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The  Thermal Equivalent Circuit of a Transistor 

Abstract: An exact electrical analogue is  given for the thermal system between the collector junction and the 

constant-temperature environment of a transistor. For this circuit analogue, the voltage response to an 

applied current i s  equivalent to the  temperature response of the collector junction to an applied-power dis- 
sipation. The objective of this paper is  11) to prove  that this thermal  equivalent circuit is  entirely consistent 

with the rigorous, academic  approach to the  problem,  which i s  to solve a boundary-value problem  for heat 

flow in  the transistor system; (2) to present an  experimental method for obtaining the circuit parameters in 

the thermal  equivalent circuit; and (3) to demonstrate the utility of the thermal  equivalent circuit for the cir- 

cuit designer and the transistor designer. 

Introduction 

This  paper discusses a  practical method  for determining 
the operating  temperature of a transistor  collector  junc- 
tion. The  temperature of this minute region is an  impor- 
tant consideration  because (1) many of the electrical 
characteristics of a junction are  temperature dependent, 
(2) there  appears  to be  a  maximum permissible junction 
temperature  for  any desired life expectancy of the transis- 
tor, and ( 3 )  the power-dissipation rating of the transistor 
can  be  improved if it can be designed to reduce the large 
thermal gradients between the  collector  junction and  the 
environment. It is evident that  the  temperature  at  the 
junction will be related in some way to  the electric power 
applied to  the transistor and  the ability of the transistor 
materials to dissipate heat energy. The problem, then, is 
to establish the  function which  relates  junction tempera- 
ture  to  the  thermal system and  the power dissipation. This 
paper gives an electrical  analogue  in a network  composed 
of lumped RC elements. The voltage at  the two  terminals 
then  corresponds to  the collector-junction temperature. 

In  the past much emphasis has been placed on a quan- 
tity called the K-factor, or  thermal resistance, of a transis- 
tor. This  K-factor is obtained  experimentally from  the 
ratio between the value of the constant temperature rise 
of the collector  junction and  the constant value of power 
dissipation which produced this rise. K-factor,  then, is a 
measure of the power-dissipating ability of the device and 
also can be used to determine the junction temperature 
for a known  constant-power dissipation. In practice,  how- 
ever,  this K-factor is often multiplied by an average power 
dissipation, and the result is assumed to be the average 
junction temperature. But the  K-factor alone, for instance, 
could  not specify the period of time a large  power  pulse 

of known amplitude  can be applied to a device before its 
maximum  junction temperature is exceeded. It is evident, 
then,  that  the  K-factor of a device is not  adequate  to indi- 
cate  temperature variations  in a transistor resulting from 
variations in  the applied  power. 

An  approach  to this  problem, which is based on solid 
theoretical ground, is to solve the boundary-value prob- 
lem posed by the partial-differential equations for  heat 
flow. One  example of this approach successfully applied to 
the  geometry of the rate-grown  transistor is reported by 
M0rtenson.l The difficulties with  this method  are (1) that 
to  formulate  the problem  requires  a  great deal of knowl- 
edge about  the  internal geometry of the device, ( 2 )  that 
certain  physical  constants, such as the  heat conductivity, 
diffusivity, and heat-transfer coefficients must be available 
for every  material  in the device, and ( 3 )  that  the solutions 
of certain equations which are often  needed can be ob- 
tained  only by the methods of numerical analysis. These 
problems  may be solved by making  simplifying  assump- 
tions, but the  results are then  dependent on  the validity 
of the assumptions, and hence, on the ability and judg- 
ment of the problem-solver. 

A third  approach, which is an extension of the  K-factor 
concept and also consistent with the boundary-value ap- 
proach, is to propose a thermal equivalent  circuit for  the 
transistor. The circuit  representation of a thermal system 
is permitted by an analogy between certain  electrical and 
thermal quantities.  These  analogous  quantities are listed 
in Table I. An example of a quantitative  attempt  to use 
this thermal-equivalent-circuit approach was reported by 
Simons,' although  many  others have suggested its use in 
a qualitative manner.  Apparently  no  one  has shown that 35 
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Table I A list of analogous  quantities between  thermal  and electrical systems. 

Electrical Thermal 

V voltage (volts) T temperature ("C) 
I current  (amps) P power dissipation (w) 
R electrical  resistance (ohms) R thermal resistance ( "C/  w) 
C electrical capacitance  (farads) C thermal  capacitance (w-sec/ " C )  

the  quantitative use of this circuit is justified or  that  it is tain an equivalent thermal circuit. We begin by asking 
as valid as the rigorous,  academic approach mentioned  what differential equation would give as  a  solution one 
above. In addition, the  particular  thermal equivalent  cir- of  the  terms  of  the series in Eq. (1) , and find  immediately 
cuit which has been used for  the transistor, although not that it would be 
incorrect, is certainly not  in its simplest form.  This  paper 
will prove that  the equivalent  circuit  obtained here will - 
yield numerical  solutions for its terminal voltage (as a T n  

function of an applied current) which are exactly  equiv- If in Eq. ( 2 )  the  constant T~ is replaced by the  product of 

dTn Tn - o. 
dt 

+--  ( 2 )  

alent  to  the solutions from  the heat-flow equations for 
the  temperature of the collector  junction (as a function 
of an applied-power dissipation). 

The validity of the equivalent  circuit is based on  the 
treatment of two physical quantities, heat capacity and 
thermal conductivity,  according to  the  Cauer extension 
of Foster's reactance  theorem, which states,  in part,  that 
any  network of RC elements has a  driving-point  imped- 
ance  that  can be constructed of a single series string of 
parallel RC pairs3  The mathematical analysis presented 
in this paper leads to a thermal equivalent  circuit  with 
precisely this form.  The mathematical analysis (given in 
the  Appendix) of a  very  general  model of a  transistor will 
indicate that  the  number of parallel RC pairs  in the series 
string  should  theoretically be infinite. The initial  condition 
of the system, however, makes it a necessary condition 
that  the series solution (where each term represents an 
RC pair)  must be  convergent. Therefore, it is shown that 
a series string  with  a finite number of parallel RC pairs 
can give a correct solution to  any desired degree of accu- 
racy. The determination of the precise number of RC 
pairs  required for practical  convergence will depend on 

the  thermal resistance Rn  and  the  thermal  capacitance Cn, 
then  Eq. (2) can be rewritten  as 

C n - + - -  ( 3 )  

In  the  heat analogue,  Eq. ( 2 )  can be considered the dif- 
ferential  equation for the  temperature  drop across the 
terminals of a thermal resistor  in  parallel  with  a thermal 
capacitor, where the power  dissipation  applied to  the 
terminals is zero. The solution of this equation is, of 
course, 

dTn Tn - o. 
dt R ,  

T n ( t ) = T n ( O ) e x p ( - t l R n C n ) ,  (4) 

where T n ( 0 )  is the value of T n ( t )  at  the time t equal  to 
zero. If m such parallel RC networks  were  placed  in 
series, as in Fig. 1, then  the  total  temperature  drop along 
the string would be the  sum of the  temperature  drops 
across each of the  thermal RC networks. Thus 

T J ( ~ )  = 2 T n ( t )  = 2 Tn(0)exp(-tt/RnCn). ( 5 )  

The  fact  that  the infinite-series solution, Eq. ( 1) , must 

m m 

n = l  ?k = 1 

an  accurate IC-factor measurement. be convergent,  as  pointed out in the Appendix, is justifi- 
After  the validity of the  thermal equivalent  circuit is cation for approximating  this  solution by a finite series. 

shown, it will then be demonstrated  how  the  circuit TO demonstrate this  point,  let US suppose that a source of 
parameters  can be  determined  experimentally. Then  the constant power  dissipation PO were  applied to  the ter- 
important applications of  the equivalent  circuit for  the minals of the  thermal equivalent  circuit  as  in  Fig. 1. After 
circuit designer and  the transistor designer will be a sufficient time  interval, the  temperature  drop across the 
discussed. terminals will be constant  and would be given by 

The thermal equivalent circuit 

It is shown  in the Appendix that  for  no applied-power 
dissipation at  the collector  junction of a  transistor, the Since TJ will be  a constant with  some finite value,  then 
temperature decay  at the junction will be given by 2 R,  must also be finite, and accordingly as m increases, 

n = 1  

111. 

m YL=1 

T J ( ~ )  2 Anexp(-t/Tn), ( 1) the  value of R,  must approach zero. In a  practical sense 
n = 1  it will always be possible to find a  value for rn such  that 

where  the constants T n  and A n  depend On the geometry, the value of Po R ,  will be essentially zero  to  any de- 
m 

materials, and  the initial  conditions of the system. It will 
now be shown that a  solution of this form may  be ob- sired  degree of approximation. It will be noted that  the 
tained for  the voltage decay at  the terminals of a  certain W 

passive electrical  network, and  that  the analogy  presented 
quantity x Rn is identical to  the  K-factor of the  tran- 

36 in  Table  I  may be applied to this electrical  circuit to ob-  sistor. 

n=m+l 

n = l  
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In general, the two accessible terminals  in the  thermal 
equivalent  circuit of Fig. 1 represent the collector  junc- 
tion and  the  constant  ambient  temperature of the transis- 
tor. Unlike the  more general  equations for heat flow, such 
as Eq. ( 13), this  thermal-equivalent-circuit approach  can 
determine  the  temperature as  a function of time at only 
one point in  the transistor -the collector  junction; and 
the best that could  be  anticipated is that  an equivalent 
circuit  could  be found which would give the  temperature 
at  any  number of discrete  points  in the transistor. The 
reason for this, of course, is that in  electrical  circuits one 
desires a  solution for  the voltage at only  those  points 
which are between the circuit  elements, and  the mathe- 
matics then leads to a  total differential equation. On  the 
other  hand a  solution for some quantity  such as the 
temperature  over a continuum of points  must  satisfy a 
partial-differential equation,  such as the heat-conduction 
equation. But since the  temperature  at  the collector junc- 
tion is of primary interest, and  the problem has been 
simplified by the invention of a thermal equivalent  cir- 
cuit from  one which involved a  boundary-value problem 
of the second order  to a  first-order  total differential equa- 
tion,  then  this  limitation of the  equivalent  circuit is not 
a  serious  one. 

We have  shown that  the solution of the heat-conduction 
equation  for  the  temperature variation at  the collector 
junction is identical to  the solution  obtained from  the 
thermal equivalent  circuit for the special  case of no 
applied-power dissipation. I t  is then  necessary to show 
that these  solutions will be identical if a power dissipation 
P (  t )  is applied to the collector  junction. For this  case the 
boundary condition Eq.  (14a) of the problem would 
then  be  nonhomogeneous  and given as 

where the functions p ( t )  and f(r) would be such  that 

where ro represents the collector-junction surface (see 
Appendix). 

The boundary-value  problem then becomes one of a 
homogeneous differential  equation with a  nonhomogene- 
ous  boundary condition. This  problem is identical to 
having  a  nonhomogeneous  differential equation with a 
homogeneous boundary condition  as  shown by a  theorem 
found in many  textbooks4  It is clear,  then,  that  the soh- 
tion  obtained from  the equivalent  circuit when the driving 
function P ( t )  is included  at the terminals is identical to 
the general  solution of  the nonhomogeneous differential 
boundary-value  problem. 

The Joule  heating in the base region of the transistor 
has been neglected in  this discussion since  its  magnitude 
is usually quite small compared  to  the power  dissipation 
at  the junction. When Joule heat  cannot be  neglected, it 
can be  added to  the differential equation as another driv- 
ing function without affecting the validity of the  thermal 
equivalent  circuit. 

Experiment to determine circuit parameters 

The circuit parameters were  determined  experimentally 
from measurements of temperature decay of the collector 
junction.  A constant power dissipation Po was applied 
to  the collector  junction of a transistor operating in  a 
grounded-base  configuration for a  period of time suffi- 
cient to insure thermal equilibrium. At a time designated 
as  zero the power  dissipation  was  completely  removed 
and  the  temperature decay of the  junction  to  the  ambient 
temperature recorded. This cooling curve of the junction 
was of the  form predicted by Eq. ( l ) ,  the analytical 
solution for the corresponding  set of initial and  boundary 
conditions. This agreement has been borne  out by experi- 
mental  data for six samples, and  the details and results 
of one representative  experiment will be reported. 

The test unit was a low-power PNP alloy-junction 
transistor, IBM  Type 13. The first step of the  procedure 
was to calibrate  some  electrical  characteristic of the junc- 
tion  as  a function of temperature.  The  particular choice 
made  here was the  saturation  current, which is fairly 

Figure I The thermal  equivalent circuit for the collector junction of a transistor, along  with the analogous 
circuit elements necessary to produce the cooling curve. T,,(tl is  the  temperature  difference between 
collector junction and  ambient as  a  time function. T A  i s  a battery representing constant ambient 
temperature. PC is  constant applied  power for t<O. 
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Figure 3 The test circuit used in the  determination of the cooling curve. 

I" VERTICAL INPUT 
I 

independent of the reverse bias needed on  the  junction, 
provided this bias is between 0.2 and 2 v o h 5  Thus with 
the  unit  immersed  in  a temperature  bath  the  saturation 
current I ,  was  measured at  different  temperatures  and 
plotted in  Fig. 2.  The theoretical function  for  the tem- 
perature-dependent saturation  current  has been shown by 
DeWitt and Rossoff.O The value of energy gap E, de- 
duced  from  the slope of the curve  in  Fig. 2 is 0.65 ev.* 

Next  the test  unit was placed in an environment of cir- 
culating silicone oil held at  room  temperature.  The test 
unit was then  connected to  the circuit of Fig. 3. With  the 
manual switch  in its normally closed position, the col- 
lector  junction dissipated power Po= Ve~Ze,  controlled by 
the potentiometer R. Depressing the switch* * opened the 
emitter  circuit and applied  the one-volt bias Vc1 in series 
through  the sense resistor R, to  the collector junction. 
The image of the  vertical  motion of the oscilloscope trace 
was recorded on a film moving horizontally  past the  face 
of the oscilloscope. With  the vertical and horizontal dis- 
tances on the film calibrated to indicate saturation  cur- 
rent  and time, respectively, this experimental curve was 
then  converted into a temperature/time cooling curve by 
means of the calibration  plot of Fig. 2. Subtracting  from 
these data  the  constant ambient temperature Td gave the 

"This  value  compares  favorably  with 0.75 ev  for G e  at OOK. Alnericarr 

York, 1957. P. 5-158. 
Institute of Physics  Handbook,  McGraw-Hill Book Company,  Inc.,  New 

**When  the  switch is depressed,  the  relay  (Clare  Mercury  Wetted  Contact) 
is  transferred to  its  "off" position. 

J 

curve Trno in Fig. (4a). Since  this  plot  approaches  a 
straight line on semilog paper, it was assumed to be the 
contribution of the exponential term with the largest  time 
constant. The difference between the cooling curve  and 
the  extrapolated  straight line which it  approached was 
then  taken to be the  contribution of the sum of the  re- 
maining  exponential  terms. This difference was  plotted 
in  Fig. (4b) as T,,, - TI". Again the plot approached a 
straight  line, for which the exponential term was assumed 
to be the second  in the series solution. This  procedure of 
graphical analysis was continued  until  a curve was ob- 
tained that was considered to be an experimental  straight 
line down to  time  zero.  Thus  the finite-series solution 
(which would approximate  the infinite-series solution in- 
dicated by the heat-conduction equation) would contain 
four exponential terms  for  the test transistor  in  this par- 
ticular environment.  The value of the time  constants and 
the initial values of each  term  have been taken from  the 
plots, and  the  required calculations for circuit parameters 
of the  thermal equivalent  have  been  indicated on each 
plot. The equivalent  circuit and  the numerical  conditions 
and results of this  experiment are tabulated  in Table 11. 

In this  experimentally  obtained  equivalent  circuit, the 
question arises as to whether or not there might be an- 
other network  with  a  very  small  time constant which 
should also be  included.  Additional shorter time  con- 
stants  no  doubt exist, but  the  real question is whether 
the corresponding RC networks - in the context of 
the analogy - can  support  any appreciable temperature 39 

IBM JOURNAL JANUARY 1959 



Table ZZ The thermal  equivalent circuit of the test unit and the values of the circuit parameters. 

Test unit: PNP germanium  alloy  junction (IBM Type 13) transistor 
Initial power dissipation: 150 mw 
Ambient temperature: 30°C 
Environment: Circulating silicone oil 

Network n T(o) "C rn, sec R,, "C/mw C,, mw-sec/ "C 

1 2.83 6.05 0.0189 320 
2 11.0 1.21 0.0734 16.5 
3  2.90 0.300 0.0193 15.6 
4  7.10 0.0117 0.0473 0.248 

4 

K-factor= 2 R,=0.1589 
n=1 

drop. To determine this, the total thermal resistance, or 
K-factor of the test unit, was measured at twelve different 
levels of constant  power  dissipation  in  circulating silicone 
oil at 50°C.  The averaged  value of these  measurements 
indicated  a total  thermal resistance of 0.162"C/mw. 

As indicated  in Table 11, the sum of the  thermal  re- 
sistances of the  four networks  obtained  in  this  experiment 
is 0.159"C/mw.  Thus  the  total of the omitted  networks 
can  have only an additional 0.003"C/mw  thermal re- 
sistance. For a constant power  dissipation of 150 mw, 
this  represents  a temperature  drop of only 0.45"C. Since 
the transistor is rated  at only  a fraction of this power 
dissipation, the  error in the junction temperature  intro- 
duced by the omission of these networks will be very 
small. The above analysis depends, of course, on  the 
ability to  obtain a valid and independent  measurement 
of the  K-factor of the test  unit, and  for this the  reader 
is referred to recent work by Reich7  and by Nelson and 
Iwersen.8 

The power dissipation for  the above K-factor measure- 
ment was not  actually held constant  but consisted of peri- 
odic  rectangular pulses with an  amplitude Po, a  repetition 
rate of 20 cps, and a duty cycle of 0.98. The waveform 
of the  saturation  current was observed during  the 1-msec 
interval  in  which the power  dissipation was "off." The  ap- 
pearance of the waveform during  the first 20 psec was 
attributed  to circuit  transients  resulting from  the switch- 
ing, but  the remainder of the waveform,  which was almost 
linear and  had only  a  very slight slope, could quite easily 

40 be extrapolated to  the beginning of the time  interval, thus 
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indicating the  temperature  at  the moment the power PO 
was interrupted. 

It should also be  pointed out  that there is no theoretical 
objection to  an experimental  environment of air  (either 
still or moving at  constant velocity)  at constant  tempera- 
ture, since at  the external surface of the transistor  a 
boundary condition based on Newton's law of cooling 
and its associated "heat transfer coefficient" includes the 
possibility of convection currents  in  any fluid medium. 
The environment of circulating silicone oil was used in 
this case  because it was experimentally  simple to create 
and measure. 

Application of the thermal  equivalent circuit 

Once  the  thermal equivalent  circuit for a particular  tran- 
sistor or transistor  type has been established by experi- 
ment, the circuit designer may simply determine  the 
temperature response of the collector  junction  as  a func- 
tion of the applied-power dissipation. This is accom- 
plished  by  imagining  the  known  function of power 
dissipation to be  a current  function applied to the  ter- 
minals of the equivalent  circuit, and by solving for  the 
voltage  response  across the terminals. If,  for instance, 
the applied-power  dissipation were sinusoidal,  then the 
collector temperature would be expected to  vary sinus- 
oidally with some  predictable  amplitude and phase  shift 
with respect to  the applied  power. The  temperature 
response to periodic power pulsing and  to single pulses 
can easily be established. In  fact  the  temperature response 
of the collector  junction for  any known,  applied-power 



Figure 4 Graphical analysis of the cooling curve for the test unit. 
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dissipation can be determined by the analysis of a  simple 
series of RC networks. 

As an example,  consider the case of switching  circuits 
where the transistor might be  subjected to periodic  power 
pulses, i.e., for a given interval of time a (Fig.  5a) a 
constant  amount of power Po is dissipated by the  tran- 
sistor and  then  the device is turned off for  the  remainder 
of the period p. Let b denote  the power-off time. With  the 
aid of the  thermal equivalent  circuit and  the rules for 
circuit analysis it is now possible to  determine  the tem- 
perature response of the junction for this particular 
function of applied-power dissipation. To simplify this 
example,  only the steady-state  response will be  obtained; 
however, the transient  response for  the first few  seconds 
of pulsing  could be obtained by a more complete  circuit 
analysis. It i s  observed from  Fig. 1 that  temperature 
variations  across  only  a single RC network  need  be ana- 
lyzed since the  others will be identical  in form - differing 
only  in  their particular values of R and C. When  the 

for the  time  interval when P ( t )  =Po, and 

T,(t) =T,(max)exp( -t/R,C,) (9b) 

for  the time  interval  when P ( t )  = 0, where T,(min) and 
T,(max)  are constants  representing the  minimum  and 
maximum  temperatures, respectively, across the network 
during a cycle. Since the value of T,(min) is obtained at 
the  end of the power-off time, its value in  terms of 
T,(max)  may  be  obtained  by putting  the value b into 
Eq. (9b)  for t ,  obtaining 

T,  (min) = T ,  (max) exp ( - b/  R,C,) (10) 

The value of T,(max) can be obtained from Eq. (9a) 
after  the  time interval a. Thus,  after substituting Eq. (10) 
into Eq. (9a)  and then  replacing the  dependent variable 
T , (   t )  with T,(max) and  the independent  variable t with 
a, the resulting expression may  then  be solved for 
T,(max) , yielding 

calculation for- this one network is complete, it  can then 1 - exp( - a /  R,C,) 
simply be added  to  the response of the  others in order  to T,(max) =Po& 1 - exp ( - p /  R,C,) (11) 
get the  total  temperature response. The steady-state  tem- 
perature response of the nth thermal R C  network is given The constants of Eqs. (9), T,(min) and T,(max) , can 

by the following two  functions: now be  obtained from Eqs. (10) and (1 l ) ,  and by sum- 
ming Eqs. (9) over  the rn networks the instantaneous 

(9a) junction-temperature  response is determined. Figure  5b 
T,( t )  = [PoRn-Tn(min)l [I  -exp( - t/R,C,)]+T,(min) illustrates this steady-state  response of the junction  tem- 

Figure 5 The steady-state temperature response of the  collector  junction for an applied-power dissipation 
of rectangular periodic pulses. 

9n 

T,,(av) = x T , ( a v ) = - P P , x R , - o  ~R,2C,T,(max)[1-exp(-a/R,C,)][1-exp(-~/R,C,~l a "  P "  

n=1 P n = l  P n=1 

:E 
5b) TIME,t 

m 

= 2 T,(max) + T , = P , E  R, 
m 1 - exp( - a /  R,C,) 

n=1 11=1 l-exp(-pplR,C,) 

112 

= 2 T,(min) =xT,(max)  exp(-b/R,C,) 
n = l  

m 

= x {(PoRn)-T,(min)  [l-exp(-t/R,C,)]fT, 
n=1 
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Figure6. A proposed extension of the thermal  equivalent circuit  for a transistor  to include the emitter 
junction. 

perature  for  an excitation of periodic power pulses. Also 
shown on this  plot is the solution for the  time average of 
the  junction  temperature,  and  it will be  noted that this 
average is always less than  the average  obtained by multi- 
plying the average  power dissipation ( a l p )  PO by the 
K-factor 

( 2 R n )  * 

The  thermal equivalent  circuit  might also be  extended 
to include the  temperature response of the emitter  junc- 
tion as suggested by the circuit  configuration of Fig. 6 .  
The circuit  parameters of this  network  might  be  analyzed 
by determining  the cooling curve of the emitter and col- 
lector  junctions  separately and, from  the difference of 
these, establishing the cooling curve of the emitter  with 
respect to  the collector  junction.  Since the question of 
the  emitter temperature caused by power dissipation of 
the collector frequently arises in  transistor  work,  this 
equivalent  circuit would be worthwhile. If the power dis- 
sipation at  the emitter can be neglected, then one need 
only measure the  thermal resistance between emitter  and 
collector junction,  since by Eq. (16) all points  have the 
same time  constants. 

For the transistor designer who has  attempted  an analy- 
sis of the heat-conduction  equation for a  particular  geom- 
etry, the experimentally  obtained  time  constants of  the 
thermal  equivalent  circuit  can  be used as  a  check on  the 
results of the analysis. Since in general the completion of 
the problem in the Appendix for  numerical results  may 
be very difficult, it is extremely  helpful  in  such an analysis 
to be able  to  make valid simplifying assumptions.  When 
the  boundary conditions of the  problem are imposed on 
the general  solution Eq. (16), a  characteristic equation 
will evolve which  determines the permissible values, or 
eigenvalues, of the separation constant X12. Obtaining this 
equation  and subsequently solving it for the eigenvalues 
is straightforward in  principle  only. For example, to find 
this equation for the test  unit reported  on earlier it would 
be necessary to know the geometrical  dimensions  in  de- 
tail, since it is necessary to solve for  the space part of 
the  solution R ( r ) .  But if it can  be assumed that certain 
regions of the transistor are approximately  independent 
of the  remainder of the device, it might be possible to 

break  the complex  problem into several  simpler ones. TO 
obtain  an intuitive  understanding,  consider the linear flow 
of  heat  through several  materials in succession, where the 
effective time  constants for each region differ from  the 
time  constants of the  others by several orders of magni- 
tude. Then when a thermal gradient is established through 
these materials in series and  the  heat  source is removed, 
one would expect the  temperature  drop across the mate- 
rial  with the shortest  time constants  to become effectively 
zero before the  others  have  started their temperature 
decay. During  the  remainder of the  temperature decay 
of the system the material with the  short time  constants 
will simply  assume  a constant  temperature  throughout 
which is equal  to  that  at its boundaries. 

This  approximate method will now  be  applied, in a 
crude  manner, to obtain analytically the time  constants 
of the test unit. The transistor is assumed to  have right- 
circular  geometry  with the active  elements  occupying  a 
very small  volume at  the  center,  the bulk of the  thermal 
system (the desiccant powder and  the  case)  to be the 
second region, and  the  third region to be the  stationary 
film of oil adjacent to the case. Since the case is not actu- 
ally  circular,  its radius is approximated by the dimension 
0.3 cm. For geometries involving right-circular  symmetry 
it can be shown that  the space function R ( r )  turns  out to 
be a Bessel-type function  and  that  the eigenvalues are 
determined by the  characteristic  equation Jo(rXi)  =O. The 
values of the  argument of this Bessel function which give 
it a zero value are  tabulated,  and when r is divided into 
these tabulated values the eigenvalues hi are obtained. 
The time  constants then  are simply l/otXi2, and by assum- 
ing a diffusivity a of 0.01 cm2/sec a series of time  con- 
stants can  be computed,  the first three of these being 1.5 
sec, 300 psec, and 65 psec. The first two  agree very well 
with the experimental values and  it may be considered 
that  the series  solution for this region converges  in  only 
two terms. The smallest time constant in Table I1 must 
be contributed by the comparatively  small central region 
and the series for this region apparently converges  in  only 
one  term. Since the details of internal  structure  are  not 
very well known  in  this case, an analysis of this region 
cannot be made here. The value  in  making such  an analy- 
sis is that if a valid experimental K-factor measurement 
cannot be performed,  the experimental  time  constants 43 
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will serve to check and improve the analytical  solution. 
It is then possible to  determine as  many short  time con- 
stants and coefficients as necessary and then to decide 
how many  terms must  be  included in the series for  practi- 
cal  convergence. 

The six-second time constant in Table I1 can be asso- 
ciated  with the  third region, that of the environment. The 
time  constants for this series (convergent  in one  term  for 
this test unit) will depend  strongly on  the value of the 
heat-transfer coefficient discussed earlier. To  compute  the 
value of this constant  for a particular  boundary  or inter- 
face is impossible in most  instances.  But an improvement 
of the coefficient as a  result of redesign may be observed 
readily  in  a  smaller  value of the  constant R1 in Table 11. 
This same  argument  can be  applied to  the  other regions 
and  the results can ultimately be used to  obtain  optimum 
power-dissipation  ratings in package designs. 

One further application of the  thermal equivalent cir- 
cuit  might be to check the uniformity of manufactured 
transistors by determining the variations  in the  thermal 
circuit parameters  from  unit  to unit.  Defects such as poor 
thermal bonds  between  germanium  wafers and base tabs 
might be rapidly  detected  in  this way. 

Conclusions 

By considering the  academic  approach  to  the problem of 
heat conduction  in  a  transistor,  a thermal equivalent cir- 
cuit  for  the transistor was derived. The validity of this 
equivalent  circuit was established mathematically, and 
an experiment to determine  the circuit parameters was 
described. The  temperature response of a semiconductor 
junction to  an applied-power  dissipation can then be de- 
termined by analyzing  this  circuit rather  than by the  more 
difficult solution for  the boundary-value problem asso- 
ciated with  the partial-differential equation of heat flow. 
Thus a practical  approach  has been developed for  the 
problem of determining the instantaneous  value of the 
junction temperature of an  operating transistor  as  a func- 
tion of time. The usefulness of the  thermal equivalent 
circuit has also  been  indicated for  the development of 
optimum power-dissipation ratings  in  transistor designs. 

The graphical analysis of the cooling curve of a  junc- 
tion presented here is not necessarily the best method  for 
determining the circuit parameters of the equivalent  cir- 
cuit. If this method should  be used for a particular  tran- 
sistor  which has significant short-time-constant  networks, 
care must  be  taken  in the construction of the test  circuit 
SO that  the cooling curve is not  masked by electrical 
transients for very small time  intervals. Also some  reliable 
method of determining the  K-factor of the transistor 
must be used to  determine  the completeness of the  equiv- 
alent  circuit  obtained. 

Appendix 

The purpose of this section is to  demonstrate  that  the 
temperature decay at  the collector  junction of a  transistor 
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for  the special  case of no applied-power  dissipation  can 
always be expressed in the  form 
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TJ(t) = 2 A,exp(-t/T,) (12) 

where in  principle, at least, the constants T, and A n  may 
be determined from a knowledge of the geometry,  con- 
stitution, and initial state of the system, which  includes 
the environment. In  Eq. (12),  T J ( t )  must  be  regarded  as 
some sort of a  space  average or mean  temperature taken 
over the region of the junction. 

Consider a very  general  model of a  transistor system 
consisting of three regions labeled 1, 2, and 3. Region 1 
is a  homogeneous solid material with a heat conductivity 
of kl,  a thermal diffusivity of a1, and continued in this 
region is a surface which  may act as  a source of heat. 
Region 1 is completely surrounded by Region 2, which 
may consist of many materials (solid or  liquid) in any 
arrangement but  does not  contain  any  heat sources.  Re- 
gion 3 will completely surround Region 2 and  the only 
requirement for this  region will be that  it is all at essen- 
tially a common  temperature which we will arbitrarily 
call  zero. In this  model we will let r be a  three-dimen- 
sional coordinate denoting  a  position in  the space of the 
system (or  model).  In  particular, we will let ro,  r12, and 
r23 represent  those values of r which form  the surfaces of 
the  heat source, of the  interface between Regions 1 and 2 ,  
and between Regions 2 and 3, respectively. It is intended 
in this  model that  the  surface ro represent  the collector 
junction, that Region 1 is the base region of a  transistor, 
that Region 2 is all other transistor  materials, and  that 
Region 3 is the environment. 

Since  Region  1 is a solid material we may write, when 
r is in  this region, that 

W 

n = l  

aT,(r, t )  
at 

= a1V2Tl(r,  f), 

subject to the boundary conditions 

where TI ( r ,  t )  is the  temperature  at  the point r (in Region 
1)  and  at the  time t .  The  notation for the  boundary con- 
ditions (Eqs.  14) implies that (a)  no heat flows across the 
surface ro, (b)  the  temperature  at  the  interface between 
Regions 1 and 2 is continuous, and  (c)  that  the  rate  at 
which heat is leaving Region 1 is the  same as the  rate at 
which heat is entering Region 2. The  particular solu- 
tion which we are seeking from Eqs. (13)  and  (14) is 
Tl(r0, t ) ,  because from this TJ(f) may be obtained. 

By the method of separation of variables it  may be as- 
sumed  that  the general  solution of Eq. ( 13) can  be found 
by letting 

where the functions Ol and R1 must yet be determined. 



- 
By substituting Eq. (15) into  Eq.  (13) we are led, in 
the usual manner,  to  the general  solution for  the  tempera- 
ture in Region 1, which is 

T l ( r ,  t)  =exp(-t/alh12)R1(r),  (16) 

where -h12 is the  separation  constant  (the positive and 
zero values of this constant having been systematically 
eliminated),  and  the  function R l ( r )  is determined by 
solving the differential equation 

V2R1 ( r )  + hl*R ( r )  = 0 (17) 

subject to the boundary  conditions of Eq.  (14).  It  turns 
out, of course, that  the  boundary conditions do  not  deter- 
mine a unique value for  the  constant h12 in Eq. ( 17),  but 
instead  allow  this constant  to assume an infinite number 
of eigenvalues, each of which can lead to a different solu- 
tion for R l ( r ) ,  Thus  the  particular eigenvalue (A1*) , 
will give as  a  solution the eigenfunction R l , ( r ) .  A com- 
plete solution  must be the  sum of the individual  solutions; 
and, in particular,  the solution  at the  surface ro will be 

Tl(ro, t )  = 2 exp[-oclt/(hlz~)nlRl,(ro). (18) 

The space  average of TI(r0, t )  over  the  surface ro will be 
obtained  by  determining the  space average of Rln(ro). 
Then, by letting T , = c u I ( ~ * ~ ) ,  and  An=Rln(ro), Eq. (18) 
may be rewritten as 

T J ( ~ )  =Tl(ro, t )  = 2 Rln(ro)exp[-ocltl(hl’).l 

M 

71 = 1 

~ M -  

7L = 1 

M 

= 2 A,exp(-t/Tn)  (19) 

which is Eq. (12).  It will  be noted that in the derivation 
of Eq. (19) it was unnecessary to  make  reference to Re- 
gions 2 and 3. This simply means  that  the form of Eq. 
( I  9) is quite independent of these regions. It is not true, 

12=1 

however, that  Eq. (19) is unaffected by Regions 2 and 3. 
If one were to  attempt, by analytic  methods  only, to 
establish the exact values of  the constants An and Tn, it 
would become  immediately apparent  that they are very 
strongly dependent on the geometry,  constitution, and 
initial state of Regions 2 and 3. It should also  be pointed 
out  that since the initial  condition for T J ( ~ )  indicates  a 
non-infinite temperature, this is a necessary condition for 
the series of Eq. (19) to converge. 
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