivalent to [4’ 5 1. Obviously,
a function and its denial will have identical scores; also,
a function and its “mirror image.” The mirror image is
the function obtained when the order of bits is reversed-

Table I Full 3-variable precursors which can be ob-
tained in each case from two or less units?

Device output Precursors obtained

F 1 7 4 1 5
G 1 5 6 1 26
H 1 1 6‘1 44

Table 2 Number of commutative and non-commu-
tative function^.^

Full functions Commutative Non-commutative

2-variable 6 2
3-variable 14 54
4-variable 30 3874

Table 3 High-scoring three-input logical elements.

3-variable function 2-variable functions obtained

[0‘ 5‘] 10’1 1 1 1 13’1 [5 ‘1
11 4’1 10’1 1 1 1 1 3 1 r4’1

5‘1 [O’I [1 1 [3’1 15’1
[1 6‘1 1 [3 I [4‘1 [5’1
I 3 5’1 I 3 1 [3’1 [4’1 [5’1
1 4 3 1 r 1 1 [3 1 r 4 1 ~ 4 ‘ 1
[4 7 I [1 I 1 4 1 [5’1 [7 1
[4 ‘ 5 1 11 1 I 3 1 14’1 [5 ‘ 1
1 4 ’ 7 1 [3 1 [4 ‘1 t5’1 c7 1
15 6 1 [I 1 1 4 1 [5 ’ 1 [7 1 41

IBM JOURNAL JANUARY 1959

in other words, the most significant bit is replaced by the
least significant bit, and so on. The function 1 1 0 1 1 0 1 0,
for example, is the mirror image of 0 1 0 1 1 0 1 1. In the
particular case, the mirror image of [1 6’] is interchange
equivalent to the denial of [1 6 1; but this is not always
so. Hence, given a score for one interchange class of
functions, we know the score for other related inter-
change classes: that is, denials, mirror images, and denials
of mirror images. This collection of at most four inter-
change classes we shall call a cycle. The precursor with
the smallest label numerically for a given cycle is the
chief precursor. The function [1 6’] is thus chief precur-
sor for the one cycle of three variables which has a first
score (biasing only) of 4 and a second score (biasing plus
duplication) of 6.

As noted above, 7 is the highest first score obtained by a
three-input, two-output device. Several such devices also

sized, however, that the immediate count of subfunctions
is a less telling measure of efficiency when multi-output
elements are considered. Individual high-scoring func-
tions are helpful, hut they must be aptly suited to one
another-they must “team” well together. A good esti-
mate can be made, however, as to how well suited differ-
ent elements are by team scoring. The latter technique,
which, as we shall see, is ultimately based upon the
method of counting subfunctions, can also be used as an
added test in one-output cases. Suppose, for example, we
must choose between the high-scoring one-output func-
tions [4 7] and [5 6 1. Both have first and second scores
of 4. To resolve this difficulty, we examine teams of two,
-that is, all possible hookups (non-feedback) involving
two or less units are tested and a single team score pro-
duced. From [47] (by second scoring), I 7 4-variable
and 19 3-variable functions are obtained; from [56 1, 24
4-variable and 26 3-variable functions. Hence we judge
[5 6] the more powerful device.

When all 80 3-variable precursors are examined by
team-of-two scoring, [1 6‘] and [4’ 5] (the only two
precursors scoring 6 in 2-variable subfunctions) score far
better than any other precursor. [1 6‘] has a team-of-two
second score of 44 3-variable subfunctions and [4’ 5 1,
41. No other precursor has a larger score than 32. It is
of note, however, that [1 6’] and [4’ 5 1, interchange
denials of one another, team score differently. There is
apparent advantage in a 0 . . . 1 as against a 1 . . . 0 end-
bit situation; and, indeed, we see by reflection that this is
the case. With 1 . . . 0 end-bits, all two-unit hookups of a
given device are equivalent when the five variable inputs
are alike, that is, all on or all off. Such is not the case,
however, when the end bits are 0 . . . 1. As it turns out,
every full non-commutative 3-variable precursor with
0 . . . 1 end bits team scores higher than its interchange
denial.

Three-input, two-output elements may best be exam-
ined by team scoring. Again, we count only 3-variable
subfunctions obtained from biasing plus duplication. As
it turns out, the device with outputs [0’ 5] and [4‘ 5‘]

48 has a highest team-of-two score, although it individually

,
I have a maximal second score of 8. It should be empha-

IBM JOURNAL JANUARY 1959

generates but 6 2-variable subfunctions. Of the eighty
precursors of three variables, 79 can be obtained with
two or less units. Table 4 indicates the appropriate hook-
ups.

A binary representation of this device with its table of
inputs is revealing:

Row Inputs outputs
P 9 r [O ’ S] [4’5’1

1

1 1 0 0 1 4
0 0 1 0 1 3
0 0 0 1 1 2
0 1 1 1 1

5 1 1 0 1 1
6 0 1 0 0 0
7

0 1 0 0 0 8
1 1 1 0 0

Both [0’ 5] and [4’ 5’] are members of the same
cycle. They differ only in their two extreme “end bits.”
This difference is fundamental, however, since functions
which are interchange equivalent always agree in this
respect. If the end bits were not thus opposite, a sizable
part of the 80 3-variable precursors would probably be
missed, since the latter are subdivided into four equal
classes by end bits. It can be seen also that, if the two
functions must differ in both end bits, there is advantage
in the fact that the first function has two ZEROs and the
second two ONEs. In this way, [0’ 5] has a total of
three ONES and [4’ 5’] five, instead of both having four.
This lack of balance is preferable, since an output with
fewer ONES is more likely to produce functions with
fewer than average ONEs; and an output with more
ONEs, those with more than average ONEs. A check of
Table 4 shows that the great majority of precursors with
fewer than four ONEs are derived via [0‘ 5] and of
those with more than four ONEs, via [4‘ 5’ 1. The re-
maining precursors are more or less evenly split between
the two outputs. By this analysis, we see why none of the
high-scoring individual functions shown in Table 3 was
used. None of these has like end bits. There remains the
question as to why ONEs and ZEROs are so arranged in
the six inner rows of the table. Clearly, for each function
they must be three in number. Since non-commutativity
is desired, the ONEs must be parceled among the input
rows with two ONEs (rows 2, 3, and 5) and one ONE
(rows 4, 6, and 7). They must also be uniform with re-
spect to no input variable. For example, ONES in rows 2,
4, and 6 would coincide with assignment of ZERO to ‘ p ’.
But why should the two functions exactly agree in rows
2 to 7? Undue orientation generally restricts the variety
of operation; but it must be remembered the critical end
bits provide an opposite orientation. Hence, the like as-
signment of rows 2 to 7 compensates for this.

It is of some note that the two-input, two-output device
which seems most versatile is quite similar to the three-
input device just described. By team-of-two scoring, an
element with outputs [1] and [5‘] has a highest rating
of S 2-variable and 8 3-variable functions. The reader

Table 4 Generation of eighty 3-variable precursors from three-input, two-output element.

Precursor Appropriate hookup Precursor Appropriate hookup

1. r o 0 1 A 0 0 0

4. [O 1'1 A q r 1

43. [4 1 1 A q q r p B - 4 3. [O 1 1 A r q p A p r

42. r 4 0'1 A r q p B p A 2. [O 0'1 A r q p A p B

41. r 4 0 1 A q O r O B p

45. [4 3 1 A q O p A B r 5 . 10 3 1 A q q p A B r

44. [4 1'1 A p O q r q B

I 7.

8.
9.

10.

1 1 .

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

46.

47.

~ 48.

I 49.

50.
51.
52.

53.

54.

55.
~ 56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

[4 3'1

r 4 4 1
[4 4'1
[4 5 1
r 4 5 ' 1

[4 7'1

[4 7 1

[4 ' 3 1
[4' 3']

[4 ' 4 1
[4' 4']

[4 ' 5 1
[4'5 '1

[4 ' 7 1
[4' 7'1

r 5 4 1
1 5 4'1

[5 5 1
[5 5'1

I 5 6 1
r 5 6 ' 1
[5 7 1
[5 7'1

1 5 ' 6 1
[5 ' 6 ']

[5 ' 7 1
[5' 7']

r 7 4 1
[7 4 ' 1
[7 5 1
r 7 5'1

[7 7 1
17 7'1

r 7 ' 7 1
[7' 7']

IBM JOURNAL JANUARY 1959

can readily observe, from the following table, the various
properties in common with the three-input device.
Row Inputs outputs

P 4 [I 1 [5 ’ 1
1 1 1 0 1
2 0 1 0 0
3 1 0 1 1
4 0 0 0 1

The notation of Table 4 requires some explanation.
The letter ‘ A ’ is used to denote the output obtained
through [0’ 5 1; ‘ B ’, through [4‘ 5’ 1. The first ‘ A ’ or
‘ B ’ designates which function serves as the final output.
The indicated hookup requires one or two units insofar
as three or six characters follow the initial ‘ A ’ or ‘ B ’.
The first three of these characters indicate the inputs to
the first unit; and the next three, to the second. ONES
and ZEROs indicate positive and negative biases, respec-
tively. ‘ p ’, ‘ q ’, and ‘ r ’ are used in the familiar manner
to designate variable inputs. Outputs from the first unit
may serve as inputs to the second. The precursors are
arranged in numerical order, as against the alphabetic
ordering scheme used throughout Part I.

With functions of more than three variables, a com-
puter is generally required, and the IBM 704 Data Proc-
essing Machine has been used. The 65,536 functions of
four variables break down into 3984 interchange classes.
Of the latter, 436 have a maximal first score of 8 3-varia-
ble subfunctions. When we differentiate among the 436
by second scores, eight have a maximal rating of 14.
These eight compose two cycles which have the following
chief precursors:

[0 ’ 5 7 1’1 [1 5 ’ 6 4 ’ 1

These represent the most versatile four-input, one-output
devices according to the present criteria. Part 111 will
include a study of 4-variable functions by team scoring.

As our requirements vary, we may attach more or less
weight to first and second scores. If extra signal loads are
to be avoided, first scores are of greater consequence;
otherwise, second scores. Hence, it is important that we
evaluate functions in both ways.

From the 436 functions maximal by first scoring, four-
input devices of six outputs at most are irredundant in
that no 3-variable subfunction is repeated. The outputs
of one such are shown immediately below. Irredundant
devices with less outputs are (obviously) included.

[4 1 ’ 7 6] [3 ’ 6 ’ 5 1’1 [3 ’ 3 2 4 1
1 4 4 ’ 5 2 1 [3’2’0’3’1 [7 ’ 6 ’ 3 1 1

When second-scoring is followed, no four-input device
of more than one output is irredundant, if all 3-variable
subfunctions are full. Two-output devices which achieve
as many as 27 such subfunctions are possible, however.
The outputs for one of these are as follows:

[7 2’ 0’ 6] [3’ 4’ 0’ 2‘]

It is simpler to judge functions at hand than to identify
50 unknown optimum cases. Specific elements are easily

IBM JOURNAL JANUARY 1959

Table 5 Estimated highest first scores of functions.

6-variable 60 (4-var.) 68 (3-var.)
7-variable 84 (5-var.) 280 (4-var.)
8-variable 112 (6-var.) 448 (5-var.) 1120 (4-var.)

compared to one another, and we can estimate the scores
of maximal functions without producing them. Reflection
shows, for example, that by first scoring, a top 5-variable
element should fall somewhat short of the 3-variable limit
40. Some other probable scores are shown in Table 5.

To obtain higher-scoring functions beyond four vari-
ables, simple exhaustion of cases is unfeasible. Several
strategies can be adopted. We may decide, in advance,
probable characteristics of good functions and sample
accordingly. Or, without preconception, we may let the
computer search as follows. A randomly derived function
is changed slightly. Scores are compared and the loser
dropped. The process continues until a dead end is
reached. Then the computer starts over with a new ran-
dom element. Both strategies have been used with some
success.

In terms of 3-variable subfunctions, 36 is the highest
first score we have obtained for 5-variable elements. Four
such are as follows:

[1 4 4 ’ 7 ’ 7 ’ 4 ’ 0 ’ 2 1 [1 4 4 ’ 7 ‘ 6 ’ 0 ’ 6 ‘ 2 1
[1 4 4 ’ 7 ’ 6 6 ’ 2 ’ 2 1 [1 4 4 ’ 7 ’ 6 2 ’ 6 ‘ 2 1

If the first of these is written as a binary number,

0 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 1 0 1 0 0

the two halves are mirror images of one another. Indeed,
all of the 36’s found show balance. ONEs and ZEROs
are of equal number in every case. Also, the arrangement
of ONEs is such that the subfunctions obtained are dis-
tributed as evenly as possible into the four subclasses fixed
by the two end bits of the available subfunctions. Al-
though many 36‘s were independently produced, they all
fall into but four cycles, representatives of which are
shown above.

The best first-scoring five-input, two-output elements
we have found generate 57 3-variable subfunctions.
Three-output elements that first-score a near maximal 67
and have no redundant 4-variable subfunctions have
also been attained. Table 6 provides an example of each.

In the actual fabrication of devices, it is not difficult to
obtain the denial of a given function. Hence there is pos-
sible economy in two-output elements with one output
the denial of the other. For five-input, two-output de-
vices of this kind, 56 is the highest first score we have

Table 6 High-scoring five-input logical elements.

Two-output [4 ’ 1 0 1 5 6 4 4’1
[0’ 3’ 3 1 7’ 1’ 5’ 6‘ 1

Three-output [5 4 ’ 6 4 6 3 2 0’1
[2 6 ‘ 1 3 ‘ 3 7 7 6’1
[0 ’ 3 0 4 6 5’5’2’1


~~~ ~ 

Tuble 7 Generation of eighty 3-variable precursors from six-input, one-output device by biasing  only. 

Precursor  Code  Equivalent 

1. 10 0 1 1 0 0 0 0 0  

Precursor  Code  Equivalent  

41. [ 4  0 1 p l  l q r  1 

2. [ O  0'1 p l q r O 1  42. [ 4  0'1 l l O p q r  

3. [ O  1 1 O q r  l o p  I 43. 1 4  1 1 p q r   1 0 0  

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

40. 

O O l q O r  
l p O q O r  

O l p r O q  

p 1 q l O r  

1 l p q O r  

p r l O O l  

O l r q p l  

O p q r O O  

l r O l O O  

l p O q r O  

p q r O 1 l  

p r q O O 1  

p I y o  1 r 

l r p 0 0 q  

r 1 O q p O  

r p 0 q 1 0 

O l r  O p q  

p y l  1 0 r  

t q p  1 o r  
q / I  0 0 0 r 

O q  r 1 1 )  I 

p q O r O O  

l r l p 0 q  

O p q 0 0 r  

O r l p l q  

1 O q O r  1 

1 0 1 p q r  

O q r O l p  

q O r 0 1 1  

p O O q r O  

1 O p l q r  

q p O O r 0  

q O r l p 1  

O p q O r  0 

p O 1 O q r  

p O q O l r  

O p q l l r  

44. 

45. 

46. 

47. 

48. 

49. 

50. 

51. 

52. 

53. 

54. 

55. 

56. 

57. 

58. 

59. 

60. 

61 .  

62. 

63. 

64. 

ti5. 

66. 

67. 

68. 

69. 

70. 

71. 

72. 

73. 

74. 

75. 

76. 

77. 

78. 

79. 

80. 

l q l p r  1 

p r  l l q l  

p q l r O O  

l l 0 p q l  

l r O l q p  

q O p O O r  

p O 1 r O q  

p l l q l r  

l p l q l r  

l p q r O O  

p 1 q O r O  

p O q r O l  

O l l p q O  

1 O p r  O q  

O r  1 q p o  

l p l l q r  

p q r  1 1  1 

q O O O p r  

1 1 p q r O  

O O O l p O  

l q p r   1 0  

l l q p l r  

r I p q l O  

O r O l p q  

O l O r p O  

l p q l l r  

p l q l l r  

q O p r  1 0  

q r O p l 1  

O O O p q r  

p l l q r 0  

O p O O q r  

l q l r p o  

O O O p l q  

p r l q 1 O  

O p O q l r  

0 1 0 0 0 0  51 

IBM JOURNAL JANUARY 1959 



found.  The element  obtained from [ 0 3 3‘ 5’ 4 5’ 7‘ 0’ ] 
and its  denial is an example. 

When second-scoring is considered, five-input, one- 
output functions  have been found which produce 54 
3-variable subfunctions. None of these has  a first score 
higher than 34, however, so that we must  consider the 
probable  application in choosing an  optimum  function. 
Two of these high-scoring 54’s are as follows: 

[ 1 4 4 ’ 6 ‘ 6 4 ’ 7 ‘ 2 ]   [ 1 4 6 2 ‘ 7 5 ’ 2 ’ 6 ]  

The element on the  left  has  a first score of 33; the one 
on the  right, 34. When 4-variable subfunctions are 
counted by second-scoring, however, the  leftmost func- 
tion achieves a  maximum 20; but  the other, only 18. 
Because the particular  choice of end bits (1  . . . 1 or 
0 .  . . 1 or 1 . . . 0 or 0 .  . . 0) require that  no new sub- 
functions will  be gotten by duplication after biasing in one 
of the  four exclusive classes of subfunctions  determined 
by end bits, we see that a 3-variable second score in the 
mid-50’s is the highest possible for 5-variable  functions. 

No 5-variable  functions with opposite  end bits have 
been found with a higher second score  than 53 3-variable 
subfunctions. Because the best three-input and  four- 
input  functions  have  opposite end bits, special interest 
attaches to these 53’s. All of those found  fall  into two 
cycles, whose chief precursors are as follows: 

[ 0 ‘ 4 ’ 5 1 7 5 ’ 3 2 ’ ]   [ 1 4 ‘ 6 4 7 3 5 6 ‘ ]  

Five-input,  two-output devices are available with a 
maximum second score of 68 3-variable and 40 4-variable 
subfunctions.  Indeed,  such  an element is accomplished 
from [ 0’ 3‘ 4 1 4‘ 5 1 1’ ] and its denial. Thus by a single 
added inversion, a  5-variable function  can be extended 
so as to realize all possible functions of three variables. 

As indicated  earlier,  a  top 6-variable function  should 
first-score 68 and 60 in subfunctions of three  and  four 
variables, respectively. Two such are shown below: 

[ G O  1 3  2‘0’3’63’2’7  464‘6‘31 
[ 4‘ 7’ 0’ 3‘ 1 0‘ 1 2 7’ 2’ 5’ 3  4 1 3’ 6 ] 

Either of these will, of course, realize all possible func- 
tions of three variables upon biasing. In  Table 7, we have 
shown how the  latter of the two generates the eighty pre- 
cursors of three variables. As in  Part I, the column  under 

Table 8 Significant outputs of three-bit multipliers. 

Code  Equivalent  indicates an  input selection necessary to 
obtain  the desired function.8 

The two high-scoring 6-variable functions just shown 
have second scores of 234 and 231, respectively, in sub- 
functions of four variables out of 245 possible cases. The 
score 244, obtained by the  function [ 2  6 4‘ 0 5‘ 0’ 3’  1‘ 7 
4 4‘ 3 5‘ 4 5 4‘ 1, is the highest we have found  thus  far. 

To illustrate the suggested method of testing further, it 
may be helpful to consider a  more  familiar logical ele- 
ment. Binary multipliers are typical “black boxes” found 
in computers. To multiply three-bit  numbers, six 6-vari- 
able  functions are required, of which four  are full.  These 
four  (in  order of significance) and their individual first 
and second scores are shown in Table 8. Combined first 
scores of 33 and 38 subfunctions of three and  four vari- 
ables, respectively, are obtained. Combined second scores 
of 39 and 100, respectively, are also produced.  Such 
scores for a six-input, four-output device are poor even by 
comparison with six-input, one-output logical elements. 

Some related questions 

The present  study can be extended in various ways. First 
of all, a  greater use can be made of the  computer in ana- 
lyzing data as against obtaining it. What is required are 
more  direct  methods of determining optimum cases. To 
do  the latter, we must express in more  formal terms the 
characteristics of high-scoring functions. It is felt the 
data already  gathered are sufficient for a good start  in 
this endeaver. 

Questions of optimum size of basic elements need also 
be considered. Suppose we grant  that  for reasons of econ- 
omy and reliability it is desirable to build our machine 
out of relatively standardized blocks. The present test 
enables us to  compare elements of comparable  inputs 
and outputs,  but we have not yet examined the problem 
as to how large our building blocks should be for given 
purposes. Suppose, for example, avoiding duplication of 
inputs, we must  choose between one-output elements of 
four or six inputs. The  latter will obviously cost  more to 
fabricate;  but  fewer  units will be required in assembling 
circuits because of the very much greater versatility. As 
we have seen, a  four-input,  one-output device has  a high- 
est first score of 8 3-variable subfunctions;  a six-input 
element can achieve 68 such subfunctions. 

Logical element 
First scores Second  scores 
(3-var., 4-var., resp.) (3-var., 4-var., resp.) 

[ 5  4 0 0 4   0 0 0 4   4 0 0 0   0 0 0 1  4 
5 

4 
5 

[ 6  1 4 4 1   5 0 0 3   1 0 0 5   5 0 0 1  19 
13 

20 
29 

[ 0  7 3 1 3   6 0 0 5   3 5 5 6   6 0 0 1  21 
21 

33 
61 

[ 2 ‘ 3 5 3 2 ’ 5 5 5 1 ’ 6 6 6 7 ’ 0 0 0 ]  14 
52 12 

29 
31 

IBM JOURNAL JANUARY 1959 



Table 9 Partial  team first-scores (est.) of  elements. 

Element  One  unit  Two  units  Three  units 

Two-input 1 (2-var.) 2 (3-var.) 5 ( 4-var.) 
Three-input 1 (3-var.) 3 (5-var.) 12 ( 7-var.) 
Four-input I (4-var.) 4 (7-var.) 21 (10-var.) 

Team scoring may prove  helpful on this problem.  Sup- 
pose we wish to  compare one-output devices of two, three, 
or  four inputs.  Initial proportions of cost and versatility 
are  determined.  Then progressively larger  teams  are ex- 
amined. The  former relationship  remains constant;  but, 
as Table 9 indicates, a block initially  favored  gains in 
versatility. 

It  appears advantageous to  have blocks large,  but not 
too large. Optimum size may well vary  with the objective. 
Paradoxically, one  must use  enough  elements for econ- 
omy.  Otherwise, team versatility is lost. Boxes assembled 
from lesser elements may  in  turn  serve as  building blocks 
for  larger boxes, and so on. Because team membership 
need not be restricted to devices all from  the  same class, 
team  scoring can also help determine which  assortment 
of elements is best in  a given case. 

Methods for assembling economical  circuits from  op- 
timum sets of elements are needed.  As  argued  in Part I, 
techniques  which minimize expressions formed  from  one 
set of  functions  may  not prove  relevant if another is 
assumed.9 With  the use of new basic elements,  new ways 
of synthesizing and simplifying circuits  may be  required. 

Questions of time can be introduced. In  the  hookup: 

if all blocks operate instantaneously, the 3-variable func- 
tion [ 3 0’ ] is realized.  Assume, on  the  other  hand, all 
three elements have some equal  inherent delay and  input 
signals follow one  another  at corresponding  intervals. 
Because the lower path requires more time, two of the 
input terminals are used twice. Hence,  the 5-variable 
function [ 0 3’  7’ 4 7’ 4 0 3’ ] is obtained. It is well known 
that we may trade  time  for  hardware,  and vice  versa, but 
the precise relationship of  the two is not understood. In 
terms of the present  study, a more systematic analysis can 
be undertaken. 

An associated  study can be made of circuit reliability. 
Clearly,  building from  uniform blocks simplifies the de- 
scription of hardware.  Isolation of defective parts is more 
readily  accomplished and replacement is more immediate. 
The  redundancy intrinsic to multipurpose  elements  might 
also  be used to  insure reliability. Beyond this, a more 
general approach  to  the redundancy-reliability  question 
may be possible, since existing proposals are  often  ori- 
ented  to specific kinds of devices.lU 

The interplay of  order codes and  hardware need also 
be  examined.  A modern computing machine can be 
thought  of as an extended  multipurpose bias device. 
Alternative  logical  operations are  performed, depending 
upon the presence or absence of certain signals. In gen- 
eral, we desire the widest range of orders possible from 
the least hardware.  The  present study is pertinent. The 
class of subfunctions  generated by a logical element will 
determine  the variety of orders  it  can execute. 

We  have  thus only  scratched the  surface in our investi- 
gation of multipurpose elements. Part 111, to  be published 
at a later time, will carry  the  argument  further.l’ 

References 

1.  B. Dunham, “The Multipurpose Bias Device, Part I: The 
Commutator Transistor,” IBM Journal of Research and 
Development, Vol. 1,  117-129 (April, 1957). See also 
R. F. Rutz, “Two-Collector Transistor for Binary Full 
Addition,”  IBM Journal, Vol. 1 ,  212-222 (July, 1957). 

2. Ibid., p. 118. 
3. Ibid., p. 120. 
4. Ibid., p. 119. For a more  comprehensive  discussion, see 

W. V. Quine, Mathematical  Logic (Revised Edition, Har- 
vard  University  Press, 1955), 42-43. 

5 .  Ibid., 120. The  word  “class”  seems preferable to “group” 
in this  context. 

6.  The fact that four full adders are not  required  in two  of 
the  3-variable  cases, as  suggested on p. 123,  Pt. I, was  first 
pointed out to us  by J. R. Logan,  Senior  Scientist, Litton 
Industries.  He  comments in a private  correspondence: 
“You state tentatively that four full adders  might be  used 
to accomplish either [ 0 5’ 3 or [ 1 7’ 1. In the following 
logical  hookup 

[ 1 7’ ] will emerge on the  sum output and  reversing the 
indicated biases  will cause the same  inputs  to  deliver 
[ 0 5’ ] on the same  line.” The results  shown  in Table 1 
were obtained by computational means. 

7. The number of interchange  classes of four variables was 
calculated by A. Cobham of  these laboratories before we 
obtained it by computational means. 

8.  Dunham, o p .  cit., pp. 126-127. 
9. Ibid., p. 117. 

10. See, for example, J. von  Newmann’s treatment in terms 
of majority organs, “Probabilistic Logics and the Syn- 
thesis  of Reliable  Organisms from Unreliable Compo- 
nents,” Automata Studies, Princeton, 1956,  pp.  43-98. 

11. Errata for Part I are as  follows:  p. 116”case (7-22-BCE), 
omit  dot from second  box;  case  (17-46-BCFH),  omit 
bar over ‘ r ’; p. 121“case (35) ABDF,  insert paren- 
thesis  before  first s p ’ and insert bar over  second ‘ p ’; 
case ( 5 8 )  ABDFH, add ‘ I  ( q l r ) ’  after second ‘ p  ’; case 
(66) BDFGH, change  second ‘ p ’ to ‘ q ’; p. 123-first 
column,  sixteenth  line from bottom, insert ‘(See p. 116)’ 
after ‘Schematic  Diagram 1’;  p.  124-insert dot in fourth 
box from  top; p. 129-first column,  second  line from 
bottom, change  ‘1948”to ‘1938’. 

Received  March 26, 1958 53 

IBM JOURNAL JANUARY 1959 


