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Abstract: Perturbation methods are  applied to the problem of calculating the attenuation  of signals consisting 

of compensated space  charges moving in  an electric field of  general,  but prescribed, form. Asymptotic 

formulas for attenuation and phase shift are derived which apply  when the diffusion currents giving rise  to 

attenuation are small compared to the field-induced currents. Alternate expansions of the continuity equa- 

tion, e.g., in terms of the frequency, are discussed in a  mathematical appendix. 

Introduction 

A mode of signal propagation  which is peculiar to mate- 
rials containing  mobile  charges of both  polarities  con- 
sists in the  drift  motion of electrostatically  neutral, local 
concentration excesses of these mobile charges under  the 
action of an electric field. Such an excess concentration 
is not dispersed by coulomb forces. The signal,  however, 
is necessarily attenuated by thermal agitation,  which pro- 
duces a diffusion current tending to  spread the  concen- 
tration excess. 

Aspects of this effect of diffusion have been rather 
thoroughly investigated in recent  years by those interested 
in the applied physics of semiconductors. The present 
paper may serve the  dual purpose of providing a simple, 
self-contained, and  rather intuitive discussion of diffusion 
attenuation, while adducing  results of somewhat more 
general nature  than those  customarily  obtained. 

Only  the  one-dimensional case is considered. The elec- 
tric field, however, is allowed to be a  general function of 
position. An iteration  procedure is developed for  obtain- 
ing the general  solution,  and  asymptotic formulas  for 
attenuation  and phase  change are derived,  which  apply 
when the  change of electrostatic  potential through which 
the signal passes is sufficiently large. 

Formulation 

General comments 

We  shall  regard the electric field as  prescribed, i.e., as 
time  independent, unmodified by the presence of the 
signal itself. This  condition is approximately fulfilled if 
the excess concentration is sufficiently small. The electric 
field E causes  a current j proportional to  the local  charge 
excess p: 

i ( x ,  0 = v ( x > p ( x ,  t > ,  (1) 

where the coefficient of proportionality v ( x )  is the local 
drift velocity of the excess concentration. The coordinates 
of position and time are x and t respectively. In Eq. (1) 
the  current j and charge  density p are those of either 
current  carrier considered  separately. The charge and 
current of the  entire excess concentration is, of course, 
equal  to zero. 

An  equation of continuity applies, 

aP a i  
at ax ' 

- = - -  (2 )  

which combined  with Eq. (1) yields the equivalent equa- 
tions 

ai - - v ( x ) - .  ai 
a t  ax 
" 

These  equations  apply  only  in the absence of diffusion. 
It will prove more convenient to  carry  forward  the 

discussion in  terms of the  current  rather  than in terms 
of the charge. This is true because the  current is unaf- 
fected by changes of v with position, while the charge is 
not. The general  solution of Eq. (3b) is given by 

This  equation expresses the  fact  that  the  functional de- 
pendence of current  on time is the same at all points x 
except for a  translation in time  equal to  the propagation 
time  between  points. The  current  thus moves  as an  un- 
distorted wave. The charge density, on  the  other hand, 
is inversely proportional  to  the local drift velocity. 13 
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Thermal agitation  introduces  a diffusion current j D  
of value 

where D is the diffusion coefficient. The new equation of 
continuity for  the  total  current j is 

Our problem is to calculate  the effect of this extra  term 
on  the  form of the current. 

Intuitively one would expect the  attenuation of a wave 
transmitted  over  a certain distance  in  a  time T to be ap- 
proximately equal  to  the  attenuation of a stationary wave 
of similar  shape,  should the  latter be  acted upon by diffu- 
sion during  the  same  time interval. The intuition is the 
basis of the following treatment. 

Transformation to moving system1 

We shall  now introduce a transformation  to a new coordi- 
nate system in  which the  current, were it  not  for  the 
effect of diffusion, would be stationary, Le., to a  coordi- 
nate system moving  with the signal. The new distance 
coordinate y  which, however, has  the dimensions of time, 
is defined as 

Points of constant y  move  with  local velocity v(x), and 
points unit  y  distance apart pass the  point x=O at unit 
time intervals. The new continuity equation  can be found 
by using the partial  derivative  relations 

It is 

As anticipated,  this has a form similar to  that of a pure 
diffusion equation and is well suited for solution by means 
of a power-series expansion  in D. 

It may be well to digress slightly at this point in order 
to indicate some general  properties of v(x) and D. The 
function v(x) must be definite if signal propagation in  the 
absence of diffusion is to exist; we shall adopt  the con- 
vention that  it be positive definite. The electric field is 
then either positive or negative definite, depending on 
whether excess concentrations move as positive or nega- 
tive charges. We may define a mobility p by the  relation 

v=pE. (11) 

The Einstein  relation? for Boltzmann  statistics is 

14 D = ( k T l e ) p ,  (12) 

where k ,  T ,  and e are respectively Boltzmann’s constant, 
absolute temperature,  and  charge of the electron. The 
quantity ( k T l e )  will be called “thermal voltage” and 
denoted by V T .  It is clear that expansion  in  powers of D 
is essentially equivalent to expansion in powers of V T ,  
and  that  one  may expect  convergence  conditions to in- 
volve the  ratio  of k ‘ ~  to some other voltage. It is also 
worthwhile to note that D and p. may in general  be func- 
tions of position. Then it is especially convenient to regard 
the  expansion  as one in  terms of V r .  We  shall, however, 
assume  D constant  for simplicity, since any resultant loss 
of generality can be regained with small effort. 

Solution 

We shall next make use of the simplification introduced 
by taking  the  time  variation of the signal to be harmonic. 
Because of the  linearity of the governing  equation,  such 
a signal can be attenuated  but not  otherwise  distorted. 
An  unattenuated signal harmonic in time  takes the  form 

in the new coordinate system. We can represent an atten- 
uated signal by the  form 

j = e x ~ [ i ~ ~ + + ( ~ + t ) l ,  (14) 

since the attenuation  must  behave similarly with respect 
to y and t in order  that  the solution  have constant ampli- 
tude  (in  time) at every  point x of the original coordinate 
system. The  equation  for + resulting from substitution 
of Eq. (14) in Eq. (10) is 

a  Ricatti equation  for 6’. Except for  the single case v = 

constant, + will be a  complex quantity, yielding informa- 
tion about phase  changes as well as about  amplitude 
changes. The  advantage of dealing  with Eq. (15) rather 
than directly  with Eq. (10) is evident. A change  in + 
small compared  to  WY,  and  thus calculable  by treating the 
diffusion term as a perturbation, may  lead to extremely 
large  changes  in j ,  particularly at large  y,  which could 
hardly be treated  as  a perturbation  upon i itself. 

Expanding + in powers of D,  and denoting the solu- 
tion  containing the  factor Dn by &, we obtain  the fol- 
lowing equations: 

+‘I3 = 0, (16a) 

The integral of will yield the asymptotic formula 
for which we sought. However, if the asymptotic  solution 
is to be meaningful, it is necessary that 1 C1’ I be smaller 
than O, Le., that 

6c 

DW 
V2 

-<1  
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and 

<1. (18)3 

The physical  meaning of conditions (17) and (18) is 
not difficult to understand. Condition (17) states that 
the  attenuation per radian must not be larger  than l /e.  
Condition (18) requires that v not  change so rapidly that 
the concentration change (which derives from  the pre- 
viously mentioned fact  that the concentration is inversely 
proportional  to  the electric field) introduces diffusion 
currents  comparable  to  the  drift  current.  Condition (17) 
sets an  upper limit on  the frequency, while condition (1 8) 
is a frequency-independent  restriction involving only the 
structure of the field, It  may be more illuminating to 
write it in the  form 

It should be noted that this  condition need not apply 
at boundary points. An example of this is furnished by 
our  later discussion of the case of uniform electric field. 

Asymptotic formulas 

The solution for  the real part of is 

Here the source is regarded as placed at x =  0, and  the 
attenuation “angle” Re+, is viewed at a position x= W .  
Use has  been  made of the  fact  that 

d ( y + t )  -v-ldx 

to  transform  the integral to the original coordinate  frame. 
The  attenuation  factor, which we shall call p, is given by 

The first-order  phase  change, lm+, which we shall  denote 
by 81, is 

There is, of course, also a zero-order  phase change 

Bo=wT, 

where T is the transit  time, 

A distinction  must now be made between expansions 
in terms of D and  in  terms of w . ~  The  reader may easily 
convince himself that Re+ contains only even powers of 
1,)) while Im+ contains only  odd powers. In  order  to dis- 
cover  how accurate  the asymptotic expression for /3 is, 
one must compare Re+l with both  the next higher term 
in 6j2 and with the next  higher term in D of order w2. The 
latter term exists only if v ’ f 0 .  We find that the form 

p=exp( -kd) ,  (24) 

where k is a constant  (at a given temperature), will cer- 
tainly  apply  with an  accuracy E or better if 

Le., it is sufficient that  the  square of the  attenuation angle 
per  radian be  everywhere  smaller  than E .  Similarly if k is 
to agree  with the asymptotic  prediction of its value to 
within an accuracy S, we should  presumably  require 

VTd(E-’ )Idx<S.  (26) 

If v is constant we obtain the  formula 

where r is the  ratio of thermal voltage to  the charge A V  
in  potential occurring  through  the  path of the signal 

r = V T /  AV, (28 1 

A V = l T v  Edx=EW, (29) 

8o=o,T. (30) 

If E is truly  constant, O1 =O. However, a frequently 
employed boundary condition, that p be  zero at x = W ,  
can be  represented in our  framework by the  requirement 
that v= w at x= W. Although we have vu)= CD at x= W ,  we 
may still obtain a meaningful  solution. In  fact we have 

The integral of condition ( 18a) must always apply; i.e., 
we must  have r < l  in order  that  the asymptotic  solution 
be at all  meaningful.  One  must not conclude from this, 
however, that  the integrated  condition is sufficient, since 
one could always satisfy it merely by taking E(O)=E(W). 

The case of uniform field can be solved exactly (cf. 
Part TI), and  the asymptotic formula  for  the attenuation 
factors is found  to fit within the accuracy (O/r):! predicted 
by inequality (25). It is interesting to  note  that  the accu- 
rate solution for p is always larger  than  the asymptotic 
value (see Fig. 6 of Part 11). This  fact gives us further 
insight into conditions (17) and (25). Evidently at the 
higher  frequencies the ability of diffusion itself to propa- 
gate signals becomes important  and it is no longer  ade- 
quate  to  treat diffusion merely as the  attenuator of another 
mode of propagation. 

Summary 

Let 80 be the zero-order  phase  change over some  distance 
W .  Then  the  attenuation ,8 over this distance is given by 
,8=exp(-802/r’), 
where 

[ p g ]  a 
1 

1 5  
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a quantity which for constant  electric field E is equal  to 

4v r = -  
V T  ’ 

the  ratio of potential drop  to  thermal voltage. 
A sufficient condition for  the  approximate validity of 

an expression of this form  for /? is that  the  attenuation in 
a  distance equal  to  the wavelength be small throughout 
the region considered.  However,  in order  that the  above 
equation give the  correct value of r‘ it is also necessary 
that E(x)  be  a sufficiently smooth  function, as discussed 
in the text. 

Appendix I: Expansion in various parameters 

The  equation resulting from substitution of j=J(x)eiot 
into  Eq. (6). 

a2J aJ 
ax2 ax 

D-- v- - i d  = 0,  

is a special case of the general form 

(33) 

where E is a  small parameter,  and where p(x) and q ( x )  are 
analytic functions of E at E = O ,  at least one of which does 
not  vanish at E =O. The dependence on E of the solutions 
to this equation has been much studied,  though mostly 
for special forms of p(x) and q(x) .  A  simple transforma- 
tion of dependent variable  eliminates the  term in the first 
derivative. The various  special cases that arise can then 
be discriminated  according to  the dependence of the new 
“q(x)”  on F .  However, the distinctions we make here  are 
most simply discussed with  retention of the original form. 

The substitutions u = e @ ,  and +’=y yield the equivalent 
Ricatti equation 

E”(Y’+Y2) + p ( x ) y + q ( x )  =o. (34) 

Let us assume q(x) # 0 at E = 0. Then  there is an essen- 
tial  difference  between  the  cases (a):p(x)=O and 
(b) : p ( x ) # O  at E=O,  since  a  solution at E=O exists only 
for case (b). If  we expand all quantities  in  a  power series 
in terms of E and denote the terms of mth  order in E by a 
subscript m, this  solution can be expressed as 

Y o = q ’ o ( X ) / p o ( x ) .  (35) 

In case  (a) on  the  other  hand,  the expansion of y com- 
mences with negative powers of E ,  and u accordingly  has 
an essential singularity with respect to E at E = 0. This case 
has received much attention.5 The first equation resulting 
from  the expansion is 

EnY”(n/z) +qo(x)  =o. (36) 

If, further, q(x)=qo(x), it is evident that a single condi- 
tion is all that is required to insure that  the next higher 
term of the expansion of y is much smaller than  the first. 
Taking n = 2 for simplicity, one easily finds the condition 
to be 

16 [ ~ ( q + ) ’ 1 < < 2 ,  (37) 

and since,  as is evident from  Eq. (36), E q o - 3  is the local 
“wavelength” X, we can write equivalently 

” < < 1 .  
2 6x 

(The time-independent  Schroedinger equation has the 
form in  question; then X is the  de Broglie wavelength.) 

As we have  seen,  in case (b) the expansion of y com- 
mences with yo .  In  the special situation  parallel to  that 
discussed above, i.e., p ( x ) = p o ( x ) ,  q ( x )   = q o ( x )  (allow- 
ing us to  take n= 1 without loss of generality),  there will 
be two conditions necessary to imply yI<<yo, namely 

EY’n<<q(X),   EY?o<<q(x),  or 

4 q ( x ) l p ( x ) l ’ < < q ( x )  (38a) 

E [ q ( X ) I p ( X ) q < < l .  (38b) 

The  fact  that  there  are two conditions, rather  than  one, 
stems from  the  equal  order with respect to E of the lowest- 
order components of y’ and y 2 .  Substitution of the  par- 
ticular forms of p(x) and q(x) contained  in Eq. (32) yields 
the conditions found in the text. 

A third case of interest to us is characterized by n = 0. 
Unless q(x)=O we cannot, in  general, solve the  equation 
for y o ,  since the problem is equivalent to  the general one 
before  expansion. The case p(x)=po(x) ,  q ( x )  =q1(x) can, 
however, be solved,  again by expansion of y in terms of 
E .  We have first 

Y’o+Y20+po(x)Yo=0 (39) 

which can be solved in terms of quadratures, since the 
corresponding  linear equation  for uf0 is soluble. Actually, 
the trivial  solution y o  = 0 turns  out  to be the  proper  one  for 
the application of the  method  to  Eq. (32). With  this 
choice for yo, our second  equation becomes 

Y ’ l + P o ( X ) Y l + q l ( x )  =o, (40) 

which is easily solved in terms of quadratures.  Continu- 
ing in  this manner we next obtain 

Y’z+Po(x)Yn+Y21=0, (41) 

et  cetera. The resulting set of equations is soluble by a 
sequence of quadratures.  The constants of integration are 
of course  determined by the type of solution it is desired 
to approximate.  This method is directly  applicable to 
solution of Eq. (32), by expansion in terms of O, but  the 
details will be omitted. 

A fourth case of interest is that arising from  the  prob- 
lem at  hand when w is considered  large. Taking ~ - 2 =  io/ D ,  
and expanding J about E =0, we can easily obtain  an 
asymptotic  solution valid for large  frequencies. This case 
is, of course,  only  a particular instance of case (a). The 
first and second terms of the expansion are easily found 
to be 

1 
Y-1 = z/io/o = - 

4 2  
- ( l + i )  d\/o/D 

YO”. 
V 

2 0  
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The  attenuation  over a distance W is the exponential of 
the integral of the real part of these  quantities  over the 
distance W .  It is seen  that the  principal, or - 1st order, 
contribution to the  attenuation is independent of the field, 
while the zero-order  contribution  depends  only on  the 
potential difference across the distance W ,  and not on  the 
detailed shape of the potential function. 

Appendix II: Minimal  attenuation 

A  question of some  interest is the foIlowing: given a 
potential difference AV between the points x = O  and 
x = w ,  what sort of potential  function V(x)  between these 
points will minimize the  attenuation?  This question has 
an obvious  answer if no continuity  restrictions are im- 
posed; for  the field E(x)  may be made as large as desired, 
and  the corresponding  attenuation as small as desired, by 
making Iim V ( x )  sufficiently large.  But even requiring 

V ( x )  to be continuous, introduction of a  high  maximum 
in V(x)  sufficiently close to x=O, followed by an approxi- 
mately  linear  variation of V ( x )  from this maximum to  the 
endpoint x =  W ,  will lower  the  attenuation factor  to an 
arbitrarily  small value. This  fact, which  underlies the 
advantage of the  drift transistor," is due  to  the efficiency 
of the diffusion mechanism  over  small  distances. Thus, 
the  question  can  meaningfully be asked only if the poten- 
tial V(x)  assumes its highest value at x=O. Further,  the 
value of the frequency at which the attenuation is to be 
minimized must  be specified. 

If the electric field is subject to  the restriction (18a) 
over  the  entire interval x=O to x= W ,  one  can employ 
the  asymptotic attenuation  formula,  and by equating to 
zero the change of attenuation caused by a variation 
Sv(x) of the  drift velocity, one readily confirms the intu- 
itively expected  result that the attenuation  has  an extre- 
mum  (minimum) for v(x)  = const.  However, this procedure 
is valid only if condition (I  Sa) applies also to  the varia- 
tion. It is readily shown on the basis of qualitative  argu- 
ments that, requiring  only that V ( x )  assume its largest 
value at x=O, the  function V,(x) which  minimizes the 
attenuation  at a given frequency will have  zero slope at 
x=O. However, if A V / V T  is large, the  function V,(x) 
will not differ considerably from  the straight  line joining 
the prescribed values of V at x = O  and x= W .  The dis- 
tance near x = O  over  which V ( x )  is comparatively flat i s  

0-0  

approximately given by 

where WL) = W 2 /  2 0 ,  and where L.) is the frequency  at which 
the attenuation is to be minimized. The  fractional  attenu- 
ation  decrease  over the attenuation occurring  for th- p case 
of linear V ( x )  is about ( 2 V d A V )  3 ~ / ~ ~ .  As the frequency 
of minimization o becomes large,  this formula loses its 
validity, and a  maximum fractional  attenuation decrease, 
less than 2Vy/AV,  occurs in the neighborhood of 

At higher  frequencies  the  attenuation becomes substan- 
tially independent of the  shape of the  curve V(x).  Our 
conclusion is that  the linear  potential function is a good 
approximation  to  that  function V,,(x) which  minimizes 
attenuation  under the  restriction that V ( x )  attain its max- 
imum at x = O .  
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