
H. 1. Gelernter

N. Rochester

Intelligent Behavior in Problem -Solving Machines

Abstract: As one step in the study of intelligent behavior in machines, the authors consider the particular case

of a machine that can prove theorems in elementary Euclidean plane geometry. The device uses no advanced

decision algorithm, but relies rather on rudimentary mathematics and ”ingenuity” in the manner, for exam-

ple, of a clever high-school student.

This paper discusses heuristic methods and learning machines and introduces the concept of a theory machine

as an extension of a theorem-proving machine.

Introduction

Modern machines execute giant tasks in arithmetic and
carry out clerical operations that are far beyond human
capacity, but we have not yet learned to apply computers
to problems that require more than a barest minimum of
ingenuity or resourcefulness. This paper reports some
early results in an approach to the problem of learning
how to use machines in these presently unmanageable
areas. The goal of this research is the design of a machine
whose behavior exhibits more of the characteristics of
human intelligence.

We shall concern ourselves in particular with a single
representative problem, one which contains in relatively
pure form the difficulties we must understand and over-
come in order to attain our stated goal. The special case
we have chosen is the proof of theorems in Euclidean
plane geometry in the manner, let us say, of a high-school
sophomore. It must be emphasized that although plane
geometry will yield to a decision algorithm, the proofs
offered by the machine will not be of this nature. The
methods to be developed will be no less valid for problem
solving in systems where no such decision algorithm
exists.

If the application of a decision algorithm is rejected
as uninteresting (in the case of plane geometry) or impos-
sible (for most problems of interest), there remain two
alternative approaches to the proof of theorems in formal
systems. The first consists in exhaustively developing the
proof from the axioms and hypotheses of the system by
systematically applying the rules of transformation until
the required proof has been produced (the so-called
“British Museum algorithm” of Newel1 and Simon1).
There is ample evidence that this procedure would require

336 an impossibly large number of steps for all but the most

trivial theorems of the most trivial formal systems. The
remaining alternative is to have the machine rely upon
heuristic methods, as people usually do under similar
circumstances.

Problems for which people use heuristic methods seem
to have the following characteristic. The work begins
routinely, and then suddenly the person experiences a
flash of understanding. This is followed by the writing
down and checking of the solution. Apparently the person
first used heuristic methods to look for a solution. To
each suggestion turned up by the heuristic methods he
applies some sort of a test. The flash of understanding
comes when a suggestion gets a high score on the test.
The clerical task that follows is the transformation from
suggestion space’ to problem space. The transformation
is possible, of course, only if a valid solution has been
indicated. The geometry machine will behave in this way.

Instead of geometry we might have chosen a certain
class of probability problems, proofs of theorems in pro-
jective geometry, proofs of trigonometric identities,
proofs in part of number theory, or the evaluation of
indefinite integrals. There were compelling reasons, how-
ever, for choosing plane geometry, the most important
being the readily understood “suggestion space” offered
by the diagram (the semantic interpretation of the formal
system), and the ease of transforming “proof indications”
into problem space. An important secondary reason was
the fact that everyone who would be interested in our
results has studied Euclid, so the results can be communi-
cated more efficiently.

It should be noted here that the geometry project is a
consequence of the Dartmouth Summer Research Project
on Artificial Intelligence, standing on a foundation laid

IBM JOURNAL OCTOBER 1958

by the members of the study,3 and evolving from the
pioneering work of Newell and Simon in heuristic pro-
gramming.4

Not all problems whose solutions seem to be accom-
panied by a “flash of understanding” are elementary
enough to lie within the scope of the methods described
in this paper. Many have difficulties of a more profound
nature. It will be possible to say a little more about this
later, but a secure understanding of the nature of these
harder problems will come only after more research has
been done.

The explanation of the precise meaning of the term
heuristic method is an important part of this paper. For
the moment, however, we shall consider that a heuristic
method (or a heuristic, to use the noun form) is a pro-
cedure that may lead us by a short cut to the goal we seek
or it may lead us down a blind alley. It is impossible to
predict the end result until the heuristic has been applied
and the results checked by some formal process of rea-
soning. If a method does not have the characteristic that
it may lead us astray, we would not call it a heuristic,
but rather an algorithm.5 The reason for using heuristics
instead of algorithms is that they may lead us more
quickly to our goal and they allow us to venture by ma-
chine into areas where there are no algorithms.6

Finally, since people seem to use heuristic reasoning
in nearly every intelligent act, it is reasonable to ask why
some task more familiar and natural for people was not
chosen as representative of the class rather than plane
geometry. Several alternatives to geometry were, in fact,
considered and rejected for failing to satisfy one or more
of the following requirements:

1. The task must include a kind of reasoning that we are
not yet able to get our machines to do but which we
think we can learn to manage.

2. It must not contain harder kinds of reasoning that are
too far beyond our understanding.

3. It must not be too much cluttered with irrelevant
work.
Most human acts fail to meet requirement (2). We

have a long way to go before our machines can play
Turing’s “Imitation Game” and win.‘

Geometry

A standard dictionary defines geometry as “the theory of
space and of figures in space,” and indeed, most people
would offer a similar definition. To the mathematician,
however, geometry represents a formal mathematical
system within which proofs are possible, and which can
be related to real space if this seems interesting for the
purpose at hand, but which can alternatively be related
to concepts having no physical reality or significance. The
machine considers geometry primarily as a formal system
but uses the interpretation in terms of figures in space for
heuristic purposes.

A formal system such as geometry comprises:

1. Primitive symbols
2. Rules of formation

3. Well-formed formulas
4. Axioms
5. Rules of inference
6. Theorems.

The set of primitive symbols (or alphabet) for geometry
is those characters which are interpreted as the names
of points together with those interpreted as specifying
relations between discrete sets of points, or between a
given set and the universe of points (e.g., =,J, A , B, A) .
In order to make proofs in geometry it is not necessary,
for example, to think of a line as something long, thin,
and straight. It is sufficient to be able to recognize the
symbol line.

The rules of formation specify how to assemble the
primitive symbols into well-formed formulas (statements)
which may be valid or invalid within the formal system.
For example, “Two sides of every triangle are parallel”
is a well-formed formula (although not valid), whereas
“Two exists of obtuse every one point” is not a well-
formed formula. We can ask the machine whether the
first is true (interpreting formal validity as truth), but the
second is gibberish because it does not obey the rules of
formation. These rules are, in a sense, the grammar of a
language whose vocabulary comprises the alphabet of
primitive symbols.

The axioms are a set of well-formed formulas, such as
“Through every pair of points there can be drawn one
and only one straight line,” which are selected to serve
as a foundation on which to build. They are regarded as
being true by definition, if you like.

The rules of inference are the means by which the
validity of one well-formed formula can be derived from
others that are already established. The new formula is
said to be inferred immediately from the given one or set
by the specified rule of inference.

A proof is a succession of well-formed formulas in
which each formula (or line of proof) either follows by
one of the rules of inference from the preceding formu-
las, or is an axiom or previously established theorem. A
theorem is the last line in a proof.

To recapitulate, a problem presented to our machine
is a statement in a formal logistic system, and the solution
to that problem will be a sequence of statements, each of
which is a string of symbols in the alphabet of that sys-
tem. The last statement of the sequence will be the prob-
lem itself, the first will always be an axiom or previously
established theorem of the system.s Every other formula
will be immediately inferable from some set preceding it
or will itself be an axiom or previously established
theorem.

This simple and elegant description of geometry is
essentially the one given the high-school sophomore. It
will shortly be seen that this view is too naive to describe
what really happens, but for the moment it will be expe-
dient to continue the exposition as if it were true, because
the idealization has a significance of its own. A number
of things should be pointed out about this ideal view of
geometry. First, there is a difference between finding a
proof and checking it. To check a proof one merely fol- 337

IBM JOURNAL. OCTOBER 1958

lows some simple rules that are set down very precisely.
To discover a proof, on the other hand, requires ingenuity
and imagination. One must use good intuitive judgment
in selecting which of many possible alternatives is a step
in the right direction. The high-school sophomore does
not have a complete set of explicit rules to guide him in
finding a proof.

Since checking a proof is a clerical procedure there is
no reason why a machine cannot easily do it. A well-
formed formula (Le., axiom, line of a proof, or theorem)
would be a string of data words in memory, and a rule of
formation or of inference would be a subprogram. There
is nothing really new or difficult about this, and many
programs have been written to make machines do jobs as
difficult. The artificial geometer discussed here will have
a subprogram which is an algorithm for checking a proof.

The process of discovering a proof is another matter,
and the question of how to get a machine to do it is the
subject of this paper. The student or the machine can be
given some useful hints but must also be provided with
a warning that these hints may be misleading. For exam-
ple, it can be said that if the proposition to be proved
involves parallel lines and equality of angles, there is a
good chance that it will help to try the theorem: “If two
parallel lines are intersected by a third line, the opposite
interior angles are equal.” This advice is a heuristic that
can be given to the machine or student. It will lead to a
proof in a good many cases but will as often lead nowhere
at all.

Thus far, there has been no mention of drawing figures.
It is, of course, quite possible to discover a proof in a
formal system without interpreting that system, and in the
case of geometry, except for the need to discover proofs
efficiently, or for applying theorems to practical prob-
lems, one need never make a drawing. The creative math-
ematician, however, generally finds his most valuable
insights into a problem by considering a model of the
formal system in which the problem is couched. In the
case of plane goemetry, the model is a diagram, a seman-
tic interpretation of the formal system in which, to quote
Euclid, the symbol point stands for “that which has no
parts,” a line is “breadthless length,” and so on. The
model is so useful an aid for discovering proofs in
geometry that few people would attempt a proof without
first drawing a diagram, if not physically, then in view
of the mind’s eye. If a calculated effort is made to avoid
spurious coincidences, then one is usually safe in gener-
alizing any statement in the formal system that correctly
describes the diagram, with the notable exception of those
statements concerning inequalities.

We cannot emphasize too strongly the following point.
To serve as a heuristic device in problem solving, the
model need not lie in rigorous one-to-one correspondence
with the abstract system. It is only necessary that they
correspond in a suficient number of ways to be useful.
The success of the model in designating correct solutions
to problems in that system (solutions that will be checked
within the framework of the abstract system) is the only
criterion one need apply in judging the suitability of a

given model.9 If the model is indeed a semantic interpre-
tation of a formal logistic system, then it is most desirable
that the interpretation satisfy every axiom of the formal
system. But should the interpretation be valid, too, for
some richer or poorer formal system, its heuristic value
might be impaired, but by no means eliminated.

Heuristic method

The proof of theorems in Euclidean plane geometry in
the sense described above requires the extensive use of
heuristic methods, and it is these methods rather than
geometry that are of primary interest to us. The role of
geometry is to provide a problem of the right difficulty
to permit a thorough development and understanding of
the class of heuristics involved.

The steps in a typical application of a heuristic method
to theorem proving are the following:

1. Calculate the character’” of the theorem.
2. Using the theorem character, calculate the applicable

3. Select the most appropriate method.
4. Try it.
5. In case of failure, cross off this method and return

6. In case of success, print the proof and stop.

methods and estimate the merit of each.

to step (3).

The character of a theorem (or of any problem) is in
essence the machine’s description of the theorem (or the
problem). In its simplest form, the character may be
represented by a vector, each element of which describes
a given property of either the syntactic statement of the
theorem or its semantic representation. The vector des-
ignating the applicable methods and estimated merit of
each is a vector function of the character. The figures of
merit are, of course, only guesses based initially on the
judgment of the programmer, and subsequently modi-
fied by the machine in the light of its experience.

Defining the term characteristic as a given element of
the character vector, the following might be introduced
as syntactic characteristics of a theorem:

Ci = 1 if the hypotheses contain the symbol 11, 0 other-
wise;

Cj = 1 if the consequents of the theorem contain the
symbol 11 , 0 otherwise;

CY = 1 if there exists a permutation of the names of
points in the hypotheses that leaves the set of hy-
potheses unchanged, 0 otherwise; and so on.

Examples of semantic characteristics are the following:

CL = n, where n is the number of axes of symmetry in
the diagram;

C,, = 1 if two angles of segments are to be proved equal,
and they are corresponding elements of congruent
triangles, 0 otherwise; and so on.

The rules formalized into the vector function that
transforms the character of a problem into a sequence of
designated methods of approach and the estimated merit
of each will in general fall into two categories. The first

I IBM JOURNAL * OCTOBER 1958

~~

will contain those heuristics which operate on the syn-
tactic characteristics of the problem. The second will, in
the general case of a problem-solving machine, comprise
those rules which operate on the characteristics of the
model. For the artificial geometer, these are the semantic
characteristics described above.

The problem of strategy and tactics in choosing
methods is most important. One obvious strategy men-
tioned earlier is to explore all alternatives systematically.
This is known to be inadequate for many problems and
is considered by the authors to be uninteresting, and
probably useless, for geometry. The strategy and tactics
used by Newell and Simon in their achievement in theo-
rem proving by machines are not adequate for this harder
problem on present-day machines. Their proofs were, at
most, three or four steps long, and machine time required
is probably an exponential function of the number of
steps. Clearly the ten-step proofs of geometry will require
much more selective heuristics than those adequate for
propositional calculus.

The authors have at present a system of strategy and
tactics. It does not seem useful to report it in detail at
this time because machine experience will probably in-
duce major revisions and improvements. It is clear, how-
ever, that the skill with which the machine selects and
manipulates methods will distinguish a good machine
from a poor one. Since it is impossible to predict the
detailed behavior of so complex an information-process-
ing system as the artificial geometer, it is necessary to
write the program and run the simulation before conclu-
sions can be reached with confidence.

The speed with which a difficult problem can be solved
is an essential factor in determining the usefulness of an
intelligent machine. This speed cannot be achieved by
little steps like inventing faster components. On the scale
considered here, a factor of ten is a minor change in
speed. Suppose, for example, that a given proof requires
ten steps. If for each step, the machine must explore three
alternatives, there will be about 20,000 things to con-
sider. A slightly less intelligent machine that must explore
six alternatives will have to consider 20,000.000 things.
For problems having longer solutions, selectiveness be-
comes more important exponentially.

Syntactic symmetry

The formal system of plane geometry will be a difficult
one for the machine to manipulate. Not only are the
alphabet and axiom set both large, but geometry must
be formalized in the lower functional calculus, at the
very least. The difficulty is compounded, too, by the fact
that the predicates of plane geometry exhibit a high
degree of symmetry, and a given statement in the system
will in general admit of a multiplicity of completely
equivalent forms.

These symmetries are at times a painful thing to
contend with; they make it necessary that a theorem be
considered in every one of its equivalent forms in any
attempt to establish a deduction by means of substitution.
On the other hand, they are the basis of a powerful new

rule, completely syntactic in nature, that simplifies im-
mensely the search for a proof of a theorem displaying
these symmetries. The rule will prevent the machine from
searching in a circle for useful intermediate steps, or
subgoals, to bridge the gap between antecedent and con-
sequent of the theorem to be proved. In effect, it removes
from consideration those subgoals which are formally
equivalent to some subgoal already incorporated into the
structure of the search for a proof.

Figure I

We shall introduce the rule by an example. Let US

consider the following theorem: “The diagonals of a
parallelogram bisect one another” (Fig. 1). To solve the
problem, the machine must establish the formulas
A E = EC and BE= ED. Now it would be most useful if
the artificial geometer could recognize, as people usually
do, that the proof for the second formula is essentially
the same as that for the first, and therefore only one of
the two need be established. But it is even more impor-
tant that the machine not fall into the class of trap illus-
trated by the following redundant search process. The
method chosen is that of congruent triangles, and in order
to establish the formula AI MI, from which the theo-
rem may be immediately inferred, the machine sets at
some later stage the subgoal AIII-AIV. The geometer
will, in fact, satisfy our requirements on both these points.
The mechanism whereby this is accomplished is an em-
bodiment of the theorem and rule specified below.

Consider first the following definition: Let X be a
permutation on the names of the syntactic variables in a
theorem. Then X is a syntactic symmetry of the theorem
if its operation on the set of hypotheses leaves the set
unchanged except for a possible transformation into an
equivalent form with respect to the symmetries of the
predicates (i.e., T { H } - { H } is valid. We can now state
the required theorem thus:

“If r is a well-formed formula provable from the set
of hypotheses { H } , and X is a syntactic symmetry of the
set { H } , then Tr is a well-formed formula provable from
the same set { H } . The formula d will be called a syn-
tactic conjugate of I?.”

The proof of the theorem is quite trivial, and follows
from the fact that the syntactic variables in a theorem 339

IBM JOURNAL OCTOBER 1958

may be renamed without destroying the validity of the
theorem. Thus, if

{ H } 3 r is valid, then
x { H } 3 TI? follows by the rule of substitution.

Since x { H } G { H } ,
{ H } 3 Xr is valid.

The theorem itself grants the machine the same power
the human mathematician has at his disposal when he
recognizes the equivalence of two different statements
with respect to a given formal system, for now it may
establish the syntactic conjugate of any valid formula I?
by merely asserting “similarly, XI’.” The rule of syntactic
symmetry follows from the theorem. It is used by the
machine to construct, given the heuristics and methods
at its disposal, the optimum problem-solving graph, and
a description of such a graph follows. (See Fig. 2.)

Let Go be the formal statement to be established by
the proof. It will be called the problem goal. If Gi is a
formal statement with the property that Gi-1 may be im-
mediately inferred from Gj , then Gi is said to be a sub-
goal of order i for the problem. All Gj such that j<i are
higher subgoals than Gi, where Go is considered to be a
subgoal of order zero. The problem-solving graph has as
nodes the Gi, with each Gi joined to at least one Gi.l by
a directed link. Each link represents a given transforma-
tion from Gi to Gi-1. The problem is solved when any Gi
can be immediately inferred from the hypotheses and
axioms.ll

We can now specify the rule of syntactic symmetry
thus: Gi is not a suitable subgoal to add to the problem-
solving graph if it is the syntactic conjugate of any Gj
for i2j, for any proof sequence leading to Gi is identical
with a conjugate sequence leading to G j with the variables
renamed, and any mechanism leading to a proof of Gi
would as well prove Gi. If i=j, the two subgoals are in
effect redundant, and if i>j, the sequence leading to Gi
leads to G j when conjugated, and all the steps Gr, i 2 k>j
can be eliminated.

In the light of the above, we may now re-examine our
introductory problem (Fig. 1) . The machine must estab-
lish the following two goals:

Go’: AE=EC

Go’: BE=ED

By the theorem of syntactic symmetry, the machine will
eliminate GoZ from the graph, since Go2=XGo’, where X

is the transformation A into B, B into C, C into D, and
D into A , and after proving Go1, will assert “similarly,
Go2.” Then, if at some point in the proof, AABE E ACED
is a subgoal, it will eliminate the statement ABCE r ADEA
as a possible subgoal; if AB=CD is a subgoal, BC=DA
will be removed from consideration. Clearly every di-
rected path through the problem-solving graph from
hypotheses to goal will be unique under the T-transforma-
tion, and will be the shortest one in that it will contain no
redundant subgraphs (no two nodes will be linkable by
a r-transformation).

rOURNAL. OCTOBER 1958

G;

Figure 2 Problem-solving graph.
The nodes Gi“ represent subgoals of order i,
with a! numbering the subgoals o f a given
order. Pimp is a transformation on Gim into
Gi-lP.

Syntactic rules such as the above will be essential to the
success of the plane geometry machine. But while they
ease the labor of the geometer considerably as it threads
a path from problem to solution, they are, except in the
simplest cases, powerless to indicate which path, among
the very many possible, does indeed lead to a solution,
and which wander off into infinity, regressing farther
from the goal with each step. The geometer will need
more information about most problems before it can
even begin to seek a solution. It will find this information
as the mathematician does, in the diagram.

Semantic heuristic

Semantic heuristic is concerned with the body of per-
tinent and probably true statements that can be obtained
by observing the diagram. For example, one of the first
such rules to be applied by the geometer in a particular
case will be the following:

If the diagram consists of a “bare” simple polygon, a
construction will probably be required.

A rule to indicate which construction to make might be:
I f the figure has one axis of symmetry, and it is not
drawn, then draw it.

A most useful rule will be:
I f the theorem asks that two line segments or angles be
proved equal, determine by measuring whether these
are corresponding parts of apparently congruent tri-
angles. If so, attempt to prove the congruence. I f
necessary, draw lines connecting existing points in the
diagram in order to create the congruent triangles.

Another frequently used heuristic will be:
I f two apparently parallel lines are crossed by a trans-
versal, attempt to establish the parallelism by consider-
ing the angles.

A more complete understanding and appraisal of the
appropriate heuristics will be one of the major conse-
quences of experimentation.

It should be clear that the best set of heuristic rules,
the best compromise between conciseness and efficiency,
should not be expected to yield the best proof in every
case. Indeed in a number of awkward cases the rules will
impede, rather than aid, the search for a concise proof.
In some cases the machine will make a construction and
produce an elaborate proof while missing a simple, ele-
gant one. People, too, do this. But these awkward cases
should be the exception, and the heuristic rules appear
sufficiently powerful to make an efficient machine.

Rigor

Mathematical rigor becomes a significant matter in two
different aspects of the artificial geometer. One of these
is that machines can provide, in a sense, more rigorous
proofs than have hitherto been available. More important
than this is the second aspect-that our machine is like a
good human mathematician in that it increases its output
and improves its communication with other mathemati-
cians by taking chances with rigor.

Axioms and theorems are objects that can be examined
and manipulated by people and machines. These present
no problem. However, methods of inference are instruc-
tions to do something. In the case of machines they are
programs of instructions in machine language. In the case
of people they are instructions expressed in a natural
language and intended to control human behavior. Except
for undetected blunders in the design of a machine or in
the writing of a set of machine instructions, the machine
and its instructions are fully understood. And when one
of these blunders is detected, it causes merely annoyance
and not bewilderment. Therefore when a machine proves

Figure 3

a theorem, there is in principle no doubt about what is
going on and, except for possible apprehensions about
human blunders or undetected machine malfunctions,
there is no doubt about rigor.

It is interesting to observe that the most rigorous treat-
ments of the foundations of mathematics seem equivalent
to designing a machine and a machine language and
henceforth communicating in this language. In one case1'
the mathematician even uses the term machine, although
his machines could not actually be built because they
contain parts with infinite dimensions. Other really good
treatments do not use the word machine but are essen-
tially equivalent. It should be clear, then, that the trans-
lation of a formal system into a machine program is rea-
sonable and natural.

The other aspect of rigor is quite different. Most ele-
mentary textbooks on geometry fail to prove betweenness
relations. In Fig. 3, the acute angle ABC is bisected by
the line segment BD. Then line segments BD and AC
are extended to infinity, thus becoming lines BD and AC.
Point E is defined as the intersection of lines BD and AC.
Now how can it be determined whether point E lies be-
tween A and C or to the left of A or to the right of C?

Ordinarily this decision is made by looking at the
figure. In rigorous treatments it is proven formally, but
this is a tedious effort. Expediency dictates that the
mathematician should neglect the possibility that a se-
mantic heuristic will lead him seriously astray. Since
people rarely get into trouble because of honest errors of
this kind, traditional geometry excludes proofs of be-
tweenness, and most mathematics appears to lack rigor
because many matters are settled by heuristic methods
rather than formal proofs. It seems clear that the machine
must be able to work this way if it is to become proficient.

The artificial geometer decides questions of between-
ness by measurements on the figures. But whenever it
does so, it explicitly records the necessary assumptions
for a given proof so as to leave a record of its guesses.
There is, of course, a danger that the machine will be
proving only a special instance of the theorem presented
to it, but this danger can be minimized by having the
machine draw alternate diagrams to test the generality of
its assumptions when they are necessary.

Programming the geometer

The organization of the program falls naturally into three
parts: a syntax computer and a diagram computer em-
bedded in an executive routine, the heuristic computer.
The flow of control is indicated in Fig. 4. The syntax
computer contains the formal system, and its purpose
is to establish the proof. The formal system manipu-
lated by the syntax computer is expressed as a Post-
Rosenbloom canonical language, and consequently the
syntax computer should be useful for a wide range of
logistic systems. The heuristic computer can submit any
sequence of lines of proof to the syntax computer, which
will test them to see that they are correct.

The diagram computer makes constructions and meas-
ures them. It does this by means of coordinate geometry

IB M

34 1

JOURNAL OCTOBER 1958

H E U R l S T 1 C

S Y N T A X

C O M P U T E R

C O M P U T E R I

D I A G R A M

C O M P U T E R

Figure 4 Flow chart of the artificial geometer.

and floating-point calculations. However, it keeps all this
secret from the heuristic computer and reports only quali-
tative information of the type acquired by a mathema-
tician in scanning a well-drawn figure. The behavior of
the heuristic computer and the syntax computer would
not be changed if the diagram computer were replaced by
a machine that could draw diagrams on paper and observe
them.

The heuristic computer does most of the things that
have been discussed in this report. It contains the heuristic
rules and decides what to do next. The subordinate
computers only follow its instructions and answer its
questions.

The program is being written in an information-pro-
cessing language constructed by appending a large set
of special functions to the Fortran compiler for the
IBM 704. The language increases manyfold the ease of
writing programs of the nature of the geometer, and
will be reported upon in detail in a subsequent paper.

learning in intelligent machines

The machine described thus far will exhibit intelligent
behavior but will not improve its technique. Except for
the annexation of previously proved theorems to its axiom
list, its structure is static. A rigorous sequence of practice
problems will not improve its performance at all in solv-
ing a given problem unless a usable theorem is among
them. Such a machine, incapable of developing its own
structure, will always be limited in the class of problems
it can solve by the initial intent of its designer. It seems
that the problem of designing a machine of general intelli-
gence will be enormously greater, if at all possible, than
designing one not so intelligent but with the capacity to
learn.

One might attempt to endow an automaton like the
geometer with the ability to learn at various levels of
sophistication. Indeed, the behavior of the machine in
storing away for future use each theorem it has proved
may be interpreted as learning of a rudimentary sort.
This might be refined by having the machine become
selective in its choice of theorems for permanent storage,
rejecting those which (by some well-defined criteria) do
not seem to be sufficiently “interesting” or general to be
useful later on. Similarly, instead of “forgetting” all lem-
mas it might have established as intermediate steps in the

OCTOBER 1958

proof of the theorems offered to it, to be rederived when
needed, the machine might select the especially interesting
ones for its list of established theorems.

The next level of learning is indicated when the ma-
chine adjusts, on the basis of its experience, the prob-
ability for success it assigns to a given heuristic rule for a
theorem with a given character. This is the learning in-
volved when the machine uses results on one problem to
improve its guesses about similar problems. As the geom-
eter is given problems of a given class, say problems about
parallelograms, its ability to handle them would improve.
After it had been given a graded sequence of harder and
harder problems, its performance should he much better
and it could be said to have learned to prove parallel-
ogram theorems. The highest level to which we aspire for
an early model of the geometer will be achieved when it
looks over the quality of its predictions and discards as
irrelevant some of the criteria that comprise the problem
character. The earliest models of the geometer will in-
clude only low levels; later models will be more complex.

Beyond these kinds of learning we can see other things.
Before we come to them, however, we will probably be
working on machines to solve harder problems than those
of geometry. There are kinds of learning that are needed
only by machines that take their environment more seri-
ously than do theorem-proving machines. But we can
hope that a theorem machine might some day be able to
observe that a certain sequence of methods was effective
in certain circumstances, and consequently streamline
the sequence into a single method and in this way devise
a new method.

But in still another vein there are possibilities for theo-
rem machines. Instead of providing a machine with a
formal system and a sequence of propositions to prove,
one could give the machine a formal system and ask it to
see what it could find. Here it would at least need criteria
for the utility of theorems in proving other theorems and
for the elegance of a proof in terms of large achievements
in a small number of steps. New kinds of learning would
be used here.

Before closing the subject of learning machines, there
are some further considerations to deal with. A computer
is, after all, merely a finite automaton, and, as such, its
behavior is completely determined by its internal state
at the beginning and by subsequent input information.
This being the case, it can be argued that its response to
any set of input signals is in principle predictable and is
consequently uninteresting and not worthy of the descrip-
tion “intelligent.” Another version of this objection is the
following. The machine, endowed with heuristics and
judgments of its designer, is but a trivial extension of that
person, in principle no different from a slide rule in the
hands of an engineer.

From a certain irrelevant point of view the objection
is justified, but in practice the behavior of the machine is
far from being predictable. That this is indeed the case is
well illustrated by the fact that the geometer, its operation
simulated “by hand,” has on several occasions produced a
proof that was a complete surprise to its programmers.

The nature of an intelligent program is such that unlike a
conventional arithmetic computation, in which the
branches are few and easily traceable, the number of con-
ditional branches depending on the input are bewilder-
ingly many and highly interdependent, rendering impos-
sible any detailed attempt to trace its behavior. And of
course, once learning is introduced into the program, it
will constantly modify itself in a highly complex way, so
that while its behavior is still in principle determined, one
will become increasingly powerless to predict its response
in any given case. In a very real sense, the machine’s
proofs will be no more or less trivial than those offered by
the neophyte mathematician who is still under the influ-
ence of his professor.

One may view this machine in still another way. At any
instant of time, the internal configuration of our machine
is some particular state of a finite-state automaton. Then
of the infinite number of sequences that one might ask the
machine to establish as theorems, some infinite subset of
these will be provable by it. At any given time, our ma-
chine represents a partial decision method over this
infinite set of theorems, and this set will be richer in
“interesting” theorems than a random subset of all theo-
rems. The class of theorems considered “interesting” will
determine the heuristics that control the partial decision
method, and in turn, the density of interesting theorems
in the set enumerated by the machine will depend on the
apt choice of the heuristics. It is important to note that if
even the most rudimentary learning behavior is built into
the machine, its initial internal configuration will be differ-
ent for each new problem presented to it, and conse-
quently, the class of theorems decidable by the machine
will be continually changing. And what is any human
mathematician but a partial decision machine over some
unknown class of theorems?

It is possible to approach the problem of theorem-
proving by machine from a rather different direction.
E. W. Beth13 describes a method (semantic tableaux) for
systematically constructing a counterexample for a pro-
posed theorem if there is one, or else establishing the fact
that none exists. If it can be shown that a counterexample
cannot be constructed, an algorithm is given for convert-
ing the “closed” semantic tableau produced into a proof
of the theorem in the formal system. But the method of
semantic tableaux is essentially an enumeration proced-
ure-in this case, it is the set of individual instances of the
theorem that could possibly be counterexamples to the
theorem that is being enumerated, and like all such pro-
cedures, the bulk of calculation required rapidly outdis-
tances the capacity of conceivable computing machines.
In order to make the procedure reasonably efficient, heu-
ristic rules for the control of the enumeration must be
introduced, and one is faced with essentially the same
problem that concerns the body of this paper. The more
or less anthropomorphic approach followed by the au-
thors has the advantage that suitable heuristics are readily
suggested by introspection, and the methods developed
are more likely to be applicable to the solution of prob-
lems in nonformal systems.

The theory machine

At various points in the preceding discussion, a line of
reasoning was terminated by the comment that harder
problems exist but they are outside the scope of the matter
being considered. This large new class of problems, and
how a machine can handle them, is the subject of this sec-
tion. We consider now a machine that takes its environ-
ment more seriously.

The subject will be introduced by an example of a more
advanced kind of geometry machine, a machine that tries
to learn what kind of geometry fits the environment it
finds around it. The heuristic computer is provided with
an environment by the diagram computer. It looks to the
environment for heuristic-for clues about what to do
next. However, if it learns that a measurement contra-
dicts something it can prove in the syntax computer, it
assumes the measurement is in error. In other words the
formal system is sacrosanct.

Now suppose the diagram computer is replaced with
another that does its drawings on the surface of a sphere.
Suppose further that the priorities in the heuristic com-
puter are readjusted so that it believes the diagram com-
puter rather than the syntax computer when the two are
in conflict. Suppose also that it is provided with the means
to modify the formal system and additional heuristic to
enable it to do so efficiently. It would be arranged so as
to try to bring theory (the syntax computer) and experi-
ment (the diagram computer) into harmony, and thereby
discover what kind of a world it lives in. This is a theory
machine.

There seems to be, in principle, no reason why a theory
machine should not be fitted with the means to do experi-
mentation, with a tool room, a stockroom, and an instru-
ment room, and told to work out the theory of something
or other. In practice, there is the familiar difficulty of
speed and cost. Today it is cheaper and quicker to use
people to do research, but perhaps some day machines
will do the research and people will merely control the
doing of research. This is precisely parallel to the digging
of excavations. At one time excavating was manual labor,
but now machines do the digging and people merely con-
trol the machines. The scientist using a machine to do
research would have a role analogous to that of a uni-
versity professor directing his graduate students.

A further conjecture along this line relates to pro-
gramming. A person finds it much easier to communicate
a complex message to another person than to a machine.
Speaking is relaxed and easy, while writing a program of
machine instructions is detailed and exacting. When one
person listens to another he often fails to interpret some
word correctly for a while, but later other words enable
him to understand the earlier word. It seems as if the
listener is continually generating hypotheses about what
the speaker means and is continually checking these hy-
potheses and accepting them or rejecting them and casting
about for others. In terms of human activity, theorizing is
much too pretentious a word for this activity. However,
from the point of view of machine design, it may be that
only a theory machine will be easy for people to instruct,

~

I

1

343

[BM JOURNAL OCTOBER 1958

The interaction between formal and heuristic proce-
dures in a theory machine is more intricate than in a
theorem machine. To determine the consequences of its
present hypothesis the theory machine must use the meth-
ods of the theorem machine. Because of the different
nature of the typical problems it will be solving, the theory
machine must lean more heavily on semantic heuristic as
a substitute for rigorous deduction. Then when it finds a
discrepancy between theory and experiment it must use
both rigorous deduction and heuristic procedures to mod-
ify its formal system. An interesting feature of such a
machine is that the rules for formal deduction used to
modify the formal system are actually part of the formal
system. This is not an unreasonable situation; it is essen-
tially what happens when the program for a calculator
causes the calculator to modify the program. But it surely
is complicated, and the complication does not end here.

The machine described so far resembles a theoretician
with little or no experimental skill. Additional heuristic is
required to enable the machine to select a “clean” experi-
ment that will be an effective test of a theory. Contin-
gencies will arise in the experimentation, and the machine
must handle these as subproblems. In other words it must
invoke this whole apparatus over again at a lower level.

The theory machine is a device that conjectures about
its environment and tests its conjectures. In so doing, it
gains an increased understanding of what is going on. It
is hoped that not only will the theory machine be able to
do research, but will also be easier to communicate with
than a present-day automatic calculator.

Summary

In contrast to the present use of automatic calculators
which outperform human beings in clerical tasks, the
theorem machine is proposed as a device that reasons
heuristically. It is therefore able to solve harder problems,
and the study of it reveals some things about the nature
of problems and of machines. The essential operating
principle of this kind of artificial intelligence is that it has
a formal part, a syntax computer that can make deduc-
tions, and a heuristic part that can make guesses. By using
the syntax computer to test the guesses made on a heu-
ristic basis, the machine is able to get results that are be-
yond the scope of a purely deductive machine.

Heuristic processes can be syntactic, whereby they
depend on the language in which the problem is stated,

and on the statement in that language, or they can be
semantic and depend upon an interpretation or model of
the formal system.

The artificial geometer is an example of a theorem ma-
chine. Geometry was chosen, not because of any inherent
interest, but rather because it provides an example of a
problem at the right level of difficulty that needs semantic
heuristic in a major way. The geometer is being studied
by simulation on the IBM 704 Electronic Data Processing
Machine.

An interesting aspect of the geometry taught in high
school is that it is not rigorous. Some facts are established
by proving them and some by observing the figure (i.e.,
semantic heuristic). This is a powerful, effective method
of reasoning used by people and by the artificial geometer.
While it would be possible, and probably easier, to make
the artificial geometer perfectly rigorous, it is more sig-
nificant in the study of artificial intelligence to avoid the
strictness of rigor that is a proper part of metamathe-
matics but not efficient in mathematics.

Beyond the theorem machine is the theory machine
which, by conjecturing and testing the conjectures, gains
an understanding of its environment. Such a machine
should be able to do research and should be easier to
communicate with.

The largest obstacle to the development of useful theo-
rem and theory machines is the problem of speed. This
cannot be cured by faster components alone. The major
contribution to speed must come from improved heuristic
so that the machine will waste less time in fruitless en-
deavor. The nature of hard problems insures that the
machine must waste some time on wrong hunches, but
the waste must be kept within bounds. The machines
themselves are expected to make a major contribution to
the understanding of artificial intelligence because they
learn as they work, and what they learn reveals much.

Acknowledgment

The authors wish to acknowledge the contributions of
A. Newell, J. McCarthy, M. L. Minsky, and H. A. Simon,
whose relation to the project has been indicated in the
text, and to C. L. Gerberich, J. R. Hansen, and R. M.
Krause, whose technical and programming contributions
are making the project possible. Professor McCarthy, in
particular, has been playing a continuous role as consult-
ant to the authors.

References and footnotes

1. Newell, Shaw and Simon, “Empirical Explorations of the 4. A. Newell and H. A. Simon, Z.R.E. Transactions on In-
Logic Theory Machine. A Case Study of Heuristic,” Pro- formation Theory, IT-2, No. 3, 61 (September, 1956).
ceedings of the Western Joint Computer Conference, p. 5. A decision procedure applied under the constraint of a
218 (February, 1957). time limit behaves as if it were a heuristic.

2. Newell and Simon have used the term plnnrzing space. 6. There are classes of problems, for example proofs of
3. Particularly J . McCarthy, M. L. Minsky, and one of the theorems in number theory, where it can be shown that

344 authors (N.R.) no decision procedure can be devised. Heuristic pro-

IBM JOURNAL * OCTOBER 1958

cedures should enable machines to solve problems that
are members of such classes. It should be evident that no
set of heuristics together with the programs to employ
them can guarantee that a machine will solve every mem-
ber of such a class. All a machine can do is to probe
around and perhaps come up with an answer. This, of
course, is all that people can do. It should be evident, too,
that a program utilizing heuristics can well be an algo-
rithm that is guaranteed to solve any member of some
class of problems. Such a class must, of course, be
amenable to a decision procedure. The contribution of
an individual heuristic here is that it may lead to a short
cut. The geometry theorem machine will probably be an
algorithm of this type.

7. A. M. Turing, “Computing Machinery and Intelligence,”
Mind, 59, 433 (October, 1950).

8. In the case of a theorem contingent upon a set of hy-
potheses, the proof is developed in an extended system
in which the hypotheses are appended to the original set
of axioms. The transformation of this categorical proof
to the desired hypothetical one is trivial.

9. Newel1 and Simon, in private communication with the
authors, have described an abstract model for a proposi-
tional calculus which is not a semantic interpretation,
but which, in fact, is another formal system in which it js

trivially easy to prove the transformed theorems. Since
this is a true heuristic, it is not always possible to trans-
form back to the problem space.

10. The term character was introduced by Minsky (M. L.
Minsky, “Heuristic Aspects of the Artificial Intelligence
Problem,” Lincoln Laboratory Report 34-55, December,
1956) and is to be understood in its dictionary sense. The
particular machine representation of a theorem character
selected by the authors differs somewhat from that of
Minsky.

11. The completed proof will use a deduction metatheorem
to get t { H) 2 Go from { H) t G o .

12. A. M. Turing, Proceedings of the London Mathematical
Society, Series 2, 24,230-265 (1936).

13. E. W. Beth, “Semantic Entailment and Formal Deriva-
bility,” Mededelingen der Koninklijke Nederlandse
Akademie van Wetenschappen, afd. Letterkunde, Nieuwe
Reeks, 18, No. 13, 309 (1955). See also: Abraham
Robinson, “Proving a Theorem (as done by Man, Logi-
cian, or Machine),” Transcription of the Proceedings of
the 1957 Cornell Summer Znstitute of Logic, Ithaca,
New York.

Received June 4,1958

345

IBM JOURNAL OCTOBER 1958

