
P. Elias

Computation in the Presence of Noise*

Abstract: The behavior of a system consisting of a preliminary coder, an unreliable computer, and a decoder

is investigated. Coding input blocks of k binary digits into output blocks of n>k binary digits, it i s shown

that a simple combinational computer which can take the and or or of k or more input blocks can only be

made arbitrarily reliable by making n / k arbitrarily large, so that the capacity for computation, in an informa-

tion theory coding sense, is zero. Incomplete results for a single and or or circuit give the same result if the

output gives no information about the inputs except for the information about their and or or; if this is not

demanded, then for n>2k, reliable computation through noisy computing circuits i s possible, but the com-

puting i s done in the decoder.

Introduction

This paper investigates the problem of doing reliable
computation with computing elements which in them-
selves are unreliable. People are interested in this prob-
lem for three reasons. First, the human nervous system
seems to be capable of performing reliable computations,
while there is considerable evidence that the way in which
a particular neuron responds to a particular set of input
signals is statistical in character. It is therefore interesting
to construct formal models which have the same charac-
teristics. Second, it seems likely that we are at the begin-
ning of a transition away from the current concept of the
large-scale high-speed general-purpose electronic digital
computer, more concisely described as the one-bottleneck
computer. In a one-bottleneck computer all of the actual
computation takes place in a single, central bottleneck
known as the arithmetic organ. It is therefore possible to
demand that the components used in this unit be highly
reliable, and it is economic to spend considerable sums
on each of them to make it so. However, as we start to
build paraZZeZ, or diffuse computers, in which computa-
tion is carried out all over the machine and the number
of computing elements required increases rapidly, it may
be that the techniques which turn out to be useful for
making active components in the very large quantities
required are not amenable to making the individual ele-
ments highly reliable. Third, the problem has consider-
able formal fascination.

The problem is difficult to formulate. It is necessary to
make assumptions as to the repertory of computing ele-
ments which is available, and what the character of their

346 w a s supported b.v the Office of Naval Research under Contract Nonr-222 (5 3) .
*This work was performed at the University of California, Berkeley, and

unreliability is. It also seems necessary to select some
elements which are not unreliable. J. Von Neumand has
analyzed computers whose unreliable elements are ma-
jority organs-crude models of a neuron. Shannon and
Moore2 have analyzed combinational circuits whose com-
ponents are unreliable relays. Both papers assume that
the wiring diagram is correctly drawn and correctly fol-
lowed in construction, but that computation proper is
performed only by unreliable elements. The unreliability
in each case consists in the elementary device considered
having errors, the errors in different elementary devices
being statistically independent, and each device having
no memory. (A recent analysis by Warren McC~l loch ,~
based on neuron models, treats the case of common vari-
ation in threshold for a group of nearby elements, and is
the only treatment of this problem of which I am aware
which does not make use of an assumption of statistical
independence.)

Although the Von Neumann and Shannon-Moore
papers differ greatly in the details of their assumptions,
analyses and conclusions, they agree in one major respect.
Both show that it is possible to make arbitrarily reliable
computers out of individually unreliable computing ele-
ments. But in both cases the methods by which the con-
struction is carried out require the use of a large number
of unreliable elements-a number which increases with
the level of reliability which is required for the computer
operation.

The results represent a triumph of analysis. In practi-
cal terms, given the very high reliability of current com-
puter components, they say that at the cost of multiplying
the number of computing components by not too large a

IBM JOURNAL OCTOBER 1958

0 q = l - p 0

Figure 1 A noisy binary channel.

factor, it is possible to achieve truly fantastic reliabilities.
But the results are unsatisfying, or at least disappointing,
from a theoretical point of view in the context set by
information theory. In fact, these results have the char-
acter of the pre-information theory results on the reliable
transmission of information over unreliable (noisy)
channels.

Consider a noisy binary channel as shown in Fig. 1.
A transmission system sends zeros or ones, and with
probability p the channel causes the transmitted symbol
to be received incorrectly; with probability q = 1 - p , the
transmitted symbol is received without error. Given this
channel, with successive errors in transmission assumed
statistically independent, how can we arrange to transmit
binary digits through the channel and receive them with
a probability of error less than p? The pre-information
theory solution was iteration. Each digit is sent 3, or 5,
or in general 2n+ 1 times in a row. This reduces the rate
at which new information can be fed into the channel to
1/3, 1/5, . . . , 1 / (2 n + l) of its former value. The re-
ceiver then takes a majority rule at the output: if n f 1 or
more digits are received as ones, the receiver decides that
2 n + l ones were transmitted, and decodes the received
sequence of 2n+ 1 adjacent digits into a one. This pro-
cedure gives an arbitrarily low error probability, but at
the expense of an arbitrarily low rate of transmission. For
this particular system of coding and decoding, the error
probability decreases more or less exponentially with
amount of iteration. In terms of rate R of transmission
(input digits per channel digit) we have roughly an error
probability P, given by

This error probability is a continuous function of rate,
which looks plausible; it is shown as a plot in Fig. 2, and
it says that more reliability can be attained only at the
expense of less rate.

However, the noisy-channel coding theorem of infor-
mation theory4 gives a different answer to the same ques-
tion. It makes this relationship discontinuous. Defining a
number C as the capacity for the noisy channel, it says
that

P -
(0, R<C

e - 11, R>C.

This result is achieved by coding, like the result of Eq.
(l), but with a slight modification in the procedure, which
is now called block coding. The input digits again go into
a coder before transmission, and the received digits again
go into a decoder after reception, and again the number
of digits which go into the coder is smaller than the num-
ber which come out of it. But the input digits no longer
go in one at a time. The input digits are segmented into
blocks, of k digits each. Each block of k digits is con-
verted by the coder into a block of n digits, n>k. The
receiver receives a noisy block of n digits, and decodes
them, usually into the correct block of k digits which was
the coder input. Mistakes are still made in decoding, but
if the rate of transmission, R = k / n , in bits per channel
symbol, is less than the channel capacity, then keeping R
constant and letting k and n increase reduces the error
probability in a way which is exponential in the block
size n for given R and C . Thus in the limit of arbitrarily
complex encoding and decoding, the error probability
becomes arbitrarily small.

A discontinuous relationship like (2) is always surpris-
ing, and this one was initially very surprising indeed. But
just what is continuous-and just what is surprising-
depends on how the results are presented, and I would
like to present this result so that it looks ordinary, so that
when we get to computation and a different kind of be-
havior, that can then surprise us. Suppose we plot C, the
maximum rate at which it is possible to transmit with
arbitrarily high reliability over the channel, as a function
of the noise parameter p which measures how poor the
channel is. In the case of block coding, we get the result
of Fig. 3a: if there is no noise (i.e., p = O) then the
capacity of the channel is one bit per channel symbol. As
the noise increases, the channel capacity C (p) decreases

Figure 2 Error probability vs rate under iteration.

!,RATE OF T R A N S M I S S I O N ,
I I T S / C H A N N E L S Y M B O L 347

IBM JOURNAL OCTOBER 1958

u T
-

0.5

P, N O I S E P A R A M E T E R

I

\

;I
C = l , p = O
c =o,p>o

/
/

Figure 3 Channel capacity vs noise under block coding and iteration.

in a reasonable, continous fashion, reaching zero only
when p = % and the channel output is statistically inde-
pendent of its input. On the other hand, in the case of
simple iteration, we get the unreasonable, discontinuous
behavior illustrated in Fig. 3b: if p = 0, then the channel
capacity is one bit per channel symbol as before, but as
soon as p>O, no matter how small, C for iteration drops
to zero. We can transmit with high reliability at a high
rate when p is small, but to make the reliability greater
it is necessary to iterate more and reduce rate, and to get
arbitrary reliability it is necessary to iterate arbitrarily
often, and to transmit at an arbitrarily small rate. Thus
in the block coding result, a small difference in reliability
makes only a small difference in C; in the iteration case, a
small difference in reliability makes a large difference in C.

The Von Neumann and the Shannon-Moore proce-
dures are both like the iterative solution to the noisy-
channel coding problem. Time and number of compo-
nents are interchangeable, in the sense that if we use
twice as many components in order to make a computer
operate at the same rate more reliably, we could instead
use the components to build two computers and compute
twice as fast at the old level of reliability. In this sense,
as we increase the number of components to get greater
reliability at the same rate, we are reducing the rate of
computation per component. And we must reduce it arbi-
trarily far in order to get arbitrarily reliable computation,
as soon as the components go from perfect to something
slightly less than perfect. This kind of discontinuity no
longer seems natural after the noisy-channel coding
theorem, and the logical question is whether it can be
eliminated-i.e., whether introduction of a small prob-
ability of error for components necessarily causes a
discontinuous drop in the attainable rate of arbitrarily

reliable computation, and if so, whether the drop is neces-
sarily to rate zero.

This paper explores that question in a preliminary way,
in the block coding context. The results are incomplete,
but such as they are, they are negative. That is, they show
an abrupt drop of computational rate, in some cases to
zero, caused by a small component error probability. This
is disappointing, and it is probably due to the formula-
tion used for the problem and not to the problem itself.
As in the Von Neumann and Shannon-Moore papers we
assume that errors in different elements, or in the succes-
sive operations of one element, are statistically indepen-
dent of one another. Instead of adding additional unreliable
components to increase reliability, however, we add addi-
tional input data to provide error detection and correc-
tion. A recent paper by Peterson: is very close to the
spirit of the present investigation, and a review paper by
LofgrenG discusses related problems.

Block computation

We will consider a simple computer, or data-processor-
simple in the sense that it does not change its wiring dia-
gram as the result of prior computations. In the noiseless
case, one or more streams of input binary digits enter the
computer and interact through two-input single-output
no-memory combining circuits. The only memory is in
the form of pure delays in multiples of one pulse-period.
Any output digit of such a computer is some combina-
tional function of a set of present and past input digits.

The combining circuits are and, or, if and only if and
so forth: combinational circuits which produce an output
digit which is a function of two input digits. A noiseless
combining circuit of this type is specified by a 2 by 2
binary matrix. Let x and y be the two input digits, and

Z = X ' Y

c

b m
z = x ' Y '

, ,,I I I
z=o I N O I I

z = x Y '

b

z = x Y

Figure 4 Two-input combining circuits.

1 b

Z = (X + Y) '

b

Z = X + Y

Z = Y '

Z = Y

Z = X '

R l O l ' l

z = x

Z = X ' V Y

Z = X ' V Y '

I'p
Z = X V Y '

Z = X V Y

M z= 1 1

IBM JOURNAL OC

349

TOBER 1958

350

IBM JOURNAL (3CTOBER 1958

let z be the output digit. Matrices giving z=f(x, y) are
shown for all such functions in Fig. 4. A value of x
(0 or 1) selects a row, a value of y (0 or 1) selects a
column, and the entry at that row and column is the
resulting value of the function z. The sixteen possible
functions are generated by filling in the four positions in
the diagram with 0’s and 1’s in all possible ways.

To describe a noisy computing element, we first rein-
terpret the tables in Fig. 4. For x = i , y = j , the entry in the
matrix at i , j is no longer the value z will take but the
probability that z will take the value 1. If this probability
is one, then the output digit will be a 1. If the probability
is zero, then the output digit will be a zero. If it is pi j , with
O<pii< I , then the output digit will be a 1 with probability
pij, and a 0 with probability qi j= I ” p i j . It is assumed that
the operation of the noisy combiner on successive input
digit pairs is statistically independent: whenever x takes
the value i and y takes the value j , z takes the value 1 with
probability pii and no knowledge of past history or of
what is going on elsewhere in the computer modifies this
probability.

In the presence of noise we must expect at least some
reduction in rate of reliable computation. If this is not to
appear as a reduction in the reliability of the output, it
is necessary to reduce the rate of input to the computer-
i.e., redundancy must be put into the inputs to the com-
bining circuits. We do this by putting a block coder before
the computer and a decoder after it, as illustrated in
Fig. 5.

The input to the coder is segmented into blocks of
length k input digits. Each such block is fed into the
coder, which produces an output block of n digits, n>k.
We assume that the mapping from input sequences to
output sequences is a fixed one-to-one transformation,
independent of past inputs and of computer operation.
This assumption is necessary because we will also assume
that the coder and the decoder themselves are reliable
devices. If the coder output could then depend on past
input blocks as well as the present block, it could be
doing the computing itself. We demand that the only way
in which two different coded blocks of n digits can be
brought together to produce an output block of n digits
which is a function of them both is through one of the
noisy combining circuits.

Figure 5 A computer.

The coder output blocks go into delay circuits, which
have outputs going to noisy combining circuits. All delays
are multiples of n digits, so that any two blocks brought
out of different delay circuits will be in step in going
through a combining circuit. The action of a combiner is
then to accept two input blocks of n digits each and to
produce one output block of n digits. The output block
produced is only statistically determined by the two in-
puts: given a sequence of values xl, x2, . . . , xn, and y1, Y Z ,
. . . , y n for the two inputs, a probability distribution is set
up on the 2% possible output sequences zl, zZ, . . . , zn,
which is of product form because of the statistical inde-
pendence with which successive pairs of inputs are treated
by the device. Thus, e.g., the probability of the output
sequence 1, 1, . . ., 1 is the product pxl~, l .pzZvZ . . . pznurL.

A result of the computation will first appear as a se-
quence of n-digit blocks coming out of some combining
circuit, but this is still in coded form. The proper answer
to the question which the computer was asked is not an
n-digit sequence but a k-digit sequence-the k-digit se-
quence which is the logical function that the computer is
connected to compute of some set of current and past
input k-digit blocks. This is obtained from the decoder,
which maps sequences of length n into sequences of
length k. This transformation must be many-one, in gen-
eral, since different errors which may have occurred in
computation must lead to the same correct decoded
answer if the coding and decoding procedure is in fact
to be successful. However, we again assume that the
mapping is fixed: to each input sequence of length n cor-
responds exactly one fixed output sequence of length k,
independent of past inputs and of computer action. Again
we assume that the decoder is a noiseless device.

We now consider the particular computer shown in
Fig. 6 which takes the and of k successive n-digit blocks
of coded output, using k-1 delay circuits and k-1 noisy
and circuits. Let us denote the input sequence consisting
of kl’s by lk, the sequence consisting of k-jl’s followed
by jo’s as l k - j O j , and the sequence consisting of kO’s as 0”.
Let us denote the n-digit block which is the coded version
of a k-digit input sequence s by T (s) , so that T (1”) is the
output sequence from the coder when a sequence of kl’s
is put in. Then consider the following set of n-digit blocks
which are possible results of this computation as they

- k D I G I T S n D I G I T S

- 4 7 1 b

I N P U T C O D E D
B L O C K I N P U T n - D I G I T D E L A Y

A N D k D I G I T S
b

DECODER

BLOCK

DECODED

OR OUTPUT

k A N D C I R C U I T S

I
I

I
I
I
I

b
A N D A N D

Y

I
i

n - D I G I T D E L A Y I
~

L

Figure 6 Multiple and computer.

T (1") . T (1k-101) . . . T (11076-1) . ~ (0 7 ~) . (3)

Each line in (3) can be obtained from the preceding
line by anding with one new factor, since the and of
T (l k) with itself any number of times is still just T (1").
But adding a new factor by anding can only strike out
some of the 1's which are present in a sequence. All of
the n-digit sequences in (3) must be decoded differently,
since they all represent computations having different
answers; in fact the proper answer-the proper decoder
output-for any sequence in (3) is the k-digit sequence
which is the argument of its last factor. Thus, in going
from one line of (3) to the next we strike out at least
one 1 and perhaps more. Let di be the number of 1's
which are stricken out in going from line i to line i+ 1.
Then since there are at most n 1's in the first line and at
least no 1's in the last line, we have

2 d i z n , d i z l . (4)

It follows from (4) that if n<2k, some of the d j will be
just 1, and a single error in the output of the final adder
can cause two of the sequences corresponding to adjacent
lines in (3) to become confused, so that the decoder will
print out the wrong answer when such an error is mads
if it prints out the right answer when no errors are made.
Thus it is not possible to get a reliability for the block
greater than that present in the individual devices until
the rate of transmission drops from unity (k = n) to rate
one-half (2k=n). And even then, there are single errors
which the decoder can detect but can only attempt to
correct, with probability a t least one-half of guessing
wrong. The rate must drop to one-third before all single
errors in the computations listed in (3) can be corrected.

k

i=l

_ ~ _ ~ ~

It will be noted that we could do as well, at least in
terms of the minimum Hamming distances' between out-
put codewords listed in (3) , by not using block coding
at all, but merely by iterating the i'th digit of the input
block di times. Thus at least in terms of minimum dis-
tance, no block code for the computer of Fig. 6 does
better than simple iteration of the input digits, and as we
have seen before this leads to a computational capacity-
Le., a maximum attainable rate of computation of arbi-
trary reliability-which is zero.

The concept of channel capacity

There are two well-defined concepts of channel capacity
for communications purposes. One of these is the maxi-
mum rate at which it is possible to obtain mutual infor-
mation from the output of a (possibly noisy) channel
about its input. The other is the maximum rate at which
it is possible to receive information over the channel with
arbitrarily high reliability. In the communications situa-
tion the noisy-channel coding theorem proves that these
two quantities are equal. The demonstration just given
shows that for the computation case we have discussed,
the two quantities are different. The maximum rate for
computing with arbitrarily high reliability is zero in this
case. However, the rate at which the output of the com-
puter gives information about the function which is being
computed is high when the probability of error is low; the
receiver has only a small amount of equivocation, and it
would take only a small additional amount of information
to correct the occasional errors which are present in the
computer output. But it is not possible to provide this
extra information by coding the different blocks of k
digits independently of one another before the computa-
tion starts.

Our negative result applied specifically to iterated and
operations only. It is natural to ask, first, whether there
are other computational operations which are easier to
noiseproof, and second, whether there are enough of
them to generate all combinational functions of two vari-
ables by cascading. The answer to the first question is
"yes," to the second, "no." Referring to Fig. 4, we can

IBM JOURNAL (

351

ICTOBER 1958

divide the 16 possible combining circuits into five classes,
classifying by how many 1’s they have as entries in their
2 by 2 matrices. The iterated or has the same character
as the iterated and, and a dual of the demonstration in
the last paragraph can be constructed to show that a com-
puter which takes the or of a number of input blocks has
no capacity for computation of arbitrary reliability. This
is also true for all of the other functions in Fig. 4 which
have an odd number of 1’s in their matrices. If they have
a single 1 , they are the and of x or x’ and y or y‘. If they
have three l’s, they are the or of x or x’ and y or y’. In
either case the result is negative.

On the other hand, a computer constructed entirely of
combining elements which have an even number of 1’s
in their matrices can have its input blocks independently
coded and its output blocks decoded to give reliable
results despite errors in computation. The functions z=O
and z= 1 do not really represent combiners at all; the
output is independent of the input, and these functions
can be reliably computed if reliable sources of 0’s and 1’s
are available to the receiver. The other functions with an
even number of 1’s either reproduce one input (e.g.,
z=x, z=y) or its complement (e.g., z=x’, z=y’), or take
the modulo two sun1 of x and y , or its negation. The
Hamming codes,‘ or any other group codes8 which in-
clude the sequence of n l’s, may be used at the input to
such a computer. Each stage of the computation then
maps the set of 2 ; n-digit input blocks into itself, pre-
serving minimum distance properties-and average dis-
tanceproperties too. Using such codes in such a computer,
in the absence of noise, the decoding operation is one-to-
one, rather than many-to-one; it is only noise which can
cause the same answer to be represented as two different
n-digit blocks. If the effect of the noise is symmetric,
Le., if a noisy output sequence is as likely to differ from
the noiseless version in having 0’s replaced by 1’s as in
having 1’s replaced by 0’s-then the capacity for noisy
computation is just the capacity for transmission over a
binary channel with the same symmetric error probability.
It is known!’ that group codes can be used to obtain trans-
mission of arbitrary reliability over such a channel at any
rate less than the channel capacity. If the noise is not
symmetric, but is small, then it is not obvious whether
the capacity for reliable computation is the same as the
capacity for reliable transmission, but in any case the

computational capacity is decreased only a small amount
by the introduction of small error probabilities in the
computing elements.

Unfortunately, however, it is not possible to generate
all combinational functions of two variables by using
only the functions which have an even number of 1’s in
their matrices. It is impossible to generate and or or from
such functions, for example.

Other results

We are left with the negative result that if we code all
blocks identically at the point of entry to the computer
and demand reliability through cascaded computing
stages which include and or or operations, we have an
essentially iterational situation as soon as the cascade
length is equal to the input block size, and the rate for
computation of arbitrary reliability goes to zero. The
obvious assumption to attack is the cascading require-
ment. Since we are permitting coders and decoders to be
reliable, we may be wary of using large numbers of them;
however, we can certainly do so to obtain negative results.
Taking the most extreme situation, we can permit coding
to take place immediately before each noisy combining
circuit, and decoding immediately after it. Two such
situations are illustrated in Fig. 7. At the top (7a) we
have a single input coder, which codes blocks of k input
digits into blocks of n output digits. An n-digit delay line
provides the second input to an and circuit; the two
identically coded n-digit blocks are anded, and the result
decoded. Below (7b) we also have an and circuit, but the
two input sequences are no longer required to be iden-
tically coded; each goes through its own coder, and the
twa output n-digit blocks are anded and decoded.

The results here are fragmentary, and the problem of
correct formulation becomes more ecute. In Fig. 7b, if
n>2k, it is possible to do reliable anding through a noisy
ander-but the ander does not do the computation. If the
upper input coder generates first n / 2 1’s and then a
coded version of its input k-digit sequence, and the lower
input coder generates first a coded version of its input
sequence and then n / 2 l’s, the output will be a noisy
version of the two coded inputs in sequence. The decoder
can then correct errors in each of the two inputs, and
take their and by means of a table. Here the noisy and
circuit is being used only as a noisy channel, and does

Figure 7 Single-layer anding.

I N P U T

B L O C K S
CODER D E C O D E D

I I A N D b OUTPUT DECODER
n - D I G I T D E L A Y u

B L O C K

(b) -
UPPER I N P U T B L O C K - UPPER -

CODER b
~

L O W E R I N P U T B L O C K &
A N D b D E C O D E D O U T P U T B L O C K

352 CODER b

1BM JOURNAL OCTOBER 1958

n o real computation. The same result can be obtained in
Fig. 7a by a random-coding argument, although it is not
clear whether a reliability which is uniform on input pairs
can be obtained in this way.

To avoid this obvious cheating, we can demand that
whatever information is present in the output n-digit
sequence is information about the and of the two input
k-digit sequences only. This requires that the decoder be
one-one in the absence of noise, for as soon as two pairs
of inputs which have the same and produce distinct out-
puts in the absence of noise, the decoder has some infor-
mation about the inputs which is not information about
their and. Under this restriction, the negative result fol-
lows as before: the only noise-resisting codes are those in
which the i’th input digit in a block of k is iterated mi
times, with

2 m Z n .

This again leads to zero rate of reliable computation. In
fact, under the milder restriction that only one n-digit
sequence is decoded into the sequence of k 0’s in the ab-
sence of noise, the behavior is still the same, at least in
minimum distance terms, and so is the conclusion.

It seems very likely that, even for computations of
depth one, as illustrated in Fig. 7, coding can improve
the reliability of a noisy and or or circuit only through
either iteration or cheating. That is, it seems likely that
for n<2k there is nothing better to do than to iterate
some of the input digits, while for n>2k the only alterna-
tive to iteration is to squeeze both inputs through the
noisy computer and do the computation in the decoder.
However this has not yet been proved.

k

2.=1

Acknowledgment

Like so many of the other topics which have been dis-
cussed at this meeting, this one originated with Claude
Shannon. He raised the question, several years ago in
conversation, as to what the channel capacity of a noisy
ander was. I did not return to the topic until a few months
ago, when I picked the title for this paper.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

J . Von Neumann, “Probabilistic Logics and the Synthesis
of Reliable Organisms from Unreliable Components,” pp.
43-98 in Automata Studies, C. E. Shannon and J. MC-
Carthy, editors, Annals of Math. Studies, 34, Princeton
Univ. Press (1956).
E. F. Moore and C. E. Shannon, “Reliable Circuits Using
Less Reliable Relays,” Jour. Franklin Znst., 262, 191-208
and 281-297 (1956).
W. S. McCulloch, “Three of Von Neumann’s Biological
Questions,” Quarterly Progress Report, 129- 138, Research
Laboratory of Electronics, M.J.T. (Oct. 15, 1957).
C. E. Shannon, “A Mathematical Theory of Communica-
tion,” Bell Syst. Tech. J. , 27, 379-423 (July 1948).
W. W. Peterson, “On Checking an Adder,” ZBM Jour.
of Research and Devel., 2, 166-168 (1958).
L. Lofgren, “Automata of High Complexity and Methods
of Increasing their Reliability by Redundancy,” Znforma-
tion and Control 1, 127-147 (1958).
R. W. Hamming, “Error Detecting and Error Correcting
Codes,” Bel/ Syst. Tech. J . , 29, 147-160 (1950).
I). Slepian, “A Class of Binary Signalling Alphabets,” Bell
Syst. Tech. J . , 35, 203-234 (1956).
P. Elias, “Coding for Noisy Channels,” Znst. Rad. Eng.
Convention Record, Pt, 4, 37-46 (March 1955).

Received May 27,1958

IBM JOURNAL ’ OC

