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The  Multipurpose  Bias  Device* 
Part II 
The Efficiency of  Logical  Elements 

Abstract: The efficiency of a logical element can be 

equated  with the set of subfunctions it realizes  upon 

biasing or duplication of inputs. Various classes of 
elements are considered, and optimum or near- 

optimum examples are presented. Some related 

areas of study are suggested. 

A test  of logical efficiency 

Part I of this paper dealt  with the Rutz  commutator as  a 
typical multipurpose e1ement.l Such  elements  should pro- 
vide economy in  both  number  and assortment of logical 
building blocks. A way of evaluating them, however, is 
needed. Suppose we find, for two comparable devices, 
that fewer  units of A are generally required  than of B in 
performing  logical  operations. We judge A more efficient, 
but seek an easy test of this  supremacy. The class of sub- 
functions a  multipurpose device realizes upon biasing or 
duplication of inputs is easily determined. The larger the 
class, the  more versatile we expect the device to be, since 
it can be used in  a greater variety of ways. Versatility,  in 
turn, should lead  to efficiency, since given logical opera- 
tions can generally  be performed by fewer  units of a 
more versatile device. Here, then, is the basis of the test 
we need. 

The  technique of biasing inputs was fully  explained in 
Part I of this paper.2 If extra signal  loads3 are permitted, 
subfunctions can also be  obtained by duplicating inputs. 
Consider the 3-variable function indicated  in the follow- 
ing table: 

*Portions of this  paper  were  presented  to  the  International  Symposium  on 
the Theory of Switching  at Harvard University,  April 4, 1957, and as a 

46 lecture at Oxford University  on May 5 ,  1958. 

Row I p q r 

1 0 0 1  4 
0 1 0 1  3 
1 0 1 1  2 
1 1 1 1  1 

Output 

5 1 1 0  0 
6 0 1 0  0 
7 1 0 0  

0 0 0 0  8 
1 

The  input states are shown (as in Part I )  by the  three 
columns under ' p ',' q ', and ' r '. Biasing of individual 
inputs yields the 2-variable functions EXCLUSIVE-OR, IF- 

we duplicate  the  inputs indicated by ' p ' and ' r ', that is, 
we  introduce  the  same signal at  both locations. We can 
determine  the effect of this by looking at  those rows of 
the table  in  which ' p ' and ' r ' are assigned like values, 
namely,  rows 1, 3, 6, and 8. The  function AND is obtained. 
If the  inputs denoted by ' q ' and ' r ' are duplicated (rows 
1, 2, 7,  and 8), the  function INCLUSIVE-OR is generated. 

A convenient way of labeling functions is required. If 
values are assigned input variables  in the familiar truth- 
table  manner,4  the  table of inputs need not be  shown. 
Every function of n variables is uniquely  designated by a 
2" bit (binary)  number representing an  output. By this 

AND-ONLY-IF,  IF-THEN, and NOT-IF-THEN. Suppose now 
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adder. 
Further refinement is possible. Four bits can easily be 

correlated with a single octal digit, primed or unprimed. 
The  three leftmost bits determine which  octal  digit is 
selected. The rightmost bit causes the  prime  to be added 
or not. The sixteen possible cases are shown below: 

Binary  Primed octal Binary  Primed octal 

0 0 0 0  0 1 0 0 0  4 
0 0 0 1  0 1 0 0 1  4‘ 
0 0 1 0  1 1 0 1 0  5 
0 0 1  1 1‘ 1 0 1 1  5‘ 
0 1 0 0  2 1 1 0 0  6 
0 1 0 1  2‘ 1 1 0 1  6‘ 
0 1 1 0  3 1 1 1 0  7 
0 1 1 1  3’ 1 1 1 1  7’ 

The primed  octal numbers  are  thus abbreviations for 
binary numbers which,  in turn, designate  logical func- 
tions. Octal labels will be  bracketed to avoid confusion. 
Some of the  more  familiar  functions  are as  follows: 

Function  Label 
AND 1 4  1 
INCLUSIVE-OR 1 7  1 
EXCLUSIVE-OR 1 3  1 
IF-AND-ONLY-IF I 4’ 1 
NEITHER-NOR [O’I 
NOT-BOTH [ 3’1 
SUM  (FULL ADDER) r 4 ‘ 3  1 
CARRY(FULLADDER) r 7  4 1 

In  Part I, functions  like [ 5’ ] and [ 6‘ 1, equivalent 
under permutation of input variables, were grouped into 
interchange classes.5 For ease of reference, such classes 
will often be  represented by the precursor, the member 
with the smallest label  numerically. 

We now return  to  the scheme of evaluation  mentioned 
above.  Assume three kinds of three-input,  one-output 
device: F ,  G, and H (see Table 1 ) .  We  fabricate  from 
each  (without time or feedback), those of the 68 full 
3-variable  precursors  which require  no  more  than two 
units. Table 1 is the box score of our effort. Device H 
is more efficient than G, which in turn surpasses F .  

We now apply the direct test suggested earlier. Only 
subfunctions  that are full  (that is, without  vacuous vari- 
ables) are counted and but  one  member  from  each inter- 
change class. In  terms of 2-variable  subfunctions through 
biasing alone, F has a rating of 2; G, 4; and H ,  4. When 
duplication is also considered, F and G have  the  same 
rating  as  before;  but H scores 6. 

One  further  comment is pertinent. Because F (the 
carry of a full  adder) is commutative,  the results  obtained 
from biasing its different inputs are identical.  Such is not 
the case,  however, for H .  The latter’s non-commutativity 
makes the choice of input  for biasing significant. As a 
result,  a greater  number of subfunctions is produced. 

subfunctions  upon biasing: yet as shown  in Table 2, the 
proportion of commutative functions varies inversely with 
the  number of variables. 

The  test in operation 

If we count  subfunctions of two variables, 4 is the highest 
rating a  3-variable function  obtains  from biasing only, 
and 7, two such  functions jointly. These “high-scoring’’ 
functions,  shown  in Table  3, define superior  three-input 
devices. Only the relevant  precursors are indicated. 

On duplication of inputs, the scores of [ 1 6’ 1 and 
[ 4’ 5 ] are increased to 6; the  others remain 4. In fact, 6 l 
is the highest score possible, since any given choice of 
the two  extreme  “end bits” will eliminate  two of the eight 
possible subfunctions. A choice of 1 . . . 1 prevents [ 1 ] 
a n d [ 3 ] ; 0  . . .  1 , [ 4 ] a n d [ 7 ] ; 1  . . .  0 , [ 0 ‘ I a n d [ 3 ’ 1 ;  
0 . . . 0, [ 4’ ] and [ 5‘ 1. Hence we regard  these  two func- 
tions  as optimum  for  the three-input, one-output case. 
The two  functions are related, however, since the denial 
of [ 1 6’ ] is interchange  equivalent to [ 4’ 5 1. Obviously, 
a function  and its  denial will have identical scores; also, 
a function  and its “mirror image.” The  mirror image is 
the  function obtained when the  order of bits is reversed- 

Table I Full 3-variable precursors which can be ob- 
tained  in each case from two or less units? 

Device  output Precursors  obtained 

F 1 7 4  1 5 
G 1 5 6  1 26 
H 1 1  6‘1 44 

Table  2 Number of commutative and non-commu- 
tative  function^.^ 

Full functions  Commutative  Non-commutative 

2-variable 6 2 
3-variable 14  54 
4-variable 30 3874 

Table 3 High-scoring three-input logical elements. 

3-variable function 2-variable functions obtained 

[ 0‘ 5‘ ] 10’1 1 1  1 13’1 [5 ‘1  
11  4’1 10’1 1 1  1 1 3  1 r4’1  

5‘1 [O’I [ 1  1 [3’1 15’1 
[ 1  6‘1 1 [ 3  I [4‘1 [5’1 
I 3  5’1 I 3  1 [3’1  [4’1  [5’1 
1 4  3 1 r 1  1 [ 3  1 r 4  1 ~ 4 ‘ 1  
[ 4  7 I [ 1  I 1 4  1 [5’1 [ 7  1 
[ 4 ‘ 5  1 11  1 I 3  1 14’1 [ 5 ‘ 1  
1 4 ’ 7  1 [ 3  1 [4 ‘1  t5’1 c7 1 
15 6 1  [ I  1 1 4  1 [ 5 ’ 1   [ 7  1 41 
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in other words, the most significant bit is replaced by the 
least significant bit, and so on. The  function 1 1 0 1 1 0 1 0, 
for example, is the  mirror image of 0 1 0 1 1 0 1 1. In  the 
particular case, the  mirror image of [ 1 6’ ] is interchange 
equivalent to  the  denial of [ 1 6 1; but this is not always 
so. Hence, given a score  for  one interchange class of 
functions, we know the  score for other related  inter- 
change classes: that is, denials, mirror images, and denials 
of mirror images. This collection of at most four inter- 
change classes we shall call a cycle. The  precursor with 
the smallest label  numerically for a given cycle is the 
chief precursor. The  function [ 1 6’ ] is thus chief precur- 
sor for  the  one cycle of three variables  which has a first 
score (biasing only) of 4 and a second score (biasing  plus 
duplication) of 6. 

As  noted  above, 7 is the highest first score  obtained by  a 
three-input,  two-output device. Several such devices also 

sized, however, that  the immediate count of subfunctions 
is a less telling measure of efficiency when  multi-output 
elements are considered. Individual high-scoring func- 
tions are helpful, hut they must be  aptly  suited to  one 
another-they must “team” well together.  A  good esti- 
mate  can be made, however,  as to how well suited differ- 
ent elements are by team scoring. The  latter technique, 
which,  as  we  shall  see,  is  ultimately  based  upon  the 
method of counting subfunctions, can also be used as an 
added test in  one-output cases. Suppose, for example, we 
must  choose between the high-scoring one-output  func- 
tions [ 4 7 ] and [ 5 6 1. Both have first and second  scores 
of 4. To resolve this difficulty, we examine  teams of two, 
-that is, all possible hookups  (non-feedback) involving 
two or less units are tested and a single team score pro- 
duced. From [ 47 ] (by second scoring), I 7  4-variable 
and 19 3-variable  functions are  obtained;  from [ 56 1, 24 
4-variable and 26 3-variable  functions. Hence we judge 
[ 5 6 ] the  more powerful device. 

When all 80 3-variable  precursors are examined by 
team-of-two  scoring, [ 1 6‘ ] and [ 4’ 5 ] (the only  two 
precursors  scoring 6 in 2-variable subfunctions)  score  far 
better than  any  other precursor. [ 1 6‘ ] has a  team-of-two 
second score of 44 3-variable subfunctions  and [ 4’ 5 1, 
41. No other precursor has a larger score  than 32. It is 
of note,  however, that [ 1 6’ ] and [ 4’ 5 1, interchange 
denials of one  another,  team  score differently. There is 
apparent  advantage in  a 0 . . . 1 as  against  a 1 . . . 0 end- 
bit  situation; and, indeed, we see by reflection that this is 
the case. With 1 . . . 0 end-bits,  all  two-unit hookups of a 
given device are equivalent  when the five variable inputs 
are alike, that is, all on or all off. Such is not  the case, 
however, when the  end bits are 0 . . . 1. As it turns  out, 
every full non-commutative  3-variable precursor with 
0 . . . 1 end bits team scores  higher than  its  interchange 
denial. 

Three-input,  two-output  elements may best be exam- 
ined by team scoring. Again, we count only  3-variable 
subfunctions obtained from biasing plus  duplication. As 
it  turns  out,  the device  with outputs [ 0’ 5 ] and [ 4‘ 5‘ ] 

48 has a highest team-of-two  score, although  it individually 

, 
I have a  maximal  second score of 8. It should be empha- 
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generates  but 6 2-variable  subfunctions. Of the eighty 
precursors of three variables, 79 can be obtained with 
two or less units. Table 4  indicates the  appropriate  hook- 
ups. 

A binary  representation of this device with  its  table of 
inputs is revealing: 

Row Inputs outputs 
P 9 r  [ O ’ S ]  [4’5’1 

1 

1  1 0 0 1  4 
0 0 1 0 1  3 
0 0 0 1 1  2 
0 1 1 1 1  

5 1 1 0  1 1 
6 0 1 0  0 0 
7 

0 1 0 0 0  8 
1 1 1 0 0  

Both [ 0’ 5 ] and [ 4’ 5’ ] are members of the  same 
cycle. They  differ only  in their two  extreme  “end bits.” 
This difference is fundamental, however,  since functions 
which are  interchange equivalent always agree  in this 
respect. If the  end bits were not  thus opposite,  a  sizable 
part of the 80 3-variable  precursors would probably  be 
missed, since the  latter  are subdivided into  four  equal 
classes by end bits. It can  be seen also that, if the two 
functions must differ in both end bits, there is advantage 
in  the  fact  that  the first function  has two ZEROs and  the 
second  two ONEs. In this  way, [ 0’ 5 ] has a total of 
three ONES and [ 4’ 5’ ] five, instead of both having four. 
This lack of balance is preferable, since an  output with 
fewer ONES is more likely to  produce  functions with 
fewer than average ONEs; and  an  output with more 
ONEs, those with more  than  average ONEs. A check of 
Table 4 shows that  the great  majority of precursors  with 
fewer than  four ONEs are derived via [ 0‘ 5 ] and of 
those  with more  than  four ONEs, via [ 4‘ 5’ 1. The  re- 
maining precursors  are  more  or less evenly split between 
the two outputs. By this analysis, we see why none of the 
high-scoring individual functions shown in  Table 3  was 
used. None of these has like end bits. There  remains  the 
question  as to why ONEs and ZEROs are so arranged in 
the six inner rows of the table.  Clearly, for  each  function 
they must be three in number. Since  non-commutativity 
is desired, the ONEs must be parceled among  the  input 
rows with two ONEs (rows 2, 3,  and 5 )  and  one ONE 
(rows  4, 6, and  7).  They must also be uniform with  re- 
spect  to  no  input variable. For example, ONES in  rows 2, 
4,  and 6 would  coincide  with  assignment of ZERO to ‘ p ’. 
But why should the two functions  exactly  agree  in rows 
2 to 7? Undue  orientation generally  restricts the variety 
of operation;  but it must be remembered the critical  end 
bits provide an opposite orientation.  Hence,  the like as- 
signment of rows 2 to 7 compensates for this. 

It is of some  note that  the two-input, two-output device 
which  seems  most  versatile is quite similar to  the three- 
input device just described. By team-of-two  scoring, an 
element  with outputs [ 1 ] and [ 5‘ ] has a highest rating 
of S 2-variable and 8 3-variable functions.  The  reader 



Table 4 Generation of eighty 3-variable precursors from three-input, two-output  element. 

Precursor Appropriate hookup Precursor Appropriate  hookup 

1. r o  0 1 A 0 0 0  

4. [ O  1'1 A q r  1 

43. [ 4   1 1  A q q r p B - 4  3. [ O  1 1 A r q p A p r  

42. r 4  0'1 A r q p B p A  2. [ O  0'1 A r q p A p B  

41. r 4  0 1 A q O r O B p  

45. [ 4  3 1 A q O p A B r  5 .  10 3 1 A q q p A B r  

44. [ 4  1'1 A p O q r   q B  

I 7. 

8. 
9. 

10. 

1 1 .  

12. 

13. 

14. 

15. 

16. 
17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 
25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

40. 

46. 

47. 

~ 48. 

I 49. 

50. 
51. 
52. 

53. 

54. 

55. 
~ 56. 

57. 

58. 

59. 

60. 

61. 

62. 

63. 

64. 

65. 

66. 

67. 

68. 

69. 

70. 

71. 

72. 

73. 

74. 

75. 

76. 

77. 

78. 

79. 

80. 

[ 4  3'1 

r 4  4 1 
[ 4  4'1 
[ 4  5 1 
r 4   5 ' 1  

[ 4  7'1 

[ 4  7 1 

[ 4 ' 3  1 
[ 4' 3' ] 

[ 4 ' 4  1 
[ 4'  4' ] 

[ 4 ' 5  1 
[ 4'5 '1 

[ 4 ' 7  1 
[ 4' 7'1 

r 5  4 1 
1 5  4'1 

[ 5  5 1 
[ 5  5'1 

I 5  6 1 
r 5  6 ' 1  
[ 5  7 1 
[ 5  7'1 

1 5 ' 6  1 
[ 5 ' 6 ' ]  

[ 5 ' 7  1 
[ 5' 7' ] 

r 7  4 1 
[ 7  4 ' 1  
[ 7  5 1 
r 7  5'1 

[ 7  7 1 
17  7'1 

r 7 ' 7  1 
[ 7' 7' ] 
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can readily observe, from  the following table, the various 
properties in  common with the three-input device. 
Row Inputs  outputs 

P 4  [ I 1   [ 5 ’ 1  
1 1 1  0 1 
2 0 1  0 0 
3 1 0  1 1 
4 0 0  0 1 

The  notation of Table 4  requires  some  explanation. 
The  letter ‘ A  ’ is used to  denote  the  output obtained 
through [ 0’ 5 1; ‘ B ’, through [ 4‘ 5’ 1. The first ‘ A ’ or 
‘ B ’ designates  which function serves as the final output. 
The indicated hookup requires one  or two  units  insofar 
as three or six characters follow the initial ‘ A ’ or ‘ B ’. 
The first three of these characters indicate the  inputs  to 
the first unit;  and  the next three, to  the second. ONES 
and  ZEROs indicate positive and negative biases, respec- 
tively. ‘ p ’, ‘ q ’, and ‘ r ’ are used in the familiar manner 
to designate  variable  inputs. Outputs  from  the first unit 
may  serve  as inputs  to  the second. The precursors are 
arranged  in numerical order, as against the  alphabetic 
ordering  scheme used throughout  Part I. 

With  functions of more  than  three variables,  a  com- 
puter is generally  required, and  the  IBM  704  Data Proc- 
essing Machine  has been used. The  65,536  functions  of 
four variables  break down  into  3984 interchange classes. 
Of the  latter,  436 have  a  maximal first score of 8 3-varia- 
ble subfunctions. When we differentiate among  the  436 
by second scores, eight have a  maximal  rating of 14. 
These eight  compose two cycles which have  the following 
chief precursors: 

[ 0 ’ 5 7  1’1 [ 1 5 ’ 6 4 ’ 1  

These represent the most versatile four-input, one-output 
devices according to  the present  criteria. Part 111 will 
include  a  study of 4-variable functions by team scoring. 

As  our requirements  vary, we may attach  more  or less 
weight to first and second  scores. If extra signal loads are 
to be avoided, first scores are of greater  consequence; 
otherwise,  second scores. Hence,  it is important  that we 
evaluate functions in both ways. 

From  the  436 functions  maximal by first scoring, four- 
input devices of six outputs  at most are irredundant in 
that  no 3-variable  subfunction is repeated. The  outputs 
of one  such  are shown  immediately below. Irredundant 
devices with less outputs  are (obviously)  included. 

[ 4 1 ’ 7 6 ]  [ 3 ’ 6 ’ 5  1’1 [ 3 ’ 3   2 4 1  
1 4 4 ’ 5 2  1 [ 3’2’0’3’1 [ 7 ’ 6 ’ 3   1 1  

When  second-scoring is followed, no  four-input device 
of more  than  one  output is irredundant, if all 3-variable 
subfunctions  are full. Two-output devices which achieve 
as  many as 27  such subfunctions are possible, however. 
The  outputs  for  one of these are as follows: 

[ 7 2’ 0’ 6  ] [ 3’ 4’ 0’ 2‘ ] 

It is simpler to judge  functions at  hand  than  to identify 
50 unknown optimum cases. Specific elements are easily 
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Table 5 Estimated highest first scores of functions. 

6-variable 60 (4-var.) 68 (3-var.) 
7-variable 84 (5-var.) 280 (4-var.) 
8-variable 112 (6-var.) 448 (5-var.) 1120 (4-var.) 

compared  to  one  another,  and we can estimate the scores 
of maximal functions  without  producing them. Reflection 
shows, for example, that by first scoring,  a top 5-variable 
element  should fall somewhat short of the 3-variable limit 
40. Some other probable scores are shown  in Table 5. 

To obtain higher-scoring functions beyond four vari- 
ables, simple  exhaustion of cases is unfeasible. Several 
strategies can be  adopted.  We may decide,  in  advance, 
probable  characteristics of good functions  and sample 
accordingly. Or,  without preconception, we may  let the 
computer search as follows. A  randomly  derived function 
is changed slightly. Scores are  compared  and  the loser 
dropped. The process continues  until  a  dead end is 
reached. Then  the  computer  starts over  with  a new ran- 
dom element.  Both  strategies have been used with  some 
success. 

In terms of 3-variable subfunctions, 36 is the highest 
first score we have obtained for 5-variable elements. Four 
such  are as  follows: 

[ 1 4 4 ’ 7 ’ 7 ’ 4 ’ 0 ’ 2 1  [ 1 4 4 ’ 7 ‘ 6 ’ 0 ’ 6 ‘ 2 1  
[ 1 4 4 ’ 7 ’ 6   6 ’ 2 ’ 2 1   [ 1 4 4 ’ 7 ’ 6   2 ’ 6 ‘ 2 1  

If the first of these is written as a  binary number, 

0 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 1 0 1 0 0  

the  two halves are  mirror images of one  another.  Indeed, 
all of the 36’s found show balance. ONEs  and ZEROs 
are of equal  number in  every case. Also, the  arrangement 
of ONEs is such  that  the subfunctions  obtained are dis- 
tributed  as evenly as possible into  the  four subclasses fixed 
by the two  end bits of the available  subfunctions.  Al- 
though  many 36‘s were  independently produced, they all 
fall into  but  four cycles, representatives of which are 
shown  above. 

The best first-scoring five-input, two-output  elements 
we have  found  generate 57 3-variable  subfunctions. 
Three-output elements that first-score a near  maximal 67 
and  have  no  redundant 4-variable  subfunctions  have 
also been attained. Table 6  provides an example of each. 

In  the  actual  fabrication of devices, it is not difficult to 
obtain  the denial of a given function.  Hence  there is pos- 
sible economy  in  two-output  elements  with one  output 
the denial of the  other.  For five-input, two-output  de- 
vices of this kind, 56 is the highest first score we have 

Table 6 High-scoring five-input  logical elements. 

Two-output [ 4 ’ 1   0 1  5 6  4 4’1 
[ 0’ 3’ 3  1 7’ 1’  5’ 6‘ 1 

Three-output [ 5   4 ’ 6 4  6  3  2 0’1 
[ 2   6 ‘ 1 3 ‘ 3  7  7 6’1 
[ 0 ’ 3   0 4  6 5’5’2’1 



~~~ ~ 

Tuble 7 Generation of eighty 3-variable precursors from six-input, one-output device by biasing  only. 

Precursor  Code  Equivalent 

1. 10 0 1 1 0 0 0 0 0  

Precursor  Code  Equivalent  

41. [ 4  0 1 p l  l q r  1 

2. [ O  0'1 p l q r O 1  42. [ 4  0'1 l l O p q r  

3. [ O  1 1 O q r  l o p  I 43. 1 4  1 1 p q r   1 0 0  

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

40. 

O O l q O r  
l p O q O r  

O l p r O q  

p 1 q l O r  

1 l p q O r  

p r l O O l  

O l r q p l  

O p q r O O  

l r O l O O  

l p O q r O  

p q r O 1 l  

p r q O O 1  

p I y o  1 r 

l r p 0 0 q  

r 1 O q p O  

r p 0 q 1 0 

O l r  O p q  

p y l  1 0 r  

t q p  1 o r  
q / I  0 0 0 r 

O q  r 1 1 )  I 

p q O r O O  

l r l p 0 q  

O p q 0 0 r  

O r l p l q  

1 O q O r  1 

1 0 1 p q r  

O q r O l p  

q O r 0 1 1  

p O O q r O  

1 O p l q r  

q p O O r 0  

q O r l p 1  

O p q O r  0 

p O 1 O q r  

p O q O l r  

O p q l l r  

44. 

45. 

46. 

47. 

48. 

49. 

50. 

51. 

52. 

53. 

54. 

55. 

56. 

57. 

58. 

59. 

60. 

61 .  

62. 

63. 

64. 

ti5. 

66. 

67. 

68. 

69. 

70. 

71. 

72. 

73. 

74. 

75. 

76. 

77. 

78. 

79. 

80. 

l q l p r  1 

p r  l l q l  

p q l r O O  

l l 0 p q l  

l r O l q p  

q O p O O r  

p O 1 r O q  

p l l q l r  

l p l q l r  

l p q r O O  

p 1 q O r O  

p O q r O l  

O l l p q O  

1 O p r  O q  

O r  1 q p o  

l p l l q r  

p q r  1 1  1 

q O O O p r  

1 1 p q r O  

O O O l p O  

l q p r   1 0  

l l q p l r  

r I p q l O  

O r O l p q  

O l O r p O  

l p q l l r  

p l q l l r  

q O p r  1 0  

q r O p l 1  

O O O p q r  
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found.  The element  obtained from [ 0 3 3‘ 5’ 4 5’ 7‘ 0’ ] 
and its  denial is an example. 

When second-scoring is considered, five-input, one- 
output functions  have been found which produce 54 
3-variable subfunctions. None of these has  a first score 
higher than 34, however, so that we must  consider the 
probable  application in choosing an  optimum  function. 
Two of these high-scoring 54’s are as follows: 

[ 1 4 4 ’ 6 ‘ 6 4 ’ 7 ‘ 2 ]   [ 1 4 6 2 ‘ 7 5 ’ 2 ’ 6 ]  

The element on the  left  has  a first score of 33; the one 
on the  right, 34. When 4-variable subfunctions are 
counted by second-scoring, however, the  leftmost func- 
tion achieves a  maximum 20; but  the other, only 18. 
Because the particular  choice of end bits (1  . . . 1 or 
0 .  . . 1 or 1 . . . 0 or 0 .  . . 0) require that  no new sub- 
functions will  be gotten by duplication after biasing in one 
of the  four exclusive classes of subfunctions  determined 
by end bits, we see that a 3-variable second score in the 
mid-50’s is the highest possible for 5-variable  functions. 

No 5-variable  functions with opposite  end bits have 
been found with a higher second score  than 53 3-variable 
subfunctions. Because the best three-input and  four- 
input  functions  have  opposite end bits, special interest 
attaches to these 53’s. All of those found  fall  into two 
cycles, whose chief precursors are as follows: 

[ 0 ‘ 4 ’ 5 1 7 5 ’ 3 2 ’ ]   [ 1 4 ‘ 6 4 7 3 5 6 ‘ ]  

Five-input,  two-output devices are available with a 
maximum second score of 68 3-variable and 40 4-variable 
subfunctions.  Indeed,  such  an element is accomplished 
from [ 0’ 3‘ 4 1 4‘ 5 1 1’ ] and its denial. Thus by a single 
added inversion, a  5-variable function  can be extended 
so as to realize all possible functions of three variables. 

As indicated  earlier,  a  top 6-variable function  should 
first-score 68 and 60 in subfunctions of three  and  four 
variables, respectively. Two such are shown below: 

[ G O  1 3  2‘0’3’63’2’7  464‘6‘31 
[ 4‘ 7’ 0’ 3‘ 1 0‘ 1 2 7’ 2’ 5’ 3  4 1 3’ 6 ] 

Either of these will, of course, realize all possible func- 
tions of three variables upon biasing. In  Table 7, we have 
shown how the  latter of the two generates the eighty pre- 
cursors of three variables. As in  Part I, the column  under 

Table 8 Significant outputs of three-bit multipliers. 

Code  Equivalent  indicates an  input selection necessary to 
obtain  the desired function.8 

The two high-scoring 6-variable functions just shown 
have second scores of 234 and 231, respectively, in sub- 
functions of four variables out of 245 possible cases. The 
score 244, obtained by the  function [ 2  6 4‘ 0 5‘ 0’ 3’  1‘ 7 
4 4‘ 3 5‘ 4 5 4‘ 1, is the highest we have found  thus  far. 

To illustrate the suggested method of testing further, it 
may be helpful to consider a  more  familiar logical ele- 
ment. Binary multipliers are typical “black boxes” found 
in computers. To multiply three-bit  numbers, six 6-vari- 
able  functions are required, of which four  are full.  These 
four  (in  order of significance) and their individual first 
and second scores are shown in Table 8. Combined first 
scores of 33 and 38 subfunctions of three and  four vari- 
ables, respectively, are obtained. Combined second scores 
of 39 and 100, respectively, are also produced.  Such 
scores for a six-input, four-output device are poor even by 
comparison with six-input, one-output logical elements. 

Some related questions 

The present  study can be extended in various ways. First 
of all, a  greater use can be made of the  computer in ana- 
lyzing data as against obtaining it. What is required are 
more  direct  methods of determining optimum cases. To 
do  the latter, we must express in more  formal terms the 
characteristics of high-scoring functions. It is felt the 
data already  gathered are sufficient for a good start  in 
this endeaver. 

Questions of optimum size of basic elements need also 
be considered. Suppose we grant  that  for reasons of econ- 
omy and reliability it is desirable to build our machine 
out of relatively standardized blocks. The present test 
enables us to  compare elements of comparable  inputs 
and outputs,  but we have not yet examined the problem 
as to how large our building blocks should be for given 
purposes. Suppose, for example, avoiding duplication of 
inputs, we must  choose between one-output elements of 
four or six inputs. The  latter will obviously cost  more to 
fabricate;  but  fewer  units will be required in assembling 
circuits because of the very much greater versatility. As 
we have seen, a  four-input,  one-output device has  a high- 
est first score of 8 3-variable subfunctions;  a six-input 
element can achieve 68 such subfunctions. 

Logical element 
First scores Second  scores 
(3-var., 4-var., resp.) (3-var., 4-var., resp.) 

[ 5  4 0 0 4   0 0 0 4   4 0 0 0   0 0 0 1  4 
5 

4 
5 

[ 6  1 4 4 1   5 0 0 3   1 0 0 5   5 0 0 1  19 
13 

20 
29 

[ 0  7 3 1 3   6 0 0 5   3 5 5 6   6 0 0 1  21 
21 

33 
61 

[ 2 ‘ 3 5 3 2 ’ 5 5 5 1 ’ 6 6 6 7 ’ 0 0 0 ]  14 
52 12 

29 
31 
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Table 9 Partial  team first-scores (est.) of  elements. 

Element  One  unit  Two  units  Three  units 

Two-input 1 (2-var.) 2 (3-var.) 5 ( 4-var.) 
Three-input 1 (3-var.) 3 (5-var.) 12 ( 7-var.) 
Four-input I (4-var.) 4 (7-var.) 21 (10-var.) 

Team scoring may prove  helpful on this problem.  Sup- 
pose we wish to  compare one-output devices of two, three, 
or  four inputs.  Initial proportions of cost and versatility 
are  determined.  Then progressively larger  teams  are ex- 
amined. The  former relationship  remains constant;  but, 
as Table 9 indicates, a block initially  favored  gains in 
versatility. 

It  appears advantageous to  have blocks large,  but not 
too large. Optimum size may well vary  with the objective. 
Paradoxically, one  must use  enough  elements for econ- 
omy.  Otherwise, team versatility is lost. Boxes assembled 
from lesser elements may  in  turn  serve as  building blocks 
for  larger boxes, and so on. Because team membership 
need not be restricted to devices all from  the  same class, 
team  scoring can also help determine which  assortment 
of elements is best in  a given case. 

Methods for assembling economical  circuits from  op- 
timum sets of elements are needed.  As  argued  in Part I, 
techniques  which minimize expressions formed  from  one 
set of  functions  may  not prove  relevant if another is 
assumed.9 With  the use of new basic elements,  new ways 
of synthesizing and simplifying circuits  may be  required. 

Questions of time can be introduced. In  the  hookup: 

if all blocks operate instantaneously, the 3-variable func- 
tion [ 3 0’ ] is realized.  Assume, on  the  other  hand, all 
three elements have some equal  inherent delay and  input 
signals follow one  another  at corresponding  intervals. 
Because the lower path requires more time, two of the 
input terminals are used twice. Hence,  the 5-variable 
function [ 0 3’  7’ 4 7’ 4 0 3’ ] is obtained. It is well known 
that we may trade  time  for  hardware,  and vice  versa, but 
the precise relationship of  the two is not understood. In 
terms of the present  study, a more systematic analysis can 
be undertaken. 

An associated  study can be made of circuit reliability. 
Clearly,  building from  uniform blocks simplifies the de- 
scription of hardware.  Isolation of defective parts is more 
readily  accomplished and replacement is more immediate. 
The  redundancy intrinsic to multipurpose  elements  might 
also  be used to  insure reliability. Beyond this, a more 
general approach  to  the redundancy-reliability  question 
may be possible, since existing proposals are  often  ori- 
ented  to specific kinds of devices.lU 

The interplay of  order codes and  hardware need also 
be  examined.  A modern computing machine can be 
thought  of as an extended  multipurpose bias device. 
Alternative  logical  operations are  performed, depending 
upon the presence or absence of certain signals. In gen- 
eral, we desire the widest range of orders possible from 
the least hardware.  The  present study is pertinent. The 
class of subfunctions  generated by a logical element will 
determine  the variety of orders  it  can execute. 

We  have  thus only  scratched the  surface in our investi- 
gation of multipurpose elements. Part 111, to  be published 
at a later time, will carry  the  argument  further.l’ 
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