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Computation in the  Presence of Noise* 

Abstract: The behavior of a system  consisting of a preliminary coder, an unreliable computer, and a decoder 

is investigated. Coding input blocks of k binary digits into output blocks of n>k  binary digits, it i s  shown 

that a simple combinational computer which can take the and or or of k or more input blocks  can only be 

made arbitrarily reliable  by  making n / k  arbitrarily  large, so that the capacity for computation, in an informa- 

tion theory coding sense, is  zero. Incomplete results for a single and or or circuit give the same result if the 

output gives no information  about the inputs except for the information about their and or or; if this is  not 

demanded, then for n>2k, reliable computation through noisy computing circuits i s  possible, but the com- 

puting i s  done in the decoder. 

Introduction 

This  paper investigates the  problem of doing  reliable 
computation with  computing  elements which in them- 
selves are unreliable.  People are interested in this prob- 
lem for  three reasons. First,  the  human nervous system 
seems to be capable of performing  reliable  computations, 
while there is considerable evidence that  the way in which 
a particular  neuron responds to a particular  set of input 
signals is statistical in character.  It is therefore interesting 
to  construct  formal models which  have  the same  charac- 
teristics. Second, it seems likely that we are  at  the begin- 
ning of a transition  away from the current concept of the 
large-scale high-speed general-purpose  electronic  digital 
computer,  more concisely described as the one-bottleneck 
computer.  In a one-bottleneck computer all of the  actual 
computation takes  place  in  a single, central bottleneck 
known  as the  arithmetic organ. It is therefore possible to 
demand  that  the components used in  this  unit be highly 
reliable, and it is economic to spend  considerable sums 
on  each of them  to  make  it so. However, as we start  to 
build paraZZeZ, or diffuse computers, in which computa- 
tion is carried  out all over the machine and  the  number 
of computing  elements required increases rapidly, it may 
be that  the techniques which turn  out  to be useful for 
making  active  components  in the very large quantities 
required  are  not amenable to  making  the individual ele- 
ments highly reliable. Third, the  problem has consider- 
able  formal fascination. 

The problem is difficult to  formulate.  It is necessary to 
make assumptions as to  the repertory of computing ele- 
ments  which is available, and what the  character  of their 
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unreliability is. It also seems necessary to select some 
elements which are  not unreliable. J. Von Neumand has 
analyzed computers whose unreliable  elements are  ma- 
jority organs-crude models of a neuron.  Shannon  and 
Moore2 have  analyzed  combinational  circuits whose com- 
ponents are unreliable  relays. Both  papers assume that 
the wiring diagram is correctly drawn  and correctly  fol- 
lowed in  construction,  but that  computation  proper is 
performed only by unreliable  elements. The unreliability 
in each case consists in the elementary device considered 
having errors,  the  errors in different elementary devices 
being statistically independent,  and  each device  having 
no memory. (A recent analysis by Warren McC~l loch ,~  
based on  neuron models,  treats the case of common vari- 
ation  in  threshold for a group of nearby elements, and is 
the only treatment of this problem of which I am aware 
which does not  make use of an assumption of statistical 
independence.) 

Although  the  Von  Neumann  and  Shannon-Moore 
papers differ greatly  in the details of their  assumptions, 
analyses and conclusions, they  agree  in one  major respect. 
Both  show that  it is possible to  make arbitrarily  reliable 
computers out of individually  unreliable  computing ele- 
ments. But in  both cases the  methods by which the con- 
struction is carried  out  require  the use of a large number 
of unreliable elements-a number  which  increases with 
the level of reliability which is required for  the  computer 
operation. 

The results  represent a triumph of analysis. In practi- 
cal  terms, given the very  high reliability of current  com- 
puter components,  they say that  at  the cost of multiplying 
the  number of computing components by not  too  large a 
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0 q = l - p  0 

Figure 1 A noisy binary channel. 

factor,  it is possible to achieve truly  fantastic reliabilities. 
But the results are unsatisfying, or  at least disappointing, 
from a  theoretical  point of view in the context set by 
information theory. In  fact, these  results  have the  char- 
acter of the pre-information  theory  results on  the reliable 
transmission  of  information  over  unreliable  (noisy) 
channels. 

Consider  a noisy binary  channel  as  shown  in  Fig. 1. 
A transmission system sends zeros or ones, and with 
probability p the  channel causes the transmitted  symbol 
to be received incorrectly; with probability q =  1 - p ,  the 
transmitted  symbol is received without error. Given this 
channel,  with successive errors in  transmission assumed 
statistically independent, how can we arrange  to transmit 
binary digits through  the channel and receive them with 
a  probability of error less than p? The pre-information 
theory solution  was  iteration. Each digit is sent 3, or 5,  
or in  general 2n+ 1 times  in  a  row. This reduces the  rate 
at which new information  can be fed  into  the  channel  to 
1/3,   1/5, .  . . , 1 / ( 2 n + l )  of its former value. The  re- 
ceiver then takes  a  majority rule  at  the  output: if n f  1 or 
more digits are received as  ones, the receiver decides that 
2 n + l  ones were  transmitted, and decodes the received 
sequence of 2n+ 1 adjacent digits into a one.  This  pro- 
cedure gives an  arbitrarily low error probability,  but at 
the expense of an arbitrarily  low rate of transmission. For 
this particular system of coding and decoding, the  error 
probability  decreases more or less exponentially with 
amount of iteration. In  terms of rate R of transmission 
(input digits per channel digit) we have  roughly an  error 
probability P, given by 

This  error probability is a  continuous function of rate, 
which looks plausible; it is shown  as  a  plot in Fig. 2, and 
it says that  more reliability can be attained  only at the 
expense of less rate. 

However, the noisy-channel  coding theorem of infor- 
mation  theory4 gives a different answer to  the  same ques- 
tion. It makes  this  relationship  discontinuous. Defining a 
number C as  the capacity for  the noisy channel, it says 
that 

P -  
(0, R<C 

e - 11, R>C. 

This  result is achieved by coding, like the result of Eq. 
(l), but with  a slight modification in the procedure,  which 
is now called block coding. The  input digits again go into 
a coder  before transmission, and  the received digits again 
go  into a  decoder after reception, and again the  number 
of digits which go  into  the  coder is smaller than the num- 
ber  which come  out  of it. But the  input digits no longer 
go  in one at a time. The  input digits are segmented into 
blocks, of k digits each. Each block of k digits is con- 
verted by the  coder  into a  block of n digits, n>k. The 
receiver receives a noisy block of n digits, and decodes 
them, usually into  the  correct block of k digits which was 
the coder input. Mistakes are still made in  decoding,  but 
if the  rate of transmission, R = k / n ,  in bits per channel 
symbol, is less than  the channel  capacity, then keeping R 
constant  and letting k and n increase  reduces the  error 
probability  in  a way which is exponential in  the block 
size n for given R and C .  Thus in the limit of arbitrarily 
complex  encoding and decoding, the  error probability 
becomes  arbitrarily small. 

A discontinuous  relationship like (2) is always surpris- 
ing, and this one was initially very surprising  indeed. But 
just what is continuous-and just what is surprising- 
depends on how the results are presented, and I would 
like to present  this  result so that  it looks ordinary, so that 
when we get to  computation  and a different kind of be- 
havior, that  can  then surprise us. Suppose we plot C, the 
maximum rate  at which it is possible to  transmit with 
arbitrarily  high reliability over  the channel,  as a function 
of the noise parameter p which  measures  how  poor the 
channel is. In  the case of block coding, we get the result 
of Fig. 3a: if there  is  no noise (i.e., p = O )  then the 
capacity of the  channel is one bit  per channel symbol. As 
the noise increases, the  channel capacity C ( p )  decreases 

Figure 2 Error probability vs rate under iteration. 
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Figure 3 Channel capacity vs noise under block coding and iteration. 

in  a  reasonable,  continous  fashion,  reaching zero only 
when p = %  and  the  channel  output is statistically inde- 
pendent of its input.  On  the  other  hand, in the case of 
simple  iteration, we get the unreasonable,  discontinuous 
behavior  illustrated  in  Fig. 3b: if p =  0, then  the  channel 
capacity is one bit per  channel symbol  as  before, but as 
soon  as p>O, no  matter how small, C for iteration drops 
to zero.  We can  transmit with  high reliability at a  high 
rate when p is small, but  to  make  the reliability greater 
it is necessary to  iterate  more  and reduce rate,  and  to get 
arbitrary reliability it is necessary to  iterate arbitrarily 
often,  and  to  transmit  at  an  arbitrarily small  rate. Thus 
in  the block coding  result,  a  small difference in reliability 
makes only  a  small difference in C; in the iteration case, a 
small difference in reliability makes a large difference in C. 

The  Von  Neumann  and  the  Shannon-Moore  proce- 
dures are  both like the iterative  solution to  the noisy- 
channel coding  problem. Time  and  number of compo- 
nents are interchangeable,  in the sense that if  we use 
twice as many components  in order  to  make a computer 
operate  at  the same rate  more reliably, we could  instead 
use the components to build two computers  and  compute 
twice as fast  at  the old level of reliability. In this sense, 
as we increase the  number of components to get greater 
reliability at  the same rate, we are reducing the  rate of 
computation  per  component.  And we must reduce it arbi- 
trarily far  in  order  to get arbitrarily reliable computation, 
as soon  as the components go from perfect to something 
slightly less than perfect. This kind of discontinuity no 
longer  seems  natural  after  the  noisy-channel  coding 
theorem,  and  the logical  question is whether it can be 
eliminated-i.e., whether introduction of a  small prob- 
ability of error  for  components  necessarily  causes a 
discontinuous drop in the attainable rate of arbitrarily 

reliable computation,  and if so, whether the  drop is neces- 
sarily to  rate zero. 

This  paper explores that question in a  preliminary way, 
in the block  coding  context. The results are incomplete, 
but  such as they are, they are negative. That is, they show 
an  abrupt  drop of computational  rate, in some cases to 
zero, caused by a  small component  error probability.  This 
is disappointing, and  it is probably due  to  the  formula- 
tion used for  the  problem  and  not  to  the  problem itself. 
As in  the  Von  Neumann  and  Shannon-Moore papers we 
assume that  errors in different elements, or in the succes- 
sive operations of one element, are statistically indepen- 
dent of one  another.  Instead of adding  additional  unreliable 
components  to increase reliability, however, we add addi- 
tional input  data  to provide error detection and correc- 
tion. A recent paper by Peterson: is very close to  the 
spirit of the present  investigation, and a review paper by 
LofgrenG discusses related  problems. 

Block computation 

We will consider  a simple computer,  or data-processor- 
simple in  the sense that  it does not  change its wiring dia- 
gram as the result of prior computations. In  the noiseless 
case, one  or  more  streams of input binary digits enter  the 
computer  and  interact  through two-input  single-output 
no-memory  combining  circuits. The only memory is in 
the  form of pure delays in multiples of one pulse-period. 
Any  output digit of such a computer is some  combina- 
tional function of a set of present and past input digits. 

The combining  circuits are and, or, if and only if and 
so forth:  combinational circuits  which produce  an  output 
digit which is a function of two input digits. A noiseless 
combining  circuit of this  type is specified by a 2 by 2 
binary  matrix. Let x and y be the two input digits, and 
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Figure 4 Two-input combining circuits. 
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let z be the  output digit. Matrices giving z=f(x,  y )  are 
shown for all such  functions in Fig. 4. A value of x 
(0 or 1) selects a row,  a  value of y (0  or 1) selects a 
column, and  the  entry  at  that row and column is the 
resulting  value of the  function z. The sixteen possible 
functions are generated by filling in the  four positions in 
the diagram  with 0’s and 1’s in all possible ways. 

To describe  a noisy computing  element, we first rein- 
terpret  the tables in Fig. 4. For x = i ,  y = j ,  the  entry  in  the 
matrix  at i , j  is no longer  the value z will take but  the 
probability that z will take  the value 1. If this probability 
is one, then the  output digit will be a 1. If  the probability 
is zero,  then the  output digit will be a  zero. If it is pi j ,  with 
O<pii< I ,  then the  output digit will be a 1 with  probability 
pij, and a 0 with  probability qi j= I ” p i j .  It is assumed that 
the  operation of the noisy combiner on successive input 
digit pairs is statistically independent: whenever x takes 
the value i and y takes the value j ,  z takes the value  1 with 
probability pii and  no knowledge of past  history or  of 
what is going on elsewhere in the computer modifies this 
probability. 

In  the presence of noise we must  expect  at least some 
reduction  in rate of reliable computation. If this is not to 
appear as  a  reduction  in the reliability of the  output, it 
is necessary to reduce the  rate of input  to  the computer- 
i.e., redundancy must be put into  the inputs to  the  com- 
bining circuits. We  do this by putting  a block coder  before 
the  computer  and a decoder  after it,  as  illustrated in 
Fig. 5. 

The  input  to  the coder is segmented into blocks of 
length  k input digits. Each  such block is fed  into the 
coder, which produces an  output block of n digits, n>k. 
We  assume that the  mapping from  input sequences to 
output sequences is a fixed one-to-one transformation, 
independent of past inputs  and of computer  operation. 
This assumption is necessary because we will also assume 
that  the coder and  the decoder themselves are reliable 
devices. If the coder output could then depend on past 
input blocks as well as  the present block, it could be 
doing the computing itself. We demand  that  the only way 
in which two different coded blocks of n digits can be 
brought  together to  produce  an  output block of n digits 
which is a function of them  both is through  one of the 
noisy combining  circuits. 

Figure 5 A computer. 

The coder output blocks go into delay  circuits, which 
have outputs going to noisy combining  circuits. All delays 
are multiples of n digits, so that  any two blocks brought 
out of different delay  circuits will be in step  in going 
through a  combining  circuit. The action of a  combiner is 
then to accept  two input blocks of n digits each  and  to 
produce  one  output block of n digits. The  output block 
produced is only statistically determined by the two in- 
puts: given a  sequence of values xl, x2, . . . , xn, and y1, Y Z ,  
. . . , y n  for  the two inputs, a  probability  distribution is set 
up on  the 2% possible output sequences zl, zZ, . . . , zn, 
which is of product  form because of the statistical inde- 
pendence  with  which successive pairs of inputs are treated 
by the device. Thus, e.g., the  probability of the  output 
sequence 1, 1, . . ., 1 is the product pxl~, l .pzZvZ . . . pznurL. 

A  result of the  computation will first appear as  a se- 
quence of n-digit blocks coming out of some  combining 
circuit, but this is still in coded form.  The  proper answer 
to  the question which the computer was asked is not an 
n-digit sequence  but  a k-digit sequence-the k-digit se- 
quence which is the logical function  that  the  computer is 
connected to  compute of some  set of current  and past 
input k-digit blocks. This is obtained from  the decoder, 
which maps sequences of length n into sequences of 
length k. This transformation must be many-one, in gen- 
eral,  since different errors which may  have occurred in 
computation must lead to the  same  correct decoded 
answer if the coding and decoding  procedure is in fact 
to be successful. However, we again  assume that  the 
mapping is fixed: to each input sequence of length n cor- 
responds  exactly one fixed output sequence of length k,  
independent of past  inputs  and of computer action. Again 
we assume that  the decoder is a noiseless device. 

We  now  consider the particular computer shown in 
Fig. 6 which  takes the and of k successive n-digit blocks 
of coded output, using k-1 delay  circuits and k-1 noisy 
and circuits. Let us denote the  input sequence consisting 
of kl’s by lk, the sequence consisting of k-jl’s followed 
by jo’s as l k - j O j ,  and the  sequence consisting of kO’s as 0”. 
Let us denote the n-digit block which is the  coded version 
of a k-digit input sequence s by T ( s ) ,  so that T (  1”) is the 
output sequence from  the coder  when a sequence of kl’s  
is put in. Then consider the following set of n-digit blocks 
which are possible results of this computation as  they 
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Figure 6 Multiple and computer. 

T (  1") . T (  1k-101) . . . T (  11076-1) . ~ ( 0 7 ~ ) .  (3) 

Each  line in (3) can be obtained from  the preceding 
line by anding with one new factor, since the and of 
T (  l k )  with itself any number of times is still just T (  1"). 
But adding a new factor by anding can only  strike out 
some of the 1's which are present  in a sequence. All of 
the n-digit sequences  in (3) must  be  decoded differently, 
since  they all represent  computations  having different 
answers;  in fact  the  proper answer-the proper decoder 
output-for any sequence in (3) is the k-digit sequence 
which is the  argument of its last factor.  Thus, in going 
from  one line of (3) to  the next we strike out  at least 
one 1 and  perhaps more. Let di be the  number of 1's 
which are stricken out in going from line i to line i+ 1. 
Then since there are  at most n 1's in the first line and at 
least no 1's in the last line, we have 

2 d i z n ,  d i z l .  (4) 

It follows from (4) that if n<2k, some of the d j  will  be 
just 1, and a single error in the  output of the final adder 
can  cause two of the sequences  corresponding to adjacent 
lines in (3) to become  confused, so that the  decoder will 
print out  the wrong answer when such an  error is mads 
if it prints out  the right answer when no  errors  are made. 
Thus it is not possible to get a reliability for  the block 
greater than  that present in the individual devices until 
the  rate of transmission drops  from unity ( k = n )  to  rate 
one-half (2k=n).  And even then,  there  are single errors 
which the decoder can detect but  can only attempt  to 
correct, with  probability a t  least one-half of guessing 
wrong. The  rate must drop  to one-third  before all single 
errors in the computations listed in (3) can be corrected. 

k 

i=l 

_ ~ _ ~  ~ 

It will  be noted that we could do as well, at least in 
terms of the minimum Hamming distances' between out- 
put codewords listed in ( 3 ) ,  by not using block coding 
at all, but merely by iterating  the i'th digit of the  input 
block di times. Thus  at least in terms of minimum dis- 
tance, no block code  for  the  computer of Fig. 6 does 
better than simple  iteration of the input digits, and as we 
have seen before  this leads to a computational capacity- 
Le., a maximum  attainable rate of computation of arbi- 
trary reliability-which is zero. 

The  concept of channel capacity 

There  are two well-defined concepts of channel capacity 
for communications  purposes. One of these is the maxi- 
mum rate at which it  is possible to  obtain mutual infor- 
mation from  the  output of a (possibly noisy)  channel 
about its input. The  other is the maximum rate  at which 
it is possible to receive  information  over the  channel with 
arbitrarily  high reliability. In  the communications  situa- 
tion the noisy-channel  coding  theorem  proves that these 
two  quantities are equal. The demonstration just given 
shows that  for  the  computation case we have discussed, 
the two  quantities are different. The  maximum  rate  for 
computing with  arbitrarily  high reliability is zero  in  this 
case. However,  the rate  at which the  output of the  com- 
puter gives information about  the  function which is being 
computed is high when the probability of error is low; the 
receiver has  only a small amount of equivocation, and it 
would take only a small  additional amount of information 
to  correct the  occasional errors which are present in the 
computer  output. But it is not possible to provide  this 
extra information by coding  the different blocks of k 
digits independently of one  another before  the computa- 
tion starts. 

Our negative result  applied specifically to iterated and 
operations  only. It is natural  to ask, first, whether there 
are  other  computational operations which are easier to 
noiseproof, and second,  whether  there are enough of 
them to generate all combinational functions of two  vari- 
ables by cascading. The answer to  the first question is 
"yes," to  the second, "no." Referring to Fig. 4, we can 
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divide the 16 possible combining  circuits into five classes, 
classifying by how many 1’s they  have as entries  in their 
2 by 2 matrices. The iterated or has  the  same  character 
as  the iterated and,  and a dual of the  demonstration  in 
the last paragraph  can be constructed to show that a com- 
puter  which  takes the or of a  number of input blocks has 
no capacity for computation of arbitrary reliability. This 
is also true  for all of the  other  functions  in Fig. 4 which 
have  an  odd  number of  1’s in their  matrices. If they have 
a single 1 ,  they are  the  and of x or x’ and y or y‘. If they 
have three l’s, they are  the or of x or x’ and y or y’. In 
either  case the result is negative. 

On the  other  hand, a computer constructed  entirely of 
combining  elements which have an even number of 1’s 
in  their  matrices  can  have its input blocks independently 
coded and its output blocks decoded to give reliable 
results  despite errors in computation. The  functions z=O 
and z= 1 do not really represent  combiners  at all;  the 
output is independent of the input,  and these functions 
can be reliably computed if reliable  sources of 0’s and 1’s 
are available to the receiver. The  other functions  with an 
even number of 1’s either reproduce  one  input  (e.g., 
z=x, z=y) or its complement (e.g., z=x’, z=y’), or  take 
the  modulo two sun1 of x and y ,  or its negation. The 
Hamming codes,‘ or  any  other group codes8 which in- 
clude  the sequence of n l’s, may be used at  the  input  to 
such a computer.  Each stage of the computation  then 
maps  the set of 2 ;  n-digit input blocks into itself, pre- 
serving  minimum  distance properties-and average dis- 
tanceproperties too. Using such codes in such a computer, 
in the absence of noise, the decoding operation is one-to- 
one,  rather  than many-to-one; it is only noise which can 
cause the  same answer to be represented as two different 
n-digit blocks. If the effect of the noise is symmetric, 
Le., if a noisy output sequence is as likely to differ from 
the noiseless version in having 0’s replaced by 1’s as in 
having 1’s replaced by  0’s-then the  capacity for noisy 
computation is just the capacity for transmission  over a 
binary  channel  with the same  symmetric error probability. 
It is  known!’ that  group codes  can be used to obtain trans- 
mission of arbitrary reliability over such a channel at  any 
rate less than  the channel  capacity. If the noise is not 
symmetric,  but is small,  then it is not obvious  whether 
the capacity for reliable  computation is the  same as the 
capacity for reliable  transmission,  but in any  case the 

computational capacity is decreased  only a small amount 
by the  introduction of small error probabilities  in the 
computing elements. 

Unfortunately, however, it is not possible to generate 
all combinational functions of two  variables by using 
only the  functions which  have an even number of 1’s in 
their  matrices. It is impossible to generate and  or or from 
such functions, for example. 

Other results 

We are left with the negative result that if we code all 
blocks identically at  the point of entry  to  the  computer 
and  demand  reliability  through  cascaded  computing 
stages which  include and  or or operations, we have an 
essentially iterational  situation  as  soon as the cascade 
length is equal  to  the  input block size, and  the  rate  for 
computation of arbitrary reliability goes to  zero.  The 
obvious  assumption to  attack is the  cascading  require- 
ment. Since we are permitting  coders and decoders to be 
reliable, we may be wary of using large numbers of them; 
however, we can  certainly do so to  obtain negative results. 
Taking  the most  extreme situation, we can  permit  coding 
to take  place  immediately  before each noisy combining 
circuit, and decoding  immediately after it. Two  such 
situations are illustrated in Fig.  7.  At the  top  (7a) we 
have a single input  coder, which codes blocks of k input 
digits into blocks of n output digits. An n-digit delay line 
provides the second input  to  an  and circuit; the two 
identically coded n-digit blocks are  anded,  and  the result 
decoded. Below (7b) we also have  an  and circuit,  but  the 
two input sequences are  no longer  required to be iden- 
tically coded;  each goes through its own coder,  and the 
twa output n-digit blocks are  anded  and decoded. 

The results here are  fragmentary,  and  the problem of 
correct  formulation becomes more ecute. In Fig. 7b, if 
n>2k,  it is possible to  do reliable anding through a noisy 
ander-but the ander does  not do  the  computation. If the 
upper  input coder  generates first n / 2  1’s and then  a 
coded version of its input k-digit sequence, and  the lower 
input coder  generates first a coded version of its input 
sequence and then n / 2  l’s, the  output will be a noisy 
version of the two coded  inputs  in  sequence. The decoder 
can then correct  errors in each of the two inputs,  and 
take  their and by means of a table. Here  the noisy and 
circuit is being used only as a noisy channel, and does 

Figure 7 Single-layer anding. 
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n o  real  computation. The same  result  can  be  obtained  in 
Fig. 7a by a random-coding  argument,  although  it is not 
clear  whether a reliability  which is uniform  on  input  pairs 
can  be  obtained  in  this  way. 

To avoid  this  obvious  cheating,  we  can  demand  that 
whatever  information is present  in  the  output  n-digit 
sequence is information  about  the  and of the  two  input 
k-digit sequences  only.  This  requires  that  the  decoder  be 
one-one  in  the  absence of noise, for  as  soon  as  two  pairs 
of  inputs  which  have  the  same  and  produce  distinct  out- 
puts  in  the  absence of noise,  the  decoder  has  some  infor- 
mation  about  the  inputs  which  is  not  information  about 
their  and.  Under  this  restriction,  the  negative  result  fol- 
lows as before:  the  only  noise-resisting  codes  are  those  in 
which  the i’th input  digit  in a block of k  is iterated mi 
times,  with 

2 m Z n .  

This  again  leads  to  zero  rate of reliable  computation.  In 
fact,  under  the  milder  restriction  that  only  one  n-digit 
sequence is decoded  into  the  sequence of  k 0’s in  the  ab- 
sence of noise,  the  behavior is still  the  same,  at  least  in 
minimum  distance  terms,  and so is the  conclusion. 

It  seems  very  likely  that,  even  for  computations of 
depth  one, as illustrated  in Fig. 7, coding  can  improve 
the  reliability of a noisy and or or circuit  only  through 
either  iteration or cheating.  That is, it  seems  likely  that 
for  n<2k there is nothing  better  to  do  than  to  iterate 
some of the  input  digits,  while  for  n>2k  the  only  alterna- 
tive to  iteration is to  squeeze  both  inputs  through  the 
noisy  computer  and  do  the  computation  in  the  decoder. 
However  this  has  not  yet  been  proved. 

k 

2.=1 
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