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Abstract: Perturbation methods are applied to the problem of calculating the attenuation of signals consisting

of compensated space charges moving in an electric field of general, but prescribed, form. Asymptotic

formulas for attenuation and phase shift are derived which apply when the diffusion currents giving rise to

attenuation are small compared to the field-induced currents. Alternate expansions of the continuity equa-

tion, e.g., in terms of the frequency, are discussed in a mathematical appendix.

Introduction

A mode of signal propagation which is peculiar to mate-
rials containing mobile charges of both polarities con-
sists in the drift motion of electrostatically neutral, local
concentration excesses of these mobile charges under the
action of an electric field. Such an excess concentration
is not dispersed by coulomb forces. The signal, however,
is necessarily attenuated by thermal agitation, which pro-
duces a diffusion current tending to spread the concen-
tration excess.

Aspects of this effect of diffusion have been rather
thoroughly investigated in recent years by those interested
in the applied physics of semiconductors. The present
paper may serve the dual purpose of providing a simple,
self-contained, and rather intuitive discussion of diffusion
attenuation, while adducing results of somewhat more
general nature than those customarily obtained.

Only the one-dimensional case is considered. The elec-
tric field, however, is allowed to be a general function of
position. An iteration procedure is developed for obtain-
ing the general solution, and asymptotic formulas for
attenuation and phase change are derived, which apply
when the change of electrostatic potential through which
the signal passes is sufficiently large.

Formulation
® General comments

We shall regard the electric field as prescribed, i.e., as
time independent, unmodified by the presence of the
signal itself. This condition is approximately fulfilled if
the excess concentration is sufficiently small. The electric
field E causes a current j proportional to the local charge
excess p:

i D =vx)plx, 1), H

where the coefficient of proportionality v(x) is the local
drift velocity of the excess concentration. The coordinates
of position and time are x and ¢ respectively. In Eq. (1)
the current j and charge density p are those of either
current carrier considered separately. The charge and
current of the entire excess concentration is, of course,
equal to zero.
An equation of continuity applies,
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ot ox '

which combined with Eq. (1) yields the equivalent equa-
tions
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These equations apply only in the absence of diffusion.

It will prove more convenient to carry forward the
discussion in terms of the current rather than in terms
of the charge. This is true because the current is unaf-
fected by changes of v with position, while the charge is
not. The general solution of Eq. (3b) is given by

(e, 0= (xo,t—/ i (4)
Zo 7)(x)

This equation expresses the fact that the functional de-
pendence of current on time is the same at ail points x
except for a translation in time equal to the propagation
time between points. The current thus moves as an un-
distorted wave. The charge density, on the other hand,
is inversely proportional to the local drift velocity.

13

IBM JOURNAL * JANUARY 1959




14

Thermal agitation introduces a diffusion current jp
of value

e 5
n > (5)
where D is the diffusion coefficient. The new equation of
continuity for the total current j is
, . 2s
1 = —p ﬂ_ + D 0 ]
ot ox 0x?

(6)

Our problem is to calculate the effect of this extra term
on the form of the current.

Intuitively one would expect the attenuation of a wave
transmitted over a certain distance in a time 7 to be ap-
proximately equal to the attenuation of a stationary wave
of similar shape, should the latter be acted upon by diffu-
sion during the same time interval. The intuition is the
basis of the following treatment.

* Transformation to moving system*

We shall now introduce a transformation to a new coordi-
nate system in which the current, were it not for the
effect of diffusion, would be stationary, i.e., to a coordi-
nate system moving with the signal. The new distance
coordinate y which, however, has the dimensions of time,
is defined as

T odx
y = —t+[ o) . (7)

Points of constant y move with local velocity »(x), and
points unit y distance apart pass the point x=0 at unit
time intervals. The new continuity equation can be found
by using the partial derivative relations

(£).-2(3),
(2).-(2)- ().

It is

(_ii]_) — D a i_al_) (1())
ot )= v 6y v oy

As anticipated, this has a form similar to that of a pure
diffusion equation and is well suited for solution by means
of a power-series expansion in D.

It may be well to digress slightly at this point in order
to indicate some general properties of v(x) and D. The
function v(x) must be definite if signal propagation in the
absence of diffusion is to exist; we shall adopt the con-
vention that it be positive definite. The electric field is
then either positive or negative definite, depending on
whether excess concentrations move as positive or nega-
tive charges. We may define a mobility p by the relation

v=uE. (11)
The Einstein relation?® for Boltzmann statistics is

D= (kT/e)p, (12)
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where k, T, and e are respectively Boltzmann’s constant,
absolute temperature, and charge of the electron. The
quantity (kT/e) will be called “thermal voltage” and
denoted by V7. It is clear that expansion in powers of D
is essentially equivalent to expansion in powers of Vo,
and that one may expect convergence conditions to in-
volve the ratio of Vy to some other voltage. It is also
worthwhile to note that D and g may in general be func-
tions of position. Then it is especially convenient to regard
the expansion as one in terms of Vy. We shall, however,
assume D constant for simplicity, since any resultant loss
of generality can be regained with small effort.

Solution

We shall next make use of the simplification introduced
by taking the time variation of the signal to be harmonic.
Because of the linearity of the governing equation, such
a signal can be attenuated but not otherwise distorted.
An unattenuated signal harmonic in time takes the form

j=exp(ivy), (13)

in the new coordinate system. We can represent an atten-
uated signal by the form

j=explioy +¢p(y+1)], (14)

since the attenuation must behave similarly with respect
to y and ¢ in order that the solution have constant ampli-
tude (in time) at every point x of the original coordinate
system. The equation for ¢ resulting from substitution
of Eq. (14) in Eq. (10) is

:' (15)

A N A P
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a Ricatti equation for ¢'. Except for the smgle case v =
constant, ¢ will be a complex quantity, yielding informa-
tion about phase changes as well as about amplitude
changes. The advantage of dealing with Eq. (15) rather
than directly with Eq. (10) is evident. A change in ¢
small compared to oy, and thus calculable by treating the
diffusion term as a perturbation, may lead to extremely
large changes in j, particularly at large y, which could
hardly be treated as a perturbation upon j itself.

Expanding ¢ in powers of D, and denoting the solu-
tion containing the factor D" by ¢,, we obtain the fol-
lowing equations:

#'0=0, (162a)
o= — £(m2+iwi), (16b)
2 v
‘}I)m—l = — ¢’” =+ (21“’ - _) 4) -+ 2 (751(]5’7'] . (16C)
itj=n

The 1ntegral of ¢, will yield the asymptotic formula
for which we sought. However, if the asymptotic solution
is to be meaningful, it is necessary that |¢:’| be smaller
than o, i.e., that

Do
V2

<1 (1N




and

Dv’

<1. (18)®
12)3

The physical meaning of conditions (17) and (18) is
not difficult to understand. Condition (17) states that
the attenuation per radian must not be larger than 1/e.
Condition (18) requires that v not change so rapidly that
the concentration change (which derives from the pre-
viously mentioned fact that the concentration is inversely
proportional to the electric field) introduces diffusion
currents comparable to the drift current. Condition (17)
sets an upper limit on the frequency, while condition (18)
is a frequency-independent restriction involving only the
structure of the field. It may be more illuminating to
write it in the form

d(1/E)
dx

It should be noted that this condition need not apply
at boundary points. An example of this is furnished by
our later discussion of the case of uniform electric field.

Vi <l1. (18a)

Asymptotic formulas

The solution for the real part of ¢4 is

w dx
Re¢1=7Dm2 — . (19)
0oV
Here the source is regarded as placed at x=0, and the
attenuation “angle” Re¢, is viewed at a position x=W,
Use has been made of the fact that

d(y+1)—=vtdx

to transform the integral to the original coordinate frame.
The attenuation factor, which we shall call 8, is given by

w
B—exp (—Dﬁf ‘;’j ) . (20)
0

The first-order phase change, Im¢, which we shall denote
by 61, is

1 W
f:=Da _:l . (21)
v° 1o

There is, of course, also a zero-order phase change
fo=oT, (22)
where T is the transit time,
w dx

0 v

T= (23)

A distinction must now be made between expansions
in terms of D and in terms of w.* The reader may easily
convince himself that Re¢ contains only even powers of
o, while Im¢ contains only odd powers. In order to dis-
cover how accurate the asymptotic expression for § is,
one must compare Reg, with both the next higher term
in »? and with the next higher term in D of order w®. The
latter term exists only if »'%0. We find that the form

B=exp(—kw?), (24)

where & is a constant (at a given temperature), will cer-
tainly apply with an accuracy & or better if

(%)
2

i.e., it is sufficient that the square of the attenuation angle
per radian be everywhere smaller than e. Similarly if & is
to agree with the asymptotic prediction of its value to
within an accuracy 8, we should presumably require

Ved(E1)/dx<8. (26)
If » is constant we obtain the formula
B=exp(—0¢2/1), 27)

where r is the ratio of thermal voltage to the charge AV
in potential occurring through the path of the signal

r:VT/AV, (28)
w
AV=/ Edx=EW, (29)
0
fo=oT. (30)

If E is truly constant, #;—0. However, a frequently
employed boundary condition, that p be zero at x=W,
can be represented in our framework by the requirement
that v= « at x=W. Although we have v’ =wat x=W, we
may still obtain a meaningful solution. In fact we have
b= — Do _ 1, (31)

v(0)?

The integral of condition (18a) must always apply; i.e.,
we must have r<1 in order that the asymptotic solution
be at all meaningful. One must not conclude from this,
however, that the integrated condition is sufficient, since
one could always satisfy it merely by taking E(0)=E(W).

The case of uniform field can be solved exactly (cf.
Part II), and the asymptotic formula for the attenuation
factors is found to fit within the accuracy (8/r)? predicted
by inequality (25). It is interesting to note that the accu-
rate solution for B is always larger than the asymptotic
value (see Fig. 6 of Part II). This fact gives us further
insight into conditions (17) and (25). Evidently at the
higher frequencies the ability of diffusion itself to propa-
gate signals becomes important and it is no longer ade-
quate to treat diffusion merely as the attenuator of another
mode of propagation.

Summary

Let 6, be the zero-order phase change over some distance
W. Then the attenuation B over this distance is given by
B=exp(—0¢*/1"),

where

w dx 2
L
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a quantity which for constant electric field E is equal to

AV
Vr

the ratio of potential drop to thermal voltage.

A sufficient condition for the approximate validity of
an expression of this form for 8 is that the attenuation in
a distance equal to the wavelength be small throughout
the region considered. However, in order that the above
equation give the correct value of ¢’ it is also necessary
that E(x) be a sufficiently smooth function, as discussed
in the text.

El

Appendix I: Expansion in various parameters
The equation resulting from substitution of j=J(x)e'®?
into Eq. (6).

2J
0 —v—a—J——imJ=0, (32)
0x2 ox

is a special case of the general form

D

2
L L (33)
ox? ox

where ¢ is a small parameter, and where p(x) and g{x) are
analytic functions of ¢ at e=0, at least one of which does
not vanish at e=0. The dependence on ¢ of the solutions
to this equation has been much studied, though mostly
for special forms of p(x) and g(x). A simple transforma-
tion of dependent variable eliminates the term in the first
derivative. The various special cases that arise can then
be discriminated according to the dependence of the new
“g(x)” on . However, the distinctions we make here are
most simply discussed with retention of the original form.

The substitutions u=e?®, and ¢'=y yield the equivalent
Ricatti equation

e"(y'+y?) +p(x)y+q(x)=0. (34)

Let us assume g{x)7#0 at ¢=0. Then there is an essen-
tial difference between the cases (a): p(x)=0 and
(b) :p(x)50 at £=0, since a solution at =0 exists only
for case (b). If we expand all quantities in a power series
in terms of ¢ and denote the terms of mth order in £ by a
subscript m, this solution can be expressed as

Yo=qo{x)/po(x). (35)

In case (a) on the other hand, the expansion of y com-
mences with negative powers of &, and u accordingly has
an essential singularity with respect to ¢ at ¢=0. This case
has received much attention.® The first equation resulting
from the expansion is

£"Y"_(ns2) Tqo(x) =0. (36)

If, further, g(x)=gqo(x), it is evident that a single condi-
tion is all that is required to insure that the next higher
term of the expansion of y is much smaller than the first.
Taking n=2 for simplicity, one easily finds the condition
to be

le(qo?)'| <<2, 37
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and since, as is evident from Eq. (36), £got is the local
“wavelength” A, we can write equivalently

L (37a)

2 8x

(The time-independent Schroedinger equation has the
form in question; then A is the de Broglie wavelength.)

As we have seen, in case (b) the expansion of y com-
mences with yo. In the special situation parallel to that
discussed above, i.e., p(x) =po(x), q(x) =qo(x) (allow-
ing us to take n=1 without loss of generality), there will
be two conditions necessary to imply y;<<y,, namely

ey'o<<q(x), ey?0<<g(x), or
elg(x)/ p(x))<<gq(x) (38a)
e[g(x)/ p(x)2)<<1. (38b)

The fact that taere are two conditions, rather than one,
stems from the equal order with respect to ¢ of the lowest-
order components of y' and y2. Substitution of the par-
ticular forms of p(x) and g(x) contained in Eq. (32) yields
the conditions found in the text.

A third case of interest to us is characterized by n=0.
Unless g{x)=0 we cannot, in general, solve the equation
for yo, since the problem is equivalent to the general one
before expansion. The case p(x)=po(x), g(x)=q:1(x) can,
however, be solved, again by expansion of y in terms of
e. We have first

Yo+y2+po(x)yo=0 (39)

which can be solved in terms of quadratures, since the
corresponding linear equation for u' is soluble. Actually,
the trivial solution yo=0 turns out to be the proper one for
the application of the method to Eq. (32). With this
choice for y,, our second equation becomes

Y1+ po(x)y1+qi(x)=0, (40)

which is easily solved in terms of quadratures. Continu-
ing in this manner we next obtain

Y2+ po(x)y2+y3=0, (41)

et cetera. The resulting set of equations is soluble by a
sequence of quadratures. The constants of integration are
of course determined by the type of solution it is desired
to approximate. This method is directly applicable to
solution of Eq. (32), by expansion in terms of », but the
details will be omitted.

A fourth case of interest is that arising from the prob-
lem at hand when o is considered large. Taking e 2=iw/D,
and expanding J about ¢=0, we can easily obtain an
asymptotic solution valid for large frequencies. This case
is, of course, only a particular instance of case (a). The
first and second terms of the expansion are easily found
to be

- 1 o —
Ya=+/ie/D = ﬁ(lﬂ) /D

v
Yo=——.

2D




The attenuation over a distance W is the exponential of
the integral of the real part of these quantities over the
distance W. It is seen that the principal, or — Ist order,
contribution to the attenuation is independent of the field,
while the zero-order contribution depends only on the
potential difference across the distance ¥, and not on the
detailed shape of the potential function.

Appendix ll: Minimal attenuation

A question of some interest is the following: given a
potential difference AV between the points x=0 and
x=w, what sort of potential function V(x) between these
points will minimize the attenuation? This question has
an obvious answer if no continuity restrictions are im-
posed; for the field £(x) may be made as large as desired,
and the corresponding attenuation as small as desired, by
making lim V(x) sufficiently large. But even requiring

Z—=0
V(x) to be continuous, introduction of a high maximum

in V(x) sufficiently close to x=0, followed by an approxi-
mately linear variation of ¥ (x) from this maximum to the
endpoint x=W, will lower the attenuation factor to an
arbitrarily small value. This fact, which underlies the
advantage of the drift transistor,® is due to the efficiency
of the diffusion mechanism over small distances. Thus,
the question can meaningfully be asked only if the poten-
tial ¥ (x) assumes its highest value at x=0. Further, the
value of the frequency at which the attenuation is to be
minimized must be specified.

If the electric field is subject to the restriction (18a)
over the entire interval x=0 to x=W, one can employ
the asymptotic attenuation formula, and by equating to
zero the change of attenuation caused by a variation
Sv(x) of the drift velocity, one readily confirms the intu-
itively expected result that the attenuation has an extre-
mum (minimum) for v(x) = const. However, this procedure
is valid only if condition (18a) applies also to the varia-
tion. It is readily shown on the basis of qualitative argu-
ments that, requiring only that V' (x) assume its largest
value at x=0, the function V,.,(x) which minimizes the
attenuation at a given frequency will have zero slope at
x=0. However, if AV/Vy is large, the function V,,(x)
will not differ considerably from the straight line joining
the prescribed values of V' at x=0 and x=W. The dis-
tance near x=0 over which V(x) is comparatively flat is

approximately given by

W( 2V ) e

AV ®p

where op=W?2/2D, and where  is the frequency at which
the attenuation is to be minimized. The fractional attenu-
ation decrease over the attenuation occurring for the case
of linear ¥V (x) is about (2V¢/ AV ) 3w/ wp. As the frequency
of minimization o becomes large, this formula loses its

validity, and a maximum fractional attenuation decrease,
less than 2V;/AV, occurs in the neighborhood of

( 2AV ) 2
O = w©p .
Vr

At higher frequencies the attenuation becomes substan-
tially independent of the shape of the curve V(x). Our
conclusion is that the linear potential function is a good
approximation to that function V,,(x) which minimizes
attenuation under the restriction that V(x) attain its max-
imum at x=0.

References

1. Although this artifice is intuitively suggestive, it does not
actually simplify the mathematical treatment (cf. Appen-
dix).

2. This relation applies approximately in the case under
discussion if one carrier is very much in the majority. In
general, a factor (n4p)/(n—p), where n and p are the
concentrations of negative and positive carriers respec-
tively, must be inserted on the right.

3. This condition is somewhat different from the analogous
condition for the application of the B.W.K. method in
quantum mechanics, which in our notation would read

1 dv <1

w dx ’
In fact inequality (18) is the product of inequality (17)
and the B.W.K. inequality. For this reason the B.W.K.
inequality is not a necessary condition of convergence at
low frequencies (cf. Appendix).

4. Cf. Appendix.

5. See, for example, A. Erdélyi, Asymptotic Expansions,
Dover Publications, Inc., 1956, and the considerable liter-
ature upon the B.W.K. approximation.

6. H. Kroemer, Archiv. Elek. Ubertr. 8, 223, 499 (1954).

Revised manuscript received June 26, 1958

17

IBM JOURNAL * JANUARY 1959




