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Abstract: Hamming considered the  problem  of efficient, faultless transmission  of binary  data over a noisy 

channel. For a channel which corrupts no  more  than  one  binary  digit  in  each sequence  of length n,  he 

constructed alphabets,  the  so-called  Hamming codes, which permit  error-free  signalling. The authors study 

the  analogous  problem for  channels which can corrupt a greater  number of digits.  Non-binary channels are 

also studied, and  analogues  of  the  Hamming codes are constructed. It is  perhaps of  interest that some of 

the  techniques employed  derive  from  algebraic  and  analytic  number  theory,  mathematical disciplines not 

generally associated with the type of applied  problems considered in this paper. 

1. Introduction and survey  of results 

We must begin by introducing sufficient notation to discuss 
the background of the subject and describe our results. To 
this end let ($5, denote the set of binary sequences of 
length n. There are N = 2  such sequences or “points” 
which  may be considered as the  coordinates of the vertices 
of a unit cube in n-space. A set E consisting of M such 
vertices is called, following Hamming,:’ an e-error correcting 
code if any two points of differ  in at least 2e+1 coordi- 
nates. The reason for this designation is that if e or fewer 
“errors” are made in transmitting  a binary sequence of E ,  
i.e., if not more  than e digits undergo change  during  trans- 
mission, it is possible in principle to recover the trans- 
mitted sequence. Designating by the distance between two 
points x, y of C!:, the number of coordinates in which they 
differ, we are  thus led to  the problem of finding subsets 
e of (ci,, whose points have mutual  distance > d= 2 4 -  1 ; 
such a set is called an (n,d) code. 

Following the notation of Plotkiq8 we let A(n,d) denote 
the maximum number of points of which can have 
mutual distance > d. This definition is, of course, meaning- 
ful also for d even, d=2e. A set of vertices having mutual 
distance 2e is called an e-error detecting code because in 
this case it is possible to completely restore  a sequence 
containing < e-I changes and  to recognize, given a 
sequence containing e changes, that  an  error in transmis- 
sion has been made, although it is in general not possible 
to restore the message unambiguously. It is readily shown 
that all problems concerning e error detecting codes are 
reducible to problems concerning (e-  I)-error-correcting 
codes of order n-1,  i.e., A(n,2e)=A(n-1,2e-I), and a 
simple correspondence exists between (n,2e) and (n- 1, 

- 

2e - I) codes involving a single parity check;  thus error- 
detecting codes as such will not be further considered in 
this  paper. 

Under digit-wise modulo 2 addition Cvn is a  group, and 
the distance between two points x, y is just the  number of 
ones  in  the sequence x+y;  we denote by llxli (read: norm 
or weight of x) the number of ones in the sequence x. Of 
special interest are those (n,d) codes ’% which are sub- 
groups of CYn; such codes are called systematic or group 
codes, and  are of special interest for the following reason: 
the decoding of received messages, i.e., the actual correc- 
tion of wrong digits, can be  effected  by means of a parity- 
check matrix if and only if the code employed is a  group 
code.*  Another  advantage is that group codes can be com- 
pletely  specified  by  giving relatively few data, namely a 
basis or even a parity-check matrix. Although it is  likely 
that certain  non-group codes also lend themselves to simple 
mathematical specification and detection procedures  other 
than parity checks,? the group codes are  of central impor- 
tance. They are also especially convenient to work with 
mathematically. Because x f y  is a  code  point whenever x 
and y are, we see that a systematic (group) e-error correcting 
code is a subgroup of an all of whose elements (except 
O = O O .  ..O) contain at Zeast d=2e+l ones. The maximum 
size of such a  code we denote by B(n,d) and a  code  attaining 
this size is called a maximal code. The remarks about  error- 
detecting codes apply also to group codes, i.e., we have 

~~~ 

*For a proof, and a  very  lucid  discussion of parity-check  procedures  and  other 
basic matters, see Slepian’. See also Lloyd6. 
t In  this  category are the  “quadratic  residues” codes of Plotkins, u hich one can 
generalize on the basis of uork of Paley; and  others in connection  with  the 
quite  different  problem of “Hadamard  matrices”, 25 
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is a power of 2 and B(n,d)<  A(n,d)< 2". We have further, 
as Hamming3 showed, 

To see this, associate with each  point x of an (n,2e+l) code 
the "sphere" ! x consisting of all points of an having dis- 

tance < e from x. If x#y, B, and eY are disjoint;  for if not, 
a point z lies in both Bx and By, i.e., has distance < e from 
x and y, whence x and y have distance < 2e, a  contradiction. 
Hence, the number of code points is precisely the number 

of spheres, and since each 6, contains 1 + (;)+-+(:) 
points, and C%,, contains 2' points  altogether, the number 
of spheres cannot exceed the right side of (1). 

In  the case e = 1 ,  we have 

A(n,3)< - * 
2" 

n+ 1 
The right  side is an integer if and only if n has  the form 
2" - I and Hamming showed that in this case equality holds 
in (2), in  fact even 

that is, equality is attained for a group code.  And for all n, 
whether or not of the  form 2k - 1, B(n,3) is the largest power 
of 2 not exceeding 2rJ/(n+ 1) .  Any code which  gives equality 
in (2) corresponds to a  remarkable decomposition of an, 
for in this  case the disjoint spheres 8, described above com- 
pletely exhaust &. Hence, such codes, whether systematic 
or not, are called close-packed. Close-packed codes, when 
they exist, are maximal and also  have many remarkable 
symmetries, as we shall see below. It is natural  to begin a 
general study of error-correcting  codes with a  quest  for 
close-packed codes. We  will see that  the results for e> 2, 
unlike the case e = 1 ,  are basically negative, i.e., there are no 
close-packed double-error correcting codes except the trivial 
(5 ,  5 )  code with 2 points;  for e=3,  there is a  remarkable 
group  code that was discovered by Golay,  a close-packed 
(23, 7) code having 2" points. We  will show that, aside from 
this  code and  the trivial (7, 7) code having two points, there 
are no further  close-packed triple-error correcting codes. 
Detailed settlement of the question for e 2 4  is more diffi- 
cult,  although we can show easily that  for each e 2 4  the 
number of close-packed e-error  correcting  codes is finite. 
Of course, this  does  not preclude the existence of very large 
and non-trivial close-packed codes. For e odd, moreover, 
we shall give a  procedure for obtaining  any possible close- 
packed code. 

In Section 4 we obtain a new lower bound  for B(n,d). 
The gap between this bound  and Hamming's upper bound 
is still great  enough to have  qualitative significance, in the 
sense of attaining  channel  capacity8 for a symmetric binary 
channel, by means of error-correcting codes. We  give also 
a procedure by means of which large (n,d) systematic codes 

26 can be constructed for successive values of n ;  although 

I 

In Section 5 we extend the Hamming  codes and  the 
results of Section 4 to  the case of a  p-ary  channel, where p 
is any prime number.*  Although the p-ary  channel is pres- 
ently of less practical interest than  the binary, fairly large 
binary codes can  be  constructed by means of p-ary codes, 
by encoding p-ary symbols into binary. 

2. Symmetries of close-packed codes 

Theorem 1 

Let 6 be a close-packed (n,d) code (d=2e+l ) .  Then  the 
ratio 

is an integer, and every code  point has distance d from 
precisely v other  code p0ints.t 

Pro0 f 
Let x be a  point of @. Without loss of generality we may 
assume that x = O .  For, if we replace each  point  y of by 
y+x, we get a configuration congruent to @ containing 
O=x+x. Consider now the set Y of all  points y of at 
distance e+1 from 0, i.e., points of a,, having exactly 

e+l ones. There are ( e ; l )  such. Each y lies in a sphere 

of radius e about some  particular code  point z, since e 
is close-packed. Clearly JIzIJ =2e+l .  Thus,  each such y is 
obtained once and only once by taking  a code  point having 
2e+l ones, and changing e of its ones to zeros, i.e., the  num- 

ber of points in 12) is ( times v, the number of code 

points z of norm 2e+ 1. This proves the theorem. 

Theorem 2 

Let 3 be a close-packed (n,2e+ 1 )  code, and x and y points 
of 6 Then, given any e f l  distinct integers of the set 
1,2,..42 there is one  and only one point y of e having 
distance 2ef l  from x, and differing from x in each of 
these e+ 1 positions. 

Pro0 f 
As in Theorem 1 ,  it is sufficient to assume x=O. Now, that 
there is at most one y with the stated properties is clear; 
for, if there were two such, y1 and y 4 ,  we would have ilylll= 
J /ys J I  =2e+l  and, since y l  and yz must  agree in at least 
e+l digits (namely, those digits where they differ from 
x=O, i.e., where they have ones), we should have I/yl+ 
y l l l <  2e, a  contradiction. On the  other hand, letf(Z) denote 
the number of code points of norm 2e+ 1 ,  having ones in 
e+ 1 prescribed positions (here I denotes  a set of e+ 1 dis- 
tinct positions). Then, 

*Added in proof: The  authors  have since  learned of work  similar to that  in 
Section 5 by Golay', Lee6, and Ulrich." 
t A  system of equations  apparently  equivalent to our  system (S )  derived in 
Section 2, but involving  complicated  sums  of  binomial coefficients was obtained 
by Lloyd6 using  a  generating  function  technique. 
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since each code point of norm 2e+l is counted 

times in  this  summation. However, since f(1) =O or 1 (by 

the above) and there are precisely summands on 

the left-hand side, AI) i s  always 1 ,  otherwise the sum on  the 
( 

left would be < ( e:l), a contradiction. 

Theorem 3 

Let % be a close-packed (n,2e+ 1) code.  Then p = - 1s an 

integer, and if x is any code point, the number of y in G at 
distance 2e+ 1 from x, and differing from x in e prescribed 
positions is precisely p. 

Pro0 f 
As before, we may suppose x = 0. Let I denote a set of e 
distinct positions, and A I )  = the  number of code points of 
norm 2 4 - 1  which differ from x in all of the positions I. As 
before 

rz-e. 
e+ 1 

On  the  other  hand, 

for every I ,  where [ ] denotes "greatest integer", for, con- 
sider the set of y of norm 2 e f l  having ones  in e places; 
the remaining e+l ones must be placed in mutually dis- 
joint positions or else minimum distance 2e+l cannot be 

preserved. Thus,  there are  at most [z] such y. Hence, 

since the  number of admissible I is 

Hence, 

and equality can hold only if 
" 

and further f (I)=- for all Z. This completes the proof. 

Theorem 4 

Let G be a close-packed (n,2e+ 1) code and 2e+ 1 6 r< rz. 
Then  the number of code  points having distance precisely 
r from a given code point x is an integer v (n.e;r) which 
does not depend on  the particular  point x nor upon the 
particular code chosen. 

n-e 
e + l  

Proof 
For convenience of notation we set v(rz,e;r) =a,. The proof 
will obtain by deriving a system of linear  equations for  the 
a, from which they can actually be calculated. For sim- 
plicity of presentation we deal with the concrete case e =2, 
but  the procedure employed is perfectly general. 

Consider the subset of an, consisting of those ele- 
ments of @jn of norm k.  Since @ is close-packed, we may 
with every x in a,, associate a unique y=y(x) in G such 
that Ilx+yII < 2.  In particular we may do this for x in aflk 
and thus decompose @nk into three mutually disjoint sub- 
sets 

@Jnk =@O,k+@1,k+@znk , 
where an x of ajnk is placed in Wnk if I[x+y(x)ll =r, 
(r=0,1,2). @',k consists of those x in @%k which belong to 
e, and so has ak elements. If x is in @Ink, we may dis- 
tinguish two cases: 

(9 II~(x)ll =k-1  
(ii) Ily(x)ll =k+l  . 
The number of x in @ I n k  for which (i) holds is ak-l(n - k+ l), 
i.e., the number of ways we can pick a code point of norm 
k -  1 and then  change one of its zero-digits to a l .  The 
number of x in @Ink for which (ii) holds is ak.kl.(k+l), 
i.e., the number of ways in which we can pick a code  point 
of rank k+l and change one of its  ones to a zero. 

In like manner we may partition the x in @*,k into  three 
classes according as [[y(x)l[ = k -2,  k, or k+2 and these 
classes contain 

elements respectively. For instance, the second of these 
numbers is the number of  ways we can choose a code point 
of norm k, then  change simultaneously one of its  ones to 
a zero and  one of its zeroes to a one. 

Now, since ( I lnk  contains elements, we deduce from ( 3  
the above  considerations that* 

for k=O,l,-.,n. 
This is a system of n + l  linear equations for  the n+l 
"unknowns" an,al,...,an . 

If, for a given n, a close-packed ( 4 )  code exists, these 
equations are a singular system, i.e., the determinant of 
the system must vanish. For otherwise the values a are 
determined independently of the  particular  code,  in par- 
ticular a, is determined, so that either all codes  contain the 
origin or all do not. But this is impossible since as before 
we can go from a code containing the origin to a congruent 
one  not containing the origin (and vice versa) by a simple 
translation. 

*Negatively  indexed a are t o  be interpreted as zero. 21 
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On the  other  hand, supposing that 6 contains  the 
origin, Le., that ao=l (whence a1=a2=a3=ad=O) reduces 
the system to  one which can be solved for aj,aR,a7,...,an, viz: 

etc. . . . 
Similarly, in the general case we get (assuming an= I )  

a.-aa=...=a2,=0, 1) - 

The law of formation of these equations is evident, from 
which the a,. can be  successively calculated. This proves 
Theorem 4. 

Remark I 

A necessary condition that there exist a close-packed (n,d) 
code is thus  that  the a, obtained by solving this system ( S )  
be integers. 

Remark 2 

Theorem 4 suggests, although it does not follow directly 
from the  theorem, that there is essentially at most one 
close-packed (n,d) code. In  other words, given two close- 
packed (n,d) codes there is a symmetry of  the n-cube which 
takes  one  into the other. 

In the case of the Hamming  codes it is not  hard  to solve 
for  the a, explicitly (e.g., by introducing the generating 
function ao+-.a,t"); we get 

These equations display the finer structure of the Hamming 
codes; an interesting consequence is 

This  equation  states that if  we consider successive "layers" 
of an consisting first of points of rank 0 or 1, then  points 
of rank 2 or 3, then  points of rank 4 or 5 ,  etc., the code 
points  are, so to speak, uniformly distributed within each 
layer. 

We are now ready to consider whether close-packed 
error-correcting codes of higher order can exist. 

I 

3. The existence problem for close-packed codes,* 
e 3 2. 

Theorem 5 
The only close-packed double-error correcting code is the 
trivial (5 ,  5) code with 2 points. 

The proof of this is surprisingly difficult and employs the 
arithmetic of the algebraic number field F (t/TTjj, about 
which we shall require  the following information (see, 
e.g., Heckel; the reader may skip this proof if he so desires, 
without prejudice to  the remaining theorems). 

Lemma 

In  the algebraic number field F (43 all integers are of 
the form afh,: ,  where a, b are  rational integers and p =  

is a  root of x2+x+2=0. The only units are 
- - 

f I ,  and factorization is unique. Moreover, 

- -1--2/-7 
- 

P ,  P =  -___ , and x//-?= p - p  are primes of E (J?). 2 

Suppose now that a close-packed (n, 5 )  code exists. Then 

we must have (i) I+n+( 'I) divides 2", since for equality 

to hold in Hamming's inequality (1) the right side must be 
an integer, and also (ii) n=2 (mod 3) by virtue of 
Theorem 3. We  will show that  for n >  5 ,  (i) and (ii) cannot 
hold simultaneously. Since any divisor of a power of 2 is 
itself a power of 2, we may write 

1 +n+( i) =P, or 

n2+n+2=2'(+'. ( 5 )  

Let us now consider Eq. ( 5 )  as an equation between integers 
of f(dT), which we may certainly do since the rational 
integers are integers of r ( J 7 ) .  We have 

Now, the factors on  the left differ  by p - p  = y"-7 which is 
not divisible by p or p ,  hence in view of  the lemma one of 
the following four cases holds : 

(a) n "p = pk+' 

(b) n-p=-p k f l  

and we must show that none of these cases holds for n> 5 ,  
simultaneously with n=2 (mod 3). In fact,  (b), (c), (d)  can 
be excluded without recourse to this latter  condition. We 
eliminate first (b) and (c): in each case we have 

p k + l  - p k t l  

a/;=- = I . '  
P - P  

Now, the ak are rational integerst and 
*The  referee  has  pointed  out  that Golay2 has  considered this  question in the 

class of codes,  The  analysis is greatly  simplified in the  case of parity-check 
case of parity-check codes, and  obtained  our  Theorems 5 and 8 for this special 

tThese ak, of course, have  nothing to do  with  the ak of Section 2. 
codes by  the presence  of an  additional  condition  [Golay's Eq. (Z)]. 
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as we see by decomposing the  right side into  partial frac- 
tions. Hence, 

ak= --akpl-2ak-2 for k >  2 , (8) 

whereas a. = I,al = - 1. From this recurrence formula we 
may write down the first few a's: 

The ai, are periodic (mod m) for every integral modulus m; 
in particular,  for m =4, the sequence is 1, - 1, - I,... i.e., 
a k -  - 1 (mod 4) for k >  1. Hence, a;<# 1 except for k=O 
and cases (b), (c) are impossible. Cases (a), (d) lead to 
a k =  -1, and we cannot rid ourselves of this eventuality so 
easily. Consider first (d). Now. by a direct calculation one 
can  show: 

9 0 - ~ = p ' ~  . 
Hence 

9 O - p = p 1 3  

90-p-0 (mod 3') . (9) 

From (d) we have, if k >  6 

n-p=O (mod p') . 
Subtracting (9) from (IO), and noting that p - p  = v'I7 

n - 9 0 " \ / 1 =  0 (modp') . (1 1) 

Hence 

(n-90)'!+7-0 (mod p i )  , 
and since the left side is a  rational integer it must be 
divisible also by p7, and hence by pip'=2': 

(n-90)'+7=0 (mod 128) (1 2) 

(n-90)?=112 (mod 128) 

n " 9 0 f l l  (mod 128) . (1 3) 

Now both of the values of n in ( 1  3) satisfy 

n'2+n+2f0 (mod 128) , (14) 

as  one sees by direct calculation, and case (d) is excluded. 
Finally, consider case (a). Actually, one could show 

without the condition IZ = 2 (mod 3) that it occurs only for 
k=2,k = 12 (the  latter  corresponding to the identity 1 + 
90+( 920)=212) but the calculation is reduced somewhat 

by bringing in this extra  condition that every close-pscked 
(n, 5 )  code must satisfy. 

Let A denote  the matrix 

A = (  -2-1 O 1 )  . 

The characteristic polynomial of A is  X?+X+2; hence, if 

P(A) is any polynomial with rational integer coefficients 
vanishing for X = p  (so that XPfXf2, being irreducible over 
the  rationals, divides P(A) ) we have P(A)  = the zero matrix. 
Now, considering pairs of consecutive a's as 2-vectors we 
have 

1 

4 + l (  ;) . 

This is just  another way  of expressing (8). Suppose now (a) 
holds. Then 

pk++' =n-p ; 

hence, 

A"+'= - A S n  (1 7 )  

Applying (17) to  the vector and observing (16) we get 

(" ah+l ) = - A ( ; ) + ( ; ) = - ( - ; ) + ( : )  * 

This gives 

ak,l=n+l . (1 9) 

Hence, if (a) holds  for  a  pair of values k, n we have the 
twin conditions ai, = - 1, ak+, =n+ 1 or, considering the 
ai (mod 3) 

uk = - I ,ak = O(mod 3) . (20) 

Now the sequence of ak (mod 3) is  given by the following 
table: 

k ' 0 1  1 '  2 1 3  1 1  4 , 5  6 1 7 i 8  91 u ~ ( m o d 3 ) ~ I , - I ~ - 1 ~ O ~ - l ~ 1 ~ 1 1 0 ~ l ~ - l "  _ ~ _ _ _ _ _ _ _ _ _ " ~ - ~  

Since al=a!,a,-al, the sequence has period 8, and condi- 
tion (20) is seen to occur if and only if 

k = 2  (mod 8) ; (21) 

on  the other  hand, consider the equation 

n--p=p"+'  (k>3) ; (22) 

clearly pin ( I  is the symbol for "divides") hence, 

n is even. n=2m=pprn; substituting  this in (22) and 
dividing by p gives 

p m - - l = p A  (23) 

p(rn+l)=pk--p(since p + p =  -1) . 
Hence 

pIrn+1 i.e., m + l  is even =21 and p2Z=p""-l 
p2([-l)=p/"l-l-- P2 = P"" - P .  

Hence, 

pll- 1 i.e., I -1  is even =2r and 
p'+=p/,-2- 1 

adding to both sides the identity p " =  -p+2 ,  
p"(r+l)=p"-"p+Z. 29 



once again, we deduce, since k 2  3 by assumption 

plr+l i.e., r+ l  is even =2s . 
Hence n=2m=41-2=8r+2=16s-6 

and so 

n= -6 (mod 16) . (24) 

Thus,  for case (a) to hold with k> 3 (and n=2 (mod 3) ) we 
must have, from (19) and (24) 

- 5  (mod 16) . (25) 

But the residues of the arc (mod 16) are  as follows: 

That is, they are 1, - 1, - 1 followed by the repeated period 
3, - 1 ,  -5 ,  7. Hence (25) holds only if 

k+ I = 5 (mod 4), i.e., 

k=O (mod 4) 

(26) and (21) stand in  contradiction, and  the proof is com- 
pleted. 

Theorem 6 

The only close-packed triple-error correcting  codes are  the 
(23, 7) code of Golay' and  the trivial (7,  7) code. 

Proof 

If I+ (  ;)+( ;)+( ';) =2k 

then, on multiplying by 6 and simplifying the left side 
factors, we get 

(n"-n+6)(n+ I )  = 3*2k+' . (27) 

Hence, one or the  other of the left-hand factors is a mul- 
tiple of 3. 

Case I. 31n"n+6 . 
Here n+l=2',  n2-n+6=3.2rrf1-l 

whence, (2'-1)2-(2L-1)+6=3.2k+1-6 
221-3.21+8=3.21~+1-1 . (28) 

Obviously we may restrict ourselves to the case n > 7 (for 
n = 7, we get the trivial code). Hence, 1>, 4. 

Since the left side of (28) is = 8 (mod 16) so is the right, and 
thus k+l-1=3 and n?-n+6=24, which contradicts n>7 
(as well as n = rational integer). 

Case I I .  31n+l 

Here, n+l=3-2l and n2-n+6=2k+1-2, 
(3.2'-1)2-(3.21-1)+6=2'~+l--E 
9.221-9.2'+8=2k+'-L  (29) 

since n> 8, I> 2 and k+l- l> 5. 
From (29), 9.2l=8 (mod 16). 

30 Hence, 1=3, n+l  =3.23,  n=23, completing the  proof; this 

leads to  the (23,  7) code mentioned in the theorem. If it is 
desired to construct the  code without simply quoting 
Golay's  construction, we outline briefly how it could be 
done (with relatively little trial and error). The trick is to 
start by looking  for code points of norm 7. By Theorem 3, 
there is no loss of generality in assuming as  code points 
(taking also x = 0 as a code point). 

x1 = 1 1 1  1 1 1 1  0000 0000 0000 0000 

x2 = 1 1 1  0000 1 1 1 1  0000 0000 0000 

x3 = 1 1 1  0000 0000 1 1 1 1  0000  0000 

x4 = 1 1 1  0000 0000 0000 1 1 1 1  0000 

xg = 1 1 1  OOOO 0000 0000 0000 1 1 1 1  

These give us 5 linearly independent elements which (apart 
from  permutations of columns) must belong to any close- 
packed (23,  7) code.  Now, as we are looking for a group 
code, we  will try to find seven more linearly independent 
elements, guided by Theorems 2 and 3. 

We have already written down  the 5 points having 1 in 
the first 3 positions. Now, by Theorem 3, there are pre- 
cisely 5 code  points (of norm 7) having 1 in the 3 positions 
(say) I ,  2, 4. Of these we have so far only one, x , and so 
must be able to adjoin 4 more (if a (23, 7) code with 2" 
points is to exist at  all). In  the construction we are guided 
by Theorem 2, which tells us that every set of four places 
must be filled with 1's exactly once. Hence, we add the 
expansions 

x6 = 110 1000 1000 1000 1000 1000 

x7 = 110  1000  0100  0100 0100 0100 

X8 = 110 1000 0010 0010 0010 0010 

x!g = 110 1000  0001  0001  0001 0001 

Now, we could go on  and adjoin new points, e.g., those 
having 1's in the positions 1 ,  2, 5 of which only one (xl) as 
at present in our collection. It is here, however, that some 
calculation is unavoidable if we seek to get linearly  inde- 
pendent elements. Note  that already x:+x3+xr+xj= 
x6+xi+X8+xS so that one of our 9 points  must  be dis- 
carded. In any case, however, it is clear that  one by one, all 
the  points of norm 7 can be written down  until 1 I linearly 
independent  ones are obtained.  Theorem 6 is a special case 
of the following: 

Theorem 7 

Let e>, 3 be odd,  and let E denote the integer e!(1+1/3+ 
...+ l/e). If a close-packed (n,2e+ 1) code exists, then one 
of the numbers n+l  or 

,!I I I n(n-1) I ...n(n-I)-(n-e+2) 1 3! e!  i 
is a divisor of 2".B. Here 2" denotes the largest power of 
2 dividing E, and B denotes the largest odd divisor of e!. 

Pro0 f 

If a close-packed code exists, 1 +  (;)+...( :) is a power 
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of 2, say 2k. Now, when e is odd, this expression (con- 
sidered as a polynomial in n) is factorable, since it vanishes 
for n = - 1 .  It factors into 

say, and we have 

(n+I)P(n)=e!2k . 
Now, P(n)=P( - l)+(n+l)Q(n) where Q is some poly- 
nomial with rational integer coefficients. Hence any com- 
mon divisor of n+ 1 and P(n) divides P( - 1) which is seen 
to be E. Write E=2"A, where A is odd,  and C ! = ~ ~ B ,  where 
B is odd. Suppose n+l  fails to divide 2",B. Since any odd 
divisor of n+l must divide B, this can only happen if 
2"+' divides n + l .  In this case, 2"+.' cannot also divide P(n), 
or else it would divide E, an impossibility. Therefore P(n) 
divides 2".B, completing the proof. 

Remark 1 

It seems doubtful that P(n) could actually divide 2".B in 
practice, since it is probably  greater than this number when 
n> 2e+l; however, to substantiate this argument one 
would need an estimate on  the largest power of 2 dividing 
E. This seems in general to be a difficult number-theoretic 
problem, except in the case when e= l(mod 4), where we 
have : 

CoroNary 1 

If a close-packed (n,2e+l) code exists and e is of the  form 
4rf1, then n+l is a divisor of e! .  

Proof of corollary: In this case, 

E=e!(l+l/3+-.l/e)=2h(B+B/3+-.B/e)=25~B' where B 
is odd, being the sum of an  odd number of odd summands. 
Thus 2b is the highest power of 2 dividing E, and Theorem 7 
asserts that either n+l  or P(n) divides e! .  But the latter 
alternative cannot happen since P(n)>P(O)=e! for all 
n> 1 .  

As illustrations, consider first e = 3 .  Here E = 8 ,  and by 
Theorem 7 either n+l or nY-n+6 divides 24; this readily 
yields Theorem 6. Again, take e = 5 .  By Corollary 1, n + l  
divides 120, and we have: 

Corollary 2 

If a close-packed 5-error correcting code  on n digits exists, 
then n has  one of the values 11,14,19,23,29,39,59, or 119. 

It might be of interest to further investigate these values 

of n, and see whether 1 +  (;)+e-( z )  is actually a power 

of 2 for  any n> 1 1  among these numbers. If the answer is 
affirmative, one  can then systematically search  for a cor- 
responding code along the lines indicated earlier. This pro- 
gram  could easily be carried out by a digital computer. 

Remark 2 

Theorem 7 shows that if e> 1 is odd, there are  at most 
finitely many close-packed e-error correcting codes. We also 

know this to be the case  for e=2, by Theorem 5. We now 
show that this is true for all e> 1, but unfortunately in a 
manner which is non-constructive, i.e., allows no estimate 
of the possible number of close-packed codes. 

Theorem 8 

If e>2, the number of close-packed (n,2e+l) codes is 
finite. 

The proof is a simple consequence of a deep result of 
C. L. Siegel from  the theory of numbers. 

Lemma (Siegel) 

Letf(x) be any polynomial which takes integer values when 
x is an integer. Then, unlessf(x) is a constant times a power 
of a linear polynomial, the largest prime factor of f(n) in- 
creases without limit as n+=. 

To deduce Theorem 8 from this we have simply to verify 
thatf(x), defined  by 

f(x)=l+(;)+...(;) , 

is not a power of a linear polynomial if e> 2; thenf(n) has 
a prime  factor > 2  for n sufficiently large, and so cannot be 
a power of 2. But suppose f(x)=a(b+cx)", where a, b, c 
are rational  (as we may obviously assume). 

Then 1 =f(O) =abe, so we may write f(x) =(1  +rx)c where 
r = c / b  is rational. Setting x= 1 we get 2 =(1 +r)c, so that 
'v'? is rational.  This  contradiction establishes the theorem. 

4. lower bounds for Bh, dl 

To motivate the  considerations of this section, let us note 
the following: 

If an (n,d) group  code G is maximal, then every point of 

Note  that a maximal group  code is not necessarily a 
maximal code, since A(n,d) code points will in general not 
be achieved with a group code. Still, the  above  proposition 
asserts that  it is relatively maximal, i.e., one  cannot adjoin 
new points to G and get a larger (n,d) code. The proof is 
immediate: if there were a point w in @,, at distance 2 d 
from all points of G, the set e' of all  points x, x+w where 
x ranges over 0 would be an (n,d) group code having 
twice as many points  as G. 

The preceding proposition can be viewed as  the case r =O 
of the following: 

Theorem 9 

If G is an (n,d) group  code having 2" points and there 
exists a point w in 6, at distance > d-r from all  points of 
(5, then  there exists an (n+r,d) group  code having 2&+l 
points. 

Pro0 f 

has  distance ,< d-  1 from some  code  point. 

Let 0' be the set of all x in G, each augmented by r O's, 
plus the set of all x+w(x in e), each augmented by r 1's. 
This G' has  the required  properties. We are mainly inter- 
ested in the case r = 1 ,  for which the following theorem. in 
a certain sense converse to Theorem 9, holds: 31 
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Theorem 10 

Let G be  a maximal (n,d) group code  and suppose B(n - 1 ,d) 
<B(n,d). Then  there exist a maximal (n- 1,d) group code 
d and a point x in at distance > d- 1 from  all  points 
of 8, such  that G arises from 6 and x by the adjunction 
procedure of the previous theorem. 

Proof 

Let 8’ be that subset of @ whose nth  coordinate is 0. 
Then G‘ is a  subgroup of and the  subset d of Bin-, 
obtained by dropping the last 0 from each  point of G is 
an (n - 1,d) group code. Furthermore, it has B(n,d)/2 points 
since e‘ has half as  many  points  as G. To see this, note 
first that G’ is not all of e, or else by dropping the last 
digit we would obtain  an (n-1,d) code with B h , d )  points, 
contrary to assumption. Hence, the complement e’ of e’ 
in G is not empty, and any  pair of points of G’’ (having 1 
in the last digit) differ  by an element of E‘ so that they all 
belong to the  same coset of (3’ in (5, i.e., G’ has index 2 in 
6. Let now y be a point of gotten by choosing any 
point of (3” and deleting the last digit. Then y has distance 
3 d-1 from all of d and we may reconstruct G from d 
and y by the procedure of the last  theorem (for the case 
r =  1). 

From these two  theorems we see that  it is in principle 
possible to construct a maximal (n,d) code for each n suc- 
cessively, by repeated  adjunction. B(n,d) will double  in  pas- 
sage from n to n+ l  except for values of n where the 
maximal code we have  constrccted  “saturates” the n-cube, 
i.e., where it is not merely maximal (no  point  at distance 
>, d from all code points) but  it fills out  the  cube so densely 
that  no  point even has  distance > d- 1 from all code  points. 
Viewed in  this  context, the highest possible saturation of 
the n-cube is achieved when a close-packed (n,d) code 
exists (d= 2e+ 1) for then  there is no point of an at distance 
3 e+l  from all code points. 

As  a first application of these ideas it is instructive to see 
what  happens  in Hamming’s case where d- 1 =e+ 1 so that 
the two extremes of saturation coincide. By Theorem 9 
(for r =  l), B(n+1,3)=2B(n,3) unless every maximal (n,3) 
group code  has  no point at distance 2 from it, i.e., unless 
it is close-packed (hence, has 2“/(n+l) points). But this 
cannot happen unless n has  the  form 2k - 1. We thus have 
the result of Hamming: B(n,3) continues to double as n 
increases, except when n passes through one of the values 
3,7,15,31-., when it stays the same. Actually we have shown 
somewhat more, namely that when N does not have one of 
these exceptional values, any maximal (n,d) group code can 
be extended to a code of order n+1 with twice as many 
points. Also, by Theorem 10, B(n,3) =B(n+ 1,3) when n 
takes one of the exceptional values, or else there would 
exist a maximal (43) code having a point  at distance 2 from 
all  its  points, violating the close-packed property. 

Now, the general case (e> 2) is not so simple as  this; for, 
whereas in the Hamming case one could proceed by adjunc- 
tion  in any manner whatever and  at each  step  arrive at a 
maximal code, in  the general case it is possible that two 
different adjunctions at some  stage will lead to two codes, 

32 one of which saturates the  cube  and  the  other not, so a 

choice must be made if one is to keep on obtaining maximal 
codes by this procedure. Further investigation of these 
matters would seem worthwhile. 

We can,  in  any case, use this  method to  obtain a fairly 
good lower bound for B(n,d). 

Lemma 

If B(n,d)< 2” 

l + ( ; ) + - . + ( d r 2 )  

then B(n+ 1,d) =2B(n,d). 

Pro0 f 
Let G be a maximal (n,d) group code, and associate to 
each x of the “sphere” dx consisting of all points of 
(k having distance 6 d-2  from x. The number of points 

in each dx is 1+ ( 7 )  +.-+ ( d-2 ), and  there are B(n,d) 

spheres. If the hypothesis of the lemma holds  there is at 
least one point  in lying in none of these e,, i.e., having 
distance > d- 1 from  all  points of G. Hence, by Theorem 9, 
B(n+ 1,d) =2B(n,d). 

0 Theorem I 1  

For  an infinite sequence of n 

Pro0 f 

If (31) failed to hold from some n on,  then by the lemma 
B(n,d) would continue  doubling  from that value no onward, 
giving B(n,d) = 2n-no B(no,d) and letting n+ m , the inequality 
( 1 )  of Hamming is violated. 

Remark 

It is possible to replace the right side of (31) by a somewhat 
smaller expression such that  the resulting inequality holds 
for all n, and also to give information about  the density of 
n for which (31) holds. 

Of course, from the basic property of a maximal code 
we have the weaker inequality 

since, if (32) failed to hold, the spheres of radius d- 1 about 
the points of a maximal group  code would not exhaust an, 
hence there would be a point of an at distance > d from all 
these code points, which by the introductory  remarks of 
Section 4 would lead to a larger (n,d) group code. 

The orders of magnitude of the Hamming  upper  bound, 
and the lower bounds (31) and (32) are, respectively, 

2”  2” -, -- and - 2” 
n2e-l n 2e 

Thus, even for e = 2  there is a significant gap between 
Hamming’s upper  bound and  the lower bound (31), and 
further results would be of interest. 
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5. The p-ary codes 

Let p denote  any prime number (the  reasons why  we require 
this condition will become clear shortly). Suppose we con- 
sider now the set ( i i ( n ) ,  of n-tuples of symbols each chosen 
from a  set of p (which we may of course designate by 
O,l,...p- I ,  the residues of the prime p ) .  @ ( A ~ ) ~ ~  has p” 
“points” which no longer permit such a simple geometric 
interpretation when p>2.  We may define the distance be- 
tween two points as  the number of coordinates in which 
they are different, and by A(JJ’(n,d) the maximum number 
of points of 6?.(iJ)?, which may have minimum mutual dis- 
tance d. Then, by an argument similar to that of Section 1 
we have the analog of Hamming’s inequality 

We may define a group or systematic code as before to be 
an (n,d) code which is a  group  under digit-wise addition 
(mod p )  and introduce  the  corresponding  notation B(”)(n,d). 
The distance between the points x and y of a  group  code 
is ilx-yil where llwll is defined to be the number of non-zero 
digits in w. One sees immediately that a subgroup ofC!(Jj), 
is an (n,d) code $and only i fal l  its non-zero elements have 
at least d non-zero digits. 

It is an interesting fact that virtually all of the preceding 
results can  be  carried over to these p-ary codes. We will 
content ourselves with only one  theorem, which shows that 
the  analogues of Hamming’s single-error correcting  codes 
exiSt.1x”311 

Theorem 12 

( 3 4 )  

whenever the right side is an integer, i.e., whenever n is one 
of the  numbers 

moreover, for all n,B(~’)(n,3) is equal  to  the greatest power 
of p not exceeding the right side and B(l’)(n+ I ,3)  =pB(/’)(n,3) 
except when n is one of the numbers (35),  in which case 
B(p)(n+ 1,3) = B(J’)(n,3). 

Proof 

We can actually write down the codes in question. Suppose 

n=- p”-I  . 
p - 1  ’ 

we  wish to construct an (n,3) group  code with prl-/: points. 
Let us begin by writing out a basis for the group @ ( J I ) , - ~ :  

This consists of just  n-k “unit vectors” which,  when all 

possible sums of them are taken, precisely generate all ele- 
ments of W), -k .  Suppose now we can adjoin k  additional 
digits to these such that  the resulting points xl,...xn-k have 
the following property: every linear  combination 

aixi + . * . +U,_kX,_k , (37) 

where the ai are integers (mod p ) ,  not all 0, has  at least 
3 non-zero digits. Then we  will indeed have constructed a 
basis for  the  code with the required properties. Now, let 
us consider the class ,f? of all k-tuples of integers (modp) 
at least two of which are distinct from 0. Their number is 
precisely prr - 1 -k(p - I )  since we are excluding precisely 
1 fk(p- 1) from the  total of p”.  Let us call two of these 
k-tuples x,  y equivalent if ax+by=O (the  k-tuple OO...O) 
for some a, b#O(mod p ) .  This is an equivalence relation: 
x-x=O,  symmetry is obvious, and ax+by=O,  cy+dz=O, 
implies (ea)x+dz = O  where e is so chosen that eb= “c 

(modp). Such an e exists because the integers (modp) 
form a field, and division by non-zero elements is possible. 
(Here is where the assumption that p is a prime  enters 
essentially). Now, if x is  in f?, the equivalent elements in lQ 
are  the set of solutions y of ax+by=O for a,b$O, i.e., of 
y=b-’ax (where b b”= I(modp)), i.e., the equivalent ele- 
ments are simply multiples of x by the numbers 1,2, . . .p- 1. 
Since there are p - 1 elements in  each equivalence class the 
number of classes is 

p’- 1 -k(p- 1 )  
P--l 

= n - k .  

Hence, we may adjoin mutually non-equivalent elements 
of .f? to the  “unit vectors” in the  array (36).  This is a basis 
for the required code; for consider a  linear  combination 
(37) .  If only one a is distinct from zero (37)  has  the form 
aixi which has by construction at least three non-zero digits. 
If precisely two ai are f 0, we have a,x,  +a,xj which has 
precisely two non-zero digits among the first n-k, and at 
least one among the last k since we chose inequivalent 
k-tuples. Finally, if 12 3 of the ai are $0, the first n - k  
digits of (37) already contain I non-vanishing digits. 

The other details of the proof can easily be deduced by 
the (appropriately generalized) line of reasoning of Section 
4. In fact, the existence of  the above code could also be 
proved by this reasoning precisely as we derived Hamming’s 
results. For instance, Theorem 9 with r = I (extended in the 
obvious way) tells us that 

B(1”(n,3) =pB(~”(n,3)  when n f  ~~ , (38) 

and Theorem 10 says that (38) cannot hold if n has one 
of these excepted values, or else the  code constructed  above 
would have a  point at  distance 2 from all its elements, 
implying that inequality holds in (34),  contradicting  what 
we just proved. 

The above proof is completely constructive: namely, in 
adjoining the k-tuples to  the  “unit vectors” we simply pick 
any k-tuple from the  set ST for our first choice; discard 
from .f? the p - 1 non-zero multiples of this, and pick any 
of the remaining k-tuples  for our second choice; discard 
the multiples of this one in turn, et cetera, until all n-k 
have been chosen. 

p”1 
P “1 
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their  use in  connection  with a binary  channel, by encoding 
thep symbols  into  binary. If p is chosen  less  than  but  near 
2” for some integer m, the  encoding  can  be  done  with m 
binary  digits  per  p-ary  symbol, and with  little  waste, e.g., 
p=7,m=3;p=31,m=5.  
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