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Intelligent  Behavior in Problem  -Solving  Machines 

Abstract: As one step in  the study of  intelligent  behavior  in machines, the  authors consider the  particular case 

of a machine  that can prove theorems in  elementary  Euclidean  plane  geometry. The device uses no  advanced 

decision algorithm,  but relies rather  on  rudimentary  mathematics  and  ”ingenuity”  in  the  manner,  for  exam- 

ple,  of a clever high-school student. 

This paper discusses heuristic methods and  learning  machines  and introduces the concept of a theory  machine 

as an  extension  of a theorem-proving  machine. 

Introduction 

Modern machines  execute  giant  tasks  in arithmetic  and 
carry  out clerical  operations that  are  far beyond human 
capacity, but we have  not yet learned  to apply  computers 
to problems that  require  more  than a barest minimum of 
ingenuity or resourcefulness.  This paper  reports some 
early results  in an  approach  to  the problem of learning 
how to use machines  in  these  presently  unmanageable 
areas.  The goal of this research is the design of a machine 
whose behavior  exhibits more of the characteristics of 
human intelligence. 

We shall concern ourselves in particular with a single 
representative  problem, one which contains  in relatively 
pure  form  the difficulties we must understand  and over- 
come in order  to  attain  our  stated goal. The special case 
we have chosen is the proof of theorems in Euclidean 
plane  geometry  in the  manner, let us say, of a high-school 
sophomore.  It must be emphasized that  although plane 
geometry will yield to a  decision  algorithm, the proofs 
offered by the  machine will not be of this nature. The 
methods to be developed will be no less valid for problem 
solving in systems where no  such decision algorithm 
exists. 

If the application of a decision algorithm is rejected 
as  uninteresting (in the case of plane  geometry) or impos- 
sible (for most  problems of interest), there  remain two 
alternative  approaches to  the proof of theorems in formal 
systems. The first consists in exhaustively developing the 
proof  from  the axioms and hypotheses of the system by 
systematically  applying the rules of transformation until 
the required proof has been produced (the so-called 
“British Museum algorithm” of Newel1 and Simon1). 
There is ample evidence that this procedure would require 

336 an impossibly large number of steps for all but  the  most 

trivial  theorems of the most  trivial formal systems. The 
remaining  alternative is to  have  the machine rely upon 
heuristic  methods, as people usually do  under similar 
circumstances. 

Problems  for which people use heuristic  methods seem 
to have the following characteristic. The work begins 
routinely, and  then suddenly the person  experiences a 
flash of understanding.  This is followed by the writing 
down  and checking of the  solution. Apparently  the person 
first used heuristic  methods to look for a solution. To 
each suggestion turned  up by the heuristic  methods he 
applies  some  sort of a test. The flash of understanding 
comes  when a suggestion gets a high score  on  the test. 
The clerical  task that follows is the  transformation  from 
suggestion space’ to problem  space. The  transformation 
is possible, of course,  only if a valid solution has been 
indicated. The geometry  machine will behave in this way. 

Instead of geometry we might  have chosen a  certain 
class of probability  problems,  proofs of theorems  in pro- 
jective  geometry,  proofs of trigonometric  identities, 
proofs  in part of number theory, or the evaluation of 
indefinite integrals. There were compelling  reasons, how- 
ever, for choosing  plane  geometry,  the  most important 
being the readily  understood “suggestion space” offered 
by the diagram  (the  semantic interpretation of the  formal 
system), and  the ease of transforming “proof  indications” 
into problem  space. An  important secondary  reason was 
the  fact  that everyone who would be interested  in our 
results has studied  Euclid, so the results  can be communi- 
cated more efficiently. 

It should be noted  here that  the geometry project is a 
consequence of the  Dartmouth  Summer Research Project 
on Artificial Intelligence,  standing on a foundation laid 
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by the members of the study,3 and evolving from  the 
pioneering  work of Newell and Simon in  heuristic pro- 
gramming.4 

Not all problems whose solutions seem to be accom- 
panied by a “flash of understanding” are elementary 
enough  to lie within the scope of the methods described 
in this paper. Many have difficulties of a more  profound 
nature.  It will be possible to say a little more about this 
later,  but a  secure understanding of the  nature of these 
harder problems will come  only  after  more research  has 
been done. 

The explanation of the precise meaning of the  term 
heuristic method is an  important  part of this paper.  For 
the  moment, however, we shall consider that a  heuristic 
method  (or a heuristic, to use the  noun  form) is a  pro- 
cedure  that may lead us by a short  cut  to  the goal we seek 
or it may lead us down  a blind alley. It is impossible to 
predict the  end result  until the heuristic  has been applied 
and the results checked by some formal process of rea- 
soning. If a  method  does not have  the characteristic that 
it may  lead us astray, we would not call it a  heuristic, 
but rather  an algorithm.5 The reason for using heuristics 
instead of algorithms is that they  may  lead us more 
quickly to  our goal and they allow us to  venture by ma- 
chine into areas  where  there are  no algorithms.6 

Finally, since people seem to use heuristic  reasoning 
in  nearly every intelligent act,  it is reasonable to ask why 
some  task  more  familiar and  natural  for people was not 
chosen as representative of the class rather  than plane 
geometry. Several alternatives to geometry  were, in fact, 
considered and rejected for failing to satisfy one or more 
of the following requirements: 

1. The task  must  include a kind of reasoning that we are 
not yet able to get our machines to  do  but which we 
think we can learn  to manage. 

2. It must  not  contain harder kinds of reasoning that  are 
too  far beyond our understanding. 

3. It must  not  be too  much cluttered  with  irrelevant 
work. 
Most human  acts fail to meet requirement (2).  We 

have a long way to go before our machines can play 
Turing’s “Imitation  Game”  and win.‘ 

Geometry 

A standard dictionary defines geometry as “the theory of 
space and of figures in space,” and indeed,  most people 
would offer a  similar definition. To the  mathematician, 
however,  geometry  represents a formal mathematical 
system within which proofs are possible, and which  can 
be related to real  space if this  seems  interesting for  the 
purpose at  hand, but which can alternatively  be  related 
to concepts  having no physical reality or significance. The 
machine considers  geometry  primarily as a formal system 
but uses the  interpretation in terms of figures in  space for 
heuristic  purposes. 

A formal system such as geometry comprises: 

1. Primitive symbols 
2. Rules of formation 

3. Well-formed formulas 
4. Axioms 
5.  Rules of inference 
6. Theorems. 

The  set of primitive  symbols (or alphabet) for geometry 
is those characters which are interpreted as the  names 
of points  together  with  those  interpreted as specifying 
relations  between  discrete sets of points, or between a 
given set and  the universe of points  (e.g., =,J, A ,  B,  A ) .  
In  order  to  make proofs in geometry it is not necessary, 
for example, to think of a line  as  something  long, thin, 
and straight. It is sufficient to be able to recognize the 
symbol line. 

The rules of formation specify how to assemble the 
primitive  symbols into well-formed formulas (statements) 
which may  be valid or invalid within the  formal system. 
For example,  “Two sides of every triangle are parallel” 
is a well-formed formula  (although not valid), whereas 
“Two exists of obtuse  every one point” is not a well- 
formed  formula. We can ask the  machine  whether  the 
first is true (interpreting formal validity as truth),  but  the 
second is gibberish because it does not  obey  the rules of 
formation. These rules are, in a sense, the  grammar of a 
language whose vocabulary  comprises the  alphabet of 
primitive  symbols. 

The axioms are a set of well-formed  formulas, such as 
“Through every  pair of points there  can be drawn  one 
and  only  one straight  line,” which are selected to serve 
as a foundation  on which to build. They  are regarded as 
being true by definition, if you like. 

The rules of inference  are the means by which the 
validity of one well-formed formula  can be derived from 
others  that  are  already established. The new formula is 
said to be inferred immediately from  the given one  or set 
by the specified rule of inference. 

A proof is a succession of well-formed formulas in 
which  each formula (or line of proof)  either follows by 
one of the rules of inference from  the preceding formu- 
las, or is an axiom or previously established theorem. A 
theorem is the last line in  a  proof. 

To recapitulate, a problem  presented to  our  machine 
is a statement in a formal logistic system, and  the solution 
to that problem will be a  sequence of statements,  each of 
which is a string of symbols in the  alphabet of that sys- 
tem. The last statement of the sequence will be the  prob- 
lem  itself,  the first will always be an axiom or previously 
established theorem of the system.s Every other  formula 
will be immediately  inferable from some  set  preceding it 
or will itself be an axiom or previously established 
theorem. 

This simple and elegant description of geometry is 
essentially the one given the high-school sophomore.  It 
will shortly be seen that this view is too naive to describe 
what really happens,  but for  the  moment  it will be expe- 
dient to  continue the exposition as if it were true, because 
the idealization has a significance of its own. A number 
of things  should be pointed out  about this ideal view of 
geometry. First,  there is a difference between finding a 
proof and checking  it. To check a proof one merely fol- 337 
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lows some simple rules that  are set  down  very precisely. 
To discover a proof,  on  the  other  hand, requires  ingenuity 
and imagination. One  must use good intuitive judgment 
in selecting  which of many possible alternatives is a step 
in  the right  direction. The high-school sophomore does 
not have a  complete set of explicit rules to guide him in 
finding a proof. 

Since  checking  a proof is a clerical procedure  there is 
no reason  why  a machine  cannot easily do  it. A well- 
formed  formula (Le., axiom,  line of a proof,  or theorem) 
would  be  a string of data words  in  memory, and a rule of 
formation  or of inference would be a subprogram.  There 
is nothing  really new or difficult about this, and  many 
programs  have been  written to  make machines do jobs  as 
difficult. The artificial geometer discussed here will have 
a subprogram which is an algorithm for checking  a proof. 

The process of discovering  a  proof is another  matter, 
and  the question of how to get a machine  to  do  it is the 
subject of this paper.  The  student  or  the  machine  can be 
given some  useful  hints but must also be provided  with 
a warning  that these hints may be misleading. For exam- 
ple, it can be  said that if the proposition to be  proved 
involves parallel lines and equality of angles, there is a 
good chance  that  it will help to  try  the  theorem: “If two 
parallel lines are intersected by a third line, the opposite 
interior angles are equal.” This advice is a  heuristic that 
can be given to  the  machine  or  student.  It will lead to a 
proof  in  a good many cases but will as often lead  nowhere 
at all. 

Thus  far,  there has  been no mention of drawing figures. 
It is, of course,  quite possible to discover a  proof in a 
formal system without  interpreting that system, and in the 
case of geometry,  except for  the need to discover proofs 
efficiently, or  for applying  theorems to  practical  prob- 
lems, one need  never make a  drawing. The creative math- 
ematician, however,  generally finds his most valuable 
insights into a problem by considering a model of the 
formal system in which the problem is couched. In  the 
case of plane  goemetry, the model is a diagram, a  seman- 
tic interpretation of the  formal system in which, to  quote 
Euclid,  the symbol point stands  for  “that which has  no 
parts,” a line is “breadthless  length,” and so on.  The 
model is so useful an  aid  for discovering proofs  in 
geometry that few people would attempt a  proof  without 
first drawing a diagram, if not physically, then  in view 
of the mind’s eye. If a  calculated  effort is made  to avoid 
spurious coincidences, then  one  is usually safe in  gener- 
alizing  any statement in the  formal system that correctly 
describes the  diagram, with the notable  exception of those 
statements concerning  inequalities. 

We  cannot emphasize too strongly the following point. 
To serve  as a heuristic device in problem solving, the 
model  need not lie in rigorous  one-to-one  correspondence 
with the  abstract system. It  is  only  necessary  that  they 
correspond  in  a  suficient  number of ways to be  useful. 
The success of the model  in  designating correct solutions 
to problems in  that system (solutions that will be checked 
within the  framework of the  abstract system) is the only 
criterion  one need  apply  in  judging the suitability of a 

given model.9 If the model is indeed a  semantic  interpre- 
tation of a formal logistic system, then  it is most  desirable 
that  the  interpretation satisfy every  axiom of the  formal 
system. But should the  interpretation be valid, too,  for 
some  richer or  poorer  formal system, its heuristic  value 
might  be  impaired, but by no means eliminated. 

Heuristic method 

The proof of theorems  in  Euclidean  plane  geometry in 
the sense described  above  requires the extensive use of 
heuristic  methods, and  it is these  methods rather than 
geometry that  are of primary interest to us. The role of 
geometry is to provide  a  problem of the right difficulty 
to permit  a thorough development and understanding of 
the class of heuristics involved. 

The steps in a  typical  application of a  heuristic method 
to theorem  proving are  the following: 

1. Calculate  the character’” of the theorem. 
2. Using the theorem character, calculate the applicable 

3. Select the most appropriate  method. 
4. Try it. 
5. In case of failure, cross off this method  and  return 

6. In case of success, print  the proof and stop. 

methods and estimate the  merit of each. 

to step (3). 

The  character of a theorem  (or of any problem) is in 
essence the machine’s  description of the  theorem (or the 
problem). In its simplest form,  the  character may be 
represented by a  vector,  each  element of which describes 
a given property of either  the syntactic statement of the 
theorem or its semantic  representation. The vector des- 
ignating the applicable  methods and estimated merit of 
each is a  vector function of the  character.  The figures of 
merit are, of course,  only guesses based initially on  the 
judgment of the  programmer,  and subsequently  modi- 
fied by the  machine in the light of its  experience. 

Defining the  term characteristic as  a given element of 
the  character vector, the following might be introduced 
as  syntactic  characteristics of a theorem: 

Ci = 1 if the hypotheses contain  the symbol 11, 0 other- 
wise; 

Cj  = 1 if the consequents of the theorem  contain the 
symbol 11 ,  0 otherwise; 

CY = 1 if there exists a permutation of the  names of 
points  in the hypotheses that leaves the  set of hy- 
potheses  unchanged, 0 otherwise; and so on. 

Examples of semantic characteristics are  the following: 

CL = n, where n is  the  number of axes of symmetry  in 
the  diagram; 

C,, = 1 if two angles of segments are  to be proved equal, 
and they are corresponding  elements of congruent 
triangles, 0 otherwise; and so on. 

The rules  formalized into  the vector function  that 
transforms  the  character of a  problem into a  sequence of 
designated  methods of approach  and  the estimated merit 
of each will in  general  fall into two categories. The first 
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will contain those  heuristics  which operate  on  the syn- 
tactic  characteristics of the problem. The second will, in 
the  general case of a problem-solving machine,  comprise 
those  rules which operate  on  the characteristics of the 
model. For  the artificial geometer,  these are  the semantic 
characteristics  described  above. 

The  problem  of  strategy  and  tactics  in  choosing 
methods is most important.  One obvious  strategy  men- 
tioned  earlier is to explore all alternatives  systematically. 
This is known to be inadequate  for  many problems and 
is considered by the authors  to be uninteresting,  and 
probably useless, for geometry. The strategy and tactics 
used by Newell and Simon  in  their  achievement in theo- 
rem  proving by machines are not adequate  for this harder 
problem on present-day  machines. Their proofs  were, at 
most, three or four steps long, and  machine time  required 
is probably an exponential function of the  number of 
steps. Clearly the ten-step  proofs of geometry will require 
much  more selective heuristics than those adequate for 
propositional  calculus. 

The  authors  have  at present  a system of strategy and 
tactics. It does not seem useful to  report  it in  detail at 
this  time  because machine experience will probably in- 
duce  major revisions and improvements. It is clear, how- 
ever, that  the skill with which the machine selects and 
manipulates  methods will distinguish  a good machine 
from a poor one.  Since it is impossible to predict the 
detailed  behavior of so complex an information-process- 
ing system as the artificial geometer, it is necessary to 
write the program and  run  the simulation  before  conclu- 
sions can be  reached  with confidence. 

The speed with which a difficult problem can be solved 
is an essential factor in  determining the usefulness of  an 
intelligent machine. This speed cannot be achieved by 
little  steps like inventing  faster  components. On  the scale 
considered  here,  a factor of ten is a minor  change in 
speed.  Suppose, for example, that a given proof  requires 
ten steps. If for  each  step, the  machine  must  explore  three 
alternatives,  there will be about 20,000 things to con- 
sider. A slightly less intelligent machine that must  explore 
six alternatives will have  to consider 20,000.000 things. 
For problems  having longer solutions, selectiveness be- 
comes more  important exponentially. 

Syntactic symmetry 

The  formal system of plane  geometry will be a difficult 
one  for  the machine to manipulate. Not only are  the 
alphabet  and axiom  set both large, but geometry must 
be formalized  in the lower functional calculus, at the 
very least. The difficulty is compounded,  too, by the  fact 
that the predicates of plane  geometry  exhibit  a high 
degree of symmetry, and a given statement in the system 
will in general admit of a multiplicity of completely 
equivalent forms. 

These  symmetries  are  at  times a painful  thing  to 
contend with; they make it necessary that a  theorem be 
considered  in every one of its equivalent forms in any 
attempt  to establish a  deduction by means of substitution. 
On  the  other  hand, they are  the basis of a  powerful new 

rule, completely syntactic  in nature,  that simplifies im- 
mensely the  search  for a  proof of a theorem displaying 
these  symmetries. The  rule will prevent the machine from 
searching  in  a  circle for useful  intermediate  steps, or 
subgoals, to bridge the gap between antecedent  and con- 
sequent of the  theorem  to be proved. In effect, it removes 
from consideration  those subgoals which are formally 
equivalent to some  subgoal  already incorporated  into  the 
structure of the search for a  proof. 

Figure I 

We  shall introduce  the  rule by an example. Let US 

consider the following theorem:  “The diagonals of a 
parallelogram bisect one  another”  (Fig. 1). To solve the 
problem,  the  machine  must  establish  the  formulas 
A E =  EC and BE= ED. Now  it would be  most  useful if 
the artificial geometer  could recognize, as  people usually 
do,  that  the proof for  the second formula is essentially 
the same  as that  for  the first, and  therefore only one of 
the two  need  be established. But it is even more  impor- 
tant  that  the  machine not  fall into  the class of trap illus- 
trated by the following redundant  search process. The 
method  chosen is that of congruent triangles, and in order 
to establish the  formula AI MI,  from which the theo- 
rem may  be  immediately inferred,  the  machine sets at 
some later stage the subgoal AIII-AIV.  The geometer 
will, in fact, satisfy our requirements on  both these points. 
The mechanism  whereby this is accomplished is an em- 
bodiment of  the theorem and  rule specified below. 

Consider first the following definition: Let X be a 
permutation on  the names of the syntactic  variables  in  a 
theorem. Then X is a syntactic  symmetry of the theorem 
if  its operation  on  the set of hypotheses leaves the set 
unchanged  except for a possible transformation  into  an 
equivalent form with respect to  the symmetries of the 
predicates  (i.e., T { H } - { H }  is valid. We can now state 
the required  theorem thus: 

“If r is a well-formed formula provable from  the set 
of hypotheses { H } ,  and X is a  syntactic  symmetry of the 
set { H } ,  then Tr is a well-formed formula provable from 
the  same set { H } .  The  formula d will be called a syn- 
tactic  conjugate of I?.” 

The proof of the  theorem is quite  trivial, and follows 
from  the  fact  that  the syntactic  variables  in  a theorem 339 
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may be renamed without  destroying the validity of the 
theorem. Thus, if 

{ H }  3 r is valid,  then 
x { H }  3 TI? follows by the  rule of substitution. 

Since x { H }  G { H } ,  
{ H }  3 Xr is valid. 

The  theorem itself grants the  machine  the  same power 
the  human  mathematician  has  at his disposal when he 
recognizes the equivalence of two different  statements 
with respect to a given formal system, for now it  may 
establish the syntactic  conjugate of any valid formula I? 
by merely asserting “similarly, XI’.” The  rule of syntactic 
symmetry follows from  the  theorem.  It is used by the 
machine to  construct, given the heuristics and  methods 
at its disposal, the  optimum problem-solving  graph, and 
a  description of such a graph follows. (See  Fig. 2.) 

Let Go be the  formal  statement  to be established by 
the  proof.  It will be called the problem  goal. If Gi is a 
formal  statement with the  property  that Gi-1 may  be  im- 
mediately inferred  from Gj ,  then Gi is said to be a sub- 
goal of order i for  the problem. All Gj such  that j<i are 
higher  subgoals than Gi, where Go is considered to be  a 
subgoal of order zero. The problem-solving graph has as 
nodes the Gi, with each Gi joined to  at least one Gi.l by 
a  directed  link. Each link  represents  a given transforma- 
tion from Gi to Gi-1. The problem is solved when any Gi 
can be  immediately inferred  from  the hypotheses and 
axioms.ll 

We  can now specify the  rule of syntactic  symmetry 
thus: Gi is not a  suitable  subgoal to  add  to  the problem- 
solving graph if it is the syntactic  conjugate of any Gj 
for i2j, for any proof sequence  leading to Gi is identical 
with a  conjugate  sequence  leading to G j  with the variables 
renamed,  and  any mechanism  leading to a proof of Gi 
would as well prove Gi. If i=j, the two  subgoals are in 
effect redundant,  and if i>j, the sequence  leading to Gi 
leads to G j  when  conjugated, and all the steps Gr, i 2  k>j 
can be  eliminated. 

In  the light of the above, we may now  re-examine our 
introductory  problem  (Fig. 1 ) . The  machine must  estab- 
lish the following two goals: 

Go’: AE=EC 

Go’: BE=ED 

By the  theorem of syntactic  symmetry, the  machine will 
eliminate GoZ from  the  graph, since Go2=XGo’, where X 

is the  transformation A into B, B into C, C into D, and 
D into A ,  and  after proving Go1, will assert “similarly, 
Go2.” Then, if at some point in the  proof, AABE E ACED 
is a  subgoal, it will eliminate the  statement ABCE r ADEA 
as  a possible subgoal; if AB=CD is a  subgoal, BC=DA 
will be  removed from consideration.  Clearly  every di- 
rected path  through  the problem-solving graph  from 
hypotheses to goal will be unique  under  the T-transforma- 
tion,  and will be the shortest one in that  it will contain no 
redundant  subgraphs  (no two nodes will be linkable by 
a r-transformation). 
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Figure 2 Problem-solving graph. 
The  nodes Gi“ represent  subgoals of order i, 
with a! numbering  the subgoals o f  a given 
order. Pimp is a transformation on Gim into 
Gi-lP. 

Syntactic rules such as the  above will be essential to  the 
success of the  plane geometry  machine.  But while they 
ease the  labor of the geometer  considerably as it  threads 
a path  from  problem  to solution,  they  are,  except  in the 
simplest cases, powerless to  indicate which path,  among 
the very many possible, does  indeed  lead to a solution, 
and which  wander off into infinity, regressing farther 
from  the goal with  each step. The geometer will need 
more  information  about most  problems  before it  can 
even begin to seek a  solution. It will find this information 
as the  mathematician does, in the  diagram. 

Semantic heuristic 

Semantic  heuristic is concerned  with the body of per- 
tinent and probably true statements that  can be  obtained 
by observing the diagram. For example, one of the first 
such  rules  to be applied by the geometer in a particular 
case will be the following: 

If the diagram  consists of a “bare” simple  polygon, a 
construction will probably be required. 

A rule  to indicate  which  construction to  make might be: 
I f  the  figure  has  one  axis of symmetry, and  it is not 
drawn,  then draw it. 

A most  useful rule will be: 
I f  the  theorem  asks  that  two line segments or angles be 
proved equal, determine by  measuring whether these 
are corresponding parts of apparently  congruent tri- 
angles. If so, attempt  to  prove  the  congruence. I f  
necessary,  draw lines  connecting existing points  in  the 
diagram in order to create the  congruent triangles. 



Another frequently used heuristic will be: 
I f  two  apparently parallel lines  are crossed by  a trans- 
versal, attempt  to establish the parallelism by consider- 
ing  the angles. 

A more complete  understanding and appraisal of the 
appropriate heuristics will be one of the major conse- 
quences of experimentation. 

It should be clear that  the best set of heuristic  rules, 
the best compromise between conciseness and efficiency, 
should  not be expected to yield the best proof in every 
case. Indeed in a number of awkward cases the rules will 
impede, rather  than  aid, the  search for a  concise  proof. 
In some cases the machine will make a construction  and 
produce  an  elaborate proof while missing a simple, ele- 
gant one. People,  too,  do this. But these awkward cases 
should be the  exception,  and the heuristic  rules appear 
sufficiently powerful to  make  an efficient machine. 

Rigor 

Mathematical  rigor becomes a significant matter in two 
different  aspects of the artificial geometer. One of these 
is that machines can provide, in a sense, more rigorous 
proofs than have hitherto been available. More  important 
than this is the second aspect-that our machine is like a 
good human  mathematician in that  it increases its output 
and improves its communication with other  mathemati- 
cians by taking chances with  rigor. 

Axioms and theorems are objects that can be examined 
and manipulated by people and machines. These present 
no problem.  However,  methods of inference are instruc- 
tions to  do something. In the case of machines  they are 
programs of instructions in  machine language. In the case 
of people  they are instructions expressed in  a natural 
language and intended to control human behavior.  Except 
for undetected  blunders  in the design of a machine  or in 
the  writing of a  set of machine  instructions, the machine 
and its instructions are fully  understood. And when one 
of these  blunders is detected, it causes merely annoyance 
and  not bewilderment. Therefore when a machine  proves 

Figure 3 

a  theorem,  there is in  principle no  doubt about  what is 
going on  and, except for possible apprehensions about 
human blunders or undetected  machine  malfunctions, 
there is no  doubt  about rigor. 

It is interesting to observe that  the most rigorous  treat- 
ments of the  foundations of mathematics  seem  equivalent 
to designing a machine  and a  machine  language and 
henceforth communicating  in  this  language. In  one case1' 
the mathematician  even uses the  term machine, although 
his machines  could not actually be built because they 
contain  parts  with infinite dimensions. Other really good 
treatments  do  not use the  word machine but  are essen- 
tially equivalent. It should be clear, then,  that  the  trans- 
lation of a formal system into a machine  program is rea- 
sonable and  natural. 

The  other aspect of rigor is quite different. Most ele- 
mentary  textbooks on geometry fail  to prove betweenness 
relations. In Fig. 3, the  acute angle ABC is bisected by 
the line segment BD. Then line segments BD and AC 
are extended to infinity, thus becoming lines BD and AC. 
Point E is defined as the  intersection of lines BD and AC. 
Now how can  it be determined  whether point E lies be- 
tween A and C or  to  the  left of A or  to  the right of C? 

Ordinarily this decision is made by looking at  the 
figure. In rigorous treatments  it is proven  formally, but 
this is a tedious effort. Expediency  dictates that  the 
mathematician  should neglect the possibility that a se- 
mantic heuristic will lead  him seriously astray. Since 
people rarely get into  trouble because of honest errors of 
this kind,  traditional  geometry excludes proofs of be- 
tweenness, and most  mathematics appears  to lack  rigor 
because  many matters  are settled  by  heuristic  methods 
rather  than  formal proofs. It seems clear that  the machine 
must  be able  to work this way if it is to become proficient. 

The artificial geometer decides questions of between- 
ness by measurements on  the figures. But whenever it 
does so, it explicitly records the necessary assumptions 
for a given proof so as to leave  a  record of its guesses. 
There is, of course,  a danger  that  the  machine will be 
proving  only a special  instance of the  theorem  presented 
to it, but this danger  can be  minimized by having the 
machine  draw  alternate diagrams to test the generality of 
its assumptions when they are necessary. 

Programming  the  geometer 

The organization of the  program falls  naturally into  three 
parts: a syntax  computer and a diagram  computer em- 
bedded in an executive routine,  the heuristic  computer. 
The flow of control is indicated in Fig. 4. The syntax 
computer contains the  formal system, and its purpose 
is to establish the proof. The  formal system manipu- 
lated  by the syntax computer is expressed as  a  Post- 
Rosenbloom  canonical  language, and consequently the 
syntax computer should be useful for a wide range  of 
logistic systems. The heuristic computer  can submit  any 
sequence of lines of proof to  the syntax computer, which 
will test them to see that they are  correct. 

The diagram computer makes  constructions and meas- 
ures them.  It does this by means of coordinate  geometry 
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Figure 4 Flow chart of the artificial geometer. 

and floating-point calculations.  However, it keeps all this 
secret from  the heuristic computer  and  reports only quali- 
tative information of the type  acquired  by  a mathema- 
tician in scanning a well-drawn figure. The behavior of 
the heuristic computer  and the  syntax computer would 
not be changed if the  diagram  computer were  replaced by 
a machine  that could draw diagrams on  paper  and observe 
them. 

The heuristic computer does  most of the things that 
have been discussed in  this report. It contains the heuristic 
rules and decides what to  do next. The  subordinate 
computers only  follow its instructions and answer  its 
questions. 

The  program is being written in an information-pro- 
cessing language  constructed by appending a large set 
of special functions  to  the  Fortran compiler for  the 
IBM 704. The language  increases  manyfold the ease of 
writing programs of the  nature of the geometer, and 
will be  reported  upon in  detail  in  a  subsequent paper. 

learning in intelligent machines 

The  machine described thus  far will exhibit intelligent 
behavior but will not improve  its technique. Except  for 
the  annexation of previously proved  theorems to its  axiom 
list, its structure is static. A rigorous  sequence of practice 
problems will not improve  its performance  at all in solv- 
ing a given problem unless a  usable theorem is among 
them.  Such a machine,  incapable of developing its  own 
structure, will always be  limited  in the class of problems 
it can solve by the initial intent of its designer. It seems 
that  the  problem of designing a  machine of general intelli- 
gence will be  enormously greater, if at all possible, than 
designing one  not so intelligent but with the capacity to 
learn. 

One might attempt  to endow an  automaton like the 
geometer  with the ability to learn at various levels of 
sophistication. Indeed,  the behavior of the  machine in 
storing away for future use each  theorem  it  has proved 
may  be  interpreted as learning of a rudimentary sort. 
This might  be refined by  having the  machine become 
selective in  its  choice of theorems for  permanent storage, 
rejecting  those  which (by some well-defined criteria) do 
not seem to be sufficiently “interesting” or general to be 
useful later  on. Similarly,  instead of “forgetting” all lem- 
mas it might have established as  intermediate  steps in the 
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proof of the theorems offered  to  it,  to be  rederived when 
needed,  the machine might select the especially interesting 
ones for  its list of established theorems. 

The next level of learning is indicated when  the  ma- 
chine  adjusts, on  the basis of its experience, the  prob- 
ability for success it assigns to a given heuristic rule  for a 
theorem with a given character.  This is the  learning  in- 
volved when the  machine uses results on  one problem to 
improve  its guesses about similar  problems.  As the geom- 
eter is given problems of a given class, say problems about 
parallelograms, its ability to handle them would improve. 
After  it  had been given a  graded  sequence of harder  and 
harder problems,  its performance should he  much better 
and it could  be  said to have learned  to prove  parallel- 
ogram theorems. The highest level to which we aspire for 
an early  model of the geometer will be achieved when it 
looks over the quality of its predictions and discards as 
irrelevant  some of the criteria that comprise the problem 
character.  The earliest models of the geometer will in- 
clude  only low levels; later models will be more  complex. 

Beyond these  kinds of learning we can see other things. 
Before we come  to  them, however, we will probably be 
working on machines to solve harder problems than those 
of geometry. There  are kinds of learning that  are needed 
only by machines that  take  their  environment  more seri- 
ously than  do theorem-proving  machines. But we can 
hope that a theorem machine  might  some  day  be  able to 
observe that a certain sequence of methods was effective 
in certain circumstances, and consequently  streamline 
the sequence into a single method  and in  this way devise 
a new method. 

But in still another vein there are possibilities for theo- 
rem machines. Instead of providing a machine with a 
formal system and a  sequence of propositions to prove, 
one could give the  machine a formal system and ask it  to 
see what  it could find. Here  it would at least  need  criteria 
for  the utility of theorems in proving other  theorems  and 
for  the elegance of a proof in terms of large  achievements 
in  a  small number of steps. New  kinds of learning would 
be used here. 

Before closing the subject of learning machines, there 
are some further considerations to  deal with. A computer 
is, after all, merely a finite automaton,  and, as such, its 
behavior is completely  determined by its internal  state 
at  the beginning and by  subsequent input  information. 
This being the case, it  can  be  argued  that its response to 
any  set of input signals is in  principle  predictable and is 
consequently  uninteresting and not  worthy of the descrip- 
tion “intelligent.” Another version of this objection is the 
following. The  machine, endowed with heuristics and 
judgments of its designer, is but a trivial  extension of that 
person, in  principle no different from a slide rule in the 
hands of an engineer. 

From a  certain  irrelevant point of view the  objection 
is justified, but  in practice the behavior of the  machine is 
far  from being  predictable. That this is indeed the case is 
well illustrated by the  fact  that  the geometer,  its operation 
simulated  “by hand,”  has  on several  occasions produced a 
proof that was a  complete  surprise to its programmers. 



The  nature of an intelligent program is such  that unlike a 
conventional  arithmetic  computation,  in  which  the 
branches are few and easily traceable, the  number of con- 
ditional  branches  depending on  the  input  are bewilder- 
ingly many  and highly interdependent,  rendering  impos- 
sible any detailed attempt  to  trace its behavior. And  of 
course, once learning is introduced into  the  program, it 
will constantly  modify itself in a highly complex way, so 
that while its behavior is still in principle  determined, one 
will become  increasingly powerless to predict its response 
in any given case. In a very real sense, the machine’s 
proofs will be no more  or less trivial than those offered by 
the neophyte  mathematician  who is still under  the influ- 
ence of his professor. 

One  may view this machine  in still another way. At any 
instant of time, the  internal configuration of our  machine 
is some particular  state of a finite-state automaton.  Then 
of  the infinite number of sequences that  one might ask the 
machine to establish as theorems,  some infinite subset of 
these will be  provable by it. At any given time, our  ma- 
chine  represents a partial  decision  method  over  this 
infinite set of theorems, and this  set will be  richer  in 
“interesting”  theorems than a random subset of all theo- 
rems. The class of theorems considered  “interesting” will 
determine  the heuristics that  control  the  partial decision 
method, and in turn,  the density of interesting  theorems 
in the set enumerated by the  machine will depend on the 
apt choice of the heuristics. It is important  to note that if 
even the most rudimentary learning  behavior is built into 
the machine, its initial  internal  configuration will be differ- 
ent  for  each new problem  presented to it, and conse- 
quently, the class of theorems  decidable by the machine 
will be  continually  changing. And what is any  human 
mathematician  but a partial decision machine  over  some 
unknown class of theorems? 

It is possible to  approach the  problem of theorem- 
proving by machine from a rather different direction. 
E. W. Beth13 describes a method (semantic  tableaux) for 
systematically  constructing  a  counterexample for a pro- 
posed theorem if there is one,  or else establishing the  fact 
that none exists. If it can be shown that a counterexample 
cannot be constructed, an algorithm is given for convert- 
ing the “closed” semantic  tableau  produced into a proof 
of the  theorem  in  the  formal system. But the  method of 
semantic  tableaux is essentially an  enumeration proced- 
ure-in this case, it is the set of individual  instances of the 
theorem that could possibly be counterexamples to  the 
theorem that is being enumerated,  and like all such  pro- 
cedures, the bulk of calculation required rapidly  outdis- 
tances the capacity of conceivable  computing  machines. 
In  order  to  make  the  procedure reasonably efficient, heu- 
ristic  rules for  the  control of the enumeration must be 
introduced,  and  one is faced  with essentially the  same 
problem that concerns the body of this paper. The  more 
or less anthropomorphic  approach followed by the  au- 
thors has  the advantage that suitable  heuristics are readily 
suggested by introspection, and  the methods developed 
are  more likely to be  applicable to the  solution of prob- 
lems in nonformal systems. 

The theory machine 

At various  points  in  the  preceding discussion, a line of 
reasoning was terminated by the  comment  that  harder 
problems exist but they are outside the scope of the  matter 
being considered. This large new class of problems, and 
how a machine can  handle them, is the subject of this sec- 
tion.  We  consider now a  machine that takes  its  environ- 
ment  more seriously. 

The subject will be introduced by an example of a more 
advanced  kind of geometry  machine,  a machine  that tries 
to  learn  what kind of geometry fits the  environment it 
finds around it. The heuristic computer is provided  with 
an environment by the  diagram  computer. It looks to  the 
environment  for heuristic-for clues about  what to do 
next.  However, if it learns that a  measurement contra- 
dicts  something it can  prove  in the syntax computer,  it 
assumes the measurement is in error.  In  other words the 
formal system is sacrosanct. 

Now suppose the diagram computer is replaced  with 
another  that does  its  drawings on  the  surface of a sphere. 
Suppose further  that  the priorities  in the heuristic com- 
puter  are readjusted so that  it believes the diagram com- 
puter rather  than  the syntax computer when the two are 
in conflict. Suppose also that it is provided  with the means 
to modify  the formal system and additional  heuristic to 
enable it to do so efficiently. It would be arranged so as 
to  try  to bring theory (the  syntax computer)  and experi- 
ment (the  diagram computer)  into  harmony,  and thereby 
discover what kind of a  world it lives in.  This is a theory 
machine. 

There seems to be, in  principle, no reason why a  theory 
machine  should  not  be fitted with the means  to  do experi- 
mentation,  with  a tool room, a stockroom,  and  an  instru- 
ment  room,  and told to  work  out the theory of something 
or  other.  In practice, there is the  familiar difficulty of 
speed and cost. Today  it is cheaper and  quicker  to use 
people to  do research, but  perhaps some day machines 
will do  the research and people will merely control  the 
doing of research. This is precisely parallel to  the digging 
of excavations. At  one time  excavating was manual  labor, 
but now machines do  the digging and people  merely  con- 
trol  the machines. The scientist using a machine  to  do 
research would have  a  role  analogous to  that of a  uni- 
versity professor  directing his graduate  students. 

A further  conjecture along  this  line  relates to pro- 
gramming. A  person finds it  much easier to  communicate 
a  complex message to  another person than  to a  machine. 
Speaking is relaxed and easy, while writing a program of 
machine  instructions is detailed and exacting. When  one 
person listens to another  he  often fails to  interpret some 
word  correctly for a while, but  later  other words  enable 
him  to  understand  the earlier  word. It seems as if the 
listener is continually  generating  hypotheses about  what 
the speaker  means and is continually  checking these hy- 
potheses and accepting  them or rejecting them  and casting 
about  for others. In terms of human activity,  theorizing is 
much  too  pretentious a word for this activity. However, 
from  the point of view of machine design, it may be that 
only a theory  machine will be  easy for people to  instruct, 

~ 

I 

1 

343 

[BM JOURNAL OCTOBER 1958 



The  interaction between formal  and heuristic proce- 
dures in a theory machine is more intricate than in  a 
theorem  machine.  To determine the consequences of its 
present  hypothesis the  theory  machine must use the  meth- 
ods of the  theorem machine. Because of the different 
nature of the typical  problems it will be solving, the  theory 
machine must lean more heavily on semantic  heuristic as 
a  substitute for rigorous  deduction. Then  when  it finds a 
discrepancy  between theory  and experiment it  must use 
both  rigorous  deduction and heuristic  procedures to  mod- 
ify its formal system. An interesting feature of such a 
machine is that  the rules for  formal deduction  used to 
modify the  formal system are actually part of the  formal 
system. This is not  an unreasonable situation;  it is essen- 
tially what happens  when the  program  for a calculator 
causes the calculator to modify the program. But  it surely 
is complicated, and  the complication  does not end  here. 

The  machine described so far resembles a  theoretician 
with little or  no experimental skill. Additional  heuristic is 
required to enable the  machine  to select a  “clean”  experi- 
ment  that will be an effective test of a  theory. Contin- 
gencies will arise  in the experimentation, and  the  machine 
must  handle these as subproblems. In  other words it must 
invoke  this whole apparatus  over again at a  lower level. 

The  theory  machine is a device that conjectures about 
its environment and tests its conjectures. In so doing, it 
gains an increased understanding of what is going on. It 
is hoped that  not only will the  theory  machine be able to 
do research, but will also be  easier to communicate with 
than a  present-day automatic calculator. 

Summary 

In  contrast  to  the present use of automatic calculators 
which outperform  human beings in clerical  tasks, the 
theorem machine is proposed as a device that reasons 
heuristically. It is therefore able to solve harder problems, 
and  the  study of it reveals some  things about  the  nature 
of problems and of machines. The essential operating 
principle of this  kind of artificial intelligence is that  it  has 
a formal  part, a  syntax computer  that  can  make deduc- 
tions, and a  heuristic part  that  can  make guesses. By using 
the syntax computer  to test the guesses made  on a  heu- 
ristic basis, the  machine is able to get  results that  are be- 
yond the scope of a  purely  deductive  machine. 

Heuristic processes can be  syntactic,  whereby  they 
depend on  the language in which the problem is stated, 

and  on  the  statement  in  that language, or they can be 
semantic and depend upon  an  interpretation or  model of 
the formal system. 

The artificial geometer is an example of a theorem ma- 
chine. Geometry was  chosen, not because of any inherent 
interest, but  rather because it provides an example of a 
problem at  the right level of difficulty that needs  semantic 
heuristic in a major way. The geometer is being studied 
by simulation on  the IBM 704 Electronic Data Processing 
Machine. 

An interesting  aspect of the geometry taught in  high 
school is that  it is not rigorous.  Some facts  are established 
by proving  them and some by observing the figure  (i.e., 
semantic  heuristic).  This is a  powerful, effective method 
of reasoning used by people and by the artificial geometer. 
While it would be possible, and  probably easier, to  make 
the artificial geometer  perfectly  rigorous, it is more sig- 
nificant in the study of artificial intelligence to avoid the 
strictness of rigor that is a proper  part of metamathe- 
matics but not efficient in mathematics. 

Beyond the  theorem  machine is the  theory  machine 
which, by conjecturing and testing the conjectures, gains 
an  understanding of its environment. Such  a machine 
should be able to  do research and should  be  easier to 
communicate  with. 

The largest  obstacle to  the development of useful  theo- 
rem and  theory machines is the problem of speed. This 
cannot be cured by faster components  alone. The  major 
contribution to speed  must  come from improved  heuristic 
so that  the  machine will waste less time  in  fruitless  en- 
deavor. The  nature of hard problems  insures that  the 
machine  must waste some  time on wrong  hunches,  but 
the waste must be kept within bounds. The machines 
themselves are expected to  make a  major contribution  to 
the understanding of artificial intelligence because  they 
learn as  they  work, and what  they learn reveals much. 
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