P. R. Strickland

The Thermal Equivalent Circuit of a Transistor

Abstract: An exact electrical analogue is given for the thermal system between the collector junction and the

constant-temperature environment of a transistor. For this circuit analogue, the voltage response to an

applied current is equivalent to the temperature response of the collector junction to an applied-power dis-

sipation. The objective of this paper is (1) to prove that this thermal equivalent circuit is entirely consistent

with the rigorous, academic approach to the problem, which is to solve a boundary-value problem for heat
flow in the transistor system; (2} to present an experimental method for obtaining the circuit parameters in
the thermal equivalent circuit; and (3) to demonstrate the utility of the thermal equivalent circuit for the cir-

cuit designer and the fransistor designer,

Introduction

This paper discusses a practical method for determining
the operating temperature of a transistor collector junc-
tion. The temperature of this minute region is an impor-
tant consideration because (1) many of the electrical
characteristics of a junction are temperature dependent,
(2) there appears to be a maximum permissible junction
temperature for any desired life expectancy of the transis-
tor, and (3) the power-dissipation rating of the transistor
can be improved if it can be designed to reduce the large
thermal gradients between the collector junction and the
environment. It is evident that the temperature at the
junction will be related in some way to the electric power
applied to the transistor and the ability of the transistor
materials to dissipate heat energy. The problem, then, is
to establish the function which relates junction tempera-
ture to the thermal system and the power dissipation. This
paper gives an electrical analogue in a network composed
of lumped RC elements. The voltage at the two terminals
then corresponds to the collector-junction temperature.
In the past much emphasis has been placed on a quan-
tity called the K-factor, or thermal resistance, of a transis-
tor. This K-factor is obtained experimentally from the
ratio between the value of the constant temperature rise
of the collector junction and the constant value of power
dissipation which produced this rise. K-factor, then, is a
measure of the power-dissipating ability of the device and
also can be used to determine the junction temperature
for a known constant-power dissipation. In practice, how-
ever, this K-factor is often multiplied by an average power
dissipation, and the result is assumed to be the average
junction temperature. But the K-factor alone, for instance,
could not specify the period of time a large power pulse

of known amplitude can be applied to a device before its
maximum junction temperature is exceeded. It is evident,
then, that the K-factor of a device is not adequate to indi-
cate temperature variations in a transistor resulting from
variations in the applied power.

An approach to this problem, which is based on solid
theoretical ground, is to solve the boundary-value prob-
lem posed by the partial-differential equations for heat
flow. One example of this approach successfully applied to
the geometry of the rate-grown transistor is reported by
Mortenson.! The difficulties with this method are (1) that
to formulate the problem requires a great deal of knowl-
edge about the internal geometry of the device, (2) that
certain physical constants, such as the heat conductivity,
diffusivity, and heat-transfer coefficients must be available
for every material in the device, and (3) that the solutions
of certain equations which are often needed can be ob-
tained only by the methods of numerical analysis. These
problems may be solved by making simplifying assump-
tions, but the results are then dependent on the validity
of the assumptions, and hence, on the ability and judg-
ment of the problem-solver.

A third approach, which is an extension of the K-factor
concept and also consistent with the boundary-value ap-
proach, is to propose a thermal equivalent circuit for the
transistor. The circuit representation of a thermal system
is permitted by an analogy between certain electrical and
thermal quantities. These analogous quantities are listed
in Table I. An example of a quantitative attempt to use
this thermal-equivalent-circuit approach was reported by
Simons,? although many others have suggested its use in
a qualitative manner. Apparently no one has shown that
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Tablel A list of analogous quantities between thermal and electrical systems.

Electrical Thermal

V' voltage (volts) T temperature (°C)

I current (amps) P power dissipation (w)

R electrical resistance (ohms) R thermal resistance (°C/w)

C electrical capacitance (farads) C thermal capacitance (w-sec/ °C)

the quantitative use of this circuit is justified or that it is
as valid as the rigorous, academic approach mentioned
above. In addition, the particular thermal equivalent cir-
cuit which has been used for the transistor, although not
incorrect, is certainly not in its simplest form. This paper
will prove that the equivalent circuit obtained here will
yield numerical solutions for its terminal voltage (as a
function of an applied current) which are exactly equiv-
alent to the solutions from the heat-flow equations for
the temperature of the collector junction (as a function
of an applied-power dissipation).

The validity of the equivalent circuit is based on the
treatment of two physical quantities, heat capacity and
thermal conductivity, according to the Cauer extension
of Foster’s reactance theorem, which states, in part, that
any network of RC elements has a driving-point imped-
ance that can be constructed of a single series string of
parallel RC pairs.? The mathematical analysis presented
in this paper leads to a thermal equivalent circuit with
precisely this form. The mathematical analysis (given in
the Appendix) of a very general model of a transistor will
indicate that the number of parallel RC pairs in the series
string should theoretically be infinite. The initial condition
of the system, however, makes it a necessary condition
that the series solution (where each term represents an
RC pair) must be convergent. Therefore, it is shown that
a series string with a finite number of parallel RC pairs
can give a correct solution to any desired degree of accu-
racy. The determination of the precise number of RC
pairs required for practical convergence will depend on
an accurate K-factor measurement.

After the validity of the thermal equivalent circuit is
shown, it will then be demonstrated how the circuit
parameters can be determined experimentally. Then the
important applications of the equivalent circuit for the
circuit designer and the transistor designer will be
discussed.

The thermal equivalent circuit

It is shown in the Appendix that for no applied-power
dissipation at the collector junction of a transistor, the
temperature decay at the junction will be given by

T,(t) = % Anexp(—1t/m), (1)

where the constants 7, and A, depend on the geometry,
materials, and the initial conditions of the system. It will
now be shown that a solution of this form may be ob-
tained for the voltage decay at the terminals of a certain
passive electrical network, and that the analogy presented
in Table I may be applied to this electrical circuit to ob-

IBM JOURNAL * JANUARY 1959

tain an equivalent thermal circuit. We begin by asking
what differential equation would give as a solution one
of the terms of the series in Eq. (1), and find immediately
that it would be

dT, T

-+
dt n

= 0. (2)

If in Eq. (2) the constant 7, is replaced by the product of
the thermal resistance R, and the thermal capacitance Cn,
then Eq. (2) can be rewritten as
dT, T

” + R 0. (3)
In the heat analogue, Eq. (2) can be considered the dif-
ferential equation for the temperature drop across the
terminals of a thermal resistor in parallel with a thermal
capacitor, where the power dissipation applied to the
terminals is zero. The solution of this equation is, of
course,

Tn(t) =Tn(0)exp(—1t/R.Cy), (4)

where T,(0) is the value of T,(¢) at the time ¢ equal to
zero. If m such parallel RC networks were placed in
series, as in Fig. 1, then the total temperature drop along
the string would be the sum of the temperature drops
across each of the thermal RC networks. Thus

Cr

m m
T(t) = 3 Tau(t) = 3 Tu(0)exp(—t/R.Cy). (5)
n=1 n=1
The fact that the infinite-series solution, Eq. (1), must
be convergent, as pointed out in the Appendix, is justifi-
cation for approximating this solution by a finite series.
To demonstrate this point, let us suppose that a source of
constant power dissipation P, were applied to the ter-
minals of the thermal equivalent circuit as in Fig. 1. After
a sufficient time interval, the temperature drop across the
terminals will be constant and would be given by

"
T,=Py 3 R, (6)

n=1
Since T, will be a constant with some finite value, then

m
S R, must also be finite, and accordingly as m increases,
n=1

the value of R, must approach zero. In a practical sense
it will always be possible to find a value for m such that

the value of P, 3 R, will be essentially zero to any de-
n=m+1
sired degree of approximation. It will be noted that the

o0

quantity 3 R, is identical to the K-factor of the tran-
n=1

sistor.




In general, the two accessible terminals in the thermal
equivalent circuit of Fig. 1 represent the collector junc-
tion and the constant ambient temperature of the transis-
tor. Unlike the more general equations for heat flow, such
as Eq. (13), this thermal-equivalent-circuit approach can
determine the temperature as a function of time at only
one point in the transistor — the collector junction; and
the best that could be anticipated is that an equivalent
circuit could be found which would give the temperature
at any number of discrete points in the transistor. The
reason for this, of course, is that in electrical circuits one
desires a solution for the voltage at only those points
which are between the circuit elements, and the mathe-
matics then leads to a total differential equation. On the
other hand a solution for some quantity such as the
temperature over a continuum of points must satisfy a
partial-differential equation, such as the heat-conduction
equation. But since the temperature at the collector junc-
tion is of primary interest, and the problem has been
simplified by the invention of a thermal equivalent cir-
cuit from one which involved a boundary-value problem
of the second order to a first-order total differential equa-
tion, then this limitation of the equivalent circuit is not
a serious one.

We have shown that the solution of the heat-conduction
equation for the temperature variation at the collector
junction is identical to the solution obtained from the
thermal equivalent circuit for the special case of no
applied-power dissipation. It is then necessary to show
that these solutions will be identical if a power dissipation
P(t) is applied to the collector junction. For this case the
boundary condition Eq. (14a) of the problem would
then be nonhomogeneous and given as

oT
o= pHn| (7)
On |70 o
where the functions p(#) and f(r) would be such that
P(1) =/ﬂ(1)f(")d": (8)
o

where ro represents the collector-junction surface (see
Appendix).

The boundary-value problem then becomes one of a
homogeneous differential equation with a nonhomogene-
ous boundary condition. This problem is identical to
having a nonhomogeneous differential equation with a
homogeneous boundary condition as shown by a theorem
found in many textbooks.* It is clear, then, that the solu-
tion obtained from the equivalent circuit when the driving
function P(¢) is included at the terminals is identical to
the general solution of the nonhomogeneous differential
boundary-value problem.

The Joule heating in the base region of the transistor
has been neglected in this discussion since its magnitude
is usually quite small compared to the power dissipation
at the junction. When Joule heat cannot be neglected, it
can be added to the differential equation as another driv-
ing function without affecting the validity of the thermal
equivalent circuit.

Experiment to determine circuit parameters

The circuit parameters were determined experimentally
from measurements of temperature decay of the collector
junction. A constant power dissipation P, was applied
to the collector junction of a transistor operating in a
grounded-base configuration for a period of time suffi-
cient to insure thermal equilibrium. At a time designated
as zero the power dissipation was completely removed
and the temperature decay of the junction to the ambient
temperature recorded. This cooling curve of the junction
was of the form predicted by Eq. (1), the analytical
solution for the corresponding set of initial and boundary
conditions. This agreement has been borne out by experi-
mental data for six samples, and the details and results
of one representative experiment will be reported.

The test unit was a low-power PNP alloy-junction
transistor, IBM Type 13. The first step of the procedure
was to calibrate some electrical characteristic of the junc-
tion as a function of temperature. The particular choice
made here was the saturation current, which is fairly

Figure I The thermal equivalent circuit for the collector junction of o transistor, along with the analogous
circuit elements necessary to produce the cooling curve. T,,,(# is the temperature difference between
collector junction and ambient as a time function. T, is a battery representing constant ambient
temperature. P. is constant applied power for $<0.
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1s=AT3 expi{-e&g/kT)

where

A=CONSTANT OF JUNCTION GEOMETRY
e=ELECTRONIC CHARGE

k=BOLTZMANN'S CONSTANT

&g =ENERGY GAP OF EXTRINSIC GERMANIUM

2 / —

SATURATION CURRENT, I, IN pa

3.3 3.2 3.1 3.0 2.9 2.8 2.7

RECIPROCAL ABSOLUTE TEMPERATURE, T, IN °k 1 x10°

Figure 2 Experimentally obtained curve for the saturation current of the test unit as a function of the recip-
rocal absolute temperature with the experimental points indicated. (The use of the straight line to
38 smooth the data neglects the slowly varying T2 factor.)
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Figure 3 The test circuit used in the determination of the cooling curve.

independent of the reverse bias needed on the junction,
provided this bias is between 0.2 and 2 volts.? Thus with
the unit immersed in a temperature bath the saturation
current I, was measured at different temperatures and
plotted in Fig. 2. The theoretical function for the tem-
perature-dependent saturation current has been shown by
DeWitt and Rossoff.® The value of energy gap &, de-
duced from the slope of the curve in Fig. 2 is 0.65 ev.*

Next the test unit was placed in an environment of cir-
culating silicone oil held at room temperature. The test
unit was then connected to the circuit of Fig. 3. With the
manual switch in its normally closed position, the col-
lector junction dissipated power Py="V2l., controlled by
the potentiometer R. Depressing the switch** opened the
emitter circuit and applied the one-volt bias V; in series
through the sense resistor R, to the collector junction.
The image of the vertical motion of the oscilloscope trace
was recorded on a film moving horizontally past the face
of the oscilloscope. With the vertical and horizontal dis-
tances on the film calibrated to indicate saturation cur-
rent and time, respectively, this experimental curve was
then converted into a temperature/time cooling curve by
means of the calibration plot of Fig. 2. Subtracting from
these data the constant ambient temperature T, gave the

*This value compares favorably with 0.75 ev for Ge at 0°K, American
Institute of Physics Handbook, McGraw-Hill Book Company, Inc., New
York, 1957, P. 5-158,

**When the switch is depressed, the relay (Clare Mercury Wetted Contact)
is transferred to its “‘off” position.

curve T, in Fig. (4a). Since this plot approaches a
straight line on semilog paper, it was assumed to be the
contribution of the exponential term with the largest time
constant. The difference between the cooling curve and
the extrapolated straight line which it approached was
then taken to be the contribution of the sum of the re-
maining exponential terms. This difference was plotted
in Fig. (4b) as T,, — T1o. Again the plot approached a
straight line, for which the exponential term was assumed
to be the second in the series solution. This procedure of
graphical analysis was continued until a curve was ob-
tained that was considered to be an experimental straight
line down to time zero. Thus the finite-series solution
(which would approximate the infinite-series solution in-
dicated by the heat-conduction equation) would contain
four exponential terms for the test transistor in this par-
ticular environment. The value of the time constants and
the initial values of each term have been taken from the
plots, and the required calculations for circuit parameters
of the thermal equivalent have been indicated on each
plot. The equivalent circuit and the numerical conditions
and results of this experiment are tabulated in Table II.
In this experimentally obtained equivalent circuit, the
question arises as to whether or not there might be an-
other network with a very small time constant which
should also be included. Additional shorter time con-
stants no doubt exist, but the real question is whether
the corresponding RC networks — in the context of
the analogy — can support any appreciable temperature
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Table II The thermal equivalent circuit of the test unit and the values of the circuit parameters.

Test unit: PNP germanium alloy junction (IBM Type 13) transistor
Initial power dissipation: 150 mw

Ambient temperature: 30°C

Environment: Circulating silicone oil

Network

Network n T °C Tny SEC R,, °C/mw C,, mw-sec/°C
1 2.83 6.05 0.0189 320
2 11.0 1.21 0.0734 16.5
3 2.90 0.300 0.0193 15.6
4 7.10 0.0117 0.0473 0.248

40

4
K-factor= > R,=0.1589

n=1

drop. To determine this, the total thermal resistance, or
K-factor of the test unit, was measured at twelve different
levels of constant power dissipation in circulating silicone
oil at 50°C. The averaged value of these measurements
indicated a total thermal resistance of 0.162°C/mw.

As indicated in Table II, the sum of the thermal re-
sistances of the four networks obtained in this experiment
is 0.159°C/mw. Thus the total of the omitted networks
can have only an additional 0.003°C/mw thermal re-
sistance. For a constant power dissipation of 150 mw,
this represents a temperature drop of only 0.45°C. Since
the transistor is rated at only a fraction of this power
dissipation, the error in the junction temperature intro-
duced by the omission of these networks will be very
small. The above analysis depends, of course, on the
ability to obtain a valid and independent measurement
of the K-factor of the test unit, and for this the reader
is referred to recent work by Reich? and by Nelson and
Iwersen.®

The power dissipation for the above K-factor measure-
ment was not actually held constant but consisted of peri-
odic rectangular pulses with an amplitude Py, a repetition
rate of 20 cps, and a duty cycle of 0.98. The waveform
of the saturation current was observed during the 1-msec
interval in which the power dissipation was “off.” The ap-
pearance of the waveform during the first 20 usec was
attributed to circuit transients resulting from the switch-
ing, but the remainder of the waveform, which was almost
linear and had only a very slight slope, could quite easily
be extrapolated to the beginning of the time interval, thus
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indicating the temperature at the moment the power Po
was interrupted.

It should also be pointed out that there is no theoretical
objection to an experimental environment of air (either
still or moving at constant velocity) at constant tempera-
ture, since at the external surface of the transistor a
boundary condition based on Newton’s law of cooling
and its associated “heat transfer coefficient” includes the
possibility of convection currents in any fluid medium.
The environment of circulating silicone oil was used in
this case because it was experimentally simple to create
and measure.

Application of the thermal equivalent circuit

Once the thermal equivalent circuit for a particular tran-
sistor or transistor type has been established by experi-
ment, the circuit designer may simply determine the
temperature response of the collector junction as a func-
tion of the applied-power dissipation. This is accom-
plished by imagining the known function of power
dissipation to be a current function applied to the ter-
minals of the equivalent circuit, and by solving for the
voltage response across the terminals. If, for instance,
the applied-power dissipation were sinusoidal, then the
collector temperature would be expected to vary sinus-
oidally with some predictable amplitude and phase shift
with respect to the applied power. The temperature
response to periodic power pulsing and to single pulses
can easily be established. In fact the temperature response
of the collector junction for any known, applied-power




Figure 4 Graphical analysis of the cooling curve for the test unit.
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dissipation can be determined by the analysis of a simple
series of RC networks.

As an example, consider the case of switching circuits
where the transistor might be subjected to periodic power
pulses, i.e., for a given interval of time a (Fig. 5a) a
constant amount of power P, is dissipated by the tran-
sistor and then the device is turned off for the remainder
of the period p. Let b denote the power-off time. With the
aid of the thermal equivalent circuit and the rules for
circuit analysis it is now possible to determine the tem-
perature response of the junction for this particular
function of applied-power dissipation. To simplify this
example, only the steady-state response will be obtained;
however, the transient response for the first few seconds
of pulsing could be obtained by a more complete circuit
analysis. It is observed from Fig. 1 that temperature
variations across only a single RC network need be ana-
lyzed since the others will be identical in form — differing
only in their particular values of R and C. When the
calculation for this one network is complete, it can then
simply be added to the response of the others in order to
get the total temperature response. The steady-state tem-
perature response of the nth thermal RC network is given
by the following two functions:

(%9a)
To(t) =[PoRp—Trn(min)][1—exp(—¢t/R,Cy) 1+ T, (min)

for the time interval when P(t) =P,, and
T.(t) =T,(max)exp(—t/R,C.) (9b)

for the time interval when P(t) =0, where T,(min) and
T.(max) are constants representing the minimum and
maximum temperatures, respectively, across the network
during a cycle. Since the value of T,(min) is obtained at
the end of the power-off time, its value in terms of
T.(max) may be obtained by putting the value b into
Eq. (9b) for ¢, obtaining

Tn(min) =T,(max)exp(—b/R,C,) (10)

The value of T,(max) can be obtained from Eq. (9a)
after the time interval a. Thus, after substituting Eq. (10)
into Eq. (9a) and then replacing the dependent variable
T,(¢) with T,(max) and the independent variable ¢ with
a, the resulting expression may then be solved for
T,(max), yielding

1—exp(—a/R,C,)
1—exp(—p/R,.C,) )

The constants of Egs. (9), T»(min) and T,(max), can
now be obtained from Eqs. (10) and (11), and by sum-
ming Eqgs. (9) over the m networks the instantaneous
junction-temperature response is determined. Figure S5b
illustrates this steady-state response of the junction tem-

T.(max) =PoR, (1

Figure 5 The steady-state temperature response of the collector junction for an applied-power dissipation
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® Ts(t)

m
2 > R2C,Th(max) [l —exp(—a/R,C,)] [1—exp(—b/R,Cy)]
n=1

m 1—exp(—a/R.Cr)

m
T —_ Tn T =Po Rﬂ
s(max) = ¥ Tp(max) +T, > I —exp(—p/R.Cy)

n=1 n=1

T,(min) = § Tn(min) =3 T, (max) exp(—5b/R,C.)

n=1

3

OT,(t) = T.(max)exp(—1t/R,Chr)
1

n

+ 1

= % {(PyR,) —Tn(min) [1—exp(—1/R;Cyr)]+ Tn(mi



Figure 6. A proposed extension of the thermal equivalent circuit for a transistor to include the emitter

junction.

perature for an excitation of periodic power pulses. Also
shown on this plot is the solution for the time average of
the junction temperature, and it will be noted that this
average is always less than the average obtained by multi-
plying the average power dissipation (a/p)Py by the
K-factor

(£%)

The thermal equivalent circuit might also be extended
to include the temperature response of the emitter junc-
tion as suggested by the circuit configuration of Fig. 6.
The circuit parameters of this network might be analyzed
by determining the cooling curve of the emitter and col-
lector junctions separately and, from the difference of
these, establishing the cooling curve of the emitter with
respect to the collector junction. Since the question of
the emitter temperature caused by power dissipation of
the collector frequently arises in transistor work, this
equivalent circuit would be worthwhile. If the power dis-
sipation at the emitter can be neglected, then one need
only measure the thermal resistance between emitter and
collector junction, since by Eq. (16) all points have the
same time constants.

For the transistor designer who has attempted an analy-
sis of the heat-conduction equation for a particular geom-
etry, the experimentally obtained time constants of the
thermal equivalent circuit can be used as a check on the
results of the analysis. Since in general the completion of
the problem in the Appendix for numerical results may
be very difficult, it is extremely helpful in such an analysis
to be able to make valid simplifying assumptions. When
the boundary conditions of the problem are imposed on
the general solution Eq. (16), a characteristic equation
will evolve which determines the permissible values, or
eigenvalues, of the separation constant A2, Obtaining this
equation and subsequently solving it for the eigenvalues
is straightforward in principle only. For example, to find
this equation for the test unit reported on earlier it would
be necessary to know the geometrical dimensions in de-
tail, since it is necessary to solve for the space part of
the solution R(r). But if it can be assumed that certain
regions of the transistor are approximately independent
of the remainder of the device, it might be possible to

break the complex problem into several simpler ones. To
obtain an intuitive understanding, consider the linear flow
of heat through several materials in succession, where the
effective time constants for each region differ from the
time constants of the others by several orders of magni-
tude. Then when a thermal gradient is established through
these materials in series and the heat source is removed,
one would expect the temperature drop across the mate-
rial with the shortest time constants to become effectively
zero before the others have started their temperature
decay. During the remainder of the temperature decay
of the system the material with the short time constants
will simply assume a constant temperature throughout
which is equal to that at its boundaries.

This approximate method will now be applied, in a
crude manner, to obtain analytically the time constants
of the test unit. The transistor is assumed to have right-
circular geometry with the active elements occupying a
very small volume at the center, the bulk of the thermal
system (the desiccant powder and the case) to be the
second region, and the third region to be the stationary
film of oil adjacent to the case. Since the case is not actu-
ally circular, its radius is approximated by the dimension
0.3 cm. For geometries involving right-circular symmetry
it can be shown that the space function R(r) turns out to
be a Bessel-type function and that the eigenvalues are
determined by the characteristic equation Jo(rA;) =0. The
values of the argument of this Bessel function which give
it a zero value are tabulated, and when 7 is divided into
these tabulated values the eigenvalues A; are obtained.
The time constants then are simply 1/ a2, and by assum-
ing a diffusivity « of 0.01 cm?/sec a series of time con-
stants can be computed, the first three of these being 1.5
sec, 300 usec, and 65 usec. The first two agree very well
with the experimental values and it may be considered
that the series solution for this region converges in only
two terms. The smallest time constant in Table IT must
be contributed by the comparatively small central region
and the series for this region apparently converges in only
one term. Since the details of internal structure are not
very well known in this case, an analysis of this region
cannot be made here. The value in making such an analy-
sis is that if a valid experimental K-factor measurement
cannot be performed, the experimental time constants
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will serve to check and improve the analytical solution.
It is then possible to determine as many short time con-
stants and coefficients as necessary and then to decide
how many terms must be included in the series for practi-
cal convergence.

The six-second time constant in Table II can be asso-
ciated with the third region, that of the environment. The
time constants for this series (convergent in one term for
this test unit) will depend strongly on the value of the
heat-transfer coefficient discussed earlier. To compute the
value of this constant for a particular boundary or inter-
face is impossible in most instances. But an improvement
of the coefficient as a result of redesign may be observed
readily in a smaller value of the constant R; in Table II.
This same argument can be applied to the other regions
and the results can ultimately be used to obtain optimum
power-dissipation ratings in package designs.

One further application of the thermal equivalent cir-
cuit might be to check the uniformity of manufactured
transistors by determining the variations in the thermal
circuit parameters from unit to unit. Defects such as poor
thermal bonds between germanium wafers and base tabs
might be rapidly detected in this way.

Conclusions

By considering the academic approach to the problem of
heat conduction in a transistor, a thermal equivalent cir-
cuit for the transistor was derived. The validity of this
equivalent circuit was established mathematically, and
an experiment to determine the circuit parameters was
described. The temperature response of a semiconductor
junction to an applied-power dissipation can then be de-
termined by analyzing this circuit rather than by the more
difficult solution for the boundary-value problem asso-
ciated with the partial-differential equation of heat flow.
Thus a practical approach has been developed for the
problem of determining the instantaneous value of the
junction temperature of an operating transistor as a func-
tion of time. The usefulness of the thermal equivalent
circuit has also been indicated for the development of
optimum power-dissipation ratings in transistor designs.

The graphical analysis of the cooling curve of a junc-
tion presented here is not necessarily the best method for
determining the circuit parameters of the equivalent cir-
cuit. If this method should be used for a particular tran-
sistor which has significant short-time-constant networks,
care must be taken in the construction of the test circuit
so that the cooling curve is not masked by electrical
transients for very small time intervals. Also some reliable
method of determining the K-factor of the transistor
must be used to determine the completeness of the equiv-
alent circuit obtained.

Appendix

The purpose of this section is to demonstrate that the
temperature decay at the collector junction of a transistor
for the special case of no applied-power dissipation can
always be expressed in the form
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Ti(1) = S Anexp(—t/72) (12)

where in principle, at least, the constants 7, and 4, may
be determined from a knowledge of the geometry, con-
stitution, and initial state of the system, which includes
the environment. In Eq. (12), T,(¢) must be regarded as
some sort of a space average or mean temperature taken
over the region of the junction.

Consider a very general model of a transistor system
consisting of three regions labeled 1, 2, and 3. Region 1
is a homogeneous solid material with a heat conductivity
of ki, a thermal diffusivity of ai, and continued in this
region is a surface which may act as a source of heat.
Region 1 is completely surrounded by Region 2, which
may consist of many materials (solid or liquid) in any
arrangement but does not contain any heat sources. Re-
gion 3 will completely surround Region 2 and the only
requirement for this region will be that it is all at essen-
tially a common temperature which we will arbitrarily
call zero. In this model we will let r be a three-dimen-
sional coordinate denoting a position in the space of the
system (or model). In particular, we will let 7o, r12, and
o3 represent those values of r which form the surfaces of
the heat source, of the interface between Regions 1 and 2,
and between Regions 2 and 3, respectively. It is intended
in this model that the surface r, represent the collector
junction, that Region 1 is the base region of a transistor,
that Region 2 is all other transistor materials, and that
Region 3 is the environment.

Since Region 1 is a solid material we may write, when
r is in this region, that

oT(r, t
D e Tir,0), (13)
ot
subject to the boundary conditions
LA B (14a)
on | 7o
Ty|, =Te|, (14b)
0T,
k1 on . = P2 o (140)

where T, (r, t) is the temperature at the point » (in Region
1) and at the time ¢. The notation for the boundary con-
ditions (Egs. 14) implies that (a) no heat flows across the
surface ry, (b) the temperature at the interface between
Regions 1 and 2 is continuous, and (c¢) that the rate at
which heat is leaving Region 1 is the same as the rate at
which heat is entering Region 2. The particular solu-
tion which we are seeking from Eqs. (13) and (14) is
T1(ro, t), because from this 7;(¢) may be obtained.

By the method of separation of variables it may be as-
sumed that the general solution of Eq. (13) can be found
by letting

Ta(r, ) =01(1)Ra(r), (15)

where the functions #, and R; must yet be determined.




By substituting Eq. (15) into Eq. (13) we are led, in
the usual manner, to the general solution for the tempera-
ture in Region 1, which is

Tl(r, t) =—exp(~t/a1/\1'~’)R1(r), (16)

where —A\,? is the separation constant (the positive and
zero values of this constant having been systematically
eliminated), and the function R,(r) is determined by
solving the differential equation

V2R1(r) + M2R(r) =0 (17)

subject to the boundary conditions of Eq. (14). It turns
out, of course, that the boundary conditions do not deter-
mine a unique value for the constant A1* in Eq. (17), but
instead allow this constant to assume an infinite number
of eigenvalues, each of which can lead to a different solu-
tion for Ri(r). Thus the particular eigenvalue (A12)x
will give as a solution the eigenfunction Ry,(r). A com-
plete solution must be the sum of the individual solutions;
and, in particular, the solution at the surface r, will be

Tl(r(), t) = Z exp[—alt/(/\lz)n]Rln(ro). (18)
n=1

The space average of T1(ro, t) over the surface #; will be

obtained by determining the space average of Ry,(ro).

Then, by letting mn=a1(\?1), and A,=R1.(r), Eq. (18)

may be rewritten as

T8 =Tilre ) = S Ron(ro)expl—aat/ (M2).]

n=1

Ms

Anexp(—1/7a) (19)

n=1

which is Eq. (12). It will be noted that in the derivation
of Eq. (19) it was unnecessary to make reference to Re-
gions 2 and 3. This simply means that the form of Eq.
(19) is quite independent of these regions. It is not true,

1

however, that Eq. (19) is unaffected by Regions 2 and 3.
If one were to attempt, by analytic methods only, to
establish the exact values of the constants 4, and », it
would become immediately apparent that they are very
strongly dependent on the geometry, constitution, and
initial state of Regions 2 and 3. It should also be pointed
out that since the initial condition for T,;(¢) indicates a
non-infinite temperature, this is a necessary condition for
the series of Eq. (19) to converge.
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