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of Error-Correcting Codes

Abstract: Hamming considered the problem of efficient, faultless transmission of binary data over a noisy
channel. For a channel which corrupts no more than one binary digit in each sequence of length n, he
constructed alphabets, the so-called Hamming codes, which permit error-free signalling. The authors study
the analogous problem for channels which can corrupt a greater number of digits. Non-binary channels are
also studied, and analogues of the Hamming codes are constructed. It is perhaps of interest that some of
the techniques employed derive from algebraic and analytic number theory, mathematical disciplines not

generally associated with the type of applied problems considered in this paper.

1. Introduction and survey of results

We must begin by introducing sufficient notation to discuss
the background of the subject and describe our results. To
this end let (¢, denote the set of binary sequences of
length n#. There are N=2" such sequences or ‘‘points”
which may be considered as the coordinates of the vertices
of a unit cube in n-space. A set & consisting of M such
vertices is called, following Hamming,” an e-error correcting
code if any two points of & differ in at least 2e+1 coordi-
nates. The reason for this designation is that if e or fewer
“errors’’ are made in transmitting a binary sequence of &,
i.e., if not more than e digits undergo change during trans-
mission, it is possible in principle to recover the trans-
mitted sequence. Designating by the distance between two
points x, y of &, the number of coordinates in which they
differ, we are thus led to the problem of finding subsets
& of &, whose points have mutual distance > d=2¢+1;
such a set is called an (n,d) code.

Following the notation of Plotkin,® we let A(n,d) denote
the maximum number of points of &, which can have
mutual distance 2 d. This definition is, of course, meaning-
ful also for d even, d=2e¢. A set of vertices having mutual
distance 2 2e is called an e-error detecting code because in
this case it is possible to completely restore a sequence
containing <e—1 changes and to recognize, given a
sequence containing e changes, that an error in transmis-
sion has been made, although it is in general not possible
to restore the message unambiguously. It is readily shown
that all problems concerning ¢ error detecting codes are
reducible to problems concerning (e — |)—error-correcting
codes of order n—1, i.e., A(n,2¢)=A(m—1,2¢—1), and a
simple correspondence exists between (n,2¢) and (n—1,

2e—1) codes involving a single parity check; thus error-
detecting codes as such will not be further considered in
this paper.

Under digit-wise modulo 2 addition &, is a group, and
the distance between two points x, y is just the number of
ones in the sequence x+y; we denote by |x|| (read: norm
or weight of x) the number of ones in the sequence x. Of
special interest are those (n,d) codes & which are sub-
groups of &,; such codes are called systematic or group
codes, and are of special interest for the following reason:
the decoding of received messages, i.e., the actual correc-
tion of wrong digits, can be effected by means of a parity-
check matrix if and only if the code employed is a group
code.* Another advantage is that group codes can be com-
pletely specified by giving relatively few data, namely a
basis or even a parity-check matrix. Although it is likely
that certain non-group codes also lend themselves to simple
mathematical specification and detection procedures other
than parity checks,t the group codes are of central impor-
tance. They are also especially convenient to work with
mathematically. Because x4y is a code point whenever x
and y are, we see that a systematic (group) e-error correcting
code is a subgroup of &, all of whose elements (except
0=00---0) contain at least d=2e+1 ones. The maximum
size of such a code we denote by B(n,d) and a code attaining
this size is called a maximal code. The remarks about error-
detecting codes apply also to group codes, i.e., we have

*For a proof, and a very lucid discussion of parity-check procedures and other
basic matters, see Slepian® See also LloydS,

TIn thi§ category are _the “quadratic residues” codes of Plotkin3, which one can
generalize on the basis of work of Paley’ and others in connection with the
quite different problem of “Hadamard matrices”.
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B(n,2e)=B(n—1, 2e—1) and a simple correspondence be-
tween respective codes of the two kinds. Obviously B(n,d)
is a power of 2 and B(n,d)< A(n,d)< 2". We have further,
as Hamming?® showed,

27:

To see this, associate with each point x of an (11,2¢+1) code
© the “sphere’ : x consisting of all points of &, having dis-
tance < e from x. If x5y, ¢« and &, are disjoint; for if not,
a point z lies in both & and &y, i.e., has distance < e from
x and y, whence x and y have distance < 2e, a contradiction.
Hence, the number of code points is precisely the number

of spheres, and since each 8x contains 1—{—(?)—{—---—}—(2)

points, and &, contains 2* points altogether, the number
of spheres cannot exceed the right side of (1).
In the case e=1, we have

A(n,2e+1D<

n

2
A(n,3)< el 2

The right side is an integer if and only if # has the form
2¢—1 and Hamming showed that in this case equality holds
in (2), in fact even

2n
B(n,3)=m ’
that is, equality is attained for a group code. And for all #,
whether or not of the form 2¥— 1, B(n,3) is the largest power
of 2 not exceeding 2"/(n+1). Any code which gives equality
in (2) corresponds to a remarkable decomposition of &,
for in this case the disjoint spheres 8x described above com-
pletely exhaust &,. Hence, such codes, whether systematic
or not, are called close-packed. Close-packed codes, when
they exist, are maximal and also have many remarkable
symmetries, as we shall see below. It is natural to begin a
general study of error-correcting codes with a quest for
close-packed codes. We will see that the results for e> 2,
unlike the case e=1, are basically negative, i.e., there are no
close-packed double-error correcting codes except the trivial
(5, 5) code with 2 points; for e=3, there is a remarkable
group code that was discovered by Golay, a close-packed
(23, 7) code having 2!* points. We will show that, aside from
this code and the trivial (7, 7) code having two points, there
are no further close-packed triple-error correcting codes.
Detailed settlement of the question for e 4 is more diffi-
cult, although we can show easily that for each ¢> 4 the
number of close-packed e-error correcting codes is finite.
Of course, this does not preclude the existence of very large
and non-trivial close-packed codes. For e odd, moreover,
we shall give a procedure for obtaining any possible close-
packed code.

In Section 4 we obtain a new lower bound for B(n,d).
The gap between this bound and Hamming’s upper bound
is still great enough to have qualitative significance, in the
sense of attaining channel capacity® for a symmetric binary
channel, by means of error-correcting codes. We give also
a procedure by means of which large (n,d) systematic codes
can be constructed for successive values of n; although

3
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some trial and error is involved, the procedure lends itself
easily to machine computation.

In Section 5 we extend the Hamming codes and the
results of Section 4 to the case of a p-ary channel, where p
is any prime number.* Although the p-ary channel! is pres-
ently of less practical interest than the binary, fairly large
binary codes can be constructed by means of p-ary codes,
by encoding p-ary symbols into binary.

2. Symmetries of close-packed codes

o Theorem 1

Let © be a close-packed (n,d) code (d=2e-+1). Then the
ratio

”=(e_'|l_1)/(zejl)

is an integer, and every code point has distance d from
precisely v other code points.t

Proof

Let x be a point of ©. Without loss of generality we may
assume that x =0. For, if we replace each point y of & by
y-+x, we get a configuration congruent to & containing
0=x-x. Consider now the set Y of all points y of &, at
distance e+1 from 0, i.e., points of &, having exactly

e-+1 ones. There are (e—?—l) such. Each y lies in a sphere

of radius ¢ about some particular code point z, since &
is close-packed. Clearly ||z|| =2e+1. Thus, each such y is
obtained once and only once by taking a code point having
2e+1 ones, and changing e of its ones to zeros, i.e., the num-

2e+1
ber of points in 9) is ( e:- ) times v, the number of code
points z of norm 2e+1. This proves the theorem.
o Theorem 2

Let & be a close-packed (n,2¢+1) code, and x and y points
of &. Then, given any e-+1 distinct integers of the set
1,2,---n there is one and only one point y of & having
distance 2¢+1 from x, and differing from x in each of
these e+ 1 positions.

Proof

As in Theorem 1, it is sufficient to assume x =0. Now, that
there is at most one y with the stated properties is clear;
for, if there were two such, y1 and y2, we would have |ly,||=
|ly:l| =2e+1 and, since y: and y» must agree in at least
e+1 digits (namely, those digits where they differ from
x=0, ie., where they have ones), we should have |ly:+
y2|| < 2e, a contradiction. On the other hand, let (/) denote
the number of code points of norm 2¢-4-1, having ones in
e—+1 prescribed positions (here I denotes a set of e+ 1 dis-~
tinct positions). Then,

#Added in proof: The authors have since learned of work similar to that in
Section 5 by Golayl, Lees, and Ulrich.t

TA system of equations apparently equivalent to our system (8) derived in
Section 2, but involving complicated sums of binomial coefficients was obtained
by Lloyd® using a generating function technique.




2f(I)=(ZZi})'V=(e~7—I) ’ 2 +1)
€

since each code point of norm 2e-+1 is counted ( e+1
times in this summation. However, since f({)=0 or 1 (by
the above) and there are precisely (e—?—l) summands on

the left-hand side, f{J) is always 1, otherwise the sum on the

n
left would be <(e+l

), a contradiction.
o Theorem 3
Let & be a close-packed (n,2e+1) code. Then p =Z—;~f is an

integer, and if x is any code point, the number of y in & at
distance 2¢+1 from X, and differing from x in e prescribed
positions is precisely u.

Proof

As before, we may suppose x=0. Let I denote a set of e
distinct positions, and f{/)= the number of code points of
norm 2e¢-+-1 which differ from x in all of the positions 7. As
before

n=(

On the other hand,

n—e
fr(l)ﬁliejlil

for every I, where [ ] denotes ‘“‘greatest integer”, for, con-
sider the set of y of norm 2e-+-1 having ones in ¢ places;
the remaining e-+1 ones must be placed in mutually dis-
joint positions or else minimum distance 2e+1 cannot be

2e+])
v

(4

n—e
preserved. Thus, there are at most [m] such y. Hence,

since the number of admissible I is (Z), we have

P2

Hence,

n\| 2—¢ s (n\n=e
ef| e+1 |7 \efet1’
and equality can hold only if
n—e| _n—e
e+11 e+t
and further f (I)=Z+;f for all 1. This completes the proof.

o Theorem 4

Let © be a close-packed (11,2¢+1) code and 2e+1<r<n.
Then the number of code points having distance precisely
r from a given code point x is an integer » (n,e;r) which
does not depend on the particular point X nor upon the
particular code chosen.

Proof

For convenience of notation we set »(n,e,r)=a.. The proof
will obtain by deriving a system of linear equations for the
a, from which they can actually be calculated. For sim-
plicity of presentation we deal with the concrete case e=2,
but the procedure employed is perfectly general.

Consider the subset &, of &,, consisting of those ele-
ments of &, of norm £. Since & is close-packed, we may
with every x in O, associate a unique y=y(x) in © such
that | x+y||< 2. In particular we may do this for x in &
and thus decompose &, into three mutually disjoint sub-
sets

@nk = ®0nk+®lnk +®2nk 2

where an x of . is placed in & if |x+yX)|=r,
(r=0,1,2). &, consists of those x in &, which belong to
&, and so has a, elements. If x is in @, we may dis-
tinguish two cases:

@ hy®i=k-1
i) [y =k+1 .
The number of x in &, for which (i) holds is ar1(n— k1),
i.e., the number of ways we can pick a code point of norm
k—1 and then change one of its zero-digits to al. The
number of x in &', for which (i) holds is ax.1-(k+1),
i.e., the number of ways in which we can pick a code point
of rank k+1 and change one of its ones to a zero.

In like manner we may partition the X in &2 into three
classes according as [[y(x)|[=k—2, k, or k+2 and these
classes contain

—k2 k42
(” ’;“ )aH, k(n—k)ak,( J{ )a,,+2

elements respectively. For instance, the second of these
numbers is the number of ways we can choose a code point
of norm %, then change simuitaneously one of its ones to
a zero and one of its zeroes to a one.

. . n
Now, since &..» contains ( k) elements, we deduce from

the above considerations that*

(Z) =ak+l:(n —k+Da+k+ l)ak+l]

+[<””;+2>ak‘2+k(n—k)ak+(k ;z)akw]

for £k=0,1,---,n.
This is a system of n+41 linear equations for the n41
“unknowns” ao,a.,--,an.

If, for a given n, a close~-packed (n,5) code exists, these
equations are a singular system, i.e., the determinant of
the system must vanish. For otherwise the values a are
determined independently of the particular code, in par-
ticular a, is determined, so that either all codes contain the
origin or all do not. But this is impossible since as before
we can go from a code containing the origin to a congruent
one not containing the origin (and vice versa) by a simple
translation.

*Negatively indexed a are to be interpreted as zero.

IBM JOURNAL * JANUARY 1959

27



28

On the other hand, supposing that & contains the
origin, i.e., that ap=1 (whence a,=a>=a;=a,;=0) reduces
the system to one which can be solved for a;,as,a7,+,an, Viz:

_(n
1005— (3)

Sas+15a, = (2) .
etc.

Similarly, in the general case we get (assuming a,=1)

(Yo (1)
(Zeejl)aw +(2§+2)a2,,+2 ( e~?—2)

(ot (ot (4o () -

Ar=Aqz="+-- =a2c=0,

()

The law of formation of these equations is evident, from
which the a, can be successively calculated. This proves
Theorem 4.

Remark 1

A necessary condition that there exist a close-packed (n,d)
code is thus that the a, obtained by solving this system (.S)
be integers.

Remark 2

Theorem 4 suggests, although it does not follow directly
from the theorem, that there is essentially at most one
close-packed (n,d) code. In other words, given two close-
packed (n,d) codes there is a symmetry of the n-cube which
takes one into the other.

In the case of the Hamming codes it is not hard to solve
for the a, explicitly (e.g., by introducing the generating
function ay+---a.t"); we get

n—1
(n+l)azr=(2”,)+(—1)rn 2
r
n—1
(n+1)a2,+1 =<2r’—14- 1 >+(—1)T+‘n 2
,

These equations display the finer structure of the Hamming
codes; an interesting consequence is

(3)+(2)

n+1

This equation states that if we consider successive “layers”
of &, consisting first of points of rank 0 or 1, then points
of rank 2 or 3, then points of rank 4 or 35, etc., the code
points are, so to speak, uniformly distributed within each
layer.

We are now ready to consider whether close-packed
error-correcting codes of higher order can exist.

azy +a2r+1 =
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3. The existence problem for close-packed codes,*
e > 2.

& Theorem 5

The only close-packed double-error correcting code is the
trivial (5, 5) code with 2 points.

The proof of this is surprisingly difficult and employs the
arithmetic of the algebraic number field £ (~/—7), about
which we shall require the following information (see,
e.g., Hecke*; the reader may skip this proof if he so desires,
without prejudice to the remaining theorems).

Lemma

In the algebraic number field f (v/—7) all integers are of
the form a+-b:, where a, b are rational integers and p=
—1 -7
% is a root of x24x-+2=0. The only units are

=+1, and factorization is unique. Moreover,

0, B= 1—2\/ ~7, and / —7=p—p are primes of f (r/—7).

Suppose now that a close-packed (n, 5) code exists. Then
we must have (i) l+n+(;) divides 27, since for equality

to hold in Hamming’s inequality (1) the right side must be
an integer, and also (ii) #=2 (mod 3) by virtue of
Theorem 3. We will show that for n> S, (i) and (ii) cannot
hold simultaneously. Since any divisor of a power of 2 is
itself a power of 2, we may write

1+n+(’27)=2*~', or @)

n2H-n42 =2, %)

Let us now consider Eq. (5) as an equation between integers
of f(~/=7), which we may certainly do since the rational
integers are integers of {(r/—7). We have

(n—p)(n—p)=ptriphs, 6)

Now, the factors on the left differ by p—p=+/—-7 which is
not divisible by p or g, hence in view of the lemma one of
the following four cases holds:

(@ n—p=pt
(®) n—p=—p

© n—p=p!

(d n—p=-—p",

and we must show that none of these cases holds for n> 5,
simultaneously with n=2 (mod 3). In fact, (b), (c), (d) can
be excluded without recourse to this latter condition. We
eliminate first (b) and (¢): in each case we have

k+1 5k+1
p

A
a= 2, %

Now, the a; are rational integers’ and

#The referee has pointed out that Golay? has considered this question in the
case of parity-check codes, and obtained our Theorems 5 and 8 for this special
class of codes. The analysis is greatly simplified in the case of parity-check
codes by the presence of an additional condition [{Golay’s Eq. (2)].

1These ay, of course, have nothing to do with the a,, of Section 2.
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2 axX' =1 1xy2e

as we see by decomposing the right side into partial frac-
tions. Hence,

ar=—ar1—2ar 2 for k22, 8)

whereas ao=1,a1= —1. From this recurrence formula we
may write down the first few a’s:

4}5]67 8| 9

ol 1l 12
~1|=5 7[3\—17]11

EJ —45/—1

5|

-1

1

-1

3

3

k

Ay

0

1

13
91

The a; are periodic (mod m) for every integral modulus m;
in particular, for m=4, the sequence is 1,—1,—1,- i.e.,
ar=—1 (mod 4) for k> 1. Hence, a1 except for k=0
and cases (b), (¢) are impossible. Cases (a), (d) lead to
a.= —1, and we cannot rid ourselves of this eventuality so
easily. Consider first (d). Now, by a direct calculation one
can show:

90—p=p'?.

Hence

90—p=p"

90—5=0 (mod 57) . ©)
From (d) we have, if k26

n—p=0(mod 5’) . (10)
Subtracting (9) from (10), and noting that p—g=+/—7
n—90—+/7 = 0 (mod p") . (11)
Hence

(n—90)*+7=0 (mod p") ,

and since the left side is a rational integer it must be
divisible also by p7, and hence by p'p"=27:

(n—90)*4-7=0 (mod 128) 12)
(n—90)>=112 (mod 128)
n=90=+11 (mod 128) . (13)

Now both of the values of # in (13) satisfy
n*4-n+27#0 (mod 128) , (14)

as one sees by direct calculation, and case (d) is excluded.

Finally, consider case (a). Actually, one could show
without the condition n =2 (mod 3) that it occurs only for
k=2,k=12 (the latter corresponding to the identity 1+

90-{—(920):21?) but the calculation is reduced somewhat

by bringing in this extra condition that every close-packed
(n, 5) code must satisfy.

Let A denote the matrix

a=(5.1) s

P()) is any polynomial with rational integer coefficients
vanishing for A = p (so that A>4-A+2, being irreducible over
the rationals, divides P(\) ) we have P(A) = the zero matrix.
Now, considering pairs of consecutive a’s as 2-vectors we
have

£.)-+ ()

This is just another way of expressing (8). Suppose now (a)
holds. Then

prit=n—p ;
hence,

A = — A4n a”n

Applying (17) to the vector ((1)) and observing (16) we get

(Zﬁ,+])=—A(?>+(g)=—(_i)+(2) : (18)

This gives
(11”_1:'1‘}-1 . (19)
Hence, if (a) holds for a pair of values k, n we have the
twin conditions a.= —1, ax.1=n-+1 or, considering the
a; (mod 3)
ar=~—1,a,...=0(mod 3) . (20)

Now the sequence of ax (mod 3) is given by the following
table:

k
a;(mod 3)

0‘ 1 2‘3
sl

Since a;=a,,a,=a,, the sequence has period 8, and condi-
tion (20) is seen to occur if and only if

k=2 (mod 8) ; 2n
on the other hand, consider the equation

n—p=pt  (k23) ; (22)
clearly p|n (| is the symbol for “divides™) hence,

n is even. n=2m=ppm, substituting this in (22) and
dividing by p gives

pm—1=p* (23)
pUn+1)=p"—p(since p+p=—1) .

Hence

plm+1ie., m+1 is even =2/ and p¥=p""1—1
pPU—1)=p""~1—p*=p""—p .

Hence,

pll—11ie., /—1iseven =2r and

plr=p—1

adding to both sides the identity p*= —p+2,

The characteristic polynomial of A4 is A*4A-+2; hence, if pir+1)y=p"*+p+2 29
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once again, we deduce, since k2 3 by assumption
plr+1ie., r41iseven =2s .

Hence n=2m=4/—-2=8r42=165—6

and so

n=—6 (mod 16) . 4

Thus, for case (a) to hold with k2 3 (and n=2 (mod 3) ) we
must have, from (19) and (24)

ar1=—5 (mod 16) . 25

But the residues of the a; (mod 16) are as follows:
5| s

4| slslr s o
—1\—5

—1‘—5|7

a3
—1|3

k lo| 1
a, (mod 16)’ 1 ‘——1

7
3

10 |
7

That is, they are 1,—1,—1 followed by the repeated period
3, —1, —5, 7. Hence (25) holds only if

k+1=35 (mod 4), i.e.,
k=0 (mod 4) (26)

(26) and (21) stand in contradiction, and the proof is com-
pleted.

o Theorem 6

The only close-packed triple-error correcting codes are the
(23, 7) code of Golay! and the trivial (7, 7) code.

Proof

({3

then, on multiplying by 6 and simplifying the left side
factors, we get

(n*—n+6)(n+1)=3.21 | @27

Hence, one or the other of the left-hand factors is a mul-
tiple of 3.

Case L. 3|n*—n+6 .

Here n+1=2', n*—n+6=3.2k1-1

whence, (2'—1)?— (2! —1)+4+6=3.2F1-1

2% —3.214-8=3.21"1 (28)

Obviously we may restrict ourselves to the case n>7 (for
n=7, we get the trivial code). Hence, /2 4.

Since the left side of (28) is =8 (mod 16) so is the right, and
thus k+1—/=3 and n*—n+6=24, which contradicts n>>7
(as well as n=rational integer).

Case 11 3|n+1

Here, n+1=3.2' and n?—n+6=2""1,

(32 — 12— (32— 1) -6 =2k~

9.2 —9.2/ -8 =2kH"1 29)
since n>8,/>2and k+1-—1235.

From (29), 9-:2!=8 (mod 16).

Hence, /=3, n+1=3-2%, n=23, completing the proof; this
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leads to the (23, 7) code mentioned in the theorem. If it is
desired to construct the code without simply quoting
Golay’s construction, we outline briefly how it could be
done (with relatively little trial and error). The trick is to
start by looking for code points of norm 7. By Theorem 3,
there is no loss of generality in assuming as code points
(taking also x=0 as a code point).

x; = 111 1111 0000 0000 0000 0000
x; = 111 0000 1111 0000 0000 0000
xs = 111 0000 0000 1111 0000 0000

x, = 111 0000 0000 0000 1111 0000
x; = 111 0000 0000 0000 0000 1111

These give us 5 linearly independent elements which (apart
from permutations of columns) must belong to any close-
packed (23, 7) code. Now, as we are looking for a group
code, we will try to find seven more linearly independent
elements, guided by Theorems 2 and 3.

We have already written down the 5 points having | in
the first 3 positions. Now, by Theorem 3, there are pre-
cisely 5 code points (of norm 7) having | in the 3 positions
(say) 1, 2, 4. Of these we have so far only one, x, and so
must be able to adjoin 4 more (if a (23, 7) code with 2!
points is to exist at all). In the construction we are guided
by Theorem 2, which tells us that every set of four places
must be filled with 1’s exactly once. Hence, we add the
expansions

x¢ = 110 1000 1000 1000 1000 1000
x; = 110 1000 0100 0100 0100 0100
xs = 110 1000 0010 0010 0010 0010
X, = 110 1000 0001 0001 0001 0001

Now, we could go on and adjoin new points, e.g., those
having 1’s in the positions 1, 2, S of which only one (x;) as
at present in our collection. It is here, however, that some
calculation is unavoidable if we seek to get linearly inde-
pendent elements. Note that already x.+X:+Xxi4X;=
Xs+X7+Xs+Xo so that one of our 9 points must be dis-
carded. In any case, however, it is clear that one by one, all
the points of norm 7 can be written down until 11 linearly
independent ones are obtained. Theorem 6 is a special case
of the following:

o Theorem 7

Let e 3 be odd, and let E denote the integer e!(14-1/34-
«.+1/e). If a close-packed (n,2e+1) code exists, then one
of the numbers n+1 or

e!{l +”(”371)+..."("~ 1)';(!”—6—{-2)}

is a divisor of 2% B. Here 2¢ denotes the largest power of
2 dividing E, and B denotes the largest odd divisor of e!.

Proof
If a close-packed code exists, 1+('11>+---(Z) is a power




of 2, say 2*. Now, when e is odd, this expression (con-
sidered as a polynomial in ) is factorable, since it vanishes
for n=—1. It factors into

nin—1)

(a+m! +50

L

say, and we have
(n+DPm)y=e!l2k .

Now, P(n)=P(—1)+(n+1)Q(n) where Q is some poly-
nomial with rational integer coefficients. Hence any com-
mon divisor of n+1 and P(n) divides P(—1) which is seen
to be E. Write E=2°4, where A4 is odd, and e!=2"8, where
B is odd. Suppose n-1 fails to divide 22 B. Since any odd
divisor of n+1 must divide B, this can only happen if
291 divides n+1. In this case, 24" cannot also divide P(n),
or else it would divide E, an impossibility. Therefore P(n)
divides 2¢.B, completing the proof.

+

(n—1)--(n—e+2) P(n),
S e!n ¢ }=(1+n)—(’—1!

e

Remark 1

It seems doubtful that P(n) could actually divide 2¢-B in
practice, since it is probably greater than this number when
n>2e+1; however, to substantiate this argument one
would need an estimate on the largest power of 2 dividing
E. This seems in general to be a difficult number-theoretic
problem, except in the case when e=1(mod 4), where we
have:

Corollary 1

If a close-packed (n,2e¢+1) code exists and ¢ is of the form
4r+1, then n+1 is a divisor of el.

Proof of corollary: In this case,

E=e!(14+1/3+..-1/e)=2"(B+ B/3+.-Ble)=2"B’ where B’
is odd, being the sum of an odd number of odd summands.
Thus 2¢ is the highest power of 2 dividing E, and Theorem 7
asserts that either n+1 or P(n) divides e!. But the latter
alternative cannot happen since P(n)>P(0)=e¢! for all
n>1.

As illustrations, consider first e=3. Here E=8, and by
Theorem 7 either n+1 or n*—n-6 divides 24; this readily
yields Theorem 6. Again, take e=35. By Corollary 1, n+1
divides 120, and we have:

Corollary 2

If a close-packed 5-error correcting code on # digits exists,
then » has one of the values 11, 14, 19, 23, 29, 39, 59, or 119.
It might be of interest to further investigate these values

n
5

of 2 for any n>11 among these numbers. If the answer is
affirmative, one can then systematically search for a cor-
responding code along the lines indicated earlier. This pro-
gram could easily be carried out by a digital computer.

of n, and see whether l—i—('l’)-i—m( ) is actually a power

Remark 2

Theorem 7 shows that if e>1 is odd, there are at most
finitely many close-packed e-error correcting codes. We also

know this to be the case for e=2, by Theorem 5. We now
show that this is true for all e>1, but unfortunately in a
manner which is non-constructive, i.e., allows no estimate
of the possible number of close-packed codes.

o Theorem 8

If 22, the number of close-packed (12,2e+1) codes is
finite.

The proof is a simple consequence of a deep result of
C. L. Siegel from the theory of numbers.

Lemma (Siegel)

Let f{x) be any polynomial which takes integer values when
x is an integer. Then, unless f(x) is a constant times a power
of a linear polynomial, the largest prime factor of f(n) in-
creases without limit as n— =,

To deduce Theorem 8 from this we have simply to verify
that f(x), defined by

f(x)=1+(“1‘)+---<jj) , (30)
is not a power of a linear polynomial if 2> 2; then f(n) has
a prime factor > 2 for n sufficiently large, and so cannot be
a power of 2. But suppose f(x)=a(b+cx)*, where q, b, ¢
are rational (as we may obviously assume).

Then 1=/(0)=ab*, so we may write f(x)=(14rx)* where
r=c/b is rational. Setting x=1 we get 2=(1+r)°, so that
“4/2 is rational. This contradiction establishes the theorem.

4. Lower bounds for Bin, d)

To motivate the considerations of this section, let us note
the following:

If an (n,d) group code & is maximal, then every point of
&, has distance < d—1 from some code point.

Note that a maximal group code is not necessarily a
maximal code, since A(rn,d) code points will in general not
be achieved with a group code. Still, the above proposition
asserts that it is relatively maximal, i.e., one cannot adjoin
new points to © and get a larger (n,d) code. The proof is
immediate: if there were a point w in &, at distance >d
from all points of &, the set &’ of all points x, x-+w where
x ranges over © would be an (n,d) group code having
twice as many points as &.

The preceding proposition can be viewed as the case r =0
of the following:

o Theorem 9

If & is an (n,d) group code having 2* points and there
exists a point w in &,, at distance 2> d—r from all points of
&, then there exists an (z+r,d) group code having 2+
points.

Proof

Let ©’ be the set of all x in &, each augmented by r 0%,
plus the set of all x+w(x in &), each augmented by r 1’s.
This & has the required properties. We are mainly inter-
ested in the case »=1, for which the following theorem. in
a certain sense converse to Theorem 9, holds:

31
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e Theorem 10

Let & be a maximal (n,d) group code and suppose B(n—1,d)
< B(n,d). Then there exist a maximal (n—1,d) group code
8 and a point x in &,_; at distance > d—1 from all points
of 8, such that & arises from 8 and x by the adjunction
procedure of the previous theorem.

Proof

Let ©' be that subset of © whose nth coordinate is 0.
Then &’ is a subgroup of & and the subset 8 of &,
obtained by dropping the last 0 from each point of & is
an (n—1,d) group code. Furthermore, it has B(n,d)/2 points
since ©’ has half as many points as ©. To see this, note
first that &’ is not all of &, or else by dropping the last
digit we would obtain an (n—1,d) code with B(n,d) points,
contrary to assumption. Hence, the complement &’ of &’
in © is not empty, and any pair of points of & (having 1
in the last digit) differ by an element of &’ so that they all
belong to the same coset of &€’ in &, i.e., & has index 2 in
©. Let now y be a point of ®,_; gotten by choosing any
point of &" and deleting the last digit. Then y has distance
2d-—1 from all of 8 and we may reconstruct © from &
and y by the procedure of the last theorem (for the case
r=1).

From these two theorems we see that it is in principle
possible to construct a maximal (#,d) code for each n suc-
cessively, by repeated adjunction. B(n,d) will double in pas-
sage from n to n+1 except for values of n where the
maximal code we have constructed ‘‘saturates’ the n-cube,
i.e., where it is not merely maximal (no point at distance
2> d from all code points) but it fills out the cube so densely
that no point even has distance > d—1 from all code points.
Viewed in this context, the highest possible saturation of
the n-cube is achieved when a close-packed (n,d) code
exists (d=2e-+1) for then there is no point of &, at distance
2 e+1 from all code points.

As a first application of these ideas it is instructive to see
what happens in Hamming’s case where d—1 =¢e-41 so that
the two extremes of saturation coincide. By Theorem 9
(for r=1), B(n+1,3)=2B(n,3) unless every maximal (#n,3)
group code has no point at distance 2 from it, i.e., unless
it is close-packed (hence, has 27/(n+1) points). But this
cannot happen unless # has the form 2*—1. We thus have
the result of Hamming: B(n,3) continues to double as »
increases, except when # passes through one of the values
3,7,15,31--., when it stays the same. Actually we have shown
somewhat more, namely that when » does not have one of
these exceptional values, any maximal (n,d) group code can
be extended to a code of order n-+1 with twice as many
points. Also, by Theorem 10, B(n,3)=B(rn-+1,3) when =n
takes one of the exceptional values, or else there would
exist a maximal (#,3) code having a point at distance 2 from
all its points, violating the close-packed property.

Now, the general case (e 2) is not so simple as this; for,
whereas in the Hamming case one could proceed by adjunc-
tion in any manner whatever and at each step arrive at a
maximal code, in the general case it is possible that two
different adjunctions at some stage will lead to two codes,
one of which saturates the cube and the other not, so a
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choice must be made if one is to keep on obtaining maximal
codes by this procedure. Further investigation of these
matters would seem worthwhile.

We can, in any case, use this method to obtain a fairly
good lower bound for B(n,d).

Lemma

If  Bd)< z

1+(’1’)+---+(de)

then B(n+1,d)=2B(n,d).
Proof

Let & be a maximal (n,d) group code, and associate to
each x of & the “sphere” 8x consisting of all points of
.. having distance < d—2 from x. The number of points

in each 8 is 1—!—(’1')—1—-'--{—(‘122), and there are B(n,d)

spheres. If the hypothesis of the lemma holds there is at
least one point in &, lying in none of these £y, i.e., having
distance > d—1 from all points of &. Hence, by Theorem 9,
B(n+1,d)=2B(n,d).

o Theorem 11
For an infinite sequence of n

2n

1+(;')+...+(d32)

If (31) failed to hold from some 7 on, then by the lemma
B(n,d) would continue doubling from that value n, onward,
giving B(n,d) =2""", B(n,d) and letting n— =, the inequality
(1) of Hamming is violated.

B(n,d)>

(3D

Proof

Remark

It is possible to replace the right side of (31) by a somewhat
smaller expression such that the resulting inequality holds
for all n, and also to give information about the density of
n for which (31) holds.

Of course, from the basic property of a maximal code
we have the weaker inequality

o
H'<rll>+"'+<dﬁl) (32)

since, if (32) failed to hold, the spheres of radius d—1 about
the points of a maximal group code would not exhaust &,
hence there would be a point of &, at distance 2> d from all
these code points, which by the introductory remarks of
Section 4 would lead to a larger (n,d) group code.

The orders of magnitude of the Hamming upper bound,
and the lower bounds (31) and (32) are, respectively,

B(n,d)2

2 2" d 2"
w1 A0
Thus, even for e=2 there is a significant gap between

Hamming’s upper bound and the lower bound (31), and
further results would be of interest.




5. The p-ary codes

Let p denote any prime number (the reasons why we require
this condition will become clear shortly). Suppose we con-
sider now the set (9, of n-tuples of symbols each chosen
from a set of p (which we may of course designate by
0,1,--p—1, the residues of the prime p). &%, has p"
“points> which no longer permit such a simple geometric
interpretation when p>2. We may define the distance be-
tween two points as the number of coordinates in which
they are different, and by A®(n,d) the maximum number
of points of &, which may have minimum mutual dis-
tance d¢. Then, by an argument similar to that of Section 1
we have the analog of Hamming’s inequality

n

1+(p—1)('1’)+...+(p_1)e(z) %))

We may define a group or systematic code as before to be
an (n,d) code which is a group under digit-wise addition
(mod p) and introduce the corresponding notation B®(n,d).
The distance between the points x and y of a group code
is | x —y]|| where ||| is defined to be the number of non-zero
digits in w. One sees immediately that a subgroup of G,
is an (n,d) code if and only if all its non-zero elements have
at least d non-zero digits.

It is an interesting fact that virtually all of the preceding
results can be carried over to these p-ary codes. We will
content ourselves with only one theorem, which shows that
the analogues of Hamming’s single-error correcting codes
exist.l 1t

A®(n, 2e+1)<

o Theorem 12

p’n
1+(p~1)n (34)

whenever the right side is an integer, i.e., whenever # is one
of the numbers

Bn3)=

pl.‘ _ 1

o =23,) 5 (35)
moreover, for all », B®"(n,3) is equal to the greatest power
of p not exceeding the right side and B®"(n+1,3) =pB@(n,3)
except when n is one of the numbers (35), in which case
B®(n4-1,3)=B%(n,3).

Proof
We can actually write down the codes in question. Suppose

=1
n—p =1
we wish to construct an (r,3) group code with p"—* points.
Let us begin by writing out a basis for the group ®®,,_;:

n—k

N
10..-0

010 (36)
001

This consists of just #—k “‘unit vectors’ which, when all

possible sums of them are taken, precisely generate all ele-
ments of &®,_,. Suppose now we can adjoin k additional
digits to these such that the resulting points x;,---X,_x have
the following property: every linear combination

aiXit o+ Xnp v

where the «; are integers (mod p), not all 0, has at least
3 non-zero digits. Then we will indeed have constructed a
basis for the code with the required properties. Now, let
us consider the class § of all k-tuples of integers (mod p)
at least two of which are distinct from 0. Their number is
precisely p*—1—k(p—1) since we are excluding precisely
1+k(p—1) from the total of p*. Let us call two of these
k-tuples x, y equivalent if ax+by=0 (the k-tuple 00-..0)
for some a, 5% 0(mod p). This is an equivalence relation:
x—x =0, symmetry is obvious, and ax+by =0, cy+dz=0,
implies (ea)x+dz=0 where e is so chosen that eb=—c
(mod p). Such an e exists because the integers (mod p)
form a field, and division by non-zero elements is possible.
(Here is where the assumption that p is a prime enters
essentially). Now, if x is in §, the equivalent elements in &
are the set of solutions y of ax+4by =0 for a,h#0, i.e., of
y=b"'ax (where b b~'=1(mod p)), i.e., the equivalent ele-
ments are simply multiples of X by the numbers 1,2,--p—1.
Since there are p— 1 elements in each equivalence class the
number of classes is

pe—l—k(p—1)
—o =
Hence, we may adjoin mutually non-equivalent elements
of & to the ““unit vectors” in the array (36). This is a basis
for the required code; for consider a linear combination
(37). If only one « is distinct from zero (37) has the form
a:x; which has by construction at least three non-zero digits.
If precisely two a; are 0, we have a;x;+a;x; which has
precisely two non-zero digits among the first n—k&, and at
least one among the last k since we chose inequivalent
k-tuples. Finally, if /23 of the a; are #0, the first n—k
digits of (37) already contain / non-vanishing digits.

The other details of the proof can easily be deduced by
the (appropriately generalized) line of reasoning of Section
4. In fact, the existence of the above code could also be
proved by this reasoning precisely as we derived Hamming’s
results. For instance, Theorem 9 with r=1 (extended in the
obvious way) tells us that

n—k.

1
BY(n,3)=pB®(n,3) when n;éf)fl— , (38)

and Theorem 10 says that (38) cannot hold if » has one
of these excepted values, or else the code constructed above
would have a point at distance 2 from all its elements,
implying that inequality holds in (34), contradicting what
we just proved.

The above proof is completely constructive: namely, in
adjoining the k-tuples to the “unit vectors’ we simply pick
any k-tuple from the set  for our first choice; discard
from R the p—1 non-zero multiples of this, and pick any
of the remaining k-tuples for our second choice; discard
the multiples of this one in turn, et cetera, until all n—4
have been chosen.

IBM JOURNAL * JANUARY 1959

33



34

In view of the ease with which these codes may be con-
structed and their efficiency, it might be worth considering
their use in connection with a binary channel, by encoding
the p symbols into binary. If p is chosen less than but near
2™ for some integer m, the encoding can be done with m
binary digits per p-ary symbol, and with little waste, e.g.,
p=1, m=3; p=31, m=5.
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